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ABSTRACT

Distribution shift in imitation learning refers to the problem that the agent cannot
plan proper actions for a state that has not been visited during the training. This
problem can be largely attributed to the inherently narrow state-action coverage
provided by expert demonstrations over the full environment. In this paper, we
propose a robust offline to adaptive online imitation learning framework that
handles the distribution shift problem in a lifelong, multi-phase scheme. In the
offline learning phase, we leverage supplementary demonstrations to broaden the
state-action coverage of the policy by utilizing a discriminator to effectively train the
policy with supplementary demonstrations, thereby enhancing the robustness of the
policy to distribution shift. In the subsequent online inference phase, our framework
detects the occurrence of distribution shift and conducts self-supervised imitation
learning from online experiences to adapt the policy to the online environments.
Through extensive evaluations in MuJoCo environments, we demonstrate that
our method exhibits better robustness to distribution shift and better adaptation
performance to online environments than the baseline algorithms, which indicates
superior performance of our framework against the distribution shift.

1 INTRODUCTION

Recently, a variety of learning-based approaches such as imitation learning (IL) and reinforcement
learning (RL) have achieved notable success in various robotics control tasks (Fu et al., 2024; Choi &
Seo, 2025). However, these methods suffer from the distribution shift problem (Yoon et al., 2024),
where the robot fails to act appropriately when encountering novel states during the online inference
phase that were not present in the offline training dataset. In general, the state-action coverage of
expert demonstrations spans only a narrow subset of the entire environment’s state-action space,
making IL especially vulnerable to distribution shift (Mehta et al., 2025; Panaganti et al., 2023). To
address this, several studies have been proposed that focus on mitigating distribution shift in the
offline training phase (Mehta et al., 2025; Ke et al., 2023), or in the online inference phase (Gong
et al., 2024; Ho & Ermon, 2016). However, both approaches still exhibit several limitations.

For the offline phase, previous research (Mehta et al., 2025; Laskey et al., 2017a; Ke et al., 2023)
aim to make the policy robust to distribution shift via dataset augmentation techniques. Laskey et
al. (Laskey et al., 2017a) proposed to collect expert demonstrations in which a human intentionally
encounters and recovers from various perturbation scenarios. However, this approach requires the
human expert to provide demonstrations across a wide range of situations and perturbations, which is
highly costly in practice. An alternative method (Ke et al., 2023) involves learning a world model
from expert demonstrations and then performing data augmentation by generating a virtual dataset
through rollouts of the learned model. This approach can expand the state-action coverage of the
offline dataset, however, its performance is vulnerable to the modeling error (Yu et al., 2020). For
the online phase, previous research (Gong et al., 2024; Ho & Ermon, 2016) focus on adapting the
policy to the online environment by leveraging the agent’s online experiences. Gong et al. (Gong
et al., 2024) propose a lifelong imitation learning framework for navigation control that includes
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self-supervised policy and distribution evaluation. However, their method does not explicitly address
the distribution shift problem, making it vulnerable when encountering out-of-distribution states.

In this paper, we propose a robust offline to adaptive online imitation learning (RAIL) framework to
address the aforementioned problems. During offline training, we utilize not only expert demonstra-
tions but also supplementary demonstrations. We define supplementary demonstrations as trajectories
collected from novices, suboptimal experts, or those automatically generated during agent training
in simulation. All such data are inherently of unknown optimality. A key requirement is that these
demonstrations can be acquired with minimal effort, in contrast to approaches that deliberately
attempt to cover unexplored regions of the state space. These supplementary demonstrations provide
high coverage of the full environment state space to the policy (Fig. 3).

To effectively leverage the supplementary demonstrations, we train the agent using a discriminator-
based weighted behavior cloning algorithm inspired by Xu et al. (2022); Li et al. (2023). We first
train a discriminator with the proposed regularization term that distinguishes between expert and
supplementary demonstrations that estimate the optimality of the training samples, and then utilize
it for behavior cloning. In the online phase, we build upon one important insight: from the agent’s
perspective, its online experience can also be regarded as suboptimal demonstrations. Based on this
insight, we adopt the same learning procedure as in the offline phase for online learning. The agent
computes a self-supervised learning signal from its online experience using the discriminator and
updates the policy with behavior cloning. Furthermore, as online learning at every timestep could
negatively impact policy generalization performance (Yoon et al., 2024), we conduct online learning
only when a distribution shift is detected. When the distribution shift happens, we conduct an online
update for both the discriminator and the policy from the online experience.

To evaluate RAIL framework, we design an experimental protocol that deploys the robot to the noise-
injected online environment (Ke et al., 2023) to induce distribution shift. We conduct experiments on
MuJoCo environments and demonstrate that our proposed method outperforms baseline algorithms
in both the offline and online phases. The contributions of our paper are summarized as follows:

1. We propose a robust offline to adaptive online imitation learning framework that comprehen-
sively addresses the distribution shift in a lifelong, multi-phase scheme.

2. We propose a regularization term for the discriminator that enables the discriminator to
estimate the optimality of input data samples more accurately.

3. We present an adaptive online learning method in which the agent computes self-supervision
signals from online experiences using the discriminator, and performs online learning only
when a distribution shift is detected for stable adaptation.

2 RELATED WORKS

2.1 IMITATION LEARNING AGAINST DISTRIBUTION SHIFT

There are several studies that handles the distribution shift problem by making the policy robust
to the distribution shift. Mehta et al. (Mehta et al., 2025) proposed to incorporate environment
dynamics into the training process to improve policy robustness against distribution shift, which
focus on the policy optimization procedure. The other way is to expand the dataset to encourage
the policy to visit a broader range of states during training. Specifically, expert demonstrations
can be collected by perturbing human operators and recording their recovery behavior, thereby
providing demonstrations that are inherently more robust to distribution shift (Laskey et al., 2017a;
Umut Ciftci et al., 2024). Another approach involves training a world model from the demonstrations
and generating model-based virtual rollouts to augment the offline dataset (Chang et al., 2021; Ke
et al., 2023). Nevertheless, these methods suffer from inherent drawbacks, such as the high cost of
acquiring expert demonstrations or vulnerability to modeling errors in the learned world models.

Moreover, it is nearly impossible to include or model the infinitely many variables that may arise
during the online phase within the offline dataset. In other words, distribution shift is inevitable
during online inference, highlighting the necessity of online learning to address it. One of the most
widely adopted approaches is RL (Schulman et al., 2015), which leverages various exploration
strategies (Yoon et al., 2020) to obtain self-supervision learning signals for online learning. However,
given that exploration is prohibited during inference due to operational stability or safety constraints,
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adapting the policy through RL is undesirable. Furthermore, RL is fundamentally ill-suited for
instant adaptation because the reward signals are often delayed, resulting in slow and unstable policy
updates (Zhu et al., 2022). Upon this problem, several RL-based online imitation learning (Ho &
Ermon, 2016; Yue et al., 2024) are also not desirable for the adaptation, although they can compute
a self-supervision signal with a discriminator. Another line of research explores lifelong behavior
cloning. Gong et al. (Gong et al., 2024) proposed computing a self-supervised behavior cloning
signal for online experiences by evaluating both the policy and the distribution. However, their
approach explicitly compares the online experience with the training dataset to measure novelty,
which struggles to distinguish between experiences arising from distribution shift. As a result, it often
fails to correctly adapt, primarily due to the difficulty in accurately computing the self-supervised
learning signal.

In this paper, we propose a lifelong scheme robust offline to adaptive online imitation learning frame-
work that addresses distribution shift by sequential mechanisms: first, by leveraging supplementary
demonstrations with a proposed discriminator function during the offline phase to improve robustness
to distribution shift; and second, by computing a self-supervised learning signal with the discriminator
and update the policy in a stable manner to solve distribution shift during the online inference phase.
In general, the target robot in which robotic intelligence performs inference are fixed. Thus, from
the perspective of robot intelligence, the most practically encountered form of distribution shift is
covariate shift. Accordingly, this work focuses on addressing this covariate shift.

2.2 LEVERAGING SUPPLEMENTARY DEMONSTRATIONS IN IMITATION LEARNING

There are previous studies that utilize supplementary demonstrations for offline imitation learning
based on the problem definition that obtaining expert demonstrations is costly (Wang et al., 2023;
Xu et al., 2022; Li et al., 2023). These studies train a discriminator that can distinguish between
expert demonstrations and supplementary demonstrations, and perform weighted behavior cloning
based on it (Xu et al., 2022). In particular, Li et al. (Li et al., 2023) applied importance weights when
training the discriminator to accurately assess the importance of each demonstration. It theoretically
proves that if the offline dataset covers the stationary state-action distribution of the expert policy by
leveraging population-level supplementary demonstrations, policy performance can be guaranteed.
Furthermore, in the context of online learning, Wang et al. (Wang et al., 2021a) and Liu et al.
(Liu et al., 2025) address the issue that expert demonstrations may contain sub-optimal behaviors.
Wang et al. (Wang et al., 2021a) introduces a method that addresses this by adjusting weights
accordingly, while Liu et al. (Liu et al., 2025) proposed a similar approach. The core idea behind
such methodologies lies in accurately estimating the level of expertise for each training sample by
effectively learning the discriminator. However, a common issue is that the discriminator often
fails to learn properly in the early stages of training or when the dataset is insufficient, leading to
unstable learning. To address this problem, we introduce a regularization term designed to stabilize
the discriminator’s learning and improve overall performance. A detailed analysis of this approach is
provided in Sec. 3.

3 WEIGHTED BEHAVIOR CLONING WITH DISCRIMINATOR

Behavior Cloning (BC) is one of the representative algorithms in imitation learning, known to enable
more stable and immediate training compared to adversarial imitation learning. The generalized
objective function of BC can be defined as eq. (1):

min
π

E
(s,a)∼DO

[−ω(s, a) log π(a|s)] (1)

where DO indicates the overall training dataset. This maximizes the log likelihood between the
policy’s chosen action and the ground truth at a given state, where the weight ω(s, a) is calculated
based on the optimality of the current state-action pair. For expert demonstration pairs, ω(s, a) is set
to 1, while for the worst demonstrations, it is set to 0. For intermediate optimality, ω(s, a) takes a
continuous value between 0 and 1. Thus, accurately measuring the optimality of demonstrations to
set ω(s, a) is critical when training policies with BC. This optimality can be assigned either manually
by humans or through discriminators. (Xu et al., 2022; Li et al., 2023) utilizes the discriminator to
estimate the optimality of the offline dataset, and we build our framework upon these methods.
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Figure 1: Discriminator evaluation loss for different sizes of expert demonstrations. The number
indicated in each subcaption corresponds to the number of expert demonstrations utilized in our
experiments while the number of supplementary demonstration is fixed to 1M. The x-axis of each
figure denotes the training timesteps of the discriminator, while the y-axis represents the evaluation
loss. Across all figures, especially in (a) - (c) that imbalance exists, it is evident that the proposed
discriminator exhibits more stable and faster convergence, and also better discriminating performance
compared to the baseline.

Discriminator is a strong tool to discriminate between the expert and supplementary demonstrations;
however, there are several challenges in practice. When expert and supplementary demonstrations
are severely imbalanced, owing to the relative ease of collecting supplementary data, the learned
discriminator is prone to developing a biased decision boundary. (Arjovsky & Bottou, 2017; Mao
et al., 2017). Moreover, with finite expert datasets, estimating the underlying density ratio suffers
from high variance, making importance-weighted policy learning unreliable (Sugiyama et al., 2007;
Thomas & Brunskill, 2016). In particular, (Li et al., 2023) assumed the population amount of the
offline dataset that covers the stationary state-action distribution of the expert, which is hard to satisfy
for most of the real tasks (Yue et al., 2024). This phenomenon is particularly pronounced during
the early stages of discriminator training (Kiryo et al., 2017; du Plessis et al., 2016). We conduct
empirical analysis about this problem, and the results are explained in Fig. 1. The core of our study
lies in identifying the limitations of discriminators commonly used in online imitation learning or
offline imitation learning that leverages supplementary demonstrations (Ho & Ermon, 2016; Yue
et al., 2024; Li et al., 2023), and to address these limitations, we propose an improved discriminator
objective by introducing a novel regularization term.

4 PROPOSED METHODS

4.1 METHOD SETTING AND OVERVIEW

We build our method on the fully observed Markov Decision Process (MDP) setting. MDP is
defined by the tuple M = (S,A, P,R, µ, γ), where S is the state space, A is the action space,
T : S × A → ∆(S) is the state transition dynamics, R is the reward function, µ is the initial state
distribution, and γ is the discount factor. All policies in this paper are designed to be stochastic, based
on Gaussian parameterizations as πθ(a | s) =

∏d
i=1 N (ai;µθ,i(s), σ

2
θ,i(s)) which is paramterized

by θ. To train the policy, we have two types of offline datasets. The first is expert demonstrations
DE = {(si,jE , ai,jE )}NE

i=1, collected from an expert policy, which enable the agent to imitate expert
behavior, where NE indicates the number of the trajectories in expert demonstration and i indicates
the index of the trajectory and j indicates the index of the sample. The second is supplementary
demonstrations DS = {(si,jS , ai,jS )}NS

i=1, collected from a policy with unknown optimality, used
to expand the state-action space coverage during offline training so that improve robustness to
distribution shift. NS indicates the number of the trajectories in the supplementary demonstration.
Using these demonstrations, we build our robust offline to adaptive online imitation learning (RAIL)
framework that consists of two phases: the offline training and the online inference phase.
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4.2 OFFLINE TRAINING PHASE: ROBUST IMITATION LEARNING

The main focus of the offline training phase is to effectively and stably train the policy using both
expert demonstrations and optimality-unknown supplementary demonstrations. To this end, we draw
inspiration from prior works (Xu et al., 2022; Li et al., 2023) and train a discriminator that can clearly
distinguish between DE and DS , i.e., determine the optimality of a given state-action pair provided
to the training policy. Specifically, we formulate our discriminator loss function based on vanilla
discriminator loss function as eq. (2) (Li et al., 2023).

Loff
disc = E(s,a)∼DE

[− log d(s, a)] + E(s,a)∼DS
[−

d̂Sh(s, a)

d̂Eh (s, a)
log(1− d(s, a))] (2)

Here, d̂Eh (s, a) denotes the empirical state-action distribution of expert demonstrations, and d̂Sh(s, a)
denotes that of supplementary demonstrations. It has been theoretically established that training
the discriminator using the objective in eq. (2) enables binary classification between expert and
supplementary demonstrations (Li et al., 2023; Ho & Ermon, 2016). Based on this, the discriminator

output d(s, a) and its optimal value d⋆(s, a) is computed as d(s, a) = d̂E
h (s,a)

d̂E
h (s,a)+d̂S

h(s,a)
, d⋆(s, a) =

dE
h (s,a)

dE
h (s,a)+dS

h(s,a)
, where the dEh (s, a) and dEh (s, a) are ground-truth of d̂Eh (s, a) and d̂Sh(s, a), respec-

tively, and when trained with population-level demonstrations, d(s, a) can closely approximate the
ground-truth value d⋆(s, a) (Li et al., 2023). Using this optimized discriminator output, the behavior
cloning (BC) weight is derived as ω(s, a) = d⋆(s,a)

1−d⋆(s,a) (Li et al., 2023). While these findings are
well-organized and have demonstrated strong performance, as analyzed in Sec. 3, the discriminator
suffers from unstable training in the early stages, particularly depending on the distribution and
quantity of the demonstrations.

To handle these limitations, we propose a regularization term that helps the stable and accurate learning
of the discriminator. Our method aims to assist or guide the discriminator training by encouraging it
to better approximate the empirical state-action distributions d̂Eh (s, a) from DE and d̂Sh(s, a) from

DS . Specifically, d̂Eh (s, a) corresponds to the empirical probability that a training sample (s, a)

originates from DE , while d̂Sh(s, a) denotes the corresponding probability for DS . These quantities
are obtained by directly analyzing the empirical statistics of each dataset, yielding the approximations
d̂Eh (s, a) ≈ pE(s, a), d̂Sh(s, a) ≈ pS(s, a), where pE(s, a) and pS(s, a) represent the estimated
inclusion probabilities of (s, a) in DE and DS , respectively. Based on this formulation, we define the

target discriminator output as d(s, a) = d̂E
h (s,a)

d̂E
h (s,a)+d̂S

h(s,a)
≈ pE(s,a)

pE(s,a)+pS(s,a) , which reflects the relative

likelihood that a given state-action pair originates from the expert or not. Therefore, by treating this
relative ratio as a form of ground truth for training, the discriminator can be learned more stably
compared to relying solely on binary discrimination. To this end, we formulate a regularization term
Lreg that guides the discriminator to this target structure, as in eq. (3).

Lreg = E(s,a)∼DO
[||d(s, a)− pE(s, a)

pE(s, a) + pS(s, a)
||22] (3)

Next, we focus on computing pS(s, a) and pE(s, a). By Bayes’s rule (Murphy, 2022), these can
be decomposed as pE(s, a) = pE(a|s)pE(s) and pS(s, a) = pS(a|s)pS(s), respectively. Here,
pE(a|s) is approximated by the action likelihood from an expert policy π̃E(·|s) trained solely on DE

and pS(a|s) is approximated by the action likelihood from a supplementary policy π̃S(·|s) trained
solely on DS , i.e, p(·)(a|s) = π̃(·)(a|s) = exp(− 1

2

∑d
i=1(log(2πσ

2
i (s)) +

(ai−µi(s))
2

σ2
i (s)

)), where
p(·) could be pE or pS with parameters for each policy. Next, we estimate pE(s) by clustering
the states from DE , and similarly pS(s) clustering the states from DS . We utilize the Gaussian
Mixture Model (GMM) approach for clustering. After fitting a GMM for each demonstration
dataset, pGMM

E (s) for DE and pGMM
S (s) for DS , we compute the probabilities that the training

state sample is included in the fitted model, i.e., pGMM
(·) (s) =

∑K
k=1

πk

(2π)d/2|Σk|1/2
exp(− 1

2 (s −

5
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Algorithm 1: RAIL Framework
Given: Expert demonstrations DE , Supplementary demonstrations DS .
Train expert policy π̃E and supplementary policy π̃S .
Estimate gaussian mixture model (GMM) of state s : pGMM

E (s) of DE and pGMM
S (s) of DS .

Train discriminator ϕ with Loff
final.

Train π by weighted behavior cloning with eq. (1).
while online inference do

if distribution shift happens then
Collect online experience dataset DX .
Update ϕ with eq. (4).
Update π with eq. (1).

µk)
⊤Σ−1

k (s − µk)) where pGMM
(·) (s) could be pGMM

E (s) or pGMM
S (s) with parameters for each

fitted model. In summary, our approximated probabilities pE(s, a) and pS(s, a) could be estimated
as pE(s, a) = π̃E(a|s)pGMM

E (s) and pS(s, a) = π̃S(a|s)pGMM
S (s).

At last, by integrating Lreg into the discriminator objective Loff
disc, we stabilize the training process and

improve the discriminator’s ability to distinguish between expert and supplementary samples, leading
to more accurate behavior cloning weight estimation. The final form of our proposed discrimination
loss function is Loff

final = Loff
disc + λLreg, where λ is the hyperparameter and it decreases as the training

proceeds. Since our regularization term employs approximated values, it tends to be particularly
beneficial in the initial training phase. At last, based on the output d⋆(s, a) from the optimized
discriminator, we formulate the behavior cloning weight ω(s, a) = d⋆(s,a)

1−d⋆(s,a) , and perform weighted
behavior cloning with eq. (1). A detailed theoretical analysis showing that Loff

final enables stable
learning is provided in Appendix B.1.

4.3 ONLINE INFERENCE PHASE: ADAPTATION VIA SELF-SUPERVISED IMITATION LEARNING

In the online phase, our core idea is that we solve the distribution shift problem via adaptation to
the environment with self-supervised online learning from experience. However, indiscriminately
learning from all online experiences is undesirable, as it can degrade the general policy performance
(Laroche et al., 2019; Kemker et al., 2018) and also incur significant computational overhead.
Therefore, we design a metric to quantify the degree of distribution shift and conduct online learning
only when a distribution shift is detected. Based on the definition of distribution shift which comes
from unvisited state during offline training, we define the distribution shift detection function as
κ(s) = pE(s)+pS(s)

2 where κ(s) represents the average likelihood that a given state s belongs to De

or Ds. Instead of using the Mahalanobis distance, which is suitable for low-dimensional data, our
method employs a likelihood-based estimation method that can more effectively measure distribution
shift in high-dimensional robotics data (Nayal et al., 2024; Mueller & Hein, 2025). If κ(s) falls below
a predefined threshold κTH , we interpret this as an indication of distribution shift, with the severity
quantified by κ(s).

We do not immediately initiate online learning just because a single-step distribution shift is detected.
While we expect the learning-based policy to handle distribution shift through its generalization
capability, we also set that if distribution shift persists beyond a certain number of timesteps (Nds), the
generalization capability of the policy has failed. In such cases, we conduct online learning. We call
this as method update time management (UTM). Once a distribution shift is detected, online learning
is conducted using the accumulated data DX collected during the distribution shift occurrence.

At last, we describe our policy update strategy for online adaptation. When a distribution shift is
detected, we perform online learning using the tuples (s, a) consisting of the encountered states and
the actions taken by the policy at those states. From the perspective of the policy, these tuples can be
regarded as supplementary demonstrations, therefore, we adopt the same training strategy as in the
offline phase. However, we incorporate the degree of distribution shift into the learning process via
the κ(s) value for adaptive learning. A high κ(s) indicates that the corresponding state was likely
visited in the offline phase, meaning that it is appropriate to sufficiently affect the discriminator that

6
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Table 1: Result of offline training evaluation. The values in the table represent the D4RL scores
obtained by performing inference with the policies trained offline by each method in an online
environment with injected random Gaussian noise. Each score is averaged over 10 runs.

Env Noise BC Stable BC CCIL RAIL (Ours)

Hopper

σ = 0 94.96 (± 0.1) 94.63 (± 0.1) 94.53 (± 0.1) 94.48 (± 0.1)
σ = 0.05 61.51 (± 0.3) 82.45 (± 0.2) 85.36 (± 0.2) 85.30 (± 0.3)
σ = 0.1 35.97 (± 0.5) 61.45 (± 0.6) 73.07 (± 0.6) 77.06 (± 0.5)
σ = 0.2 10.45 (± 1.5) 47.03 (± 1.2) 53.73 (± 1.6) 62.19 (± 1.3)

Halfcheetah

σ = 0 92.43 (± 0.1) 93.30 (± 0.1) 93.47 (± 0.1) 93.28 (± 0.1)
σ = 0.05 48.96 (± 0.2) 74.05 (± 0.3) 84.13 (± 0.2) 89.27 (± 0.3)
σ = 0.1 24.91 (± 0.3) 61.02 (± 0.5) 70.05 (± 0.6) 74.07 (± 0.6)
σ = 0.2 5.99 (± 1.5) 19.48 (± 1.7) 42.39 (± 1.3) 49.57 (± 1.9)

Walker2d

σ = 0 109.27 (± 0.1) 108.40 (± 0.1) 108.78 (± 0.1) 108.77 (± 0.1)
σ = 0.05 65.77 (± 0.3) 73.49 (± 0.3) 68.06 (± 0.3) 86.19 (± 0.3)
σ = 0.1 21.23 (± 0.5) 51.84 (± 0.5) 54.84 (± 0.6) 69.57 (± 0.5)
σ = 0.2 1.30 (± 1.1) 24.36 (± 1.7) 22.65 (± 1.1) 48.60 (± 1.3)

Ant

σ = 0 92.86 (± 0.1) 91.79 (± 0.1) 93.80 (± 0.1) 92.57 (± 0.1)
σ = 0.05 39.19 (± 0.2) 52.45 (± 0.3) 59.28 (± 0.2) 68.20 (± 0.2)
σ = 0.1 21.81 (± 0.2) 25.56 (± 0.4) 29.78 (± 0.5) 48.68 (± 0.6)
σ = 0.2 5.63 (± 1.3) 18.77 (± 1.1) 21.81 (± 1.0) 38.68 (± 1.0)

was trained during the offline phase and also allow it to influence the policy (Wang et al., 2021b;a).
Conversely, a low κ(s) implies a state far from the offline dataset, and thus the update should be more
conservative. Based on this reasoning, the discriminator objective used during the online phase is
given by eq.(4).

Lon
disc = E(s,a)∼DE

[− log d(s, a)] + E(s,a)∼DX
[−κ(s) log(1− d(s, a))] (4)

After updating the discriminator with Lon
disc, we perform weighted behavior cloning using the discrimi-

nator output d(s, a). This approach extends behavior cloning, which was previously limited to offline
imitation learning, to online imitation learning with the assistance of a discriminator. Through this
method, we propose a robust offline to adaptive online imitation learning framework that can com-
prehensively handle the distribution shift problem during both offline training and online inference
phases. The algorithm for the RAIL framework is described in Algorithm 1.

5 EXPERIMENTS

5.1 SETUP

Our research is similar to multi-task imitation learning (Zhang et al., 2023) and transfer learning
(Cauderan et al., 2023) in that it continuously learns from new environments or task data. However,
while these studies assume the existence of ground truth expert demonstrations for new tasks, we
assume the absence of ground truth expert demonstrations for the online environment. Therefore,
we conduct offline learning with an offline dataset and design an evaluation protocol by setting an
online environment where a distribution shift occurs. We conduct the evaluation in four environments
from MuJoCo (Hopper, Halfcheetah, Walker2d, and Ant). Expert demonstrations are constructed
from the D4RL dataset (Fu et al., 2021), and supplementary demonstrations are constructed by
mixing all miscellaneous demonstrations (random, medium-replay, medium, medium-expert) from
the D4RL dataset. Moreover, for a unified description about the experiment results, we converted
episode returns to D4RL score instead of using the raw episode returns. During online inference,
random Gaussian noise is added to the state to evoke distribution shift (Laskey et al., 2017b; Mehta
et al., 2025). The intensity of the noise is controlled by adjusting the covariance of the Gaussian
noise ϵ ∼ N (0, σ2). The noise intensity is set at four levels: σ = 0, 0.05, 0.1, 0.2. When σ = 0, it
corresponds to the raw environment without noise, and as the value increases, the intensity of the
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Figure 2: Evaluation for online learning performance.

noise becomes stronger. For online phase, we set κTH to 0.4 and Nds to 20. We set these values as a
hyperparameter and figured them out with a grid-search approach (see Appendix D.2 for details). We
conduct policy training using NVIDIA RTX 3090 GPU. Through experiments, we mainly focus on
answering the following questions:

• Question 1 (Offline): Does leveraging supplementary demonstrations with the proposed
discriminator function make the policy robust to the distribution shift?

• Question 2 (Online): Does self-supervised online learning make the policy adapt to the
current environment and solve the distribution shift?

5.2 RESULTS AND DISCUSSIONS

Answer for Question 1. For the offline phase evaluation to answer question 1, we adopt BC, Stable
BC (Mehta et al., 2025), and Model-based BC (Ke et al., 2023) as baselines. Based on the result in
Table 1, we can confirm that RAIL consistently achieves the highest single-episode return. When
noise σ is 0, the environment is identical to the offline demonstration environment, and thus all
methods show similar high performance. However, as σ increases, it becomes evident that data
augmentation-based BC algorithms, Model-based BC and RAIL, are more effective than Stable BC,
which focuses solely on policy optimization. Based on these results, we observe that while stabilizing
policy learning is important, enhancing state coverage proves to be a more effective approach for
achieving robustness to distribution shift. Among the data augmentation-based methods, the offline
framework of RAIL demonstrates superior performance, verifying that leveraging real supplementary
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demonstrations with our discriminator is more effective for learning a robust policy than relying on
model-based virtual demonstrations. Based on these results, we can answer Q1 with a "yes."

Answer for Question 2. Next, for the online phase evaluation to answer question 2, we adopt BC,
Beyond Imitation (BI) (Gong et al., 2024), and GAIL (Ho & Ermon, 2016) as baselines. To ensure
a fair comparison, we initialized each algorithm’s policy and, where applicable (i.e., GAIL and
RAIL), the discriminator using the models trained during the offline phase with RAIL. Fig. 2 shows
that RAIL exhibits the most significant performance improvement than other algorithms. In online
phase, BC always treats online experience as expert supervision, leaving no mechanism to mitigate
the compounding errors triggered by a incorrect action under distribution shift. Consequently, its
performance degrades substantially. Although BI attempts to estimate self-supervision from online
experience, it fundamentally assumes that the agent alone can obtain a meaningful self-supervised
learning signal during the inference phase, making it vulnerable to distribution shift. In contrast,
methods such as GAIL and RAIL, which compute self-supervised learning signals from online
experience via the discriminator, exhibit performance improvement during online learning. This
implies that they successfully address the distribution shift through adaptation from online learning.
Moreover, better performance of RAIL against GAIL implies that a clear optimality estimation
procedure for online experience is necessary through our regularization term. Besides, we also
evaluated an ablated model, RAIL-UTM, which removes the UTM technique from RAIL and
performs online learning on all online experiences without distribution shift detection. Although
RAIL-UTM outperforms GAIL, it is inferior to RAIL in the overall performance. Moreover, RAIL not
only outperforms RAIL-UTM, but also achieves approximately 54% reduction in training time. This
result highlights the importance of the UTM technique in achieving efficient and stable adaptation.

Additionally, we further analyze GAIL and RAIL in terms of learning stability, which was introduced
in Sec. 2.1. Although both methods compute self-supervised learning signals from online experience
via the discriminator, GAIL updates the policy using TRPO (Schulman et al., 2015), whereas
RAIL updates the policy using weighted BC. Fig. 2 demonstrates that weighted BC enables more
stable policy learning during online adaptation compared to RL. More detailed experimental results
are provided in Appendix C.4. Overall, RAIL consistently outperforms GAIL in terms of final
performance and also guarantees more stable learning and adaptation. These results confirm that
RAIL is more suitable than GAIL for achieving stable performance improvement during inference-
time adaptation. Thus, we can answer Q2 with a "yes."

We further investigated the impact of supplementary demonstration coverage, with results presented
in Appendix C.2. The results show that broader coverage—even from low-optimality data such
as random policies—consistently outperforms using only suboptimal demonstrations with near-
expert quality. This confirms that coverage, alongside optimality, is critical for policy learning and
substantiates the soundness of our approach.

Summary. Through these extensive evaluations, we verify the effectiveness of our RAIL framework,
a unified offline to online lifelong imitation learning framework. The results ensure that with training
and deploying the robot with the RAIL framework, the robot policy becomes robust to distribution
shift during the offline phase (to prevent distribution shift) and adapts to the online environment
during the online phase (to solve distribution shift).

6 CONCLUSION

We propose RAIL framework that solves the distribution shift problem of imitation learning-based
policy for both offline and online phase in a lifelong scheme. The key idea of our approach is to
leverage supplementary demonstrations to expand the coverage of visited states during offline training.
To efficiently leverage the supplementary demonstrations, we train a discriminator with regularization
that estimates the optimality of training samples based on approximated probability density functions
derived from expert and supplementary demonstrations. This discriminator is then used to compute
BC weights, which are applied to both offline and online learning phases, enabling seamless lifelong
policy training. Furthermore, by triggering online learning only when a clear distribution shift is
detected, our method ensures more stable policy updates. Extensive experiments in the Mujoco
environment validate the effectiveness of the RAIL framework.
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REPRODUCIBILITY STATEMENT

We made extensive efforts to enhance the reproducibility of this work. The overall algorithm is
summarized in Algorithm 1, and the proofs required for the method are provided in Appendix B.2. In
addition, details regarding the model architecture and hyperparameters are described in Appendix D.1.
Furthermore, by explicitly incorporating various details throughout the main text, we strived to
maximize the reproducibility of our study.
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A MOTIVATION OF LEVERAGING SUPPLEMENTARY DEMONSTRATIONS
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Figure 3: t-SNE plot of the state of the expert and supplementary demonstrations of the Mujoco
environment. We observe a clear discrepancy between the state distributions of expert demonstrations
and supplementary demonstrations.

As shown in Fig. 3, the supplementary demonstrations and expert demonstrations cover distinct
regions of the dataset. This indicates that many state–action pairs that are absent in the expert demon-
strations are abundantly present in the supplementary demonstrations. Leveraging this observation,
we devised a method to proactively mitigate distribution shift.

B THEORETICAL ANALYSIS

B.1 POSTERIOR-REGULARIZED DISCRIMINATOR UNDER EXPERT-SUPPLEMENTARY
IMBALANCE

In this subsection, we provide a theoretical analysis showing that the proposed regularized discrimi-
nator effectively mitigates the biased decision boundary caused by the imbalance between expert and
supplementary demonstrations, thereby enabling stable convergence toward the optimal value d⋆.
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Bayes-optimal discriminator and unbiased decision boundary. Let pE(s, a) and pS(s, a) denote
the true state–action densities of the expert and supplementary demonstrations, respectively. We
consider the binary classification problem of predicting whether a given (s, a) originates from pE or
pS . Assuming equal class priors, the Bayes-optimal posterior is

η⋆(s, a) := P(y = 1 | s, a) = pE(s, a)

pE(s, a) + pS(s, a)
. (5)

The corresponding decision boundary is

B⋆ :=
{
(s, a)

∣∣ η⋆(s, a) = 1
2

}
= {(s, a) | pE(s, a) = pS(s, a)} . (6)

Any discriminator d(s, a) ∈ (0, 1) that aims to correctly separate the expert and supplementary
regions should satisfy d(s, a) ≈ η⋆(s, a), in which case its induced boundary Bd := {(s, a) |
d(s, a) = 1

2} approximates B⋆.

Effect of class imbalance on the standard adversarial loss. In practice, the discriminator is
trained on empirical distributions qE and qS induced by the finite datasets DE and DS . When
|DS | ≫ |DE |, their empirical class priors are highly imbalanced, which we express as

qE(s, a) = αEpE(s, a), qS(s, a) = αSpS(s, a), αS ≫ αE > 0. (7)

The standard discriminator objective is

Lstd(d) = E(s,a)∼qE [− log d(s, a)] + E(s,a)∼qS [− log(1− d(s, a))] . (8)

Pointwise minimization yields the unique optimal discriminator

d⋆std(s, a) =
αEpE(s, a)

αEpE(s, a) + αSpS(s, a)
=

pE(s, a)

pE(s, a) + β pS(s, a)
, β := αS/αE ≫ 1. (9)

Its decision boundary is
Bstd =

{
(s, a) | pE(s, a) = β pS(s, a)

}
, (10)

which is shifted away from B⋆ by the imbalance factor β. Thus, the standard adversarial training
objective induces a biased decision boundary whenever αS ̸= αE .

Posterior-regularized discriminator. To correct this imbalance-induced distortion, we introduce
the regularized objective

Lreg(d) = E(s,a)∼qE [− log d(s, a)] + E(s,a)∼qS [− log(1− d(s, a))]

+ λE(s,a)∼qmix

[
(d(s, a)− η⋆(s, a))2

]
,

(11)

where qmix is any mixing distribution over DE ∪DS and we notate pE(s,a)
pE(s,a)+pS(s,a) as η⋆(s, a) for

readilibty. The added term explicitly penalizes the squared deviation between the discriminator output
and the Bayes-optimal posterior.

For a fixed (s, a), the local objective is

ℓreg(d; s, a) = −αEpE(s, a) log d− αSpS(s, a) log(1− d) + λγ(s, a)(d− η⋆(s, a))2, (12)

where γ(s, a) := qmix(s, a). The optimal discriminator d⋆(s, a) satisfies the stationarity condition

−αEpE(s, a)

d⋆
+

αSpS(s, a)

1− d⋆
+ 2λγ(s, a)(d⋆ − η⋆(s, a)) = 0. (13)

Two limiting regimes follow immediately:

• Limit λ → 0. Equation equation 13 reduces to the standard case, giving

d⋆(s, a) = d⋆std(s, a) =
pE(s, a)

pE(s, a) + βpS(s, a)
.

• Limit λ → ∞. The quadratic penalty dominates, forcing

d⋆(s, a) → η⋆(s, a) =
pE(s, a)

pE(s, a) + pS(s, a)
.

Hence, the induced boundary Breg converges to the unbiased boundary B⋆.
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For finite λ > 0, the minimizer of equation 13 lies between the imbalance-distorted optimum d⋆imb
and the Bayes posterior η⋆. Locally approximating the cross-entropy term by a quadratic around
d⋆imb(s, a) gives

d⋆(s, a) ≈ wCE(s, a) d
⋆
imb(s, a) + wR(s, a) η

⋆(s, a)

wCE(s, a) + wR(s, a)
, (14)

for positive weights wCE and wR depending on αE , αS , λ, γ(s, a). Thus, posterior regularization
systematically pulls d⋆ toward the unbiased Bayes posterior, reducing the boundary distortion.

Practical implementation via density approximation (Main proposed method). In practice, the
true densities pE and pS are unknown, so the Bayes posterior η⋆ cannot be computed exactly. Instead,
we estimate the densities using a Gaussian Mixture Model (GMM) combined with a neural network
encoder, obtaining consistent approximations p̂E , p̂S and the corresponding posterior

η̂(s, a) :=
p̂E(s, a)

p̂E(s, a) + p̂S(s, a)
.

Replacing η⋆ with η̂ in equation 11 yields the empirical regularized objective. Under standard
assumptions (e.g., pointwise consistency of density estimators), η̂(s, a)→η⋆(s, a), implying

d⋆(s, a)
λ→∞−−−−→ η̂(s, a)

consistency−−−−−−→ η⋆(s, a).

Therefore, the proposed regularizer recovers the Bayes-optimal discriminator in the limit while
providing a robust finite-sample correction that mitigates the biased decision boundary induced by
expert–supplementary demonstrations imbalance.

B.2 IS THE APPROXIMATE PDF REALLY THE JOINT PDF?

Without loss of generality, we focus our exposition on the expert demonstrations. Let DE =
{(si, ai)}Ni=1 denote the dataset collected from expert behavior, where each tuple (si, ai) represents
a state-action pair. Our objective is to estimate the likelihood that a training dataset (s, a) originates
from the expert-induced distribution. To facilitate this, we consider an approximation of the joint
probability distribution as follows:

pE(s, a) = pE(a|s) · pE(s) ≈ πE(a|s) · pE(s) (15)

where:

• πE(a|s) is the expert policy, trained from expert demonstrations DE , representing the
likelihood of action a of the expert for a given state s,

• pE(s) is the marginal state distribution estimated from DE , e.g., via Gaussian Mixture
Model in this paper.

VALIDITY AS A JOINT PROBABILITY DENSITY FUNCTION

We verify that our approximated probability density function pE(s, a) = πE(a|s) · pE(s) satisfies
the requirements of a valid joint probability density function.

1. Non-negativity By the definitions of conditional and marginal probability densities,

πE(a|s) ≥ 0, pE(s) ≥ 0 ⇒ pE(s, a) ≥ 0 ∀(s, a)

2. Normalization We must show that the integral over the full space equals 1:∫
S

∫
A
pE(s, a) da ds =

∫
S

[
pE(s)

∫
A
πE(a|s) da

]
ds (16)

=

∫
S
pE(s) · 1 ds =

∫
S
pE(s) ds = 1 (17)

Thus, pE(s, a) is a properly normalized joint probability density function.

14
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B.3 DIFFERENCE FROM GAIL

The online learning procedure of the RAIL framework closely resembles that of GAIL, wherein a
discriminator is trained and its output is subsequently utilized to update the policy. However, several
critical distinctions differentiate RAIL from GAIL, as outlined below:

1. Unlike GAIL, RAIL introduces an additional regularization term to the discriminator objec-
tive function (eq. (3)).

2. GAIL employs TRPO (Schulman et al., 2015) to update the policy using the discriminator
output, whereas RAIL adopts a weighted BC approach for policy updates that enables the
online agent to stably adapt to the online environment.

3. In GAIL, action sampling is guided by online exploration to discover improved actions
(Ablett et al., 2023). In contrast, RAIL forgoes exploration and instead relies solely on the
self-supervised learning signal derived from the current action.

4. In summary, the differences between RAIL and GAIL are not limited to the discriminator
training process; they also reflect differing algorithmic suitability depending on the task
setting. GAIL is better aligned with scenarios that benefit from online exploration, whereas
RAIL is more suitable for settings requiring online adaptation.

C EXPERIMENTAL DETAILS

C.1 D4RL DATASET

In this paper, we utilized D4RL dataset (Fu et al., 2021) (https://github.com/Farama-
Foundation/D4RL) for constructing expert and supplementary demonstrations . Moreover, in order to
ensure consistent and comparable evaluation across different environments, we report performance
using the standardized D4RL score metric in the overall evaluation. The D4RL score is computed as

D4RL Score = 100×
Ragent −Rrandom

Rexpert −Rrandom
(18)

where Ragent denotes the average return obtained by the evaluated policy, Rexpert is the average return
of a reference expert policy, and Rrandom is the average return of a random policy defined by the D4RL
datasets. This normalization ensures that a score of 0 corresponds to the performance of a random
policy, while a score of 100 reflects expert-level performance. The resulting metric enables direct
comparison of policy effectiveness across different tasks and datasets.

C.2 IMPACT OF SUPPLEMENTARY DEMONSTRATION COVERAGE

Our ablation results of RAIL in Table 2 and Table 3 suggest that the coverage of supplementary
demonstrations plays a critical role in determining the success and robustness of adaptation, partic-
ularly under increasing noise levels. When the coverage is insufficient, the proposed method may
not function as intended, highlighting a potential limitation. Nevertheless, we emphasize that the
type of supplementary demonstrations employed in our framework can be obtained with minimal
effort. Such data can be automatically collected during agent training in simulation, or acquired
from humans, including novice users, who are relatively easy to recruit. Hence, we consider the
assumption of readily available supplementary demonstrations to be reasonable, and we formulated
our method accordingly. (ME: Medium-expert, M: Medium, MR: Medium-replay, R: Random)

Table 2: D4RL score with noise level 0.05.

Supplementary demo type Hopper Halfcheetah Walker2d Ant

ME 79.52 (± 0.7) 85.33 (± 0.7) 78.74 (± 1.2) 61.15 (± 0.3)
ME + M 82.99 (± 0.8) 86.19 (± 0.6) 81.52 (± 0.8) 64.08 (± 0.7)

ME + M + MR 84.30 (± 1.2) 88.97 (± 0.6) 84.97 (± 1.8) 66.17 (± 0.3)
ME + M + MR + R 85.30 (± 0.3) 89.27 (± 0.3) 86.19 (± 0.3) 68.20 (± 0.2)
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Table 3: D4RL score with noise level 0.2.

Supplementary demo type Hopper Halfcheetah Walker2d Ant

ME 12.62 (± 1.2) 5.86 (± 1.2) 11.32 (± 1.2) 3.32 (± 0.9)
ME + M 44.86 (± 1.4) 27.77 (± 1.0) 34.98 (± 1.0) 11.28 (± 1.1)

ME + M + MR 55.47 (± 1.4) 33.62 (± 1.0) 41.01 (± 0.8) 22.22 (± 1.4)
ME + M + MR + R 62.19 (± 1.3) 49.57 (± 1.9) 48.60 (± 1.3) 38.68 (± 1.0)

C.3 EFFECTIVENESS OF REGULARIZED DISCRIMINATOR

We additionally evaluated that our regularization term is helpful for discriminator training and finally
guarantees better performance. For this purpose, we add our regularization term to the discriminator
loss function of ISWBC (Li et al., 2023), which we got inspired by for our study. Unlike the original
experiment protocol in (Li et al., 2023), we leverages 10k expert demonstrations for the realistic
setting, which is hard to acquire expert demonstrations. The result is plotted in Table 4, and there is
no injected noise in the online environments. That is, this experiment is purely designed to evaluate
the performance of the discriminator and how effectively it contributes to improving policy learning.
From the results that applying the regularization term actually increases the final performance, we
demonstrate that our discriminator function is helpful for leveraging supplementary demonstrations.

Table 4: Better performance of policy with discriminator regularization.

Algorithms Hopper Halfcheetah Walker2d Ant

ISWBC (Li et al., 2023) 82.45 (± 1.2) 81.76 (± 1.0) 73.93 (± 1.0) 66.76 (± 1.1)

RAIL (Ours) 88.03 (± 1.2) 84.92 (± 0.9) 78.36 (± 1.2) 71.37 (± 1.2)

C.4 LEARNING STABILITY OF RL AND IL IN ONLINE PHASE

To more specifically analyze the learning stability of RL(GAIL) and IL(RAIL), which is discussed
in Sec. 2.1, we conduct an evaluation that focuses on online learning stability. To estimate learning
stability, we applied an exponential moving average to the reward curve and then computed the L1
loss between the original return and the smoothed return for each episode, and averaged these values
over all episodes. RAIL generally demonstrates superior results to those of GAIL, as in Table 5.

Table 5: Learning stability of GAIL and RAIL with σ = 0.2.

Algorithm Hopper Halfcheetah Walker2d Ant

GAIL (Ho & Ermon, 2016) 6.4 (± 0.3) 9.2 (± 0.1) 7.1 (± 0.3) 10.1 (± 0.2)
RAIL 3.5 (± 0.2) 5.4 (± 0.1) 4.9 (± 0.3) 14.8 (± 0.2)

D IMPLEMENTATION DETAILS

D.1 HYPERPARAMETERS

We first describe the network architecture and then the hyperparameters we used. First,
for the network architecture, we build our network based on DWBC (Xu et al., 2022)
(https://github.com/ryanxhr/DWBC) and ISWBC (Li et al., 2023) (https://github.com/liziniu/ISWBC).
For the policy, we compose five hidden multilayer perceptron (MLP) layers with a size of 256× 256.
On top of this, we completed the full network architecture of the policy by incorporating an input
layer and an output layer, aligned with the dimensionalities of the state and action spaces, respectively.
Next, for the discriminator, we construct the discriminator network with three hidden MLP layers
with a size of 256× 256. The input to the network was designed to accept both the state and action
simultaneously, while the output was a single float value in the range [0, 1]. To enhance training
stability, the output was clipped to lie within the range [0.01, 0.99]. Related hyperparameters for
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training discriminator and policy are stated in Table 6 and Table 7, respectively. t in the BC weight λ
in Table 7 indicates training timesteps.

Table 6: Hyperparameters used for discriminator.

Hyperparameter Value

Learning rate 5× 10−4

Batch size 64
Optimizer Adam

Table 7: Hyperparameters used for policy.

Hyperparameter Value

Learning rate 5× 10−4

Batch size 64
Optimizer Adam

Regularizer weight λ λ =

{
1, if t ≤ 10000

1
1+log(t−9999) , if t > 10000

Nds 20

D.2 PERFORMANCE SENSITIVITY TO κTH

(a) Hopper (b) Halfcheetah (c) Walker2d (d) Ant

Figure 4: Performance variation with respect to κTH .

We determined the optimal value of κTH empirically through a grid-search procedure. Since the
formulation of κTH constrains it to lie within the interval [0, 1], we evaluated performance at
increments of 0.1, and the results are shown in Fig. 4. A smaller value of κTH indicates that
online learning is rarely triggered, whereas a larger value implies that online learning occurs at
many timesteps. From these results, we observe that setting κTH = 0.4 yields the highest overall
performance. This corresponds to cases where pE(s) or pS(s) lies within the range 0.8–1.0, indicating
a high likelihood that the sampled state belongs to the offline dataset. Based on this observation, we
set the threshold to κTH = 0.4 for all subsequent experiments.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, assistance from large language models (LLMs) was limited solely to the writing process,
such as grammar and phrasing.

F LIMITATIONS

A limitation of our method lies in the assumption that supplementary demonstrations visit states that
are not covered by expert demonstrations, which implies no overlap. While this assumption is looser
than that of prior works (Li et al., 2023), which require the expert’s stationary state-action distribution
to fully cover the domain, our approach may not be applicable in environments where trajectories are
constrained to a limited set of states. Furthermore, accurate PDF approximation and probability-based
regularization rely on the supplementary demonstrations visiting the non-expert states in a sufficiently
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uniform manner. For future work, our approach may be extended by incorporating techniques for
obtaining an unbiased PDF from biased demonstrations.
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