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ABSTRACT

Recent findings reveal that token embeddings of Large Language Models (LLMs)
exhibit strong hyperbolicity. This insight motivates leveraging LLMs for scien-
tific taxonomy tasks, where maintaining and expanding hierarchical knowledge
structures is critical. Although potential, generally-trained LLMs face challenges
in directly handling domain-specific taxonomies, including computational cost and
hallucination. Meanwhile, Small Language Models (SLMs) provide a more eco-
nomical alternative if empowered with proper knowledge transfer. In this work, we
introduce SS-MONO (Structure-Semantic Monotonization), a novel pipeline that
combines local taxonomy augmentation from LLMs, self-supervised fine-tuning
of SLMs with geometric constraints, and LLM calibration. Our approach enables
efficient and accurate taxonomy expansion across root, leaf, and intermediate
nodes. Extensive experiments on both leaf and non-leaf expansion benchmarks
demonstrate that a fine-tuned SLM (e.g., DistilBERT-base-110M) consistently
outperforms frozen LLMs (e.g., GPT-4o, Gemma-2-9B) and domain-specific base-
lines. These findings highlight the promise of lightweight yet effective models for
structured knowledge enrichment in scientific domains.

1 INTRODUCTION

Recently, researchers discovered that token embeddings of Large Language Models (LLMs) can
exhibit a high degree of hyperbolicity, which implies a latent hyperbolic structure in the embedding
space (Patil et al., 2025; Yang et al., 2025). Building on this insight, fine-tuning LLMs in hyperbolic
space could yield strong performance gains in an efficient manner (Yang et al., 2025). Similarly, this
phenomenon is also verified, to some extent, that the embedding matrices of LLMs show the semantic
structures, e.g., directions of antonym pairs (Kozlowski et al., 2025). Above evidence suggests that
LLMs have the potential to be a powerful tool for solving the scientific taxonomy related tasks, like
knowledge understanding and enrichment.

Scientific taxonomy, as a specific kind of text-attributed graph, in addition to the textual concept
attached to each node, has a more rigorous and hierarchical structure than normal undirected graphs,
i.e., which can be represented within an explicit hierarchy such as trees or directed acyclic graphs
for the hypernym and hyponym, e.g., Glycoproteins → Proteins → Ribosomal Proteins → Peptide
Elongation Factors, as shown in Figure 1. In the real world, scientific taxonomy is now serving many
applications, such as knowledge organization and question answering (Shen & Han, 2022).

According to the above discussion, the hyperbolic space discovery in LLM’s embedding space
indicates the direction that LLM can solve the scientific taxonomy tasks. However, scientific
taxonomy, as a type of controlled vocabulary, is always domain-specific, and LLMs’ pre-training is
usually executed on a large-scale general corpus. This disagreement means that highly likely LLMs
can not be directly used for scientific taxonomies like prompting or in-context learning, but often
call for the post-training or self-supervised fine-tuning process. Based on the recent studies (He
et al., 2024), LLMs are not always affordable, especially when involved with fine-tuning, and under
‘suitable operations’ small language models (SLMs) can be sufficiently powerful and economical
for many application scenarios and pave the way for the future of agentic AI (Belcak et al., 2025).
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Figure 1: Scientific Taxonomy with LLM Augmentation (Edge-Level).

Then, we need to ask, for the specific scientific taxonomy domain, are we able to first provide an
LLM-to-SLM solution?

In the era of big data, new concepts continuously emerge, posing significant challenges for maintaining
structured knowledge systems. Taxonomy expansion aims to insert the newly emerged concepts to the
existing taxonomy appropriately instead of constructing a whole new taxonomy from scratch (Jiang
et al., 2023; Zeng et al., 2024b; Xu et al., 2025). In this paper, we consider a more general and
challenging taxonomy expansion problem, such that the query concept can be inserted everywhere
in the existing taxonomy, including the root, leaf, and anywhere in between. As shown in Figure 3,
the insertion in between is realized by the Query-Position Matching process: taking every existing
edge as the candidate position (candidate answer) to a query, the query will rank all of them based on
a scoring function, and select the highest rank to break its old edge and add two new edges. More
details are also visualized in Figure 4 in Appendix L.1.

To begin with, we first verify that LLMs have great potential (and larger model performs better)
but are not capable of directly understanding (or through simple prompting) the entire domain-
specific taxonomy and making the correct expansion for the following reasoning and cases: (1) Long
Context Limit: tested LLMs are incapable of taking entire existing text-attributed graph as input;
(2) Hallucination: tested LLMs are prone to imagine non-existing edges in the existing taxonomy
for query to insert; (3) No Answer: tested LLMs fail to generate available answer for the taxonomy
expansion; (4) Partial Answer: tested LLMs only generate a part of correct answer. The real-world
failed cases and statistics are shown in Section 4.3 and Figure 2.

Based on the above preliminary testing, we propose the design principle that: on the one hand,
we need to ‘borrow knowledge’ from LLMs to SLMs; on the other hand, the ‘borrowing’ process
should avoid computational cost as much as possible. Motivated by this, we propose the method
named SS-MONO relying on (1) local taxonomy augmentation by an LLM, (2) fine-tuning of an
SLM with geometric constraints, and (3) LLM calibration. The above pipeline strictly follows the
existing hierarchical topology structure, considers the context of the raw textual attribute, adheres
to augmentation by LLMs, and verifies the calibration of LLMs. We name this pipeline Structure-
Semantic Monotonization. Empirically, the entire training process of SS-MONO is self-supervised.
With leaf and non-leaf taxonomy expansion benchmark, a fine-tuned tiny LM like DistilBERT-
base-110M leads the comprehensive outperformance over frozen general LLMs (like Gemma-2-
9B (Mesnard et al., 2024) and GPT-4o mini (Hurst et al., 2024)) and domain-specific baselines.

2 PRELIMINARY

We define a taxonomy T = (V,E) as a directed acyclic graph (i.e., DAG), where each node v ∈ V
represents a unique concept, and a directed edge (p, c) ∈ E represents a relation pointing from
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the parent node p to the child node c. Furthermore, each concept (i.e., node v ∈ V ) has a textual
description, such that we can obtain the embedding features of each concept through language models.
The corresponding feature matrix of the input taxonomy graph T (including the query node q) is
denoted as H ∈ R|V ∪{q}|×h, where h is the feature dimension, and we use Hv ∈ Rh to denote the
input feature vector of node v. The detailed process of obtaining H from fine-tuning language models
can be found in Appendix L.3.

3 PROPOSED SS-MONO

In this section, we start to introduce the proposed framework SS-MONO, whose core technique is
named structure-semantic monotonization. Here, we first introduce the overview and then use three
subsections to illustrate the implementation details systematically.

3.1 OVERVIEW OF STRUCTURE-SEMANTIC MONOTONIZATION

Based on the existing taxonomy T = (V,E), the core of SS-MONO is to explore and integrate
the structural information and contextual semantics of concepts to seek the best candidate position
to insert the new concept. To achieve this matching, SS-MONO relies on the proposed structure-
semantic monotonization via two encoder modules: structure-dominated encoder introduced in
Section 3.2 and context-dominated encoder introduced in Section 3.3.

First, the structure-dominated encoder tries to verify whether the query node posits in the correct
position bounded by the positions of its ground-truth hypernym (i.e., parent node) and ground-truth
hyponym (i.e., child node). In other words, their relationship should be monotonic along the taxonomy
structure. To verify this, the structure-dominated encoder adapts the hyperbolic representation learning
to project their contextualized embedding into a hyperbolic space so that their hyperbolic embeddings
obey the monotonic relationship along the taxonomy, i.e., the transitivity in the hyperbolic space.
With this kind of hyperbolic embedding, we can try to compute the corresponding ranking score to
rank the candidate positions for matching the query concept.

However, the contextual semantics in a certain taxonomy are limited compared with the large language
models. Therefore, we propose the second module, context-dominated encoder. Intuitively, this
encoder tests whether the semantic meaning around a candidate position shares the similarity with the
query node. To obtain the semantic meaning of a candidate position, a frozen LLM is first prompted
to give the textual explanation. Then the context-dominated encoder samples ancestors, descendants,
and siblings along the hierarchy from that candidate position, encodes the text (augmented and raw
node textual attribute) into representation vectors, and computes the matching score between the
candidate position and the query.

To make these two encoder modules well-trained, we finally introduce self-supervised optimization,
i.e., using the existing taxonomy to guide the learning process without human labeling costs.

3.2 STRUCTURE-DOMINATED ENCODER

Since taxonomy organizes concepts in the explicit hierarchy, this hierarchical structure restricts the
concepts to follow a particular order from parent to child. Accordingly, the appropriate candidate
position (p, c) for a query q to insert should satisfy the transitivity of hierarchical relations between
position (p, c) and query q, i.e., c⪯q⪯p.

To this end, SS-MONO preserves the hierarchical relation among concepts (e.g., query and candidate
positions) together with their contextualized embedding H by adapting (1) hyperbolic encoding (Tif-
rea et al., 2019) to project H into a hierarchy-preserved metric space and (2) nested entailment
cones (Ganea et al., 2018a) to regulate the projection to obey the hierarchical transitivity in the
hyperbolic space. In the following two subsections, we first introduce the hyperbolic embedding
method and then explain why the transitivity is preserved.

Hyperbolic Encoding Given the contextualized embedding H ∈ R|Ṽ ∪q|×h, in order to preserve
their hierarchical relationships, the first step is to project H into a hyperbolic space, because the
hyperbolic space fits the tree-like structure more for providing more space for lower level entries than
Euclidean space (Tifrea et al., 2019; Chami et al., 2020).
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Mathematically, we use Poincaré ball, one model of hyperbolic space. To be specific, the space
is defined as Dn = {x ∈ Rn : ∥x∥ < 1}, with the Riemannian metric gDx = λ2

xg
E , where

λx := 2
1−∥x∥2 , gE = In and ∥ · ∥ is the Euclidean norm. Then, based on (Ganea et al., 2018b), two

necessary transformation operations between this Poincaré ball and Euclidean space, mapping from
transformer embeddings (Euclidean space) to hyperbolic space or vice versa.

Therefore, in SS-MONO, we can project the contextualized embedding H to the Poincaré ball space
by a linear map and exponential map at the origin point 0.

H′ = exp0(HW) (1)

where W ∈ Rh×d is a learnable weight and H′
p ∈ Dd denotes the hyperbolic embedding for node p,

and exp0 is the exponential map function with detailed computations illustrated in Appendix C.

Nested Entailment Cones To regulate the transitivity of hyperbolic embeddings, nested entailment
cones (Ganea et al., 2018a) are adapted in SS-MONO.
Claim 3.1. Given two hierarchical relationships (p, q) and (q, c), the angular between p and q should
be smaller than the half aperture of the parent cone Sϕ(p)

p , and the angular between q and c should be
smaller than the half aperture of the query cone S

ϕ(q)
q .

By introducing a cone S
ϕ(u)
u of a point u with the width function ϕ(u) that satisfies the transitivity

of partial order in an embedding space (as described in Appendix D), the ultimate goal is to ensure
that SS-MONO regularizes hierarchical relation in the taxonomy obeying the angular ∠uv ≤ ϕ(u)
for pair v ⪯ u (i.e., v is the child of u).

Therefore, we design the energy score E(u, v) based on cone modeling. Accordingly, the objective
of cone loss is defined as a max-margin loss to enforce E(u, v) = 0 for positive examples (i.e.,
ground-truth matched query and position) and E(u, v) > λ for negative ones.

E(u, v) := max(0,∠uv − ϕ(u)) (2)

The corresponding loss function is defined as follows.

Lcone(u, v, y) = yE(u, v) + (1− y)max(0, γ − E(u′, v′)) (3)

where y is the label of whether u is the parent of v. Here, u′ and v′ are negative pairs, as u′ is not the
ancestor of v′.

The structure loss Lstructure is the summation of Lcone on p and q and on q and c for a given candidate
position (p, c) and a query node q.

Lstructure = Lcone(H
′
p,H

′
q, ypq) + Lcone(H

′
q,H

′
c, yqc) (4)

where H′
p is the hyperbolic embmbedding of node p, and ypq is the label denoting whether p is the

ground-truth parent of node q, the label generation is discussed in Section 3.4.

3.3 CONTEXT-DOMINATED ENCODER

Compared with LLMs, the semantics information in a certain taxonomy is not that rich. It is common
to see only node has textual attributes but not edges (Bordea et al., 2016; Lipscomb, 2000; Jurgens &
Pilehvar, 2016), and the construction of the existing taxonomy is often hand-crafted with no explicit
knowledge to follow.

To provide enough context information, we first introduce a frozen LLM and prompt it with our
designed template (details are in Appendix M), such that it can output the explanation of a candidate
position (p, c) about why a directed edge connected the hypernym and hyponym in the existing
taxonomy T , as the example of (“Protein”, “Peptide Elongation Factors”) shown in the left of
Figure 1.

For further collecting the contextualized semantics of (p, c) from the given taxonomy T , three kinds
of relationships need to be considered for query q, i.e., its ancestors, descendants, and siblings.
For example, the candidate position (“Protein”, “Peptide Elongation Factors”) is the appropriate
position to insert query “Ribosomal proteins”. Then after inserting, “Protein” becomes the parent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of “Ribosomal proteins”, “Peptide Elongation Factors” becomes the child of “Ribosomal proteins”,
other children of “Protein” become siblings of “Ribosomal proteins”.

Next, we introduce the different aspects of context embedding manners respectively.

LLM Guidance Encoding First, we have the augmented description of LLM towards a candidate
position (p, c). In order to force SS-MONO to fit the LLM’s knowledge in an efficient way, this
LLM is frozen, i.e., no fine-tuning is involved. Then, the representation vector of the augmented
description, RLLM, is obtained.

RLLM = SAM [e,HLLM] (5)
where HLLM = PLM(LLM(p, c)) is a embedding vector. LLM stands for a frozen Large Language
Model, e.g., Gemma (Mesnard et al., 2024) or Llama (Touvron et al., 2023), and LLM(p, c) is the
augmented description of the candidate position (p, c) as shown in Figure 1. PLM stands for a
frozen 1 relative small language model to get the embedding vector of text, which is a more affordable
way to get the hidden representation vectors of text, like DistilBERT (Sanh et al., 2019).

Moreover, in Eq. 5, SAM stands for the self-attention mechanism (Vaswani et al., 2017), vector
e ∈ Rh is a randomized vector as the initial placeholder, its output after the self-attention mechanism
serves as the relational vector RLLM.

Ancestor Context Encoding This encoding method is proposed to project the contextualized
embedding Hq ∈ Rh of q together with its ancestors into a semantic relational representation vector
Ra as follows.

Ra = SAM [e,Hp′′ ,Hp′ ,Hp,Hq] (6)
where Ra means the semantic relational encoding with ancestors. Representation vector Hq is
obtained through a fine-tuned SLM over the given textual attribute of node q. The details of the
computation are shown in Appendix L.4, and the same manner applies to other text-attributed nodes
in the existing taxonomy graph.

Eq. 6 is an instance containing 3-hop ancestors, given p′ is the parent of p, and p′′ is the parent of p′.
Note that, in DAG-based taxonomy, a node may have multiple parents. If so, multiple parents will be
selected and concatenated.

Descendant Context Encoding Similar to the ancestor context encoding, the descendant context
encoding is defined as follows.

Rd = SAM [e,Hq,Hc,Hc′ ,Hc′′ ] (7)

where Rd is the semantic relational encoding with descendants. Eq. 7 is an instance containing 3-hop
descendants, given c′′ is the child of c′, and c′ is the child of c.

Sibling Context Encoding For sibling context encoding, the token list formation is different from
Eq. 6 and Eq 7. Because the taxonomy can be quite wide, i.e., a parent node can have various child
nodes, which means the query q can have multiple siblings when considering one candidate position.
Beyond that, the meaning across the siblings can diverge and be dependent on the depth of the
taxonomy. To this end, we borrow the philosophy from (Wang et al., 2022) to first sample the most
similar sibling s and the worst similar sibling w in terms of the contextualized embedding H based
on language models.

b = argmaxv∈Child(p)CosSim(Hv,Hq), w = argminv∈Child(p)CosSim(Hv,Hq) (8)

where p is the parent node, Child(p) is the set of all child nodes of p besides c in the existing taxonomy
T , and CosSim denotes the cosine similarity.

Then, the sibling semantics encoding can be expressed as follows.

Rs = SAM [e,Hq,Hb,Hw] (9)

Finally, with RLLM, Ra, Rd, Rs, we can then sample training samples and design context-dominated
loss function.

1Note that different from ancestor, descendant, and sibling context encodings, only in Eq 5, the SLM is
frozen.
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To be specific, when targeting candidate position samples, a positive position sample means the
parent p, child c, and siblings b and w are all ground truth for the query q. Then, the straightforward
idea is that a negative position sample means that any entry from p, c, b, and w is not true towards
q. To make positive samples obtain a higher context-based matching score F (·) and the negative
samples take a lower score, we design the following loss function.

First, the context-based query-position matching score F (·) is expressed as follows.

F (Hq,RLLM,Ra,Rd,Rs) = W2(ReLU(W1Rconcat + b1) + b2) (10)

where W1, W2, b1, and b2 are weight matrices obtained from trainable parameters, and Rconcat =
[Hq;RLLM;Ra;Rd;Rs] means concatenation of Hq, RLLM, Ra, Rd, and Rs. Then, the context-
based loss function is designed as follows.

Lcontext = −[y log(F (Hq,RLLM,Ra,Rd,Rs)) + (1− y) log(1− F (Hq,RLLM,Ra,Rd,Rs))]
(11)

where y is the label for a candidate position, y = 1 means a positive position sample such that each
entry from (p, c, b, w) is ground truth towards q, and y = 0 means a negative position sample that
anyone from (p, c, b, w) is not the ground truth.

Hard Training Samples Within a negative position sample, besides the scenario that every compo-
nent is not true, the harder samples exist. For example, we can sample a candidate position (p, ĉ),
where p is the ground-truth parent for q, but ĉ is not the ground-truth child for q. Similarly, we
can also sample incorrect p̂, b̂, ŵ. Therefore, we further split Eq. 10 and Eq. 11 into a series of
fine-grained computations for hard negative samples.

Just take (p, c) and (p, ĉ) as an example, the fine-grained version of Eq. 10 targeting positive and
negative descendants, Fdesc, is expressed as follows.

Fdesc(Rd) = W4(ReLU(W3(Rd) + b3) + b4) (12)

where W3, W4, b3 and b4 are matrices of trainable parameters. Then, the corresponding context-
based loss function Eq. 11 is specialized below.

Lcontext_desc = −[y log(Fdesc(Rd)) + (1− y) log(1− Fdesc(Rd))] (13)

where y = 1 means the child position is the ground truth child to insert q, and y = 0 otherwise.

Follow the same way, we can design ancestor score Fanc(Ra) with ancestor loss Lcontext_anc and
sibling score Fsib(Rs) with sibling loss Lcontext_sib. Note that in Lcontext_sib, y = 1 iff two selected
siblings are both ground truth.

3.4 SELF-SUPERVISED OPTIMIZATION

To save human labeling efforts in the training SS-MONO, we introduce a self-supervised learning
manner. The idea is straightforward. We first remove an existing concept from the existing taxonomy,
then sample corresponding positive and negative samples to train SS-MONO, and test if SS-MONO
could replace the removal correctly. Next, we introduce how the training samples are prepared and
the entire loss function to train SS-MONO.

Positive and Negative Sampling. In the existing taxonomy, we select an existing transitive relation
(p, q, c), which means p is the parent of q, and q is the parent of c. Then, starting from p, we sample
the best and least similar sibling for q and get b and w. Now, we have a positive sample (p, c, b, w).
For the negative sample, we randomly replace any component in (p, c, b, w) with the rest nodes in the
existing taxonomy. With the positive and negative samples, we trace the corresponding ancestors and
descendants to compute the matching scores stated above. With those scores, we model the seeking
of the best candidate position as a classification problem with the following loss function.

Loss Function. Below is the total loss function for training SS-MONO, which combines the individual
loss based on structure and (fine-grained) context information, in a structure-semantic monotonization
manner, as discussed above.

Ltotal = αLstructure + βLcontext + µLcontext_desc + λLcontext_anc + ξLcontext_sib (14)

where α, β, µ, λ, and ξ are hyperparameters to control the weights of individual loss functions.

6
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4 EXPERIMENTS

4.1 DATASETS, BASELINES, AND METRICS

We prepared three public datasets, i.e., SemEval-Food, MeSH, and WordNet-Verb, as shown in
Table 1. SemEval-Food is the taxonomy for the food domain, which is released by SemEval-2016
Task 13 (Bordea et al., 2016). MeSH contains the subgraph of the Medical Subject Headings (MeSH)
in the biomedical domain, published by NLM annually (Lipscomb, 2000). WordNet-Verb is the
verb taxonomy containing the description of each verb, which is published as SemEval 2016 Task
14 (Jurgens & Pilehvar, 2016).

Table 1: Dataset statistics. |N |, |E|, D, |L|, L%,
and |Q| denote number of nodes, edges, depth,
leaf nodes, leaf ratio, and query concepts.

Dataset |N | |E| D |L| L% |Q|
SemEval-Food 1,486 1,533 8 1,184 79.7% 148
MeSH 9,710 10,498 10 6,613 68.1% 819
WordNet-Verb 13,936 13,407 12 10,581 75.9% 1,000

We consider the leaf expansion and non-leaf ex-
pansion capabilities together. Therefore, we in-
clude the corresponding SOTA baselines: Bilin-
ear Model (Sutskever et al., 2009), Neural Tensor
Network (Socher et al., 2013), TaxoExpan (Shen
et al., 2020), ARBORIST (Manzoor et al., 2020),
TMN (Zhang et al., 2021), QEN (Wang et al.,
2022), TaxBox (Xue et al., 2024). A more detailed
introduction of baselines is placed in Appendix E.
Furthermore, we explore the ability of several LLMs (>1B) to retrieve and rank candidate edges as
LLM baselines, including DeepSeek-R1-8B (DeepSeek-AI et al., 2025), Llama-3.1-8B (Touvron
et al., 2023), Gemma-2-9B (Mesnard et al., 2024), and GPT-4o mini (Hurst et al., 2024). The
implementation details of LLM baselines are provided in Appendix F. We prepared 15 metrics to
comprehensively evaluate the performance of all baseline methods, covering recall, precision, mean,
etc. The details of the illustration are in Appendix G. The generation and verification process of the
augmented edge description by LLMs is given in Appendix M to demonstrate the trustworthiness of
augmentation.

4.2 EFFECTIVENESS OF SS-MONO

Table 2 reports the comprehensive performance of all baselines on the SemEval-Food, WordNet-Verb,
and MeSH datasets. SS-MONO (w/o AD) denotes the proposed model without LLM augmented
description for every candidate position, and SS-MONO denotes the full proposed model. To be
specific, LLM baselines like DeepSeek-R1-8B (DeepSeek-AI et al., 2025) or GPT-4o mini (Hurst
et al., 2024) directly infer to rank the top 10 positions (Detailed implementation is in Appendix F,
the analysis of the cardinality of candidate pool as the input of LLMs can be found in Appendix I.1).
Consequently, if the ground truth edges do not appear among the top 10 candidates, we cannot
compute rank-based metrics such as MR and MRR. The symbol – in Table 2 denotes cases where
metric results are unavailable. TaxoBox (Xue et al., 2024) does not report MR and R@10 for both
leaf and non-leaf nodes, nor does it provide results for the MeSH dataset. Since TaxoBox does not
publicly release its implementation scripts, we mark its performance as –.

In general, as shown in Table 2, SS-MONO (w/o AD) achieves competitive performance compared
with baselines, and SS-MONO achieves the best performance overall comparisons in each dataset.
The corresponding visualization case study is placed in Appendix H. For cross-dataset comparisons
of an individual algorithm, MRR (Mean Reciprocal Rank) and R@k (Recall@k) are more appropriate
indicators, as they are scale-invariant and reflect relative ranking quality independent of taxonomy
size. MR is absolute value grows naturally with larger and deeper taxonomies and cannot be directly
compared across datasets with divergent scales. Also, in Table 2, it can be observed that including
LLM Augmented Descriptions (AD) does not always enhance intermediate (non-leaf) expansion, a
detailed analysis is placed in Appendix O. Moreover, we also prepared the performance of Fine-Tuned
LLM for the taxonomy expansion task in Appendix N. This experiment further confirms that (1) our
geometric deep learning objective is easily compatible with off-the-shelf LLM checkpoints, i.e., only
minimal modifications are needed to plug in an LLM encoder, and training remains computationally
lightweight. (2) Fine-tuning LLMs is not always outperforming, the way we designed to “borrow”
knowledge from LLMs to SLMs is effective and competitive.
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Table 2: Performance comparison on three taxonomy expansion benchmarks. Bold colors indicate
top-3 per column (best=red, second=blue, third=green). SS-MONO is our full model; SS-MONO (w/o
AD) disables LLM augmentation.

SemEval-Food

Type Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

LLM

DeepSeek-R1-8B – – 0.016 0.016 0.016 0.033 0.007 0.003 – – 0.028 – – 0.005
Llama-3.1-8B – – 0.003 0.006 0.006 0.007 0.003 0.001 – – 0.007 – – 0.006
Gemma-2-9B – – 0.000 0.000 0.000 0.000 0.000 0.000 – – 0.000 – – 0.000
GPT-4o mini – – 0.016 0.055 0.058 0.034 0.023 0.012 – – 0.000 – – 0.103

Non-LLM

Bilinear 700.07 0.140 0.024 0.096 0.110 0.050 0.039 0.022 269.89 0.305 0.244 2816.53 0.005 0.000
NTN 685.41 0.192 0.037 0.102 0.148 0.074 0.041 0.030 241.65 0.422 0.328 2868.68 0.005 0.000
TaxoExpan 688.70 0.207 0.041 0.101 0.166 0.083 0.041 0.034 255.64 0.455 0.368 2819.36 0.004 0.000
ARBORIST 700.79 0.129 0.013 0.053 0.088 0.027 0.022 0.018 260.38 0.280 0.195 2867.65 0.005 0.000
TMN 559.81 0.221 0.037 0.113 0.160 0.074 0.046 0.032 179.46 0.482 0.356 2431.13 0.007 0.000
QEN 397.77 0.315 0.071 0.164 0.228 0.149 0.069 0.048 275.07 0.367 0.276 1230.86 0.099 0.033
TaxBox 281.00 0.359 0.132 0.264 0.295 0.318 0.127 0.071 – 0.678 – – 0.133 –
SS-MONO (w/o AD) 315.79 0.430 0.161 0.283 0.338 0.338 0.119 0.071 228.18 0.690 0.642 768.47 0.225 0.098
SS-MONO 239.17 0.400 0.186 0.299 0.325 0.392 0.126 0.068 143.94 0.705 0.645 756.73 0.147 0.059

WordNet-Verb

Type Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

LLM

DeepSeek-R1-8B – – 0.000 0.000 0.000 0.000 0.000 0.000 – – 0.000 – – 0.000
Llama-3.1-8B – – 0.000 0.000 0.000 0.000 0.000 0.000 – – 0.000 – – 0.000
Gemma-2-9B – – 0.000 0.000 0.000 0.000 0.000 0.000 – – 0.000 – – 0.000
GPT-4o mini – – 0.001 0.001 0.001 0.001 0.000 0.000 – – 0.000 – – 0.002

Non-LLM

Bilinear 1861.30 0.174 0.012 0.052 0.095 0.018 0.016 0.014 888.55 0.247 0.140 5851.59 0.089 0.044
NTN 1568.62 0.251 0.050 0.124 0.171 0.075 0.037 0.026 819.93 0.413 0.309 4639.76 0.067 0.013
TaxoExpan 2023.85 0.231 0.053 0.122 0.168 0.080 0.037 0.025 1127.28 0.392 0.308 5701.62 0.048 0.007
ARBORIST 1499.40 0.238 0.033 0.096 0.149 0.049 0.028 0.023 838.69 0.315 0.204 4209.64 0.149 0.086
TMN 1510.17 0.291 0.066 0.154 0.207 0.099 0.047 0.031 751.15 0.439 0.342 4623.67 0.121 0.052
QEN 1802.40 0.340 0.081 0.186 0.249 0.124 0.057 0.038 1055.87 0.495 0.407 4909.49 0.166 0.093
TaxBox 1286.00 0.330 0.105 0.212 0.262 0.179 0.072 0.045 – 0.481 – – 0.185 –
SS-MONO (w/o AD) 2579.88 0.297 0.048 0.134 0.205 0.074 0.041 0.031 1746.02 0.373 0.296 6089.03 0.208 0.099
SS-MONO 1626.52 0.334 0.106 0.208 0.260 0.163 0.064 0.040 922.54 0.521 0.457 4551.31 0.122 0.035

MeSH

Type Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

LLM

DeepSeek-R1-8B – – 0.003 0.005 0.008 0.006 0.002 0.002 – – 0.011 – – 0.005
Llama-3.1-8B – – 0.001 0.001 0.001 0.001 0.000 0.000 – – 0.002 – – 0.002
Gemma-2-9B – – 0.003 0.006 0.012 0.006 0.003 0.003 – – 0.013 – – 0.010
GPT-4o mini – – 0.000 0.001 0.003 0.000 0.000 0.001 – – 0.004 – – 0.000

Non-LLM

Bilinear 985.23 0.273 0.038 0.115 0.173 0.086 0.052 0.039 483.02 0.395 0.284 2064.97 0.192 0.100
NTN 702.32 0.329 0.064 0.167 0.227 0.143 0.075 0.051 408.17 0.542 0.454 1334.75 0.189 0.077
TaxoExpan 6784.30 0.173 0.024 0.085 0.123 0.053 0.028 0.038 466.75 0.434 0.310 20367.05 0.001 0.000
ARBORIST 800.81 0.173 0.024 0.085 0.123 0.053 0.028 0.038 466.75 0.434 0.310 1413.43 0.292 0.175
TMN 494.31 0.410 0.061 0.197 0.291 0.137 0.088 0.065 401.70 0.555 0.459 693.42 0.315 0.180
QEN 530.83 0.423 0.071 0.198 0.294 0.165 0.091 0.066 511.93 0.548 0.427 573.01 0.322 0.187
TaxBox – – – – – – – – – – – – – –
SS-MONO (w/o AD) 584.68 0.408 0.048 0.175 0.267 0.112 0.082 0.063 602.11 0.479 0.363 546.99 0.365 0.209
SS-MONO 436.82 0.427 0.074 0.197 0.288 0.173 0.093 0.068 390.72 0.570 0.476 540.55 0.334 0.166

4.3 CALIBRATION BY LLMS

Given a query q, SS-MONO will rank all the existing edges in the taxonomy and select the highest
one to insert. Therefore, when SS-MONO outputs the ranking list, we insert this ranking list to a
promoted LLM (a template example is given in Appendix J) and ask LLM to rerank it to the best of
their knowledge.

For example, in the testing set of SemEval-Food, we have 148 queries to be inserted into the existing
taxonomy, and the existing taxonomy has 7,313 candidate positions. In other words, for each one
of 148, SS-MONO provides a ranking list of 7,313 entries, and Llama3.1-8B (Touvron et al., 2023)
reranks them. Due to the long context limit of LLMs, we need to truncate the ranking list and ask
Llama to only rerank the truncated list and leave the rest remaining. We use k to denote the length
of the truncated ranking list, e.g., k = 10, 50, 100, 200. Then, we evaluate the rerank (calibrated)
ranking list and report the comparison in Table 3.

During the calibration, we also observe a considerable amount of failed cases of LLM’s output, such
as (1) demonstrated LLMs could not rerank the given ranking list but generate the rerank idea or
python code; (2) demonstrated LLMs generate some not existing edges in the given ranking list, i.e.,
hallucination; (3) demonstrated LLMs are sometimes lazy to generate the full ranking list as the
given. The statistics are shown in Figure 2, and concrete examples are in Appendix K. Following the
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Table 3: Performance comparison of SS-MONO variants with LLM calibration on SemEval-Food.
SS-MONO-k denotes reranking the top-k candidates using LLMs. Bold indicates the best score.

Method Total Leaf Non-leaf Avg. Rank
MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

SS-MONO (w/o AD) 315.79 0.430 0.161 0.283 0.338 0.338 0.071 228.18 0.690 0.642 768.47 0.225 0.098 4.786
SS-MONO 239.17 0.400 0.186 0.299 0.325 0.392 0.068 143.94 0.705 0.645 756.74 0.147 0.059 4.643
SS-MONO-10 240.07 0.398 0.138 0.235 0.322 0.291 0.067 139.70 0.721 0.657 758.65 0.144 0.057 5.071
SS-MONO-50 238.13 0.439 0.203 0.334 0.373 0.426 0.078 138.18 0.736 0.679 754.52 0.205 0.132 2.143
SS-MONO-100 237.46 0.462 0.206 0.350 0.389 0.432 0.082 138.06 0.727 0.664 751.02 0.253 0.172 1.357
SS-MONO-200 238.06 0.417 0.190 0.318 0.341 0.399 0.072 137.99 0.728 0.664 755.05 0.171 0.086 2.929

Output without reranked list Output with hallucinated edges Output with shorter list
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Figure 2: Statistics of failed cases in LLM calibration under different reranked candidate sizes. (a)
Key trends: hallucinated edge ratio (red solid line) vs. average reranked list length (blue dash line).
(b) Distribution across failure types, denoted by blue bar, red bar, and brown bar.

format-correct reranking only, the enhancement is shown in Table 3, which suggests LLMs have the
potential but are not ready to be directly deployed for the solution.

4.4 EMPIRCAL ANALYSIS OF GEOMETRIC CONDITIONS

Here, we mainly present two experimental analysis of geometric conditions, i.e., (1) the weight
of Lstructure in the structure-dominated encoder for cone, as expressed in Eq. 4 to preserve the
monotonicity in the hyperbolic space, and (2) the relationship between structure loss and context loss
in Ltotal expressed in Eq.14. Extensive experiments are placed in the appendix:

• The analysis for investigating the role of sequential self-attention mechanism with graph neural
networks message-passing mechanism in the context-dominated encoder is in Appendix I.2.

• The analysis of varying the number of sampled hops can be found in Appendix I.3.

• The analysis of the difference between Euclidean and Hyperbolic manners for the structure-
dominated encoder is in Appendix I.4

• The analysis of the relationship between the hard negative sampling and random sampling is in
Appendix I.5.

First, we conduct the ablation study of the hyperbolic embedding to show its indispensability. In
Table 4, we can see that totally removing the structure-dominated encoder (i.e., weight = 0) usually
induces the worst performance.

Second, we conduct another ablation study for the ancestor, descendant, and sibling encoding and
investigated their relationships. According to Eq. 11, we have β for all sampled neighbors in general,
µ for sampled descendants only, λ for sampled ancestors only, and ξ for sampled siblings only. Taking
the SemEval-Food dataset as an example, in Table 5, we can observe that with all sampled nodes
considered together, i.e., weight = 1111, the optimal results are obtained, compared with any ablation.

5 RELATED WORK

Comparing with the taxonomy construction from scratch (Shen et al., 2018; Zhang et al., 2018; Huang
et al., 2020), taxonomy expansion is a more efficient solution when facing the newly discovered
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Table 4: Role of Lstructure in Performance of SS-MONO (w/o AD) on SemEval-Food dataset.

Total Leaf Non-leaf
Weight of Lstructure MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

0 350.737 0.399 0.259 190.833 0.551 0.426 1219.779 0.074 0.024
0.1 349.031 0.399 0.315 230.161 0.670 0.607 933.872 0.190 0.091
0.3 304.774 0.428 0.322 222.891 0.698 0.657 727.834 0.215 0.057
0.5 315.792 0.430 0.338 228.177 0.690 0.642 768.466 0.225 0.098
0.7 389.381 0.358 0.270 279.644 0.626 0.533 956.356 0.146 0.063
1 335.416 0.391 0.305 211.904 0.679 0.600 943.098 0.171 0.080

Table 5: Ablation study of weight combinations (β, µ, λ, ξ) for objective function in Lstructure.

Weight(β, µ, λ, ξ) Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

1111 315.79 0.430 0.161 0.283 0.338 0.338 0.119 0.071 228.18 0.690 0.642 768.47 0.225 0.098
1110 323.55 0.217 0.039 0.093 0.129 0.081 0.039 0.027 132.21 0.445 0.289 1264.94 0.041 0.006
1001 430.85 0.379 0.148 0.254 0.309 0.311 0.107 0.065 264.74 0.665 0.621 1289.10 0.145 0.053
1000 345.07 0.272 0.068 0.164 0.199 0.142 0.069 0.042 205.83 0.449 0.343 1236.23 0.036 0.008
0111 1509.88 0.050 0.006 0.019 0.029 0.014 0.008 0.006 1373.50 0.078 0.059 2180.90 0.028 0.006
0000 1063.16 0.065 0.000 0.013 0.019 0.000 0.005 0.004 509.49 0.134 0.044 3787.18 0.012 0.000

concepts being inserted (Shen et al., 2020; Manzoor et al., 2020; Yu et al., 2020; Wang et al., 2021;
Zeng et al., 2021; Takeoka et al., 2021; Ma et al., 2021; Jiang et al., 2022; Lee et al., 2022; Xu et al.,
2022; Phukon et al., 2022; Xia et al., 2023; Jiang et al., 2023; Zeng et al., 2024b). Most of the above-
mentioned research works focus on finding or predicting the best suitable parent position and then
adding the new item as the corresponding leaf node. Recently, a new taxonomy completion manner
emerged, which entitles the nodes to be inserted with the flexibility to be a leaf node insertion or a
non-leaf node insertion. TMN (Zhang et al., 2021) propose to add pseudo nodes (with empty features)
to the existing taxonomy, such that the entire problem can be transferred into finding the proper edge
to break to add non-leaf nodes. QEN (Wang et al., 2022) follows TMN and improves the taxonomy
completion by involving more sibling information. To the best of our knowledge, neither TMN nor
QEN fully explores the node contextual features given the taxonomy’s structural semantics. To this
end, we propose our SS-MONO to explore the structural semantics and integrate it with concept
textual semantics, to represent a node for better taxonomy expansion performance comprehensively.
The surge of large language models has inspired exploration on taxonomy-related tasks and the use of
broad world knowledge and linguistic reasoning of LLMs. Xu et al. (2022) proposes prompt tuning
BERT for finding the hypernym of an incoming query and converting the hypernym prediction as a
generation task. More recently, Zeng et al. (2024a) introduced Chain-of-layer to iteratively prompt
LLMs for inducing taxonomy structure from a small set of entities. Mishra et al. (2024) fine-tuned
Low Rank Adapter with Proximal Policy Optimization (PPO) for generating the hypernym of a
query. However, none of the studies above explore LLMs on taxonomy expansion tasks with leaf and
non-leaf settings.

6 CONCLUSION

In this paper, we explored the intersection of hyperbolic structures in LLM embeddings and the
scientific taxonomy expansion problem. Our study revealed that while LLMs possess strong repre-
sentational capacity, they fail to reliably support domain-specific taxonomy expansion. To bridge this
gap, we proposed SS-MONO, a self-supervised framework that borrows knowledge from LLMs but
distills it into SLMs through structure- and semantics-aware training. Empirical results confirm that
SS-MONO delivers substantial gains over both frozen LLMs and specialized deep learning models,
establishing SLMs as a practical and scalable alternative for taxonomy expansion.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. Detailed descriptions
of the model architecture and training procedure are provided in sections 3 and 4.1. Additional
hyperparameters, a detailed introduction of baseline models, implementation details, and evalua-
tion metrics steps are documented in Appendices E, F, and G. To further support reproducibility,
we provide code, configuration files, and data processing scripts in the anonymous GitHub reposi-
tory https://anonymous.4open.science/r/SSMono/README.md. Together, these re-
sources enable others to reproduce our experiments and validate our findings.
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A APPENDIX CONTENTS

• Appendix B: Limitation

• Appendix C: Hyperbolic Transformation Operations

• Appendix D: Brief Introduction of Cone and Aperture

• Appendix E: Detailed Introduction of Non-LLM Baselines

• Appendix F: Implementation of LLM Baselines like DeepSeek-R1-8B, Llama-3.1-8B,
Gemma-2-9B, and GPT-4o mini for Taxonomy Expansion Task

• Appendix G: Evaluation Metrics
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• Appendix L: Implementation Details of SS-MONO
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• Appendix M: Generation and Verification of Edge Description

• Appendix N: Fine-Tuning LLM for Taxonomy Expansion Task

• Appendix O: LLM Augmented Descriptions with Non-Leaf Expansion

• Appendix P: The Use of LLMs

B LIMITATION

While our method demonstrates strong performance and general applicability, several limitations
should be acknowledged:

Fixed Sampling Depth. The strategy of uniformly sampling 3-hop neighbors may not adequately
capture essential context in taxonomies requiring deeper hierarchical insights, nor avoid irrelevant
noise in shallow hierarchies.

Dependence on LLMs. Our method explores the effectiveness of LLM augmentations, meaning
inaccuracies or biases present in the LLMs can propagate into the taxonomy expansions.

LLM Model Size. Due to resource limitations, we did not explore LLMs with more than 10B
parameters. Investigating the ranking and retrieval capabilities of larger LLMs, both with and without
fine-tuning, presents an interesting direction for future research.
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C HYPERBOLIC TRANSFORMATION OPERATIONS

Exponential Map To project onto hyperbolic space, the exponential map is defined as expx(·) :
TxDd → Dd given a fixed point x ∈ Dd, where TxDd is the tangent space, as well as the Euclidean
vector space, expressed as below.

expx(h) = x⊕ tanh(
∥h∥

(1− ∥x∥)
)

h

∥h∥
(15)

where ⊕ is the Mobius addition on Poincaré ball defined in Appendix L.2, and h is the contextualized
embedding of any concept in the existing taxonomy, i.e., h = Hv , v ∈ Ṽ .

Logarithmic Map Then, the reverse operation (i.e., from hyperbolic space Dd to its tangent space
TxDd) is defined as logx(·) : Dd → TxDd maps given a fixed point, i.e., x ∈ TxDd, as below.

logx(h) = (1− ∥x∥) · arctanh(∥ − x⊕ h∥) −x⊕ h

∥ − x⊕ h∥
(16)

where ⊕ is the Mobius addition (details in Appendix L.2) and arctanh is inverse hyperbolic tangent.

D CONE AND APERTURE

As stated in (Ganea et al., 2018a), if a cone with a width function ϕ(·) satisfies the transitivity of
partial order in an embedding space, then, in our hyperbolic setting, we have

∀u, v ∈ Dn\{0} : v ∈ Sϕ(u)
u =⇒ Sϕ(u)

v ⊂ Sϕ(u)
u (17)

where Sϕ(u)
u is the cone of a point u with the width function ϕ(u). Moreover, the Poincaré entailment

cone can be defined as
Sϕ(u)

u = {c ∈ Dn|∠uv ≤ ϕ(u)} (18)

where ϕ(u) = arcsin(K 1−∥u∥2

∥u∥ ) is the half aperture of the cone, and K is a hyperparameter.

In other words, the angle ∠uv measures the angle between the geodesic −→uv and
−→
0u (the center axis at

v).

∠uv = π − ∠Ouv

= arccos(
⟨u, v⟩(1 + ∥u∥2)− ∥u∥2)(1 + ∥u∥2))
∥u∥ · ∥u− v∥

√
1 + ∥u∥2∥v∥2 − 2⟨u, v⟩

)

where O is the origin point.

E DETAILED INTRODUCTION OF NON-LLM BASELINES

• Bilinear Model (Sutskever et al., 2009). A relational model infers whether particular unobserved
relations are likely to be true.

• Neural Tensor Network (Socher et al., 2013). An expressive neural tensor network suitable for
reasoning over relationships between two entities.

• TaxoExpan (Shen et al., 2020). A taxonomy expansion model leverages graph neural networks for
the egonet structure to learn node embeddings to expand.

• ARBORIST (Manzoor et al., 2020). A taxonomy expansion model considers the heterogeneous
relations encoded in the taxonomy context by integrating the embedding distance with geometric
distance as the dynamic margin loss.

• TMN (Zhang et al., 2021). A ranking-based taxonomy completion model uses the triplet matching
network and defines taxonomy completion as a parent-child edge ranking task.

• QEN (Wang et al., 2022). A ranking-based taxonomy completion model extends TMN by adding
siblings as additional signals.

• TaxBox (Xue et al., 2024): A taxonomy expansion method that leverages box containment and
center closeness to design two specialized geometric scorers within the box embedding space.

18
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F IMPLEMENTATION OF LLM BASELINES

Existing studies on LLMs for knowledge graph completion primarily focus on term prediction, where
the model is given a sampled path from a knowledge graph and tasked with predicting the next
node (Sun et al., 2024; Sehwag et al., 2024). However, to the best of our knowledge, no prior work
has explored the application of LLMs (not as a foundation model) to taxonomy expansion in the
context of query-position ranking.

To address this gap, we investigate the performance of LLMs in retrieving and reranking the top k
candidate positions, adapting the problem to a query-position ranking setting. Evaluating an LLM’s
ability to retrieve and rerank an extensive list of candidate positions is nontrivial due to the task’s
inherent complexity.

Following the document retrieval setup in (Lee et al., 2024), we construct a prompt that includes
instructions, a list of taxonomy edges with corresponding indexes, and examples. However, incorpo-
rating all candidate taxonomy edges in the prompt exceeds the context length of DeepSeek-R1-8B,
Gemma-2-9B, and Llama-3-8B, even for the smallest dataset, SemEval-Food. To address this limita-
tion, we randomly sample 500 edges and instruct LLMs to retrieve the top 10, returning each edge
index and rank in a defined format: < edge_id > p:parent_id–c:child_id < rank > xx. For GPT-4o
mini, we conducted experiments on the SemEval-Food dataset using all 7,313 candidate edges as
multi-message input. For the other two datasets, which contain a substantially larger number of
candidate edges, we randomly sampled 500 edges following the procedure described above to ensure
the feasibility and consistency of evaluation. For hyperparameter settings, we set the maximum
number of generation tokens to 1000 and the temperature to 0.2. The detailed prompt template is
shown in Block 1.

Listing 1: Query-Position Ranking Prompt Template for DeepSeek-R1
You will give the entire list of edges in an existing taxonomy. Please rerank the given candidate edges based

on the similarity of meaning to the query node. To be specific, the insertion means the parent term (i.e., the

first term) of the edge is the hypernym of the query term, and the child term (i.e., the second term) of the

edge is the hyponym of the query term.

The most relevant edges should be rank 1, meaning the query term should be inserted between the two nodes of

the most relevant edges.

Each candidate edges is in the format of <edge_id>:<edge> where <edge_id> is the unique identifier of the edge

, <edge> is the edge in the format of <parent> -> <child>. If the child term is empty, it means the parent

term is the leaf node of the taxonomy.

Here is the total list of the existing edges in the taxonomy:

/*
<edge_id>: {edge_id} <edge>{parent_name} -> {child_name}<end-edge>

...

*/

Please return the top 10 candidate edges based on the relevance to the query term. The rank of the candidate

edges should be in the format of <edge_id><rank>,<edge_id><rank>,...

Query term: abdominal pain. Description of the query term: Abdominal pain is sensation of discomfort, distress

, or agony in the abdominal region.

Please rerank the provided candidate edges following the format: ‘[<edge_id>edge_id rank>1, <edge_id>edge_id<

rank>2, ...]‘.

Reranked list of candidate edges:

[<edge_id>p:signsandsymptoms,digestive-c:abdomen,acute<rank>1,

<edge_id>p:pain-c:abdomen,acute<rank>2,

<edge_id>p:pain-c:acutepain<rank>3,

<edge_id>p:pain-c:chronicpain<rank>4,

<edge_id>p:signsandsymptoms,digestive-c:nausea<rank>5,

<edge_id>p:signsandsymptoms,digestive-c:vomiting<rank>6,

<edge_id>p:pain-c:<rank>7,

<edge_id>p:signsandsymptoms,digestive-c:<rank>8,

<edge_id>p:abdomen,acute-c:<rank>9,

<edge_id>p:abdomen-c:<rank>10]

Query term: {kwargs[’query_term’]}. Description of the query term: {kwargs[’query_term_description’]}

Please rerank the provided {kwargs[’number_of_candidate_edges’]} candidate edges following the format: ‘[<

edge_id>edge_id<rank>1, <edge_id>edge_id<rank>2, ...]‘.

Reranked list candidate edges:

"""
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G EVALUATION METRICS

Following the same setting with (Zhang et al., 2021; Wang et al., 2022), we report the ranking-based
evaluation metrics to measure the performance of SS-MONO with baseline models. We first sort
all candidate positions based on the matching score F (Hq,RLLM,Ra,Rd,Rs) as Eq. 10 and then
return the ranks of the ground-truth positions in the sorted candidate position list for each query node.
The evaluation metrics include Mean Rank, Mean Reciprocal Rank, Recall@k, and Precision@k. In
addition, we compare the metrics by three categories, i.e., the leaf query nodes, the non-leaf query
nodes, and the total query nodes (including both leaf and non-leaf query nodes).

• Mean Rank (MR) measures the macro average ranking of ground-truth positions among all candidate
positions. The lower Mean Rank is, the higher the ranking of the ground-truth position is among
candidate positions.

• Mean Reciprocal Rank (MRR) measures the macro average reciprocal rank of all ground-truth
positions. Therefore, the higher the MRR is, the higher the ranking of the ground truth position is
among all candidate positions.

• Recall@k (R@k) calculates the number of ground-truth positions in the top-k candidate positions,
averaged by the total counts of ground-truth positions for all queries.

• Precision@k (P@k) calculates the number of ground-truth positions in the top-k candidate positions,
averaged by the total number of queries times k.

H COMPREHENSIVE CASE STUDY

To further explain the performance, we generate the concrete prediction examples generated by
SS-MONO, SS-MONO(w/o AD), and QEN for the SemEval-Food dataset, as shown in Table 6.

Table 6: Case Study: Top-10 Predicted Candidate Positions Generated by SS-MONO vs. SS-MONO
(w/o AD) vs. QEN. "p:" indicates the hypernym concept of the query concept, and "c:" indicates the
hyponym concept of the query concept. The ground truth rank for non-leaf insertion is the mean rank.

SS-MONO Leaf Non-leaf
Ranking/Query Concept stinger papaya juice malmsey milk sparkling wine frozen dessert

1 p:cocktail-c:pseudo leaf p:herb-c:pseudo leaf p:fortified wine-c:pseudo leaf p:beverage-c:pseudo leaf p:red wine-c:pseudo leaf p:cream-c:pseudo leaf
2 p:martini-c:pseudo leaf p:fruit juice-c:pseudo leaf p:burgundy-c:pseudo leaf p:dairy product-c:pseudo leaf p:fortified wine-c:pseudo leaf p:concoction-c:pseudo leaf
3 p:whiskey-c:pseudo leaf p:juice-c:pseudo leaf p:table wine-c:pseudo leaf p:nutriment-c:pseudo leaf p:burgundy-c:pseudo leaf p:dessert-c:pseudo leaf
4 p:daiquiri-c:pseudo leaf p:coffee substitute-c:pseudo leaf p:red wine-c:pseudo leaf p:concentrate-c:pseudo leaf p:whiskey-c:pseudo leaf p:consomme-c:pseudo leaf
5 p:vermouth-c:pseudo leaf p:syrup-c:pseudo leaf p:whiskey-c:pseudo leaf p:beverage-c:elixir p:table wine-c:pseudo leaf p:gelatin dessert-c:pseudo leaf
6 p:gin-c:pseudo leaf p:vitamin a-c:pseudo leaf p:cocktail-c:pseudo leaf p:nutriment-c:water soluble vitamin p:wine-c:pseudo leaf p:curd-c:pseudo leaf
7 p:sour-c:pseudo leaf p:soft drink-c:pseudo leaf p:sherry-c:pseudo leaf p:beverage-c:ale p:sherry-c:pseudo leaf p:bite-c:pseudo leaf
8 p:cocktail-c:strawberry daiquiri p:tea-c:pseudo leaf p:bordeaux-c:pseudo leaf p:beverage-c:chicory p:stout-c:pseudo leaf p:meal-c:pseudo leaf
9 p:highball-c:pseudo leaf p:garlic-c:pseudo leaf p:rum-c:pseudo leaf p:beverage-c:potion p:ale-c:pseudo leaf p:ready mix-c:pseudo leaf
10 p:cocktail-c:nada daiquiri p:cola-c:pseudo leaf p:orange liqueur-c:pseudo leaf p:beverage-c:highball p:bordeaux-c:pseudo leaf p:yogurt-c:pseudo leaf

Ground Truth Rank 1 3 1 300.933 160.5 72.077

SS-MONO (w/o AD) Leaf Non-leaf
Ranking/Query Concept stinger papaya juice malmsey milk sparkling wine frozen dessert

1 p:cocktail-c:pseudo leaf p:juice-c:pseudo leaf p:table wine-c:pseudo leaf p:beverage-c:pseudo leaf p:red wine-c:pseudo leaf p:dessert-c:pseudo leaf
2 p:hot toddy-c:pseudo leaf p:fruit juice-c:pseudo leaf p:fortified wine-c:pseudo leaf p:nutriment-c:pseudo leaf p:table wine-c:pseudo leaf p:gelatin dessert-c:pseudo leaf
3 p:highball-c:pseudo leaf p:drinking water-c:pseudo leaf p:burgundy-c:pseudo leaf p:beverage-c:must p:burgundy-c:pseudo leaf p:yogurt-c:pseudo leaf
4 p:gin-c:pseudo leaf p:fruit drink-c:pseudo leaf p:mulled wine-c:pseudo leaf p:beverage-c:semi skimmed milk p:fortified wine-c:pseudo leaf p:hors d’oeuvre-c:pseudo leaf
5 p:martini-c:pseudo leaf p:coffee substitute-c:pseudo leaf p:sherry-c:pseudo leaf p:beverage-c:pasteurized milk p:mulled wine-c:pseudo leaf p:ice cream-c:pseudo leaf
6 p:cocktail-c:daiquiri p:orange juice-c:pseudo leaf p:red wine-c:pseudo leaf p:beverage-c:yak’s milk p:sherry-c:pseudo leaf p:gelatin-c:pseudo leaf
7 p:cocktail-c:martini p:herb-c:pseudo leaf p:bordeaux-c:pseudo leaf p:beverage-c:low fat milk p:bordeaux-c:pseudo leaf p:pate-c:pseudo leaf
8 p:cocktail-c:nada daiquiri p:coffee liqueur-c:pseudo leaf p:ale-c:pseudo leaf p:dairy product-c:pseudo leaf p:ale-c:pseudo leaf p:stuffing-c:pseudo leaf
9 p:cocktail-c:shrimp cocktail p:soft drink-c:pseudo leaf p:whiskey-c:pseudo leaf p:beverage-c:formula p:whiskey-c:pseudo leaf p:ragout-c:pseudo leaf
10 p:cocktail-c:vodka martini p:sage-c:pseudo leaf p:fortified wine-c:sherry p:beverage-c:mother’s milk p:red wine-c:beaujolais p:patty-c:pseudo leaf

Ground Truth Rank 1 1 2 161.967 1111.500 31.077

QEN Leaf Non-leaf
Ranking/Query Concept stinger papaya juice malmsey milk sparkling wine frozen dessert

1 p:cocktail-c:pseudo leaf p:fruit juice-c:pseudo leaf p:liqueur-c:pseudo leaf p:canned food-c:pseudo leaf p:weissbier-c:pseudo leaf p:dessert-c:pseudo leaf
2 p:ale-c:pseudo leaf p:ready mix-c:pseudo leaf p:weissbier-c:pseudo leaf p:dairy product-c:pseudo leaf p:red wine-c:pseudo leaf p:cocktail-c:pseudo leaf
3 p:condiment-c:pseudo leaf p:herb tea-c:pseudo leaf p:sour-c:pseudo leaf p:wheat flour-c:pseudo leaf p:sour-c:pseudo leaf p:starches-c:pseudo leaf
4 p:green tea-c:pseudo leaf p:syrup-c:pseudo leaf p:cinnamon-c:pseudo leaf p:cream cheese-c:pseudo leaf p:fortified wine-c:pseudo leaf p:bite-c:pseudo leaf
5 p:butter-c:pseudo leaf p:juice-c:pseudo leaf p:fortified wine-c:pseudo leaf p:dainty-c:pseudo leaf p:burgundy-c:pseudo leaf p:gelatin-c:pseudo leaf
6 p:conserve-c:pseudo leaf p:fruit drink-c:pseudo leaf p:red wine-c:pseudo leaf p:cheddar-c:pseudo leaf p:vermouth-c:pseudo leaf p:ice-c:pseudo leaf
7 p:ice-c:pseudo leaf p:wheat flour-c:pseudo leaf p:coffee liqueur-c:pseudo leaf p:mead-c:pseudo leaf p:bordeaux-c:pseudo leaf p:green tea-c:pseudo leaf
8 p:ice cream-c:pseudo leaf p:mead-c:pseudo leaf p:vermouth-c:pseudo leaf p:feed-c:pseudo leaf p:candy-c:pseudo leaf p:dark bread-c:pseudo leaf
9 p:spread-c:pseudo leaf p:curd-c:pseudo leaf p:bordeaux-c:pseudo leaf p:ready mix-c:pseudo leaf p:liqueur-c:pseudo leaf p:margarine-c:pseudo leaf
10 p:gelatin dessert-c:pseudo leaf p:pepper-c:pseudo leaf p:burgundy-c:pseudo leaf p:herb tea-c:pseudo leaf p:cinnamon-c:pseudo leaf p:ale-c:pseudo leaf

Ground Truth Rank 1 5 5 920.500 277.000 94.769

For the leaf node insertion, SS-MONO correctly predicts the proper position at the top 1 for query
concepts “stinger” and “papaya juice”. The actual position of query concept “malmsey”, i.e.,

“fortified wine - pseudo leaf” is predicted at the second rank. SS-MONO correctly predicts the proper
position at the top 1 for query concepts “stinger”, and “malmsey”. However, the proper position is
ranked third for “papaya juice”. Therefore, we further investigate the description provided in the
dataset for “malmsey” and “fortified wine”. However, the raw input node description of “malmsey”
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does not imply or contain information related to alcohol by volume. With LLM-augmented candidate
position description, SS-MONO captures information related to “malmsey” with “fortified wine”.

As for non-leaf insertion, compared with the baseline model QEN, SS-MONO achieves better rankings
for query concepts containing multiple true insertion positions, e.g., “milk” has 60 ground truth
insertion positions and “frozen dessert” has 13 ground truth positions. However, SS-MONO doesn’t
perform better than SS-MONO (w/o AD), but better than QEN.

I MORE ABLATION STUDY AND HYPERPARAMETER ANALYSIS

I.1 NUMBER OF CANDIDATE EDGES FOR THE INPUT OF DEEPSEEK-R1-8B

The implementation (including prompt template and hyperparameter settings) is given in Appendix F.
In short, we prompt the LLM with a pool of randomly sampled candidate parent–child edges, then
have it retrieve the top 10 and rank them in descending order. To assess how the quantity of candidate
positions affects LLM ranking performance, we conduct an ablation study by varying the number of
candidate edges per query concept, ranging from 100, 500, and 900.

Overall, the results in Table 7 show a clear non-monotonic trend. Increasing the pool size from 100
to 500 yields the strongest gains. R@1 improves from 0.006 to 0.016 and P@1 from 0.014 to 0.033,
indicating that many true parents of SemEval-Food concepts are recovered only when the LLM is
allowed to propose a moderately larger set of edges. However, further increasing to 900 candidates
does not uniformly improve top-k accuracy: while R@5/R@10 and P@5/P@10 continue to rise
slightly (0.023 and 0.009/0.005), R@1 and P@1 degrade compared to the 500-candidate setting.
This suggests that excessively large candidate sets dilute the signal with noisy or spurious edges,
making it harder for the re-ranking module to surface the correct parent in the very top positions.
Interestingly, for non-leaf nodes, the 900-candidate setting shows a noticeable improvement in R@10
(0.023), implying that deeper or more structurally ambiguous nodes benefit from a larger and more
diverse candidate pool. These observations confirm that moderate candidate expansion provides
the best balance between coverage and noise, whereas overly large LLM-generated pools introduce
diminishing or even negative returns in precision-oriented metrics.

Table 7: Performance of DeepSeek-R1-8B with different numbers of candidate edges on SemEval-
Food dataset.

Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

DeepSeek-R1-8B-100 – – 0.006 0.006 0.006 0.014 0.003 0.001 – – 0.007 – – 0.006
DeepSeek-R1-8B-500 – – 0.016 0.016 0.016 0.033 0.007 0.003 – – 0.028 – – 0.005
DeepSeek-R1-8B-900 – – 0.010 0.023 0.023 0.020 0.009 0.005 – – 0.022 – – 0.023

I.2 SELF-ATTENTION IN CONTEXT-DOMINATED ENCODER

To demonstrate the effectiveness of the self-attention mechanism (SAM) employed in the Context-
Dominated Encoder, we conducted comprehensive experiments evaluating three different aspects: (1)
a baseline model without SAM (denoted by SS-MONO(w/o SAM)); (2) an ablation study replacing
SAM with standard graph neural networks, specifically GAT and GCN; and (3) an extended ablation
study integrating structure loss into GNNs, resulting in GAT+Cone and GCN+Cone variants. As
presented in Table 8, the proposed SS-MONO consistently outperforms these ablation models across
almost all evaluated metrics, with the exceptions being the Mean Rank (MR) for Total and Leaf
nodes. It may suggest that the sequence-based self-attention mechanism is typically more effective
than various subgraph-based message passing mechanisms.

I.3 NUMBER OF HOPS

In the experiment, we show that the performance with sampling 3-hop neighbors for all datasets
with a fair comparison, given the depth of (sub)trees is not deep, e.g., ranging from 1 to 8. Also, 3
is the fair depth to balance the useful information (near neighbors) and noise (far neighbors). To
further justify the hyperparameter selection, we conducted experiments with 2-hop, 3-hop, and 4-hop
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Table 8: Ablation results comparing SS-Mono and its Graph Neural Network variants on taxonomy
expansion.

Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

SS-Mono 315.79 0.430 0.161 0.283 0.338 0.338 0.119 0.071 228.18 0.690 0.642 768.47 0.225 0.098
SS-Mono (w/o SAM) 1063.16 0.065 0.000 0.013 0.019 0.000 0.005 0.004 509.49 0.134 0.044 3787.18 0.012 0.000
SS-Mono (GAT) 578.83 0.215 0.003 0.071 0.145 0.007 0.030 0.030 249.77 0.429 0.293 2278.94 0.039 0.023
SS-Mono (GAT + Cone) 615.93 0.167 0.016 0.029 0.074 0.034 0.012 0.016 307.57 0.329 0.141 2133.04 0.042 0.023
SS-Mono (GCN) 928.45 0.113 0.000 0.035 0.048 0.000 0.015 0.010 150.25 0.235 0.095 4949.16 0.017 0.011
SS-Mono (GCN + Cone) 638.44 0.138 0.003 0.016 0.035 0.007 0.007 0.007 90.59 0.270 0.064 3469.03 0.030 0.012

sampling in Table 9. 3-hop sampling shows the most compelling performance across most of the
performance metrics.

Table 9: Performance comparison across different hop sizes for evidence expansion.

Method Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

2hop 321.49 0.383 0.145 0.238 0.289 0.304 0.100 0.061 255.07 0.637 0.567 682.51 0.172 0.059
3hop 315.79 0.430 0.161 0.283 0.338 0.338 0.119 0.071 228.18 0.690 0.642 768.47 0.225 0.098
4hop 305.02 0.406 0.141 0.244 0.293 0.297 0.103 0.061 217.74 0.617 0.546 779.33 0.232 0.082

I.4 EUCLIDEAN VS. HYPERBOLIC ENCODER IN STRUCTURE-DOMINATED ENCODER

To more thoroughly assess the contribution of the hyperbolic encoder and nested entailment cone
objective, we conduct an ablation in which the structural encoder is replaced with a purely Eu-
clidean transformer architecture and the cone loss is substituted with a Euclidean ordering-constraint
objective:

L = 1
2

[
max

(
0, d(q, p)− d(p, c) +m

)
+max

(
0, d(q, c)− d(p, c) +m

)]
,

where d(·) denotes the standard L2 distance. In this variant, we keep the same two-layer transformer
encoder used in SS-MONO but remove all hyperbolic components, including the Euclidean-to-
hyperbolic projection and the nested entailment cone mechanism. The resulting representations are
fed directly into the Euclidean ordering loss, ensuring that the comparison isolates the geometric
modeling choice rather than architectural differences.

Across all three datasets, as shown in Table 10, SS-MONO with the hyperbolic encoder consistently
outperforms the Euclidean variant on every metric in the Total, Leaf, and Non-leaf evaluations,
underscoring the importance of hyperbolic representations and the cone-based objective for capturing
hierarchical structure and achieving strong performance.

Table 10: Performance of SS-Mono with Hyperbolic and Euclidean Encoders on SemEval-Food,
WordNet-Verb, and MeSH Datasets.

Method
Total Leaf Non-leaf

MR↓ MRR↑ R@1↑ R@5↑ R@10↑ P@1↑ P@5↑ P@10↑ MR↓ MRR↑ R@10↑ MR↓ MRR↑ R@10↑

SemEval-Food

SS-Mono (Hyperbolic) 239.169 0.400 0.186 0.299 0.325 0.392 0.126 0.068 143.937 0.705 0.645 756.735 0.147 0.059
SS-Mono (Euclidean) 654.712 0.175 0.019 0.077 0.100 0.041 0.032 0.021 263.317 0.298 0.148 2580.372 0.080 0.062

WordNet-Verb

SS-Mono (Hyperbolic) 1626.522 0.334 0.106 0.208 0.260 0.163 0.064 0.040 922.541 0.521 0.457 4551.311 0.122 0.035
SS-Mono (Euclidean) 3682.875 0.059 0.005 0.018 0.025 0.007 0.006 0.004 1362.167 0.074 0.021 13641.050 0.042 0.030

MeSH

SS-Mono (Hyperbolic) 436.820 0.427 0.074 0.197 0.288 0.173 0.093 0.068 390.717 0.570 0.476 540.551 0.334 0.166
SS-Mono (Euclidean) 8976.253 0.075 0.010 0.046 0.061 0.023 0.021 0.014 7038.222 0.039 0.026 13490.450 0.104 0.089

I.5 HARD NEGATIVE SAMPLING AND RANDOM SAMPLING

To evaluate whether our negative-sampling strategy introduces bias or overestimates robustness, we
designed a set of ablations that systematically vary the difficulty of negative examples. This analysis
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examines how different proportions of structurally local (“hard”) and globally sampled (“random”)
negatives affect model behavior.

We consider two types of negatives:

• Hard negatives are constructed from the ego-network surrounding each candidate parent–child
position. For a given query node, we extract egonets around both the true parent–child edges
and the alternative candidate positions, and collect all edges within these neighborhoods that are
neither gold positions nor edges directly incident to the query. This produces a pool of structurally
plausible but incorrect placements that represent challenging local confounders.

• Random negatives are sampled uniformly from the global candidate pool of non-positive positions.
These negatives represent structurally distant or unambiguous alternatives and provide broad
coverage of the negative space.

We evaluate two sampling regimes that span a spectrum from structurally unbiased to highly local.
We form mixed batches in which a proportion of negatives are hard negatives and the remainder are
random negatives. We vary the hard-negative ratio across {0%, 10%, 30%, 50%, 70%, 90%}, keeping
all other hyperparameters and batch construction identical across settings. This setup directly tests
whether increasing structural locality in the negative pool leads to artificially inflated performance.

The ablation results (in Table 11) demonstrate a non-monotonic relationship between the proportion
of hard negatives and overall performance. On SemEval-Food, for example, moderate ratios (10–
30%) provide consistent improvements, while higher ratios (≥50%) lead to performance degradation,
particularly for non-leaf concepts. Importantly, the random-only configuration remains a strong and
stable baseline, indicating that the model does not depend heavily on structurally localized negatives
to perform competitively.

Table 11: Effect of Hard Negative Sampling Ratio on SemEval-Food Dataset. Taking 0% ratio as the
baseline, red means gain, blue means loss, and heat means degree.

Hard
Negative
Samples

Total Leaf Non-leaf

MR ↓ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ P@1 ↑ P@5 ↑ P@10 ↑ MR ↓ MRR ↑ R@10 ↑ MR ↓ MRR ↑ R@10 ↑

0% 239.169 0.400 0.186 0.299 0.325 0.392 0.126 0.068 143.937 0.705 0.645 756.735 0.147 0.059
10% 233.394 0.391 0.199 0.322 0.334 0.419 0.135 0.070 108.495 0.749 0.696 847.900 0.117 0.057
30% 268.193 0.364 0.158 0.283 0.312 0.331 0.119 0.066 107.294 0.717 0.644 1059.815 0.093 0.057
50% 324.313 0.346 0.193 0.283 0.302 0.405 0.119 0.064 146.489 0.644 0.570 1290.743 0.073 0.056
70% 354.153 0.330 0.141 0.251 0.289 0.297 0.105 0.061 114.738 0.583 0.516 1591.126 0.073 0.058
90% 458.789 0.277 0.048 0.167 0.215 0.101 0.070 0.045 151.653 0.554 0.423 2045.659 0.060 0.052

Two factors contribute to the degradation observed at high hard-negative ratios:

Overemphasis on highly ambiguous alternatives. When most negatives originate from local
egonets, the loss becomes dominated by extremely subtle or nearly indistinguishable negative
examples. This encourages the model to overfit to fine-grained structural patterns specific to the
training taxonomy rather than learning generalizable cues.

Reduced coverage of the easy and medium negative space. Random negatives help establish
a broad decision margin by teaching the model what clearly cannot be a parent/child. Excessive
reliance on hard negatives reduces exposure to this broader negative space, leading to mistakes on
simple or moderately difficult negatives during evaluation.

J TEMPLATE FOR LLM ACHIEVING CALIBRATION

In this section, the prompting template for reranking calibration by LLMs is provided in Block 2. We
deploy Llama3.1:8b (Touvron et al., 2023) for the calibration.

Listing 2: LLM Calibration Prompt Template
Please rerank the given candidate edges where a query term can be inserted. The insertion means the parent

term of the edge is the hypernym of the query term, and the child term is the hyponym of the query term.

Please rerank the given candidate edges based on the similarity of meaning to the query node. To be specific,

the insertion means the parent term (i.e., the first term) of the edge is the hypernym of the query term, and

the child term (i.e., the second term) of the edge is the hyponym of the query term. I will give you a rerank

task with ten candidate edges as an example to warm you up. After the warm-up, I will give you the arbitrary

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

number of queries and candidate edges. Please make sure the number of your reranks is consistent with the

number of the original candidate edges.

Here is one example reranking 10 candidate edges.

10 Candidate edges:

<edge_id>p:868-c:1106 <edge>milk -> raw milk<end-edge>

<edge_id>p:868-c:1253 <edge>milk -> sour milk <end-edge>

...

<edge_id>p:1061-c:644 <edge> porridge -> gruel <end-edge>

Query term: acidophilus milk. Description of the query term: acidophilus milk is milk fermented by bacteria;

used to treat gastrointestinal disorders.

Please rerank the provided candidate edges following the format: ‘[<edge_id>edge_id <rank>1, <edge_id>edge_id<

rank>2, ...]‘.

Reranked list of candidate edges:

[<edge_id>p:868-c:<rank>1,

<edge_id>p:868-c:1253<rank>2,

<edge_id>p:868-c:513<rank>3,

...

<edge_id>p:321-c:1286<rank>10]

Here is the actual inputs:

{number_of_candidate_edges} Candidate edges:\n

{candidate_edges}

Query term: {query_term}.

Description of the query term: {query_term_description}

Please rerank the provided {number_of_candidate_edges} candidate edges following the format: ‘[<edge_id>

edge_id <rank>1, <edge_id>edge_id<rank>2 ...]‘.

Reranked list candidate edges:

K FAILED EXAMPLE OF LLM CARIBRATION

K.1 NO RANKING ANSWER

Two main cases are observed when no ranking answers are successfully parsed since LLMs refuse to
generate edge indices provided in the input prompt. One case is LLM generating ideas or thoughts on
how to solve the reranking task. The other case is LLM generating python scripts trying to solve the
reranking task. We will list one example output with long thoughts and Python scripts in Block 3. As
a result, LLMs generation can hardly follow the format requirement in the Block 2.

Listing 3: LLM Calibration Failed Case: No Ranking Answer, i.e., Generating Python Scripts
To solve this problem, I will use a combination of natural language processing (NLP) and machine learning

techniques to rerank the given candidate edges based on their similarity to the query term \"julep\".

Here’s my approach:

1. **Preprocessing**: I’ll first preprocess the text data by tokenizing the words in each edge and converting

them to lowercase.

2. **Feature extraction**: I’ll extract features from each edge that are relevant to the query term \"julep\".

These features might include:\n\t* Presence of specific words like \"bourbon\", \"sugar\", \"mint\", or \"

crushed ice\" in the edge.\n\t* Syntactic relationships between words, such as \"and\" or \"over\".

3. **Model training**: I’ll train a machine learning model on a labeled dataset to learn the patterns and

relationships that are indicative of edges related to \"julep\". The model will be trained to predict the

relevance of each edge to the query term.\n4. **Reranking**: Once the model is trained, I’ll use it to rerank

the given candidate edges based on their predicted relevance to the query term \"julep\".

Here’s my implementation in Python:

‘‘‘python

import re

from nltk.tokenize import word_tokenize

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

# Preprocess the text data

def preprocess_text(text):

tokens = word_tokenize(text.lower())

return ’ ’.join(tokens)

# Extract features from each edge

def extract_features(edge):

features = []

if ’bourbon’ in edge or ’whiskey’ in edge:
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features.append(1)

# Presence of bourbon/whiskey

...

K.2 HALLUCINATED EDGES IN THE EXISTING TAXONOMY

One example of hallucinated edges generated by LLMs is shown in Table 12. The LLM ReRanked
List contains one hallucinated edge “p:620-c:375” by connecting two existing terms “p:620” from
edge “p:620-c:” and “c:375” from edge “p:1247-c:375”.

Table 12: LLM Calibration Case: Hallucinated Edges. The hallucinated edge example is bolded.

Input List p:1247-c: p:1284-c: p:540-c: p:570-c: p:359-c: p:620-c: p:986-c: p:1337-c: p:272-c: p:1247-c:375
LLM ReRanked List p:620-c: p:540-c: p:570-c: p:620-c:375 p:986-c: p:1337-c: p:272-c: p:359-c: p:1247-c: p:1284-c:

K.3 SHORTEN RANKING ANSWER

Some cases show that LLMs would shorten the reranked list by ranking several top edges and
mentioning that all other edges are irrelevant. One example asking LLM to rerank 50 candidate
positions is shown in Block 4.

Listing 4: LLM Calibration Case: The Shorten Ranking Answer
To rerank the candidate edges for the query term \"cinnamon toast\", I will analyze each edge and calculate a

similarity score based on the description of the query term. The scores are subjective and may vary depending

on individual perspectives.

Here’s my analysis:

1. **Edge**: p:1364-c:966 <edge>toast -> orange toast<end-edge>\n\t* Score: 0 (orange toast is not related to

cinnamon)

2. **Edge**: p:1364-c: <edge>toast -> <end-edge>\n\t* Score: 5 (basic bread, but no flavor or topping

mentioned)

3. **Edge**: p:1302-c: <edge>stuffing -> <end-edge>\n\t* Score: 0 (stuffing is not related to toast or

cinnamon)

4. **Edge**: p:1096-c: <edge>quick bread -> <end-edge>\n\t* Score: 5 (quick bread is a type of bread, but no

flavor or topping mentioned)

...

20. **Edge**: p:1096-c:142 <edge>quick bread -> bran muffin<end-edge> (Score: 0)

21. **Edge**: p:412-c:1236 <edge>cracker -> soda cracker<end-edge> (Score: 5)

22. **Edge**: p:1096-c:737 <edge>quick bread -> johnnycake<end-edge> (Score: 0)

The top 3 edges with the highest scores are:

1. **Edge**: p:412-c:971 <edge>cracker -> oyster cracker<end-edge> (Score: 5)

2. **Edge**: p:331-c: <edge>clarified butter -> <end-edge> (Score: 5)

3. **Edge**: p:412-c:1236 <edge>cracker -> soda cracker<end-edge> (Score: 5)

These edges are the most relevant to the topic of toast with cinnamon, as they involve types of bread or

toppings that could be used in a similar context.

Please note that this ranking is based on a subjective scoring system and may not reflect the actual relevance

or importance of each edge in a real-world scenario.

L IMPLEMENTATION DETAILS OF SS-MONO

L.1 TAXONOMY EXPANSION VIA QUERY-POSITION MATCHING

Given an existing taxonomy T = (V,E) and a query node q (i.e., a newly emerging concept that
has not appeared in T ), the non-leaf taxonomy expansion task aims to expand the taxonomy T to
the new taxonomy Tq by inserting the query node q appropriately. To be specific, the query node q
seeks to match the best candidate position, i.e., an edge like (p, c) in T , and then adds new edges
(p, q) and (q, c) by breaking the original edge (p, c). For illustration, a non-leaf insertion example for
expanding the existing taxonomy is illustrated in Figure 3.

During the non-leaf expansion task, to maintain the possibility of appending the query node as the
leaf node, in (Zhang et al., 2021), authors propose to append pseudo nodes to the existing taxonomy
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Figure 3: Taxonomy Expansion Task via Query-Position Matching. If query q finds the best-
matched position to insert, e.g., (p, c), then it will break the existing edge (p, c) and establish new
edges (p, q) and (q, c).

Figure 4: Establishing Pseudo-Appended Taxonomy T̃ from T for Unifying Non-Leaf Insertion and
Leaf Insertion.

T and make it a pseudo-append taxonomy T̃ . The pseudo nodes are empty placeholders with zero
feature vectors. In this way, inserting leaf and non-leaf nodes into the existing taxonomy T can be
unified by only inserting non-leaf nodes into the pseudo-append taxonomy T̃ . The corresponding
procedures are illustrated in Figure 4.

L.2 MOBIUS ADDITION ON POINCARÉ BALL

u⊕ v =
(1 + 2⟨u,v⟩+ ∥v∥2)u+ (1− ∥u∥2)v

1 + 2⟨u,v⟩+ ∥u∥2∥v∥2
(19)

where u and v ∈ Dn.

L.3 ENCODE CONTEXTUALIZED EMBEDDINGS FROM LANGUAGE MODELS

We use DistilBERT-base-uncased (Sanh et al., 2019) as the backbone pre-trained language model
(PLM) to encode the input concept description sentence. Here, we describe the steps to obtain the node
feature embedding H ∈ R|V ∪{q}|×h from the input concept description sentence X. The first step
is to feed the description sentence to the backbone PLM, Z = PLM(X), where Z ∈ R|V ∪{q}|×L×h

and L is the maximum length of tokens in each description sentence. Then, an attention-pooling layer
is adapted to pool the Z to node-level embedding H.

H = softmax(ZW5)
TZ (20)

where W5 ∈ Rm×h is the trainable parameter and m is the dimension size to which the L length
tokens is compressed. H ∈ R|V ∪{q}|×m×h. When m = 1, we can get H ∈ R|V ∪{q}|×h after
squeezing.

L.4 NEURAL ARCHITECTURE AND HYPERPARAMETERS

The 2-layer transformer encoder is used for SAM with the number of attention heads as 8. The
hidden dimension of the SAM layer is 256. The dimension project from SS-MONO is trained by
a RiemannianAdam optimizer using a cosine learning rate scheduler. The learning rate is linearly
warmed up from 0 to 5 × 10−5 in the first 10% training steps. The margin γ is set as 0.1. The
initialization of curvature is set as 1 and is set as a trainable parameter. The numbers of training
epochs for SemEval-Food, WordNet-Verb, and MeSH are 50, 40, and 40.
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L.5 REPRODUCIBILITY

The experiments are executed on a Tesla V100 (32GB) GPU machine. The code will be released
upon the paper’s publication.

M EDGE DESCRIPTION GENERATION AND SANITY CHECKING

In this section, we demonstrate the procedure for generating edge descriptions and performing a
sanity check.

M.1 EDGE DESCRIPTION GENERATION

To provide relational context beyond standalone node definitions, we generate edge descriptions
that aim to explicitly articulate the relationship between a hypernym and its hyponym. These
descriptions serve as lightweight relational signals that the structural encoder can consume. To reduce
hallucinations, we use a tightly constrained prompt that requires all statements to be grounded in
the provided definitions and context. We deploy Gemma2:9b (Mesnard et al., 2024) for description
generation. The prompt template can be found in Listing 5.

Listing 5: Description Generation Prompt Template
Known parents of {parent_name}: {parent_context}

Child term: {child_name}

Child definition: {child_definition}

Known children of {child_name}: {child_context}

Task: Write a concise relationship explanation (2--4 sentences) describing how the child relates to the parent

.

Ground every statement in the provided definitions/context and avoid inventing unsupported facts.

Mention at least one concrete trait that ties the child specifically to the parent category.

Given the prompt, one of the generated edge descriptions in the food taxonomy is as follows.
Parent (445): dairy product — “dairy product is milk and butter and cheese.”
Child (474): double creme — “double creme is cream with a fat content of 48% or more.”
Generated description:

“Double creme is a type of dairy product because it is made from cream, which falls under
the broader category of dairy products as defined by its inclusion in ‘milk and butter and
cheese.’ Specifically, double creme’s high fat content (48% or more) distinguishes it within
the range of dairy products.”

M.2 SANITY CHECKING OF GENERATED DESCRIPTIONS

We validate the quality and faithfulness of generated edge descriptions using a two-stage protocol: (i)
token-level lexical similarity and (ii) semantic evaluation via LLM-as-Judge.

• The first one is for measuring from the token level for the capability of LLM to maintain old
knowledge and bring new knowledge, which is efficient for scaled datasets.

• For the plausible cases according to the first manner, LLM-as-Judge is leveraged to deeply analyze
them by calling API.

Across both lexical and semantic evaluations, LLM-generated edge descriptions are largely faithful,
semantically aligned, and reliable as relational augmentation. Even among the lowest-ROUGE cases,
only a small minority exhibit semantic drift, validating LLM-generated relationship descriptions as a
practical and effective mechanism for transferring relational knowledge to smaller structural models.
We extend as follows.

M.2.1 TOKEN-LEVEL LEXICAL SIMILARITY

We compute ROUGE-1, ROUGE-L, Novelty Ratio, and TF-IDF similarity between each edge
description and the original term definitions. These metrics provide a coarse measure of grounding
versus new content introduced by the LLM.
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• ROUGE-1 and ROUGE-L: capturing unigram (ROUGH-1) and longest common (ROUGE-L)
subsequence overlap between the given two terms’ description and LLM generated edge description.

• Novelty Ratio (i.e., 100% - token overlap ratio): assessing how much content in the generated
description is newly introduced versus grounded in the original definition.

• TF-IDF similarity: measuring global lexical similarity beyond direct token overlap.

Table 13 summarizes results across all three datasets. Novelty ratios typically exceed 50%, while
ROUGE scores fall in the 20–40% range, suggesting that LLMs introduce meaningful relational
content while remaining partially grounded.

Table 13: Lexical similarity evaluation of LLM-generated edge descriptions across three datasets.

Metric
SemEval-Food WordNet-Verb MeSH
Mean Std Mean Std Mean Std

ROUGE-1 0.3965 0.1091 0.3012 0.0814 0.4102 0.1008
ROUGE-L 0.2733 0.0865 0.2027 0.0624 0.2441 0.0662
Novelty Ratio 0.6129 0.1352 0.7169 0.1000 0.5286 0.1444
TF-IDF Similarity 0.6081 0.1412 0.5894 0.1703 0.6034 0.1305

M.2.2 LLM-AS-JUDGE SEMANTIC CONSISTENCY EVALUATION

Lexical metrics do not capture semantic correctness. To measure semantic alignment, we use GPT-4o
as an LLM-as-Judge. To manage API cost, we evaluate only the 80 lowest-ROUGE edges per dataset
since those are most likely to exhibit errors. Each edge receives three independent votes (Aligned /
Partially Aligned / Misaligned) using the prompt template in Listing 6.

Listing 6: Description Sanity Check Prompt Template
You are a taxonomy quality reviewer. Given the canonical wiki-style node descriptions, decide whether the

provided edge description is factually correct, aligned with the parent/child terms, and free of hallucinated

claims.

Parent Term: {parent_term}

Parent Definition: {parent_definition}

Child Term: {child_term}

Child Definition: {child_definition}

Edge Description:

\"\"\"{edge_description}\"\"\"

Instructions:

1. Compare the edge description against the parent/child definitions. Note any hallucinated entities or

attributes that contradict the references.

2. Flag missing information that prevents you from concluding the relation.

3. If a parent/child definition itself appears off-topic or inconsistent with the taxonomy scope, record it

under reference_issues (do not change the verdict to compensate).

4. Respond with a short JSON object: {{"verdict": "<Aligned|Partial|Misaligned>", "issues": ["string"], "

missing_information": ["string"], "reference_issues": ["string"]}}.

5. References to placeholder pseudo nodes (e.g., "pseudo root" or "pseudo leaf") are acceptable and should not

be flagged or treated as missing information solely for being placeholders or lacking extra detail.

Results are shown in Table 14. Despite low lexical overlap, only a small fraction (≤10%) of
descriptions are misaligned, demonstrating that low-ROUGE generations can still be semantically
correct.

N FINE-TUNING LLM FOR TAXONOMY EXPANSION TASK

To test the adaptability of our pipeline to off-the-shelf language models, we adopt TinyLlama-1.1B-
intermediate-step-1431k-3T (Zhang et al., 2024) as a representative lightweight LLM and attach a
LoRA adapter (Hu et al., 2022) to the last four transformer layers (for computational efficiency).
Concretely, we fine-tune the attention and feed-forward projection modules (q_proj, k_proj,
v_proj, o_proj, gate_proj, up_proj, down_proj) while freezing the token embedding
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Table 14: LLM-as-Judge semantic consistency evaluation on the 80 lowest-ROUGE edge descriptions
per dataset.

Dataset Aligned Partial Misaligned

SemEval-Food 47/80 (58.75%) 25/80 (31.25%) 8/80 (10.00%)
WordNet-Verb 36/80 (45.00%) 40/80 (50.00%) 4/80 ( 5.00%)
MeSH 58/80 (72.50%) 19/80 (23.75%) 3/80 ( 3.75%)

layer. The TinyLlama encoder is trained under the same learning objective as SS-Mono, using the
loss in Eq. (14), ensuring a consistent optimization setup for comparison.

This experiment demonstrates that our geometric encoder is compatible with pretrained LLM check-
points: integrating an LLM encoder requires only minor architectural changes and remains computa-
tionally lightweight. As shown in Table 15, the fine-tuned TinyLlama variant achieves comparable
MR and MRR and notably improves leaf insertions, but it degrades performance on non-leaf nodes.
These results suggest that our LLM-SLM-distillation design is not worse than (or even better than)
LLM fine-tuning.

Table 15: Performance of SS-Mono with Fine-Tuned TinyLlama on SemEval-Food Dataset.

Method
Total Leaf Non-leaf

MR↓ MRR↑ R@1↑ R@5↑ R@10↑ P@1↑ P@5↑ P@10↑ MR↓ MRR↑ R@10↑ MR↓ MRR↑ R@10↑

SS-Mono 239.169 0.400 0.186 0.299 0.325 0.392 0.126 0.068 143.937 0.705 0.645 756.735 0.147 0.059
TinyLlama (fine-tuned) 253.911 0.373 0.122 0.241 0.309 0.257 0.101 0.065 73.851 0.754 0.652 1139.808 0.080 0.045

O LLM AUGMENTED DESCRIPTIONS WITH NON-LEAF EXPANSION

We analyze why LLM-Augmented Descriptions (AD) tend to improve leaf-node insertion more
consistently than non-leaf insertion, as shown in Table 2. Our observations indicate that this difference
arises from how LLM-generated descriptions interact with the structural roles of different node types
in a taxonomy along three dimensions.

Leaf-node descriptions are structurally consistent and aligned with the insertion task. For leaf
nodes, the LLM-generated descriptions primarily emphasize the concept’s global semantic identity,
such as being a terminal category or a fine-grained subtype. Since leaf nodes do not have children,
these descriptions remain concise, stable, and semantically homogeneous across examples. This
consistency provides the scorer with clearer signals regarding the node’s appropriate position in the
taxonomy.

Non-leaf descriptions exhibit higher diversity due to dual relational roles. Non-leaf nodes
participate in both upward (parent-facing) and downward (child-facing) relationships. As a result,
their descriptions must encode more heterogeneous and relationally complex information. Empirically,
LLMs produce a wider range of phrasings for non-leaf nodes because the prompts must articulate
how multiple concepts relate rather than describe an isolated entity. This broader linguistic variability
increases variance in the augmented text representations.

Variability in AD interacts with fine-grained structural ranking and can dilute local signals.
Intermediate insertion is a fine-grained ranking problem in which the scorer must distinguish among
many structurally similar alternatives. When ADs for non-leaf nodes exhibit high variance, the result-
ing representations provide weaker or less discriminative cues for resolving subtle local structural
differences. In contrast, leaf-node insertion benefits from the more uniform and taxonomy-aligned
descriptions.

To sum up, LLM Augmented Descriptions is, so far, a viable solution that provides additional
knowledge for the existing taxonomy and can be leveraged to improve the SLM’s performance based
on our designed geometric deep learning constraints and self-supervised learning approach, as shown
in the extensive experiments. Indeed, it is not perfect and has the latent drawback discussed above,
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and we are more than willing to make it our future research direction. A few possible directions are
listed below:

• Incorporating external web knowledge for richer edge descriptions. Future extensions may
integrate controlled web search so that the LLM can retrieve verifiable information about con-
cept relationships. This has the potential to generate more accurate, edge-oriented descriptions,
particularly for non-leaf nodes whose semantics depend on multiple relational contexts.

• Leveraging local neighborhood structure during AD generation. Conditioning description
generation on a node’s local subgraph—such as siblings, parents, children, or subtree summaries—
can better ground the textual output in the underlying taxonomy. Such structure-aware prompting
may reduce semantic drift and lower variance in AD for non-leaf nodes.

• Developing multi-step, grounded generation pipelines. A more robust AD pipeline can combine
(i) local-structure grounding, (ii) retrieved external knowledge, and (iii) a self-critique or refinement
step. This multi-stage procedure aims to stabilize the textual signal, filter inconsistent relational
statements, and produce richer, higher-fidelity descriptions that support fine-grained non-leaf
insertion.

P THE USE OF LLMS

As required by the ICLR 2026 Submission Policy, we made the following statement for the use of
LLMs. We used large language models (LLMs) as controlled assistive tools for writing, specifically
to check grammar and improve clarity. All outputs were reviewed and edited by the authors, who
take full responsibility for the final content. Different LLMs were also included in experiments as
part of evaluating their effectiveness for the taxonomy expansion task.
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