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ABSTRACT

Spectral snapshot compressive imaging (Spectral SCI) applies an optical encoder to
compressively capture 2D measurements, followed by which the 3D hyperspectral
data can be restored via training a deep reconstruction network. Existing reconstruc-
tion models are generally trained with a single well-calibrated hardware instance,
making their performance vulnerable to hardware shifts and limited in adapting to
multiple hardware configurations. To facilitate cross-hardware learning, previous
efforts attempt to directly collect multi-hardware data and perform centralized train-
ing, which, however, is impractical due to severe user data privacy concerns and
hardware heterogeneity across different platforms/institutions. In this study, we ex-
plicitly consider data privacy and heterogeneity in cooperatively optimizing spectral
SCI systems by proposing a novel Federated Hardware-Prompt learning (FedHP)
framework. Rather than mitigating the client drift by rectifying the gradients,
which only takes effect on the learning manifold but fails to solve the heterogeneity
rooted in the input data space, FedHP learns a hardware-conditioned prompter
to align inconsistent data distribution across clients, serving as an indicator of
the data inconsistency among different coded apertures. Extensive experiments
demonstrate that the proposed FedHP coordinates the pre-trained model to multiple
hardware configurations, outperforming prevalent FL frameworks for 0.35dB under
challenging heterogeneous setting. Moreover, a new Snapshot Spectral Heteroge-
neous Dataset (SSHD) has been built upon multiple practical spectral SCI systems.
We will release the data and code to enrich further exploration of this practical
computational imaging problem.

1 INTRODUCTION

The technology of snapshot compressive imaging (SCI) (Yuan et al., 2021) has gained prominence
in the realm of computational imaging. Taking an example of hyperspectral image reconstruction,
the spectral SCI (Gehm et al., 2007) can fast capture and compress 3D hyperspectral signals as
2D measurements through optical hardware, and then restore the original signals with high fidelity
by training deep neural networks (Meng et al., 2020; Miao et al., 2019). Despite the remarkable
performance (Cai et al., 2022a;b; Lin et al., 2022; Huang et al., 2021; Hu et al., 2022), existing deep
SCI methods are generally trained with a specific hardware configuration, e.g., a well-calibrated coded
aperture (physical mask). The resulting model is vulnerable to the hardware shift/perturbation and
limited in adapting to multiple hardware configurations. However, directly learning a reconstruction
model cooperatively from multi-hardware seems to be infeasible due to data proprietary constraint. It
is also non-trivial to coordinate heterogeneous hardware instances with a unified model.

To elaborate, we firstly recap previous research efforts of centralized learning solutions. A naive
treatment is to jointly train a single reconstruction model with data collected from different hardware
configurations, i.e., coded apertures. As shown in Fig. 1 right, this solution enhances the ability
of reconstruction (> 0.5dB+) by comparison to single hardware training scenario. However, the
performance on inconsistent coded apertures is still non-guaranteed since the model only learns to fit
coded apertures in a purely data-driven manner. Followed by, Self-tuning (Wang et al., 2022) advances
the learning by explicitly approximating the posterior distribution of coded apertures in a variational
Bayesian framework. Despite the significant performance boost, it is only compatible with the coded
apertures drawing from homogeneous hardware (same distribution) yet cannot handle heterogeneous
hardware. Nevertheless, centralized learning presumes that hardware instances and hyperspectral data
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Figure 1: Comparison of hyperspectral reconstruction learning strategies. (1) The model trained
with the single hardware (Prevalent treatment) hardly handles other hardware. Both (2) Jointly train
and (3) Self-tuning (Wang et al., 2022) are centralized training solutions. Both (4) FedAvg and the
proposed (5) FedHP adopt the same data split setting. We compare the performance gain of different
methods over (1) on the right. Note that P1, P2, and P3 present the practical mask distributions. All
results are evaluated by unseen masks (non-overlapping) randomly sampled from {P1, P2, P3}.
are always publicly available, which hardly holds in practice – both the optical systems (with different
confidential configurations, e.g., coded apertures) and data samples (i.e., measurements captured
from non-overlapping scenes) are generally proprietary assets across institutions, adhering to the
strict privacy policy constraints (Vergara-Laurens et al., 2016; Li et al., 2021), while considering the
multi-hardware cooperative training confining to this concern remains unexplored in SCI.

In this work, we leverage federated learning (FL) (Kairouz et al., 2021; Li et al., 2020a; Wang et al.,
2021) for cross-platform/silo multi-hardware reconstruction modeling without sharing the hardware
configurations. Firstly, the FL benchmark, FedAvg (McMahan et al., 2017), is adopted and brings
performance boost (compared by 3 and 4 in Fig. 1 right). However, FedAvg has been proven to be
limited in solving heterogeneous data (Hsu et al., 2019; Karimireddy et al., 2020) – the heterogeneity
in SCI substantially stems from the hardware, which is usually absorbed into the compressed data and
governs the network training. Thus, different configurations, e.g., coded apertures, yield different data
distributions. Besides, we consider a more practical scenario by extending the sample-wise hardware
difference into distribution-wise, i.e., not only the different coded apertures yield heterogeneity, but
also coded apertures from different clients may follow different distributions (see P1 ∼ P3 in Fig. 1).

To further approach the heterogeneity issue, this work proposes a Federated Hardware-Prompt
(FedHP) framework to achieve multi-hardware cooperative learning with privacy piratically preserved.
Prevalent FL methods handle the heterogeneity by regularizing the global/local gradients (Karim-
ireddy et al., 2020; Li et al., 2020b), which only take effect on the learning manifold but fail to solve
the heterogeneity rooted in the input data space. Differently, FedHP traces back to the source of the
data heterogeneity of this application, i.e., inconsistent hardware configurations, and devises a prompt
network to solve the client drift issue in input data space. By taking the coded aperture as input, the
prompter better accounts for the underlying inconsistency and close the gap between input data distri-
butions across clients. Besides, the prompter explicitly models the correlation between the software
and hardware, empowering the learning by following the spirit of the co-optimization (Goudreault
et al., 2023; Zheng et al., 2021; Robidoux et al., 2021) in computational imaging. In addition,
FedHP directly operates on pre-trained reconstruction backbones with locally well-trained models
and keeps them frozen throughout the learning, which potentially improves the efficiency than directly
optimizing the reconstruction backbones in FL from scratch. The contributions are as follows:

• We introduce and tackle an unexplored practical problem of hardware cooperative learning in
SCI, under the presence of data privacy constraint and the heterogeneous configurations. Our
proposed FedHP, to the best knowledge, bridges FL and the filed of spectral SCI for the first time.

• We uncover the data heterogeneity of SCI that stems from distinct hardware configurations. A
hardware prompt module is developed to solve the distribution shift across clients and empower
the hardware-software co-optimization in computational imaging. The proposed method provides
an orthogonal perspective in handling the heterogeneity to the existing FL practices.

• We collect the first Snapshot Spectral Heterogeneous Dataset (SSHD) from a series of practical
spectral snapshot imaging systems. Extensive experiments demonstrate that FedHP outperforms
both centralized learning methods and classic federated learning treatments. This work can inspire
future works in this novel research direction of hardware collaboration in SCI.
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2 METHOD

2.1 PRELIMINARY KNOWLEDGE

In this work, we study the cooperative learning problem in SCI by taking the representative setup of
coded aperture snapshot spectral imaging system for hyperspectral imaging as an example, due to
its recent advances (Cai et al., 2022a;b; Lin et al., 2022). Given the real-world hyperspectral signal
X ∈ RH×W×Nλ , where Nλ denotes the number of spectral channels, the hardware performs the
compression with the physical coded apterture M of the size H×W , i.e., Mhw ∈ [0, 1]. Accordingly,
the encoding process produces a 2D measurement YM ∈ RH×(W+∆), where ∆ denotes the shifting

YM =

Nλ∑
nλ=1

X′(:, :, nλ)⊙M+Ω, X′(h,w, nλ) = X(h,w + d(λ− λ∗), nλ), (1)

where ⊙ denotes the pixel-wise multiplication and Ω presents the measurement noise. For each
spectral wavelength λ, the corresponding signal X(:, :, nλ) is shifted according to the function d(λ−
λ∗) by referring to the pre-defined anchor wavelength λ∗, such that ∆ = d(Nλ − 1). Following the
optical encoder, recent practices train a deep reconstruction network f(·) to retrieve the hyperspectral
data X̂ ∈ RH×W×Nλ by taking the 2D measurement YM as input. We define the initial training
dataset of the hyperspectral signal as D and the corresponding dataset for the reconstruction as DM∗

D = {Xi}i=N
i=1 , DM∗

= {YM∗

i ,Xi}i=N
i=1 , (2)

where Xi serves as the ground truth and YM∗

i is governed by a specific real physical coded aperture
M∗. The reconstruction model finds the local optimum by minimizing the mean squared loss

θ̂ = argmin
θ

1

N

N∑
i=1

||f(θ;YM∗

i )−Xi||22, X̂i = f(θ̂;YM∗

i ), (3)

where θ expresses all learnable parameters in the reconstruction model. Thanks to the sophisticated
network designs (Cai et al., 2022a; Huang et al., 2021), pre-trained reconstruction model demonstrates
promising performance when is compatible with a single encoder set-up, where the measurement in
training and testing phases are produced by the same hardware using a fixed coded aperture of M∗.

Motivation. However, previous work (Wang et al., 2022) uncovered that most existing reconstruction
models experience large performance descent (e.g., > 2dB in terms of PSNR) when handling the
input measurements encoded by a different coded aperture M† from training, i.e., M† ̸= M∗. This
is because the coded aperture M∗ implicitly affects the learning as shown by equation 3. To this end,
the well-trained reconstruction model can be highly sensitive to a specific hardware configuration
of coded aperture and is hardly compatible with the other optical systems in the testing phase. A
simple solution of adapting the reconstruction network to a different coded aperture M† is to retrain
the model with corresponding dataset DM†

= {YM†

i ,Xi}i=N
i=1 and then test upon M† accordingly.

However, this solution does not broaden the adaptability of reconstruction models to multi-hardware
and can introduce drastic computation overhead. In this work, we tackle this challenge by learning a
reconstruction model cooperatively from multiple hardware with inconsistent configurations.

2.2 CENTRALIZED LEARNING IN SCI

Jointly Train. To solve the above problem, Jointly train (Fig. 1 part 2) serves as a naive solution to
train a model with data jointly collected upon a series of hardware. Assuming there are total number
of K hardware with different coded apertures, i.e., M1,M2, ...,MK . Each hardware produces a
training dataset upon D as DMk = {YMk

i ,Xi}i=N
i=1 . The joint training dataset for reconstruction is

DM1∼K = DM1 ∪ DM2 ∪ . . . ∪ DMK , (4)
where different coded apertures can be regarded as hardware-driven data augmentation treatments
toward the hyperspectral data representation. The reconstruction model will be trained with the same
mean squared loss provided in equation 3 upon DM1∼K . Wang et al. (2022) demonstrated that jointly
learning brings performance boost compared with single mask training (Fig. 1 right). However, this
method adopts a single well-trained model to handle coded apertures, failing to adaptively cope with
the underlying discrepancies and thus, leading to compromised performances for different hardware.
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Self-tuning. Following Jointly train, recent work of Self-tuning (Wang et al., 2022) recognizes
the coded aperture that plays the role of hyperprameter of the reconstruction network, and devel-
ops a hyper-net to explicitly model the posterior distribution of the coded aperture by observing
DM1∼K . Specifically, the hyper-net h(σ;Mk) approximates P (M|DM1∼K ) by minimizing the Kull-
back–Leibler divergence between this posterior and a variational distribution Q(M) parameterized
by σ. Compared with Jointly train, Self-tuning learns to adapt to different coded apertures and
appropriately calibrates the reconstruction network during training, even if there are unseen coded
apertures. However, the variational Bayesian learning poses a strict distribution constraint to the
sampled coded apertures, which limits the scope of Self-tuning under the practical setting.

To sum up, both of the Jointly train and Self-tuning are representative solutions of centralized learning,
where the datasetD and hardware instances with M1, ...,MK from different sources are presumed to
be publicly available. Such a setting has two-fold limitations. (1) Centralized learning does not take
the privacy concern into consideration. In practice, both the hardware instances and hyperspectral
dataset are proprietary assets of institutions and thus, corresponding hardware configuration and data
information sharing is subject to the rigorous policy constraint. (2) Existing centralized learning
methods mainly consider the scenario where coded apertures are sampled from the same distribution,
i.e., hardware origin from the same source, which is problematic when it comes to the coded aperture
distribution inconsistency especially in the cross-silo case. Bearing the above challenges, in the
following, we resort to the federated learning (FL) methods to solve the cooperative learning of
reconstruction considering the privacy and hardware configuration inconsistency.

2.3 FEDERATED LEARNING IN SCI

FedAvg. We firstly tailor FedAvg (McMahan et al., 2017), into SCI. Specifically, we exploit a
practical setting of cross-silo learning in snapshot compressive imaging. Suppose there are C clients,
where each client is packaged with a group of hardware following a specific distribution of Pc

Mc
k ∼ Pc, (5)

where Mc
k represents k-th sampled coded aperture in c-th client. For simplicity, we use Mc to denote

arbitrary coded aperture sample in c-th client. Based on the hardware, each client computes a paired
dataset DMc

from the local hyperspectral dataset Dc

Dc = {Xi}i=Nc
i=1 , DMc

= {YMc

i ,Xi}i=Nc
i=1 , Mc ∼ Pc, (6)

where Nc represents the number of hyperspectral data in Dc. The local learning objective is

ℓc(θ) =
1

N

N∑
i=1

||X̂i −Xi||22, (7)

where X̂i = f(θ̂;YMc

i ), Mc ∼ Pc, we use θ to denote the learnable parameters of reconstruction
model at a client. FedAvg learns a global model θG without sharing the hyperspectral signal dataset
Dc, DMc

, and Mc across different clients. Specifically, the global learning objective ℓG(θ) is

ℓG(θ) =

C′∑
c=1

αcℓc(θ), (8)

where C ′ denotes the number of clients that participate in the current global round and αc represents
the aggregation weight. Compared with the centralized learning solutions, FedAvg not only bridges
the local hyperspectral data without sharing sensitive information, but also collaborates multi-
hardware with a unified reconstruction model for a better performance (Fig. 1 right comparison
between 3 and 4). However, FedAvg shows limitations in two-folds. (1) It has been shown that
FedAvg is hard to handle the heterogeneous data (Karimireddy et al., 2020; Khaled et al., 2020; Hsu
et al., 2019). (2) Directly training and aggregating the reconstruction backbones from scratch would
introduce prohibitive computation. In the following, we firstly introduce the hardware-induced data
heterogeneity in SCI. Then we develop a Federated Hardware-Prompt (FedHP) method to achieve
cooperative learning without optimizing the client backbones.

Data Heterogeneity. We firstly consider the data heterogeneity stems from the different coded
apertures samples, i.e., hardware instances. According to Section 2.1, the optical hardware samples
the hyperspectral signal Xi from D = {Xi}i=N

i=1 and encodes it into a 2D measurement YM
i , which
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Figure 2: Learning process of FedHP. We take one global round as an example, which consists of (1)
Initialize, (2) Local Update (Prompt), (3) Local Update (Adaptor), and (4) Aggregation. For each
client, the reconstruction backbone (θpc ), is initialized as pre-trained model upon local training dataset
Dc and kept as frozen throughout the training. The prompt net upon hardware configuration, i.e.,
coded aperture, takes effect on the input data of reconstruction, i.e., YM. Adaptors are introduced to
enhance the learning, where ϵc denotes the parameters of all adaptors.

constitutes DM and further serves as the input data for the reconstruction model. To this end, the
modality of {YM

i }i=1
i=N is vulnerable to the coded aperture variation. A single coded aperture M

defines a unique input data distribution for the reconstruction, i.e., YM
i ∼ PM(YM

i ). For arbitrary
distinct coded apertures, we have PM∗(YM∗

i ) ̸= PM†(YM†

i ) if M∗ ̸= M†. In federated learning,
data heterogeneity persistently exists since there is no identical coded aperture across different clients.
We name this heterogeneous scenario as Hardware shaking, which potentially can attribute to physical
perturbations such as lightning distortion or optical platform fluttering.

We take a step further to consider the other type of data heterogeneity stemming from the distinct
distributions of coded apertures 1. As formulated in equation 6, each client collects a coded aperture
assemble following the distribution Pc for c-th client. We have Pc differs from one another, i.e.,
Pc1 ̸= Pc2 for c1 ̸= c2, c1, c2 ∈ {1, ..., C}. We name this heterogeneous scenario as Manufac-
turing discrepancy, where hardware instances from different clients (institutions) are produced by
distinct manufacturing agencies, so that the distribution Pc1 and Pc2 drastically differs as demon-
strated in Fig. 1. This turns out to be a more challenging scenario than Hardware shaking. As
presented in Section 3.2, classic federated learning methods, e.g., FedProx (Li et al., 2020b) and
SCAFFOLD (Karimireddy et al., 2020) hardly converge in this setting. By comparison, the proposed
method enables an obvious performance boost.

2.4 FEDHP: FEDERATED HARDWARE-PROMPT LEARNING

Hardware-Prompt Learning. Bearing the heterogeneous issue, previous efforts (Li et al., 2020b;
Karimireddy et al., 2020) mainly focus on rectifying the global/local gradients upon training, which
only takes effect on the learning manifold but fail to solve the heterogeneity rooted in the input data
space, whose effectiveness in this low-level vision task may be limited. Since we explicitly uncover
and determine two types of the heterogeneity in snapshot compressive imaging stemming from the
hardware inconsistency (Section. 2.3), this work opts to tackling the client drift issue by directly
operating in the input data space. This can be achieved by collaboratively learning the input data
alignment given different coded apertures. In light of the visual prompt tuning in large models (Liu
et al., 2023b; Bahng et al., 2022), we devise a hardware-conditioned prompt network in the following.

As shown in the Step 2 of Fig. 2, given the input data {YM
i }i=N

i=1 of the reconstruction, the prompt
network aligns the input samples, i.e., measurements YMi , by adding a prompter conditioned on the
hardware configuration. Let Φ(ϕ;M) denote the prompt network (e.g., attention block) parameterized
by ϕ and YM

i is produced upon coded aperture M. Then the resulting input sample is aligned as

YM
i = YM

i +Φ(ϕ;M). (9)

In the proposed method, the prompt network collaborates different clients with inconsistent hardware
configurations. It takes effect by implicitly observing and collecting diverse coded aperture samples

1We presume that the hyperspectral single dataset Dc, c = 1, ..., C, shares the same distribution by generally
capturing the natural scenes. Heterogeneity stems from the hyperspectral signal is out of the scope of this work.
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of all clients, and jointly learns to react to different hardware settings. The prompter regularizes the
input data space and achieves the goal of coping with heterogeneity sourcing from hardware.

Training. As shown in Fig. 2, we demonstrate the training process of proposed FedHP by taking
one global round as an example2. Since the prompt learning takes effect on pre-trained models,
we initialize the c-th backbone parameters with the pre-trained model θpc on local data DMc

with
equation 7. The global prompt network ϕG is randomly initialized and distributed to the c-th client

ϕc ← ϕG, c = 1, ..., C ′, (10)

where ϕc is the local prompt network and C ′ denotes the number of clients participated in current
global round. To enable better response of the pre-trained backbone toward the aligned input data
space, we also introduce the adaptors into the transformer backbone. As shown in Fig. 2 Step 3, we
show the architecture of the proposed adaptor, which is a CONV-GELU-CONV structure governed
by a residual connection. We insert the adaptors behind the LN layers throughout the network.

We then perform local update in each global round. It is composed of two stages. Firstly, we update
the local prompt network ϕc for Sp iterations, all the other learnable parameters of backbone and
adaptors are frozen. The loss then becomes

ℓc =
1

N

N∑
i=1

||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22, (11)

where we use ϵc to represent learnable parameters of all adaptors for c-th client. Secondly, we tune
the adaptors for another Sb iterations. Both of the pre-trained backbone and prompt network are
frozen. The loss of c-th client shares the same formulation as equation 11. After the local update,
FedHP uploads and aggregates the learnable parameters ϕc, c = 1, ..., C of prompt network. Since
the proposed method does not require to optimize and communicate the reconstruction backbones,
the underlying cost is drastically reduced considering the marginal model size of prompt network and
adptors compared with the backbone, which potentially serves as a supplied benefit of FedHP.

Compared with FedAvg, FedHP adopts the hardware prompt to explicitly align the input data repre-
sentation and handle the distribution shift attributing to the coded aperture inconsistency (hardware
shaking) or coded aperture distribution discrepancy (manufacturing discrepancy).

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Dataset. Following existing practices (Cai et al., 2022b; Lin et al., 2022; Hu et al., 2022; Huang et al.,
2021), we adopt the benchmark training dataset of CAVE (Yasuma et al., 2010), which is composed
of 32 hyperspectral images with the spatial size as 512 × 512. Data augmentation techniques of
rotation, flipping are employed, producing 205 different training scenes. For the federated learning,
we equally split the training dataset according to the number of clients C. The local training dataset
are kept and accessed confidentially across clients. Note that one specific coded aperture determines
a unique dataset according to equation 2, the resulting data samples for each client can be much more
than 205/C. We employ the widely-used simulation testing dataset for the quantitative evaluation,
which consists of ten 256 × 256 × 28 hyperspectral images collected from KAIST (Choi et al.,
2017). Besides, we use the real testing data with spatial size of 660× 660 collected by a SD-CASSI
system (Meng et al., 2020) for the perceptual evaluation considering the real-world perturbations.

Hardware. We collect and will release the first Snapshot Spectral Heterogeneous Dataset (SSHD)
containing a series of practical SCI systems, e.g., CASSI, from three agencies, each of which offers a
series of coded apertures that correspond to a unique distribution3 as presented by federated settings
in Fig. 2. No identical coded apertures exists among all systems. For the case of manufacturing
discrepancy, we directly assign hardware systems from one source to form a client. We simulate the
scenario of hardware shaking by distributing coded apertures from one source to different clients.

Implementation details. We adopt the popular transformer backbone, MST-S (Cai et al., 2022a)
for the reconstruction. Besides, the prompt network is instantiated by a SwinIR (Liang et al., 2021)

2Due to the limited space, we provide an algorithm of FedHP in supplementary.
3More illustrations and distribution visualizations of real collected coded apertures are in supplementary.
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Table 1: PSNR(dB)/SSIM performance comparison. For different clients, we sample non-overlapping
masks from the same mask distribution to train the model and use unseen masks randomly sampled
from all clients for testing. We report mean±std among 100 trials for FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al., 2020), and FedGST (Wang et al., 2022).

Scene FedAvg FedProx SCAFFOLD FedGST FedHP (ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 31.98±0.19 0.8938±0.0025 31.85±0.21 0.8903±0.0028 31.78±0.24 0.8886±0.0025 32.02±0.14 0.8918±0.0018 32.31±0.19 0.9026±0.0020

2 30.49±0.21 0.8621±0.0041 29.85±0.22 0.8516±0.0037 29.81±0.19 0.8473±0.0031 30.13±0.20 0.8519±0.0038 30.78±0.19 0.8746±0.0034

3 31.78±0.23 0.9088±0.0019 30.80±0.23 0.8968±0.0017 30.92±0.17 0.8961±0.0014 31.19±0.22 0.8975±0.0015 31.62±0.25 0.9109±0.0018

4 39.39±0.23 0.9559±0.0018 39.41±0.22 0.9601±0.0013 39.32±0.20 0.9565±0.0011 38.98±0.27 0.9513±0.0020 39.78±0.29 0.9633±0.0017

5 28.70±0.16 0.8821±0.0044 28.14±0.16 0.8765±0.0036 28.08±0.14 0.8742±0.0032 28.53±0.16 0.8743±0.0041 28.92±0.17 0.8935±0.0039

6 30.53±0.30 0.9054±0.0025 30.04±0.23 0.9054±0.0024 29.87±0.21 0.9011±0.0019 30.29±0.21 0.8949±0.0022 30.77±0.22 0.9172±0.0019

7 30.01±0.20 0.8811±0.0027 29.60±0.20 0.8718±0.0026 29.63±0.19 0.8708±0.0027 29.89±0.18 0.8786±0.0024 30.44±0.19 0.8884±0.0024

8 28.60±0.31 0.8880±0.0023 27.93±0.20 0.8845±0.0018 27.74±0.31 0.8802±0.0018 28.35±0.19 0.8752±0.0016 28.56±0.32 0.8957±0.0021

9 31.45±0.15 0.9012±0.0019 31.29±0.15 0.8961±0.0019 31.22±0.14 0.8929±0.0014 30.80±0.12 0.8880±0.0021 31.34±0.13 0.9043±0.0023

10 29.04±0.13 0.8751±0.0022 28.48±0.15 0.8671±0.0035 28.59±0.13 0.8626±0.0028 28.51±0.13 0.8578±0.0024 29.12±0.13 0.8835±0.0021

Avg. 31.21±0.10 0.8959±0.0017 30.76±0.10 0.8900±0.0016 30.71±0.09 0.8872±0.0013 30.85±0.11 0.8858±0.0017 31.35±0.10 0.9033±0.0014
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Figure 3: Reconstruction results on simulation data. colorblueThe density curves compare the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.

block. Limited by the computational resource, we set the number of clients as 3 in main comparison.
We empirically find that collaborate such amount of clients can be problematic for popular federated
learning methods under the very challenging scenario of data heterogeneity (see Section 3.2). For FL
methods, we update all clients throughout the training, i.e., C ′ = C = 3. For the proposed method,
we pre-train the client backbones from scratch for 4 × 104 iterations on their local data. Notably,
the total training iterations of different methods are kept as 1.25× 105 for a fair comparison. The
batch is set as 12. We set the initial learning rate for both of the prompt network and adaptor as
αp = αb = 1× 10−4 with step schedulers, i.e., half annealing every 2×104 iterations. We train the
model with an Adam (Kingma & Ba, 2014) optimizer (β1 = 0.9, β2 = 0.999). We implement the
proposed method with PyTorch (Paszke et al., 2017) on an NVIDIA A100 GPU.

Compared Methods. We compare the proposed FedHP with mainstream federated learning methods,
including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), and SCAFFOLD (Karimireddy
et al., 2020). Besides, GST (Wang et al., 2022) paves the way for the robustness of the reconstruction
toward multiple hardware. Thereby, we integrate this method into the federated learning framework,
dubbed as FedGST. Notably, all the compared methods require to train and aggregate the client
backbones without a prompter or adaptor introduced. By comparison, FedHP updates and shares the
prompt network, outperforming the others with smaller amount of parameters being optimized and
communicated. We adopt PSNR and SSIM (Wang et al., 2004) for the quantitative evaluation.

3.2 PERFORMANCE

Simulation Results. We quantitatively compare different methods in Table 1 by considering the
data heterogeneity stems from hardware shaking. FedHP performs better than the classic federated
learning methods. By comparison, FedProx and SCAFFOLD only allows sub-optimal performance,
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Table 2: PSNR(dB)/SSIM performance comparison. Masks from each client are sampled from a
specific distribution for training. We randomly sample non-overlapping masks (unseen to training)
from all distributions for testing. We report mean±std among 100 trials for FedAvg, FedProx (Li et al.,
2020b), SCAFFOLD (Karimireddy et al., 2020), and FedGST (Wang et al., 2022).

Scene FedAvg FedProx SCAFFOLD FedGST FedHP (ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 29.15±0.09 0.8392±0.0065 23.01±0.11 0.5540±0.0069 22.99±0.13 0.5535±0.0066 29.46±0.65 0.8344±0.0067 30.37±0.70 0.8628±0.0084

2 28.28±0.10 0.8102±0.0052 20.91±0.08 0.4486±0.0052 20.89±0.09 0.4474±0.0055 27.89±0.36 0.7733±0.0068 28.67±0.38 0.8160±0.0072

3 28.42±0.11 0.8464±0.0083 17.57±0.11 0.4621±0.0082 17.58±0.12 0.4608±0.0083 28.45±0.50 0.8363±0.0073 29.81±0.68 0.8771±0.0066

4 36.93±0.27 0.9369±0.0036 23.08±0.25 0.4856±0.0036 23.00±0.30 0.4848±0.0038 36.12±0.50 0.9181±0.0050 37.37±0.53 0.9395±0.0032

5 25.84±0.07 0.8037±0.0069 18.99±0.07 0.4316±0.0082 18.99±0.06 0.4301±0.0065 26.21±0.52 0.7988±0.0081 27.47±0.73 0.8487±0.0011

6 27.28±0.04 0.8655±0.0041 19.10±0.04 0.4077±0.0041 19.10±0.04 0.4063±0.0042 27.52±0.49 0.8384±0.0048 28.31±0.45 0.8649±0.0050

7 26.81±0.09 0.8042±0.0094 20.15±0.09 0.4903±0.0093 20.14±0.09 0.4883±0.0098 26.88±0.57 0.7957±0.0073 28.29±0.81 0.8298±0.0108

8 25.77±0.05 0.8473±0.0030 19.89±0.07 0.4402±0.0031 19.89±0.06 0.4395±0.0039 26.22±0.44 0.8206±0.0029 26.54±0.45 0.8470±0.0054

9 28.30±0.09 0.8541±0.0074 18.33±0.11 0.4285±0.0071 18.30±0.11 0.4269±0.0078 27.74±0.48 0.8199±0.0073 29.36±0.63 0.8536±0.0054

10 26.04±0.12 0.8075±0.0035 20.06±0.12 0.3461±0.0036 20.03±0.13 0.3451±0.0036 25.72±0.22 0.7433±0.0046 26.78±0.26 0.8111±0.0076

Avg. 28.63±0.07 0.8496±0.0041 20.85±0.07 0.5405±0.0059 20.00±0.09 0.4374±0.0040 28.24±0.39 0.8177±0.0045 28.98±0.23 0.8481±0.0054

Measurement

RGB Reference FedAvg

FedHP

481.6nm

453.3 457.6 462.1 466.8 471.6 476.5 481.6 486.9 492.4 498.0 503.9 509.9...
516.2 522.7 529.5 536.5 543.8 551.4 558.6 567.5 575.3 584.3 594.4 604.2...
614.4 625.1 636.3 648.1

492.4nm 498.0nm 522.7nm 567.5nm 594.4nm 625.1nm

Figure 4: Visualization of reconstruction results on real data. Six representative wavelengths are
selected. We use the same unseen coded aperture for both FedAvg and FedHP.

which uncovers the limitations of rectifying the gradient directions in this challenging task. Besides,
FedGST works inferior than FedHP, since FedGST approximates the posterior and expects coded
apertures strictly follows the identical distribution, which can not be guaranteed in practice. In Fig. 3,
we visualize the reconstruction results with sampled wavelengths. FedHP not only enables a more
granular retrieval on unseen coded aperture, but also maintains a promising spectral consistency.

Challenging Scenario of Heterogeneity. We further consider a more challenging scenario of
manufacturing discrepancy, where the data heterogeneity is highly entangled to the large gap among
the coded aperture distributions. We compare different methods in Table 2. By observation, all
methods experience large performance degradation, among which FedProx and SCAFFOLD becomes
nearly ineffective. Intuitively, it is hard to concur the clients under the large distribution gap, while
directly adjusting the input data space better tackles the problem.

Real Results. In Fig. 4, we visually compare the FedAvg with FedHP on the real data. Specifically,
both methods are evaluated under an unseen hardware configuration, i.e., coded aperture from an
uncertain distribution. The proposed method introduces less distortions among different wavelengths.
Such an observation endorses FedHP a great potential in collaborating hardware systems practically.

3.3 MODEL DISCUSSION

We conduct model discussion in Table 3. Specifically, we accumulate the total cost (e.g., number of
parameters, GMACs, and training time) of all clients in a federated system.

Ablation Study. We firstly consider a scenario that trains three clients independently without FL
(FedHP w/o FL). For a fair comparison, each client pre-trains the backbone by using the same proce-
dure as FedHP and are then enhanced with a prompt network and adaptors for efficient fine-tuning.
By comparison, FedHP enables an obvious improvement (0.6dB) by implicitly sharing the hardware
and data. We then investigate the effectiveness of the prompter and adaptor to the reconstruction,
respectively. By observation, directly removing the adaptor leads to limited performance descent.
Using prompt network brings significant performance boost. The hardware prompter aligns the
input data distributions, potentially solving the heterogeneity rooted in the input data space. This is
determined by the fact that learning manifold is highly correlated with the coded apertures.

Discussion of the client number. In Table 4a, we discuss the power of FedHP with more real
clients under the scenario of Hardware shaking. The performance gap between FedHP and FedAvg
consistently remains with the client number increasing, which demonstrates the practicability of the
FedHP for the cross-silo spectral system cooperative learning, e.g., 3 ∼ 5 clients/institutions.
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Table 3: Ablation study and complexity analysis under the Hardware shaking. The PSNR (dB)/SSIM
are computed among 100 testing trials. We report the number of learnable parameters of different
methods and report the accumulative training time of all clients (e.g., C = 3).

Method Prompter Adaptor FL PSNR SSIM #Params (M) GMACs Training (days)
FedAvg ✗ ✗ ✓ 31.21±0.10 0.8959±0.0017 0.12 2.85 10.62
FedHP w/o FL ✓ ✓ ✗ 30.75±0.11 0.8890±0.0015 0.27 12.78 2.86
FedHP w/o Adaptor ✓ ✗ ✓ 31.09±0.10 0.8996±0.0017 0.15 11.01 2.68
FedHP w/o Prompter ✗ ✓ ✓ 19.19±0.01 0.2303±0.0008 0.12 2.87 2.54
FedHP (Full model) ✓ ✓ ✓ 31.35±0.10 0.9033±0.0014 0.27 12.78 2.86

Table 4: Model discussions of the proposed FedHP.
(a) #Client discussion. Averaged values are reported.
C FedAvg FedHP Performance gap
4 31.06 0.8955 31.33 0.9023 0.27 0.0068
5 31.05 0.9025 31.32 0.9029 0.27 0.0004

(b) Comparison with a deep Unfolding method.
Methods PSNR(dB) SSIM #Params (M)
GAP-Net 31.07±0.20 0.8895±0.0035 3.83
FedHP 31.35±0.10 0.9033±0.0014 0.27

Comparison with a deep unfolding method. We also compare the proposed FedHP with a repre-
sentative deep unfolding method of GAP-Net (Meng et al., 2023) as deep unfolding methods can be
adaptable to various hardware configurations. Specifically, we use three clients and keep training and
testing settings of GAP-Net the same as FedHP. As shown in Table 4b, FedHP improves by 0.28dB
with only 7% model size. In fact, despite the adaptability, deep unfolding still shows limitations in
solving hardware perturbation/replacement for a given system as discussed in Wang et al. (2022).

4 RELATED WORK

Hyperspectral Image Reconstruction. In hyperspectral image reconstruction (HSI), learning deep
reconstruction models (Cai et al., 2022a;b; Lin et al., 2022; Huang et al., 2021; Meng et al., 2020;
Hu et al., 2022; Miao et al., 2019) has been the forefront among recent efforts due to high-fidelity
reconstruction and high-efficiency. Among them, MST (Cai et al., 2022a) devises the first transformer
backbone by computing spectral attention. By observation, existing reconstruction learning strategies
mainly considers the compatibility toward a single hardware instance. The learned model can be
highly sensitive to the variation of hardware. To tackle this practical challenge, GST (Wang et al.,
2022) paves the way by proposing a variational Bayesian learning treatment.

Federated Learning. Federated learning (Kairouz et al., 2021; Li et al., 2020a; Wang et al., 2021)
collaborates client models without sharing the privacy-sensitive assets. However, FL learning suffers
from client drift across clients attributing to the data heterogeneity issue. One mainstream (Karim-
ireddy et al., 2020; Li et al., 2020b; Xu et al., 2021; Jhunjhunwala et al., 2023; Reddi et al., 2021)
mainly focus on regularizing the global/local gradients. As another direction, personalized FL meth-
ods (Collins et al., 2021; Chen & Chao, 2022; Fallah et al., 2020; T Dinh et al., 2020; Jiang & Lin,
2023) propose to fine-tune the global model for better adaptability on clients. However, customizing
the global model on client data sacrifices the underlying robustness upon data distribution shift (Wu
et al., 2022; Jiang & Lin, 2023), which contradicts with our goal of emphasizing the generality
across hardware and thus is not considered. In this work, we propose a federated learning framework
to solve the multi-hardware cooperative learning considering the data privacy and heterogeneity,
which to the best knowledge, is the first attempt of empowering spectral SCI with FL. Besides,
the principle underlying this method can be potentially extended to broad computational imaging
applications (Zheng et al., 2021; Liu et al., 2023a; Goudreault et al., 2023; Robidoux et al., 2021)

5 CONCLUSIONS

In this work, we observed an unexplored research scenario of multiple hardware cooperative learning
in spectral SCI, considering two practical challenges of data proprietary constraint and heterogeneity
stemming from the inconsistent hardware configurations. We developed Federated Hardware-Prompt
(FedHP) learning framework to solve the distribution shift across clients and empower the hardware-
software co-optimization. The proposed method serves as a first attempt of exploiting the power of
FL in spectral SCI. Besides, we collect a Snapshot Spectral Heterogeneous Dataset (SSHD) from
multiple real spectral SCI systems. Future works may theoretically derive the convergence of FedHP
and exploit the behavior of FedHP under a large number of clients (e.g., > 100). We hope this work
will inspire future works in this novel direction of hardware collaboration in SCI.
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