Under review as a conference paper at ICLR 2025

A MATHEMATICS-INSPIRED LEARNING-TO-OPTIMIZE
FRAMEWORK FOR DECENTRALIZED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most decentralized optimization algorithms are handcrafted. While endowed
with strong theoretical guarantees, these algorithms generally target a broad class
of problems, thereby not being adaptive or customized to specific problem fea-
tures. This paper studies data-driven decentralized algorithms trained to exploit
problem features to boost convergence. Existing learning-to-optimize methods
typically suffer from poor generalization or prohibitively vast search spaces. In
addition, the vast search space of communicating choices and final goal to reach
the global solution via limited neighboring communication cast more challenges
in decentralized settings. To resolve these challenges, this paper first derives the
necessary conditions that successful decentralized algorithmic rules need to satisfy
to achieve both optimality and consensus. Based on these conditions, we propose a
novel Mathematics-inspired Learning-to-optimize framework for Decentralized
optimization (MiLoDo). Empirical results demonstrate that MiLoDo-trained al-
gorithms outperform handcrafted algorithms and exhibit strong generalizations.
Algorithms learned via MiLoDo in 100 iterations perform robustly when running
100,000 iterations during inferences. Moreover, MiLoDo-trained algorithms on
synthetic datasets perform well on problems involving real data, higher dimensions,
and different loss functions.

1 INTRODUCTION

With the ever-growing scale of data and model sizes in modern machine learning and optimization,
there is an increasing demand for efficient distributed algorithms that can harness the power of
multiple computing nodes. Traditional centralized approaches that rely on global communication and
synchronization face significant communication overhead and latency bottlenecks. This challenge
has given rise to decentralized learning, an emerging area that promises to alleviate these issues.

In decentralized learning, computing resources like CPUs/GPUs (known as nodes) are connected
via a network topology and only communicate with their immediate neighbors, averaging model
parameters locally. This neighbor-based averaging eliminates the need for global synchronization,
drastically reducing communication costs compared to centralized methods. Moreover, decentralized
algorithms exhibit inherent robustness, maintaining convergence despite node or link failures, as long
as the network remains connected. Decentralized optimization has emerged as a standard paradigm
for distributed training without centralizing data (Liu et al.;|2024)), offering significant advantages in
communication efficiency (Lian et al.| 2017/} and privacy protection (Yu et al., 2024), making it a
promising approach for privacy-preserving distributed learning across data centers.

Motivations for data-driven decentralized algorithms. Most existing decentralized algorithms
are handcrafted, driven by optimization theories and expert knowledge. Notable examples include
primal algorithms such as DGD (Nedic & Ozdaglar, 20095 Yuan et al.,|2016) and Diffusion (Lopes &
Sayed, [2008; |Chen & Sayed, 2012}, dual algorithms like dual averaging (Duchi et al.,|2011)), and
primal-dual algorithms such as decentralized ADMM (Shi et al.| | 2014), EXTRA (Shi et al.,[2015a),
Exact-Diffusion (Yuan et al.,[2018b) (also known as NIDS (Li et al.;|2019)), and Gradient-Tracking
(Nedic et al., 2017 Xu et al., 2015 D1 Lorenzo & Scutari, 2016). These handcrafted decentralized
algorithms are designed to address a wide range of optimization problems, making them versatile
and broadly applicable. Furthermore, their convergence guarantees are valid in worst-case scenarios,
ensuring strong reliability. However, due to their emphasis on theoretical guarantees and broad

Under review as a conference paper at ICLR 2025

applicability, handcrafted algorithms often fail to leverage problem-specific features in data and thus
exhibit sub-optimal performance in practice. This motivates us to explore data-driven decentralized
algorithms that exploit problem-specific features to improve performance.

Learning to Optimize (L20). Our main idea draws inspiration from the L20 paradigm (Gregor
& LeCun, 2010; |Andrychowicz et al., [2016; |[Bengio et al., [2021; [Monga et al., 2021} (Chen et al.,
2022) that utilizes machine learning techniques to develop optimization algorithms (also known as
“optimizers”). Specifically, L20 employs a data-driven procedure where an optimizer is trained by its
performance on a set of representative example problems (which we call “optimizees’”). Through this
training process, the learned optimizer becomes tailored and adaptive to the structures of problems
similar to those in the training set, potentially outperforming general-purpose, handcrafted algorithms.

Two mainstreams in L20 are algorithm unrolling (Gregor & LeCun, 2010; Monga et al., 2021) and
the generic L20 (Andrychowicz et al.l 2016). Algorithm unrolling conceptualizes each iteration of a
certain hand-crafted optimization algorithm as a layer in a neural network, inducing a feed-forward
network. In contrast, the generic L20 does not impose any prior mathematical knowledge on the
optimizer to be learned. Instead, it crudely parameterizes the optimizer with a recurrent neural
network and learns it through end-to-end training.

Challenges in applying L20 to decentralized optimization. While algorithm unrolling and generic
L20 have shown strong empirical successes (Andrychowicz et al.;,[2016; [Lv et al.|[2017; Wichrowska
et al.,[2017; Wu et al., [2018]; |Metz et al.,|2019; (Chen et al., [2020a; Micaelli & Storkey} 2021} [Metz
et al., 2022b; [Liu et al., 2023} |Gregor & LeCun, 2010; [Moreau & Brunal [2017;|Chen et al., 2018}, [Liu
& Chen, [2019; [Ito et al.,|2019; | Yang et al., 2016; Zhang & Ghanem) 2018 |Adler & Oktem, 2018},
Solomon et al.|[2019), their direct application to decentralized settings poses several challenges.

* Memory bottleneck. Algorithm unrolling requires storing a neural network with as many layers
as optimization iterations, which easily exhausts available memory, especially as the number of
unrolled iterations increases. This situation becomes even more challenging in decentralized
optimization, where researchers are usually constrained to test their algorithms on simple target
problems (Nedic et al., 2017 [Shi et al.| 2014; [Xu et al., 2015} |Shi et al., 2015a; |Yuan et al.|
2018b) within dozens of nodes (Chen & Sayed, 2012 Wang et al.| 2021} |Shi et al., |2015b} [Xu
et al., 2015} Nedic et al., 2017), and we shall maintain much more memory than traditional
decentralized algorithms during the training stage.

* Vast search space. While more memory-efficient, the generic L20 faces a significant challenge:
how to parameterize an optimizer properly. The parameter space of the generic L20 is vast, ren-
dering its training highly ineffective. This challenge is exacerbated in decentralized optimization
due to the extra need to learn inter-node interaction (e.g., when and with whom to communicate,
and what information to exchange), thereby further expanding the parameter space.

» Consensus constraint. In decentralized optimization, nodes must achieve consensus through
local communication with immediate neighbors. This consensus constraint incurs significant
complexity to L20, as nodes, with trained optimizers, must adapt their behaviors to ensure
convergence towards a common solution despite lacking global communication.

* Weak generalization. L20 often struggles to generalize to out-of-distribution tasks. Without
theoretical guidance, it is challenging for L20 to handle the more sophisticated loss landscapes
encountered in unseen problems. Refer to Section 4.4 and Figures 7 and 8 in|Chen et al.| (2022)
This challenge naturally carries over in decentralized L20.

Contributions. To address the aforementioned challenges, this paper proposes a novel Mathematics-
inspired Learning-to-optimize framework for Decentralized optimization (MiLoDo). MiLoDo adopts
the generic L20 strategy to circumvent memory bottlenecks. However, instead of learning an
optimizer directly from an unconstrained parameter space, we introduce mathematical structures
inherent in decentralized optimization to guide MiLoDo’s learning process. This significantly narrows
the parameter space, enforces asymptotic consensus among nodes, and ensures generalization across
out-of-domain tasks. Our contributions can be summarized as follows:

* We derive fundamental mathematical conditions that learning frameworks for decentralized
optimization that converges quickly to the exact solution should satisfy. These conditions will
serve as guiding principles for training decentralized optimizers that can achieve consensus and
optimality.

Under review as a conference paper at ICLR 2025

* Building upon these conditions, we derive a math-inspired neural network structure for MiLoDo.
Utilizing this structure, we demonstrate that for MiLoDo-trained optimizers, any fixed point
attains consensus across nodes and achieves the solution to the target decentralized problem.

* We develop effective training strategies for MiLoDo, which are critical to ensuring the fast and
robust convergence of learned optimizers. We conduct extensive experiments to validate the
strong generalization and superior convergence of MiLoDo-trained optimizers.

Experimental results. Our experimental results demonstrate that MiLoDo-trained optimizers exhibit
strong generalization to out-of-distribution tasks. Specifically, they can adapt to tasks with varying
data distributions, problem types, and feature dimensions. For instance, in the high-dimensional
LASSO problem illustrated in Fig. [I] while trained to operate for 100 iterations when solving prob-

lems in the training dataset, the MiL.oDo-trained

optimizer performs exceptionally well for way 10 | — Prox-DGD
more iterations (e.g., 200,000 iterations) when o :if’;‘;“
solving unseen problems in the test dataset. Fur- g 107 —e— Prox-ED
thermore, our observations indicate that even S —#— MiLoDo

. . = —4— LPG-EXTRA
when trained on LASSO problems of dimen- £ —— DAPG
sion 300, these optimizers can proficiently solve o 10 ODAPG
the LASSO problem with dimension 30,000, as §10_11
shown in Fig.[I] More impressively, MiLoDo- T

. L . 10

trained optimizer achieves about 1.5x ~ 2Xx

a

speedup in convergence compared to state-of- 5

the-art handcrafted decentralized algorithms. Iteration (x1e5)

These phenomena justify the necessity to in- Figure 1: Numerical comparison between decentralized
corporate mathematical structures into L20 for algorithms in solving LASSO problems of dimension
decentralized optimization. 30,000. Experimental details are deferred to Sec.[5}

Related work on decentralized L20. Previous studies have designed various L20 algorithms for
decentralized optimization, most of which are based on algorithm unrolling. |Kishida et al.|(2020) and
Ogawa & Ishiil (2021)) use algorithm unrolling to learn decentralized algorithms for the consensus
problem. Noah & Shlezinger| (2023)) unrolls D-ADMM, while [Wang et al.| (2021)) unrolls prox-DGD
and PG-EXTRA. |[Hadou et al.| (2023) proposed an unrolled algorithm called U-DGD. However,
none of these learned optimizers can operate for more than 100 iterations due to the explosive
memory cost caused by algorithm unrolling. Additionally, a recent work |[Zhu & Lu|(2023) employs
a reinforcement learning agent to control local update rules through a coordinator linked with all
computing nodes, which is not fully decentralized. More related works on decentralized optimization
and learning-to-optimize are discussed in Appendix

2 PRELIMINARIES

Generic L20. Let’s begin by addressing a fundamental inquiry: Given a set of optimization problems
F, how can we learn an optimizer from this dataset? Consider a parameterized optimizer seeking to
minimize ming f (), represented as:

Pt =2k L mA(Vf(2F);0), k=0,1,--- K1 1)

where m”* is a learnable update rule typically implemented as a deep neural networkﬂ parameterized by
6. To determine 0, we evaluate and refine the performance of the optimizer (1)) over the initial K steps
on the dataset F. Specifically, this entails minimizing a loss function Ec 7|+ Zszl f(x*)]. This
loss minimization process is termed training an optimizer, with the employed dataset F referred to
the training set. Upon determining @, the learned update rule m*(-, @) will map the gradient V f (z*)
to a desirable descent direction per iteration. Compared to standard gradient-based algorithms, such
an optimizer is tailored to F and ideally exhibits faster convergence on unseen problems similar to
those in the training set. In this context, the generalization of a trained optimizer involves two aspects:
generalizing to iterations beyond K and generalizing to diverse problems f ¢ F.

Decentralized optimization. In this paper, we aim to learn a decentralized optimizer. To formally
define decentralized optimization, we first introduce several definitions used throughout this paper.

'A common approach is using Recurrent Neural Network (RNN) ¢: (m*, h*) = ¢(V f(z"), " 1;),
where h" is the hidden state at iteration k, and ¢ represents the learnable parameters in the RNN model ¢b.

Under review as a conference paper at ICLR 2025

Definition 1 (Decentralized network topology): We use G = (V, &) to denote the undirected network
topology in a decentralized system, where V = {1,2,--- ,n} represents the set of all n nodes and
E={{i,7} | i # j, node i can communicate with node j} denotes the set of all edges.

Throughout this paper, we assume the decentralized network is strongly connected, meaning there is
always a path connecting any pair of nodes in the network topology.

Definition 2 (Families of objective functions): We define the following function families:
F(RY = {f:R* - R| fis closed, proper and convex} ,
Fr(RY) = {f :R? — R | f is convex, differentiable and L-smooth } .

This paper targets to solve the following problem over a network of n collaborative computing nodes:

* . 1 -
2" = arg min {n ;fi(w) + r(w)})

Here, the local cost function f;(x) € F,(R?) is privately maintained by node 7, and r(x) € F(R?)
is a regularization term shared across the entire network. We assume each node ¢ can locally evaluate
its own gradient V f; (x) and must communicate to access information from other nodes. Additionally,
communication is confined to the neighborhood defined by the underlying network topologys; if two
nodes are not direct neighbors, they cannot exchange messages.

A naive approach to extend generic L20 to decentralized optimization. A straightforward
approach to extend generic L20 (/1)) to the decentralized setting is as follows:

2 = bl ({2, V@D jenori0:), Vie, 3)

where x! represents the local variable maintained by node i at iteration k, m,; denotes a learnable
update rule with parameter ; retained by node 4, and notation N (7) signifies the set of immediate
neighbors of node 7. While general, the naive update rule 1m; encounters two significant challenges:
(I) its vast search space, as finding an effective m,; requires exploring all possible combinations of
the iterative variables, gradients, and neighbors’ information. This complexity makes it difficult to
identify a suitable rule, especially when training samples are limited. (II) The update rule in
lacks a mechanism to ensure that all nodes reach consensus and converge to the common solution
of problem , i, xf = = x} = z*, where x} represents the limit of sequence of {x¥}2° .
These two limitations inspire us to introduce mathematical structures into g; to narrow the search
space and enforce asymptotic consensus among nodes.

3 MATHEMATICS-INSPIRED UPDATE RULES FOR DECENTRALIZED
OPTIMIZATION

This section establishes the mathematical principles underlying decentralized optimization and
utilizes them to motivate the learning-to-optimize update rules for decentralized optimization. In the
subsequent subsections, we will first determine the base update rules that decentralized optimizers
should follow, and then specify the concrete structure for each base rule.

3.1 BASE UPDATE RULES

The base rule serves as a fundamental mechanism to update optimization variables. While it delineates
the necessary inputs, it does not specify a particular structure that the rule must follow. Examples
include m(-, 0) in generic L20 (1)) and m; (-, 8;) in naive decentralized L20 (3). This subsection
aims to identify improved base update rules that resolve the aforementioned issues.

Decentralized optimization interpreted as constrained optimization. One limitation in the naive
update rule in (3] is that it cannot explicitly enforce variable consensus during updates. To address this
limitation, we reformulate the unconstrained problem (2)) as the following constrained optimization:

1y .
i E;f,(mz)—kr(mz), st. x=x;, V{i,j} €f. “4)

Here, the optimization variable X = [z{ , x4, -+, 2, |7 € R"* stacks the local variables across

all nodes. The consensus constraints in (@) are imposed according to the structure of the underlying
network topology. Since the network is strongly connected, we have 1 = 2 = - - - = x,,.

Under review as a conference paper at ICLR 2025

Primal-dual algorithm and its implication. The Lagrangian function of (4) is given as follows

1 n
L(X {vij}igree) Ez fi(m:) + (i) + Z (Vij T — xj), o)
i=1

{i,j}€€

with v; ; the dual variable of constraint &; = x;. The primal-dual algorithm to solve (Fl_f]) is given by:

it = af = L (Viah) + gl 4 yl), gbt e o), ©)
Yyt =yl 2y Y (T —alth,)
JEN(3)

where y; 1= n3 ;) (Vi; — V) explicitly satisfies > y; = 0. Updates (@) and (7)) imply
optimality and consensus in the optimization process. To see it, let 7 and y; denotes the fixed points
that updates (@) and (7)) converge to for any i € {1,--- ,n}. It follows that

» Update (7) implies consensus. With ¥ — x7, y* — y7, we have

=/INO) Y @, Vie{l,n} = ai=-.=a. ®)
JEN ()
d Update @ 1mphes optlmallty With the consensus property established in (8], we introduce
x* = x. Since ¥ — x*,yF — yFand Y., y* = 0, we have
Viix*)+or(x)+y; 50 — ZVL)+ dr(z*) 30, 9)

which implies that the consensual fixed point * is the solution to problem ().

Mathematics-inspired base update rules. To learn better update rules than the handcrafted primal-
dual updates (6) and (7)), we propose the following base parameterized update rules

}_<:+1 = wif - m?(Vfl(il?f) k+17 Y; 70i,1)’ ngrl € 87‘(k+1) (10)
vi =l s ({2 - 2 e 0i2), (an

where m; and s; are primal and dual update rules, maintained by node ¢ and parameterized by
0; 1 and 6; 5, respectively. We expect the learned updates (10) and (11] .) to enforce optimality and
consensus when m,; and s; satisfy certain conditions (see Sec. @]for details). The formats of the
inputs to the base update rules in (I0) and (TT) are inspired by (6) and (7).

However, the above update rules can be further improved. Note that, does not utilize the
communicated information when updating the primal variables x;. Intuitively, it is more efficient
to use neighbors’ information, i.e., {x;, Vfi(x;),g;}jecr) to update both the primal and dual
variables. Therefore, we propose

k+1 :a:f _m']f(vfl(wf) k+17yz 70i,1)7 gf+1 € 81“(k+1)7 (12)
v =yl sl ({2 - 2 ev i), (13)
a:f+1 = Zf“ - uf({zfﬂ - Zfﬂ}je/\f(i)? 0i3)- (14

where z; is a local auxiliary variable to estimate x; after one local update @I) within node ¢, and
u; is the newly introduced update rule to update x; with neighbor’s information. Base update rules
m,;, s; and u,; serve as foundations to our MiLoDo framework.

3.2 STRUCTURED UPDATE RULES

To ensure the sufficient capacity of update rules m;, s; and u; in practice, one should opt for
neural networks to parameterize them. Inspired by the universal approximation theorem, which
states that neural networks can approximate any continuous functions, it follows that searching the
parameter space of a neural network model is similar to searching the entire continuous function
space. Therefore, in this subsection, we suppose m;, s; and u,; are picked from the following space
without specific parameterization.

Under review as a conference paper at ICLR 2025

Definition 3 (Family of learnable functions): Given a domain Z, we let J f(z) denote the Jacobian
matrix of the map f : Z — R% and || - || » denote the Frobenius norm. We define

Dc(Z2) = {f: £ - R?| fis differentiable, [|Jf ()| r < C,Vz € Z}

as the family of learnable functions.

Specifically, we assume m; € D¢ (R39), and s;, u; € Do (R4 This ensures that our results
do not depend on particular parameterizations but rather reflect general principles.

Mathematical conditions that a good update rule should satisfy. One may naturally ask: do
all the mappings in D¢ (Z) serve as effective rules within the framework of —? If not, can
we identify the subset of D¢(Z) containing desirable update rules by considering fundamental
conditions that these rules must fulfill?

Now we examine the mathematical conditions that base update rules (12)—(14) need to satisfy in order
to guarantee both consensus and optimality, i.e., x7 = - -- = &, = x*. Inspired by the primal-dual
algorithm discussed in Section[3.1] we refer to the base update rules in (I2)-(14) as good ones if they
satisfy the following two conditions.

Condition 1 (FIXED POINT): For any &* € argmingcpa f(x) + r(x), g7 € Or(x*) and y; =
—Vfi(x*) — g}, it holds for any ¢ € V that

Tim mf(Vf(a), g7 u0) = lim sE({0a}enn) = Jim wf({0u)jenn) =00 (19)

Remark. Here x* is an optimal primal solution, and y is the dual solution retained at node 4,
according to @I) Condition [I]is derived from a fundamental requirement for a good update rule:
if (¥, yk, 2F) stay at an opt1ma1 solution (x*, y}, =*), the next iterate (" y* ™ 251) should
be fixed. By substituting ¥ = zF = z* yF = yl € —Vfi(z*) — Or(x*) and ¥+ = 28! =

@yl =y ino (12)-(14). we will obtain mf (V /(2. 57 47) = 0u. s} £({0a}jene)) = Ous

and uf ({04} ;en (i) = Oq, and Condmonreﬂects these conditions.

Condition 2 (GLOBAL CONVERGENCE): For any sequences generated by the base update rules in
(12)-(14), there exists ¢* € arg mingega f(x) + r(x), y; € =V fi(x*) — Or(x*) such that

lim «f = lim 2Ff =*, lim y =y, VicV. (16)
k— o0 k—o0 k— o0

Remark. With Condition 2] any fixed points of (12)-(14) will be the optimal primal and dual solution
to problem (). This condition enforces both consensus and optimality for update rules in (12))-(I4).

Deriving mathematical structures for base update rules. The following theorem derives the
mathematical structures that the base update rules in (TZ)—(T4) should possess to satisfy the necessary
mathematical conditions mentioned above:

Theorem 1 (MATHEMATICS INSPIRED STRUCTURE) G1ven fi € FL(R?), r € F(R?) and base
update rules {m?, s, k}k o with m¥ € D (R?), s, ub € Do(RWDI4), if Conditions|1]and 2]
hold, there exist P}, P}, |, PF, , € R9*d gnd b¥,, bk, bf?’ € RY satisfying

i,5,17
mi (V@) g/ yl) = PEVfi(@)) + g7 +ui) + i, (17)
sE{afT =2 en) = D PR (T = 2 bk, (18)
JEN(3)
wi{z ™ =2 eve) = D Plha(E ™ =2 b, (19)
JEN(3)
with PF szg 1 Pk o uniformly upper bounded and bkl, bz % bZ 3 — 04 as kK — oo. If we further

assume P} to be posmve definite, base update rule can be uniquely determined through
2T = prox, pr (zf — Pf(V filzl) +yf) —bfy), (20)

where notation prox, () := argming ¢(y) + 3lly — z||3,-: and [|z|rps = Va T Max for
positive definite M.

Under review as a conference paper at ICLR 2025

Remark. Theorem|I]illustrates that the update rules m;, s;, and u; are not completely free under
Condltlons Tland 2] It suggests mathematlcally inspired structures for the base update rules, as shown
in where Pk Pk ;2 can be regarded as preconditioners, while bl 1 bz 2 bf 5 are
blas term e name @]} as structured update rules. As shown in Sec.[5] compared to the base
update rules in @—@ these structured update rules benefit from a significantly more condensed

parameter space and ensure consensus and optimality upon convergence.

4 MILoDo: AN EFFICIENT MATH-INSPIRED L20 FRAMEWORK

Inspired by the structured update rules derived in (I7)—(19), this section develops a practical L20
framework that can be used to learn effective decentralized optimizers for solving problem (2.

4.1 MAKING STRUCTURED UPDATE RULES EFFICIENT TO LEARN

To ensure computational efficiency of the update rules in (I7)—(19), we spe01fy those P matrices
as diagonal ones. Inspired by Theorem |1} which indicates that the bias terms b* 1 bf2, bf3 vanish
asymptotically, we eliminate these terms. Specifically, we set:

Pk = Dlag(pf) P,], Dla‘g(pl_] 1) P i,7,2 Dla’g(pz] 2) bfl bﬁ? = bﬁS = 0d7 (21)

sJs

where p¥, p¥ RT pr 2 € R4, and p¥ 1= pj i1, Vi, j} € & With (2 , the structured update rules
in (T7)—(T9) can be further simplified as:

ZIC+1 - prOXnDiag(pf) (:Ef - pf © (vfl (33?) + yf)) ’ (22)
yitt =yl Y Pl o T -2, (23)
JEN ()
miﬁ‘/-‘rl k+1 Z pz i3 @ k-‘rl J]f?-‘rl)' (24)
JEN(3)

Here, ® denotes element-wise production. We name (22)—(24) as MiLoDo update rules.

Remark. MiLoDo update rules cover state-of-the-art handcrafted decentralized algorithms. If » = 0
and we let p¥ = 7~1d,pf,j71 = (w;;/(27)) - ld,pﬁj72 = (w;;/2)- 14, where 15 = [1,1,---)T e
R<, MiLoDo update rules reduce to Exact-Diffusion (Yuan et al.,[2018b) with symmetric doubly-
stochastic gossip matrix W = (w;;)nxr and learning rate v. However, MiLoDo update rules are
more general than Exact-Diffusion due to the learnable preconditioner p; and mixing weight p; ;.

The following theorem provides theoretical guarantees for MiLoDo update rules, demonstrating that
their fixed points are the primal and dual optimal solutions to problem (2)). To our knowledge, no
existing decentralized L20 algorithms could guarantee that their fixed points are optimal solutions.

Theorem 2 (EXACT CONVERGENCE): Assume G = (V, &) is strongly connected, {f;}icy C
Fr(R?), r € F(R?) and there exists 0 < m < M < oo such that [pf]; > m, m < [p};] < M,

(3

[P ; o)1l < M forall k > 0and 1 <[< d. Here [«]; denotes the I-th coordinate of the vector x. If

a sequence generated by (. 24) with initialization y? = 04 converges to {x}, y}, 2} ;, then
this limit must be the primal and dual optimal solutions to problem (2Z). In other words, there exists
x* € argmingcga f(x) + r(x) such that &} = 2} = x* and y; € —V f;(x*) — Ir(z*) holds.

4.2 LSTM PARAMETERIZATION FOR MILODO UPDATE RULES

This subsection discusses how to learn p¥, pﬁ 4,1 and pf’ ;,2 in MiLoDo update rules —. To this

end, we parameterize p¥, pﬁ ;1 and pf, ;.2 through three local coordinate-wise LSTM neural networks
OM.i» $3,i» GU,i- Each network is constructed with a single LSTM cell, followed by a 2-layer MLP
and an output activation layer. Speciﬁcally,

Pl R = o0 (V (), yl Wy s 000), (25)
{plj 1}]6./\/()7hSrL _¢S ({ZkJrl]kJrl}jGN(i)vh‘S,i;eS,i)v (26)
{Pf,,j,z}ja\/(iﬁ hU,i = ¢U,7ﬁ({zf+1 - Z;H_l}je/\/(i)a hlzcj,ﬁ 0U,i)7 27

where h% M.is hk S.iv h¥, . are hidden states in the LSTM modules with random-initialization, 8/ ;, 05,
Oy ,; are learnable parameters in ¢y, @s,i, Pu,i, respectively. To achieve pi—“’ 1= p?,i,l’ we compute

Pri =P =B +P5i1)/2 (28)

Under review as a conference paper at ICLR 2025

Algorithm 1: MiLoDo Framework
Input: Optimizee objectives { f; }icy, 7, network topology G = (V, £), LSTM modules
{én,i, 9s,i, PU,i }icy, number of iterations K.
for all nodes i € V in parallel do
Initialize variables 2! = y! = 20 = 04;
Initialize hidden states h%/l,i’ h%,i and h%i randomly by normal distribution;
fork=0,1,--- ,K —1do
Compute p! through , update 2" through ;
Communicate z# ! with all neighbors, compute ﬁﬁ il p¥ ;.o through ;
for j € N (i) do
L Send ﬁﬁ ;1 to and receive 15?,2‘,1 from node j;

Compute P?,j@ through , update yf“, mf“ through .

Combining the structured update rules with LSTM parameterization, we obtain the complete archi-
tecture of MiLoDo framework, as illustrated in Algorithm [T}

4.3 TRAINING MILODO FRAMEWORK

To determine © = {0y, 05,0u,}7—; in (25) — (27), we evaluate and refine the performance of
the optimizer over the initial K steps on a batch of training optimizees Fg, i.e.,

= i f(&") (29)
K k=1 .

The variable " = L 3" | & is the average of local variables x;’s. Typically, we set K = 100
and train the model by truncated Back Propagation Through Time (BPTT) with a truncation length
of K1 = 20, following a common setup in previous L20 approaches (Chen et al., 2017; |[Lv et al.|
2017} [Wichrowska et al., [2017; Metz et al. 2019; [Cao et al., 2019} |Chen et al.| 2020cb). More
specifically, we divide the K iterations into K /Kt segments of length K and train the optimizer on
them separately. Such a training strategy is denoted by (Kr, K) = (20, 100) throughout this paper.
More training techniques such as initialization and multi-stage training are in Sec. [E.]

1
i (C) = — E
HgnﬁK() | FBl fEFB

5 EXPERIMENTAL RESULTS

This section presents numerical experiments to validate the strong generalization capability of the
MiLoDo-trained optimizer to out-of-distribution tasks. Additionally, we compare it with state-of-
the-art handcrafted optimizers such as Prox-DGD, PG-EXTRA, Prox-ATC, Prox-ED, DAPG (Ye
et al., 2020), ODAPG (Ye & Chang, 2023)), as well as the learned optimizer LPG-EXTRA (Wang
et al.| 2021). Note that LPG-EXTRA, an algorithm unrolling method, is confined to solving unseen
problems in the test dataset for a maximum of 100 iterations due to the memory bottleneck imposed
by its unrolling structure. Conversely, all handcrafted and MiL.oDo-trained optimizers can be tested
over much longer horizons, typically in the order of 10°.

Experimental setup. In our experiments, we use a special initialization and a multi-stage training
strategy discussed in Sec. Specifically, we train MiLoDo in five stages with (K, K) = (5, 10),
(10, 20), (20, 40), (40, 80), and (20, 100), using Adam with learning rates of 5 x 1074,1 x 1074,5 x
1075,1 x 107, and 1 x 1075, for 20, 10, 10, 10, and 5 epochs, respectively. Throughout all stages,
the Adam optimizer is configured with momentum parameters (51, 32) = (0.9,0.999) and the batch
size is set at 32. More data collection/generation and training details can be found in Appendix [E]

Target problems. Our target problems include LASSO, logistic regression, MLP and ResNet. In all
experiments, we use the shape (n,d, N, \) to represent different characteristics of the optimizees,
where n represents the number of nodes in the decentralized network, d represents the feature
dimension, N represents the number of data samples held by each worker, and A represents the /4
regularization coefficient. Without further clarification, we consider a ring topology for the network.

Training sets. MiLoDo optimizers in this section are trained on two different training sets: spe-
cialized and meta training set. Specifically, the specialized training set consists of 512 synthetic

Under review as a conference paper at ICLR 2025

o
10°1y —— Prox-DGD
10-2

10t —<— Prox-DGD
PG-EXTRA

-1
i ~+— Prox-ATC
3 'G-EXTRA stops here —e— Prox-ED
-5 ~=— MiLoDo
- —a— LPG-EXTRA
3 —— DAPG
-2 ODAPG
% 101
3

10 15 20 24 0 1 2 3
Iteration (x1e5) Iteration (x1e5)

LPG-EXTRAStODS here il obo

& 10
% 100
z
§ 1070
z

(F(x) - FO*)) / F(x*)
-
5

S0
101
10

0 5 [) 2

[) 05

2 3 a 6
Iteration (x1e5) Iteration (x1e5)

Figure 2: MiLoDo-optimizer trained on synthetic Figure 3: MiLoDo-optimizer trained on synthetic
LASSO(10,300,10,0.1) and tested on unseen LASSO(10,300,10,0.1) and tested on synthetic
LASSO(10, 300, 10, 0.1) instances. LASSO(10, 30000, 1000, 0.1).

10211 —— Prox-DGD 07 —— d=50

PG-EXTRA -3 =200 10
107 —— Prox-ATC —— d=500
105 —e— d=1000 5 107

2.75
2.50
2.251 |

Z2.00

-5
T 10 1013

(F(x) - F(x*)) / F(x*)

Consensus Error

1.75

1.50

1.25

T R T 0 S I L
Figure 4: MiLoDo-optimizer trained on meta training Figure 5: MiLoDo-optimizer trained on meta training
set and tested on LASSO(10, 200, 10, 0.05) with real set and tested on Logistic(10, d,100,0.1) with d €
dataset BSDS500(Martin et al.} [200T). {50, 200, 500, 1000}.

LASSO(10, 300, 10, 0.1) instances, while the meta training set consists of 1280 synthetic instances
with various sizes, including 64 LASSO(10, 500, N, 0.1) for each N € {5,10,15,--- ,100}.

Generalization to longer testing iterations. MiLoDo optimizer, trained to operate for a small
number of iterations with training problem sets, performs well for significantly more iterations when
solving unseen problem sets. As illustrated in Fig. 2] MiLoDo trained on LASSO(10, 300, 10,0.1)
with (K7, K) = (20,100), performs robustly for up to 100,000 testing iterations on unseen
LASSO(10, 300, 10,0.1) instances. In contrast, the other learned optimizer, LPG-EXTRA, can
only be applied for 100 iterations limited by its memory bottleneck. Moreover, compared with
handcrafted optimizers, MiLoDo achieves a 1.7x speedup in convergence and more than a 2x
speedup in consensus.

Generalization to higher problem dimensions. MiLoDo optimizer trained with low-dimensional
problems can be generalized to solve problems with much higher dimensions. As illustrated in Fig.[3]
MiLoDo trained on LASSO(10, 300, 10, 0.1) with a problem dimension 300 performs consistently
well on LASSO(10, 30000, 1000, 0.1) instances with a much higher dimension of 30,000.

Generalization to real data distributions. MiL.oDo optimizer trained with meta training dataset
(synthetic LASSO) can be generalized to real data distributions. As illustrated in Fig.[d MiLoDo
trained on the meta training set performs consistently well on LASSO(10, 200, 10, 0.05) constructed
with real dataset BSDS500 (Martin et al. 2001}, achieving more than a 2.5x speedup in both
convergence and consensus rate.

Generalization to different problem types. MiL.oDo optimizer trained with meta-training set can
generalize to different problem types. As depicted in Fig.[5] MiLoDo trained on the meta-training
set, which consists solely of LASSO problems, converges precisely to the global solutions of unseen
logistic regression problems with varying feature dimensions d € {50, 200, 500, 1000}.

Efficacy in neural network training scenarios. The efficacy of MiLoDo extends to the realm
of neural network training, a domain characterized by high computational complexity and strong
non-convexity. As shown in Fig.[6] MiLoDo consistently achieves a 2x speedup in training MLP
on the MNIST (Deng| 2012)) dataset, compared to other baseline methods. MiL.oDo also achieves a
2x speedup in training ResNet on the CIFAR-10 (Krizhevsky,|[2009) dataset, as illustrated in Fig.
This performance underscores MiLoDo’s ability to efficiently navigate neural networks’ complex
loss landscapes, significantly enhancing distributed deep learning.

Scalability to more complex topologies and larger networks. Mil.oDo optimizer consistently
performs well on complex and large-scale networks, showcasing its superior scalability. As shown
in Fig[8] MiLoDo consistently enhances efficiency on more complex network topologies and larger
networks, achieving a 1.5x speedup on an exponential graph topology, and a 3x speedup on a

Under review as a conference paper at ICLR 2025

—— Prox-DGD

PG-EXTRA
— Prox-ATC
10°) —— Prox-ED
— MiLobo
| — parc
3

100

F(x)
uracy

Acc

\M‘\}XODAPG

v eieapin]

102

12 o s 12 15 [) 6 9
) Iteration(x1e2)

3 6 9 3 6 6
Iteration (x1e2) Iteration(x1e2) Iteration (x1e2!

Figure 6: MiLoDo-optimizer trained on MLP(10, Figure 7: MiLoDo-optimizer trained on ResNet (5,
13002, 1000, 0) with MNIST dataset and tested on 78042, 500, 0) with CIFAR-10 dataset and tested on

MLP(10, 13002, 5000, 0). ResNet(5, 78042, 5000, 0).

—#— MiLoDo update rules (22) - (24)

5
—#— MiLoDo update rules (22) - (24) Soe
2 Base update rules (12) - (14)

Base update rules (12) - (14)

°
o
>
3
@
)
F(x) - F(x*)

L

P
. .
T
o o z
05 “o2
s s N
- 0.0

0 25 50 75 100 125 150 175 200
Iteration

0 25 50 75 100 125 150 175 200

5 [3
Iteration

2 3 6 9
Iteration (x1e5) Iteration (x1e5)

Figure 8: MiLoDo-optimizer trained on different Figure 9: Testing trained optimizer using base up-
network settings: (left) an exponential graph topology date rules and structured update rules on synthetic
of 10 nodes, (right) a network of 50 nodes. LASSO(10, 10, 5,0).

50-node network. Further tests confirm its effectiveness across various topologies and a 100-node
network. Detailed results are in Appendix [E4]

Influence of math-inspired structures. The mathematics-inspired structures are crucial for the
success of MiLoDo. To see this, we directly parameterize the base update rules (12)-(T4) targeting a
smooth problem LASSO(10, 10, 5,0). Detailed experimental setups are deferred to Appendix
As illustrated in Fig.[9] directly parameterizing the base update rules fails to learn good optimizers.

Runtime studies. When compared to handcrafted optimizers like Prox-ED, MiLoDo faces a higher
per-iteration computational cost due to additional neural network calculations for {p¥, pﬁ I pﬁ o)
To assess whether its benefits outweigh these costs, we compre its running time with Prox-ED. As
illustrated in Table[I} MiLoDo exhibits only a slight increase in computational cost, about 18.4%,
while achieving a significant convergence speedup, resulting in a 1.6 x ~ 2.1 x speedup in total.

Table 1: Runtime Comparison on LASSO(10, 30000, 1000, 0.1).

‘ Stopping condition: Gap < 10~ ‘ Stopping condition: Gap < 10715

| Time/Iters | Iters Total Time Iters Total Time
MiLoDo 5.91 ms 2.45e+04 144.80 s 1.62e+05 957.42 s
Prox-ED 4.99 ms 6.22e+04 310.38 s 3.07e+05 1531.93 s

More experimental results. More testing results on MiLoDo optimizers trained with meta training
set and Logistic regression optimizees are in Appendix We also conduct ablation studies on the

mixing matrices, see Appendix [E.3]

6 CONCLUSIONS AND LIMITATIONS

We propose MiLoDo, a mathematics-inspired L20 framework for decentralized optimization. With
its mathematics-inspired structure, the MiLoDo-trained optimizer can generalize to tasks with varying
data distributions, problem types, and feature dimensions. Moreover, MiLoDo-trained optimizer
outperforms handcrafted optimizers in convergence rate. MiLoDo currently learns separate parameters
specifically for each neighbor relationship (i.e., communication links), but training a set of shared
parameters across all nodes could simplify the framework. This would align MiLoDo with message-
passing graph neural networks, which are more scalable and inherently permutation-equivariant,
making them well-suited for graph-based problems. This presents a promising future direction.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jonas Adler and Ozan Oktem. Learned primal-dual reconstruction. IEEE transactions on medical
imaging, 37(6):1322-1332, 2018.

M. Aharon, M. Elad, and A. Bruckstein. rmk-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. /EEE Transactions on Signal Processing, pp. 4311-4322,
Nov 2006. doi: 10.1109/tsp.2006.881199. URL http://dx.doi.org/10.1109/tsp!
2006.881199l

Sulaiman A Alghunaim, Ernest K Ryu, Kun Yuan, and Ali H Sayed. Decentralized proximal
gradient algorithms with linear convergence rates. IEEE Transactions on Automatic Control, 66
(6):2787-2794, 2020.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421,
2021.

Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. SIAM review,
46(4):667-689, 2004.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
Advances in Neural Information Processing Systems, 32, 2019.

Jianshu Chen and Ali H Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. IEEE Transactions on Signal Processing, 60(8):4289-4305, 2012.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and Zhangyang
Wang. Training stronger baselines for learning to optimize. Advances in Neural Information
Processing Systems, 33:7332-7343, 2020a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang, Howard Heaton, Jialin Liu, and
Wotao Yin. Learning to optimize: A primer and a benchmark. The Journal of Machine Learning
Research, 23(1):8562-8620, 2022.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
unfolded ista and its practical weights and thresholds. Advances in Neural Information Processing
Systems, 31, 2018.

Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, and Le Song. Learning to stop while learning to predict.
In International Conference on Machine Learning, pp. 1520-1530. PMLR, 2020b.

Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction by
learning unrolled algorithms. arXiv preprint arXiv:2002.05810, 2020c.

Yutian Chen, Matthew W Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient descent.
In International Conference on Machine Learning, pp. 748-756. PMLR, 2017.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141-142, 2012.

P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. /IEEE Transactions on
Signal and Information Processing over Networks, 2(2):120-136, 2016.

John C Duchi, Alekh Agarwal, and Martin J] Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. [EEE Transactions on Automatic control, 57(3):
592-606, 2011.

11

http://dx.doi.org/10.1109/tsp.2006.881199
http://dx.doi.org/10.1109/tsp.2006.881199

Under review as a conference paper at ICLR 2025

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399-406,
2010.

Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro. Stochastic unrolled federated learning.
arXiv preprint arXiv:2305.15371, 2023.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases. arXiv preprint arXiv:2209.11208, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Daisuke Ito, Satoshi Takabe, and Tadashi Wadayama. Trainable ista for sparse signal recovery. IEEE
Transactions on Signal Processing, 67(12):3113-3125, 2019.

Deepali Jain, Krzysztof M Choromanski, Kumar Avinava Dubey, Sumeet Singh, Vikas Sindhwani,
Tingnan Zhang, and Jie Tan. Mnemosyne: Learning to train transformers with transformers.
Advances in Neural Information Processing Systems, 36, 2023.

Masako Kishida, Masaki Ogura, Yuichi Yoshida, and Tadashi Wadayama. Deep learning-based
average consensus. IEEE Access, 8:142404-142412, 2020.

Ron Kohavi. Census Income. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5GP7S.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Ilya Kuruzov, Gesualdo Scutari, and Alexander Gasnikov. Achieving linear convergence with
parameter-free algorithms in decentralized optimization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Jiaxiang Li, Xuxing Chen, Shigian Ma, and Mingyi Hong. Problem-parameter-free decentralized
nonconvex stochastic optimization. arXiv preprint arXiv:2402.08821, 2024.

Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network independent
step-sizes and separated convergence rates. IEEE Transactions on Signal Processing, 67(17):
4494-4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017.

Changxin Liu, Nicola Bastianello, Wei Huo, Yang Shi, and Karl H Johansson. A survey on secure
decentralized optimization and learning. arXiv preprint arXiv:2408.08628, 2024.

Jialin Liu and Xiaohan Chen. Alista: Analytic weights are as good as learned weights in lista. In
International Conference on Learning Representations (ICLR), 2019.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards constituting
mathematical structures for learning to optimize. arXiv preprint arXiv:2305.18577, 2023.

Cassio G Lopes and Ali H Sayed. Diffusion least-mean squares over adaptive networks: Formulation
and performance analysis. IEEE Transactions on Signal Processing, 56(7):3122-3136, 2008.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In International Conference on Machine Learning, pp. 2247-2255. PMLR, 2017.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416-423. IEEE, 2001.

12

Under review as a conference paper at ICLR 2025

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Learned optimizers that outperform sgd on wall-clock and test loss. In Proceedings of the 2nd
Workshop on Meta-Learning, MetaLearn, volume 2019, 2018.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556-4565. PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers. In Confer-
ence on Lifelong Learning Agents, pp. 142-164. PMLR, 2022a.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022b.

Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
Advances in Neural Information Processing Systems, 34:10798-10809, 2021.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18-44, 2021.

Thomas Moreau and Joan Bruna. Understanding neural sparse coding with matrix factorization. In
International Conference on Learning Representation (ICLR), 2017.

Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Dadam: A consensus-based
distributed adaptive gradient method for online optimization. [EEE Transactions on Signal
Processing, 70:6065-6079, 2022.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48-61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597-2633, 2017.

Yoav Noah and Nir Shlezinger. Limited communications distributed optimization via deep unfolded
distributed admm. arXiv preprint arXiv:2309.14353, 2023.

Shoya Ogawa and Koji Ishii. Deep-learning aided consensus problem considering network centrality.
In 2021 IEEE 94th Vehicular Technology Conference (VIC2021-Fall), pp. 1-5. IEEE, 2021.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations, 2020.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in
decentralized consensus optimization. /[EEE Transactions on Signal Processing, 62(7):1750-1761,
2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944-966, 2015a.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for decentralized
composite optimization. IEEE Transactions on Signal Processing, 63(22):6013-6023, 2015b.

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, Qiong He, Jianwen Luo, Ruud JG van Sloun, and
Yonina C Eldar. Deep unfolded robust pca with application to clutter suppression in ultrasound.
IEEE transactions on medical imaging, 39(4):1051-1063, 2019.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. Learning to learn,
pp- 3-17, 1998.

Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors
for model based reconstruction. In 2013 IEEE Global Conference on Signal and Information
Processing, pp. 945-948. IEEE, 2013.

13

Under review as a conference paper at ICLR 2025

He Wang, Yifei Shen, Ziyuan Wang, Dongsheng Li, Jun Zhang, Khaled B Letaief, and Jie Lu.
Decentralized statistical inference with unrolled graph neural networks. In 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 2634-2640. IEEE, 2021.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International conference on machine learning, pp. 3751-3760. PMLR, 2017.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Augmented distributed gradient methods for multi-agent
optimization under uncoordinated constant stepsizes. In IEEE Conference on Decision and Control
(CDC), pp. 2055-2060, Osaka, Japan, 2015.

Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Distributed algorithms for composite opti-
mization: Unified framework and convergence analysis. IEEE Transactions on Signal Processing,
69:3555-3570, 2021.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep admm-net for compressive sensing mri. In
Proceedings of the 30th international conference on neural information processing systems, pp.
10-18, 2016.

Haishan Ye and Xiangyu Chang. Optimal decentralized composite optimization for strongly convex
functions. arXiv preprint arXiv:2312.15845, 2023.

Haishan Ye, Ziang Zhou, Luo Luo, and Tong Zhang. Decentralized accelerated proximal gradient
descent. Advances in Neural Information Processing Systems, 33:18308-18317, 2020.

Wenrui Yu, Qiongxiu Li, Milan Lopuhaid-Zwakenberg, Mads Grasbgll Christensen, and Richard
Heusdens. Provable privacy advantages of decentralized federated learning via distributed opti-
mization. arXiv preprint arXiv:2407.09324, 2024.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835-1854, 2016.

Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H Sayed. Variance-reduced stochastic learning by
networked agents under random reshuffling. IEEE Transactions on Signal Processing, 67(2):
351-366, 2018a.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H Sayed. Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development. /EEE Transactions on Signal Processing,
67(3):708-723, 2018b.

Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
image compressive sensing. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1828-1837, 2018.

Daokuan Zhu and Jie Lu. A deep reinforcement learning approach to efficient distributed optimization.
arXiv preprint arXiv:2311.08827, 2023.

14

Under review as a conference paper at ICLR 2025

APPENDIX

CONTENTS

[A_More related workl 15

[B~ Missing proofs| 16
B.1_Preliminaries] e 16
B.2 Proof of Theoremlll 16
B.3 Proof of Theoreml2] 17

[C Tllustration of Mil.oDo framework| 18

[DRobust implementation of decentralized algorithms| 18

[E Experimental specifications| 19
[E.1 Training strategies|. 19
[E.2 Targetproblems| 20
[E.3 Implementationdetails| 20
IE.4 Additionalresults| 22
[ES Ablation studies| 25
[E.6 Hyperparameter settings| 28

A MORE RELATED WORK

Learning to optimize. The concept of L20 dates back to the 1990s (Thrun & Pratt, [1998]). Different
L20 approaches exist: Plug-and-Play (PnP) (Venkatakrishnan et al.||2013) approximates expensive
functions in traditional algorithms; algorithm unrolling (Gregor & LeCunl, 2010; Moreau & Brunal
2017 [Chen et al}, 2018}, [Liu & Chenl [2019; [Tto et al.} 2019} [Yang et al.,[2016; Zhang & Ghanem
2018} |Adler & Oktem), [2018};|Solomon et al., 2019) models the entire procedure as a neural network,
effective for domains like image/signal processing; generic L20 (Andrychowicz et al.,[2016;|Lv et al.
[2017}; [Wichrowska et all 2017; [Wu et al., 2018} [Metz et al., 2019} [Chen et al.| 2020a; |Shen et al.
2020; [Harrison et al} 2022} Micaelli & Storkeyl, 2021; [Metz et al., 2018}, [20224}b}; [Tain et al., 2023
Liu et al.,[2023)), which is more related to this paper, parameterizes update rules using current states,
enabling flexibility across applications. Some other studies also atempts to learn machine learning
models to accelerate the discrete problems solving(Bengio et all, 202T).

Decentralized optimization. Decentralized optimization has been extensively studied, dating back
to early algorithms like decentralized gradient descent (DGD) (Nedic & Ozdaglar} 2009} [Yuan et al.
2016)), Diffusion (Lopes & Sayed, 2008} [Chen & Sayed} [2012)), and dual averaging (Duchi et al.
2011) from the signal processing and control communities. These were followed by primal-dual
methods such as ADMM variants [2014), explicit bias-correction techniques (Shi et al.
20154} [Yuan et al, ILi et al, 2019), Gradient-Tracking (Xu et all 2015} [Di Lorenzo & Scutari
2016; [Nedic et al., 2017). More recently, decentralized stochastic gradient descent (DSGD) (Lian
et al.,|2017) has gained significant attentions in deep learning. For non-smooth optimization problems,
effective algorithms like PG-EXTRA (Shi et al} 2015b), PG-Exact-Diffusion (Yuan et al., 2018a),
and PG-Gradient-Tracking (Alghunaim et al., 2020) utilize the proximal gradient method to solve

them. A unified decentralized framework is developed in[Alghunaim et al.| (2020) and [Xu et al.| (2021)

to unify various decentralized algorithms. All these algorithms are driven by expert knowledge.

15

Under review as a conference paper at ICLR 2025

B MISSING PROOFS

B.1 PRELIMINARIES

Lemma 1 (Liu et al.[(2023), Lemma 1): For any operator o € D¢o(R"*™) and any X1, y1, -+ Xm,
ym € R™, there exists matrices J1, Jo, - -+, J,,, € R™*" such that

O(Xl,"' ,Xm) *0(}’1;"' ay’m) = ZJJ(X

and |[J1[r < /nC, -, [Jm|lr < v/nC.

This lemma is an extension of the mean value theorem.

B.2 PROOF OF THEOREM/[I]

Proof. By Lemmal 1| there exists Q% ,, QF,, QF 5 € R4 such that |QF, || » < VdC, |QF,||r <
VdC, |Qf5llF < VdC and
mi (Vfi(ai), g; ™ yi) =mE(Vfi(2"), -V fi(=") — vl 97) + Qi1 (Vfila]) — Vfilz"))
+ QU (gt + V(@) +) + Qis(yf — i)
:Qi,Q(vfi(Mgt +yf) +(i’c,l - 12)(sz(mf) - Vfi(z*))
+(Qis — Qi) (y! —yi) +mi(Vfi(a™), =V fi(x") -y, y}).
Letting

k _ Nk
P =Qi

and
b§,1 =(51 - f2)(vfz(wf) = Vfi(x*)) +(fs - fz)(y - y5)
m (V fi(z*), —sz‘(fﬂ*) — YY),
the above equation can be reorganized into (17). Addtionally, we have || P¥||r < v/dC and bk — 0q4
thanks to Condltlonl Similarly, there exists Q¥ i1 QF 2 € R?*4 such that || Q¥ i, e < Vdce,
Q% ;2llF < VdC and

sE{zE = 20 Y env) =sF({0a}jeny) + D QF (2 = 2,
JEN (i)

Uf({zfﬂ - Z;?Jrl}jej\/(i)) :u?({ﬂd}ja\m Z Q” 2 k“ - Zf“)
JEN ()

Thus, it is sufficient to obtain (18) and by letting Pf;; = QF,; 1, P}y = QF 5, by =
55 ({0a}jen(y)> and b 3 = wF ({04} jeni))-
Now we rewrite (I2) as

2t =af — PHVfiel) + i +yl) - by, gf Tt e or(zi). (30)
If we further assume P} to be symmetric positive definite, (30} implies

04 € Or(z{1) + (PF) ™" (2 — af +bf) + PE(Vfi(af) + 7).

Consequently, z; 281 coincides with the unique solution to the following strongly-convex optimization
problem:
: 1 k k k k k o\2
Inin, r(e) + 5”5‘3 — (@i — B/ (V/i(®]) + yi) = b0) [(pry-1
Le.,
2 = prox, pr(xf — PH(V fi(af) +yf) — b)),
which finishes the proof. O

16

Under review as a conference paper at ICLR 2025

B.3 PROOF OF THEOREM[Z]
Proof. LetZ) = {i € V| [z]; = max;cy[2]];} be the set of indices i’s with the largest [2];’s. We
first prove the following statement:
e = NG CL. (31)

Suppose there exists i € Z; and j € N (¢)\Z;, it holds that [z}]; > [2}];. Define 6 = [27]; —[2}]; > 0
and choose an € € (O
k> K,

2] = [l < e |-l <e [lfli— [zl <e Vievi<i<d
By iteration step (23) we have

it =il +) PE (= = =),
JEN(3)

Fix k > K and let N} = {j € N(3)|[zF "], > [z k“] LN ={j e NG)|[zFM) < [Z;?H]l},

, ﬁ%) By convergence property there exists K > 0 such that for any

we have

m(8 —2€) <[p; L= = (=) < D [Pz - =)
TENL
S - - 3 Bl -)
TEN>

<2+ M(n—1)-(2¢),
which implies
mé < 2(nM + 1)e,

a contradiction. Consequently, (3T) holds and thus together with the strongly connectivity we obtain
=V,ie,[z{]; = [23]; = - -+ = [2}];. By arbitrariness of /, we conclude that there exists z* € R?
such that z;-‘ = x* for any 7 €). By iteration step and [[p} ; oli| < M we have

= lim [2F — Z pw’2 O (2F! — ;”1) =z, Vie.
JEN(3)
By iteration step (22)), we have

szJrl :proxr,Diag(pf) (Clﬁf - pf © (Vfl(wf:) + yf))

. 1
:argrr}jlnr(:c) + 5”:2 - Zlif +pf © (vfl(wf:) + yf)H(QDiag(pi))*lv
xER

which is equivalent to
0€ a7"(i)+ (Diag(pi)) " (=7 —af +pf © (Vfi(a}) +yi))

& — Vfi(z}) -y — (Diag(pi) ' (2] —af) € (=),
Denote gF ™! = —V f;(zF) — yF — (Diag(p;)) "1 (2F — 2F) € Or(2F™), we have
r(@) 2 r(z) + gl e - 2, veeR? (32)

Since 7 € F(R?) inherits lower semi-continuity, and 0 < [pf];' < 1/m, implies

r(x)>hm1nfr(KRR hm(ML — 2F T

>r(x*) + (-Vfi(z*) -y, o —a*), VxR

As aresult, g7 := —V fi(z*) — yI € Or(z*). The last thing is to show x* € argmingcga f(x) +
r(x). Adding (23] for alli € V, we have

Yoyt =X (et Y phao G -2t

i€V i€V JEN(3)

17

Under review as a conference paper at ICLR 2025

k k k k k
:Zyi + Z (pi,j,l - pj,i,l) © (Zz'H - Zj+1)

i€V {i,j}e&
=Yy, k>0, (33)
i€V

where the last equality uses pﬁ 1= pﬁi,l. By initialization y{ = 0, |i implies

*_ 1 k: 1 =
291 = Jim D vi = fim 04 =0a
K]

i€V
thus
1« 1«
or(@) > -3 gi = 1> V(@) -yl = Vi)
i=1 i=1
which is exactly * € arg mingcpa f(z) + (). O

C ILLUSTRATION OF MILODO FRAMEWORK

To better understanding the two components, i.e., the MiLoDo update rules (22)-(24) and the LSTM
parameterization (2Z3)-(27) and how they make up the whole MiLoDo optimizer, we illustrate the
interaction beween them in Fig. [T0]

VEi(xP),yE AT - Y)

MiLoDo update rules (22)-(24) LSTM parameterization (25)-(27)

k =k k
P {Bij 1 ey {Pij 2t jen (i)

Figure 10: The interaction between MiLoDo update rules — and the LSTM parameterization

-

D ROBUST IMPLEMENTATION OF DECENTRALIZED ALGORITHMS

Common implementation. Traditional decentralized algorithms like Prox-ED, PG-EXTRA, Prox-
ATC use a doubly-stochastic gossip matrix W for information aggregation. A common implementa-

tion of the aggregation step X = W X is to compute
JEN(3)

on each node i. However, (34) is not a robust implementation. As illustrated in Fig.[TT} using (34)
and the same hyperparameter settings, Prox-ED with FP32 fails to converge to the desired precision
while that with FP64 succeeds.

Robust implementation. When represented with FP32, the elements in matrix W tend to have
bigger noise, which largely violates the row-stochastic property. Continually applying such an inexact

18

Under review as a conference paper at ICLR 2025

estimation of W is the major reason behind the failure of the common implementation. This motivates
us to consider the following equivalent implementation:

T;=T; — Z wij (T — x5). 35)
FEN(3)
Implementation (33) is more robust as it maintains the row-stochastic property of the gossip matrix
no matter how much noise is added to TV by the low presentation precision. As illustrated in Fig. [IT]
Prox-ED with robust implementation successfully converges to the desired precision under the same
hyperparameter settings.

10 —<— FP32-Common
10-11 FP64-Common
—>— FP32-Robust
10734 —e— FP64-Robust
%
£ 10—5,
e
L 10774
x
w 107°
10-11/
10-13/

[03 06 0.9 1.2 1.5
Iteration (x1e3)

Figure 11: Testing results on synthetic LASSO(10, 50, 10, 0) of Prox-ED with different implementa-
tion under varying precision settings. ’Common’ and "’Robust’ represent common implementation
(34) and robust implementation (35), respectively.

Robustness of MiLoDo. It’s worth noting that, the structured update rules of MiLoDo does not
depend on the doubly-stochastic matrix W. The utilization of term zf — z;’? when aggregating
neighboring information in update rules of MiLoDo is also similar to the robust implementation (33).
In practice, we observe that applying FP32 in our experiments does not affect the exact convergence
of MiLoDo-trained optimizers.

E EXPERIMENTAL SPECIFICATIONS

E.1 TRAINING STRATEGIES

Initialization strategies. We consider two initialization strategies for MiLoDo training: random
and special initialization. In random initialization, all learnable parameters {0y ;, 05,0y, ; }icy are
randomly initialized using PyTorch defaults. In special initialization, parameters are initialized to
mimic traditional decentralized algorithms by setting the weights of the final affine layers to zero and
biases to desired output values. Specifically, given the gossip matrix W = (w;;)nx» and learning
rate ~y utilized in Exact-Diffusion, biases in the final affine layers for p}, pf’; ., p}; , are initialized
as v, In(w;;/(27)), wi; /2, respectively. Applying In(-) accounts for Exponential activation.

We would like to remark that each of the two initialization strategies has its pros and cons. With
random initialization, the objective function value is likely to blow up quickly, leading to excessively
large gradients or meaningless values (e.g., inf/NaNs). With special initialization, it may be too close
to local minima, such that MiLoDo might not gain enough advantage over handcrafted algorithms.

Multi-stage training. As discussed above, random initialization of the MiLoDo optimizer results in
numerical instability during training. To address this issue, we initially teach the model to optimize
within a few iterations by using a short training length such as (K, K') = (5, 10). As the model starts
exhibiting desired behaviors, such as Zi:l f(x*) > lec()ZG (*), we progressively increase the
training length. This iterative process is repeated across several stages until reaching a training length
of (K7, K) = (20,100). Empirically, employing multi-stage training also enhances performance for
special initialization. With multi-stage training, both initialization approaches yield MiL.oDo-trained
optimizers with comparable performance, prompting our focus on special initialization due to its
reduced warmup stages.

19

Under review as a conference paper at ICLR 2025

The multi-stage training method draws inspiration from curriculum learning in reinforcement learning,
where models are first trained on easier tasks before progressing to more difficult ones. In our context,
we initially train the optimizer with a short iteration length, which is easier to train. For instance,
consider the extreme case of training an optimizer for just one iteration — this is analogous to training
a simple one-layer neural network, which is inherently easier. Once this simpler stage is complete,
we gradually extend the iteration length. Starting with easier tasks and then using the results of this
stage to initialize the next stage with more complex tasks (longer iteration processes in our context)
significantly improves training stability compared to starting directly with difficult tasks from scratch.

E.2 TARGET PROBLEMS

LASSO regression. Decentralized LASSO regression problem with shape (n,d, N,) is defined as:

n

. 1 2
m gy 2 s =l Al

where A; € RV*? and b; € RY are kept on nodes i out of a total of n nodes. To generate LASSO
optimizees with shape (n,d, N, \), we first sample A € R"V*4 and a vector z* € R? from normal
distribution. Then, we pick 75% of *’s entries with the smallest magnitude and reset them to zero.
Afterwards, we generate b = Ax* + €z, where € = 0.1 is the noise scale and z € RN ig sampled
from standard Gaussian. Finally, we distribute A and b evenly to each node so that each A; € RV>4
and b; € RV,

Logistic regression. Decentralized logistic regression problem with ¢;-regularization and shape
(n,d, N, \) is defined as:

n

N
1 1
in — = b In(1 —a 1—b;;)In(1 T A ,
361%1{% n; N; J Il(-l—exp(a’zjw)) +(J) H(—&-exp(a”:c)) + HwHI
where A; = (a},---a]y)" € RY*?and b; = (bi1,--- ,bin) " € {0,1}V. To generate synthetic

logistic regression optimizees with shape (n, d, N, \), we first sample A € R"V*? and z* € RY
from normal distribution. Then we pick 75% of *’s entries with the smallest magnitude and reset
them to zero. Afterwards, we generate b = (by,--- ,b,n)' by b; = Liaq7z+>0}- Finally, we

distribute A and b evenly to each node so that each A; € RV*4 and b; € {0,1}V.

MLP training. We consider a decentralized MLP training problem using MNIST dataset. The model
structure is illustrated as in Fig.[T2] The total number of trainable parameters in the MLP is 13002.
The optimizees are constructed by randomly selecting data from MNIST’s training dataset for all
nodes.

ResNet training. We consider a decentralized ResNet training problem using CIFAR-10 dataset.
The model structure is illustrated as in Fig.[I3] The total number of trainable parameters in the
ResNet model is 78042. The optimizees are constructed by randomly selecting data from CIFAR-10’s
training dataset for all nodes.

E.3 IMPLEMENTATION DETAILS

Model structure. We use the same model structure throughout our experiments. Specifically, ¢ ;
has input dimension 2 and output dimension 1 with ReLU activation, ¢ ; has input dimension |\ (7)]
and output dimension | (7)| with Exponential activation. ¢ ; has input dimension |A/(z)| and output
dimension [N (z)| with ReLU activation. We use ReLU activation in the middle of the 2-layer MLP.
The hidden/output dimensions of the LSTM cells, input/hidden/output dimensions of the MLP are all
set to 20.

Training details. In our experiments, we employ special initialization and a multi-stage training
strategy. As described in Sec.[5] we continually train MiLoDo in five stages with training lengths
(Kr,K) = (5,10), (10,20), (20,40), (40, 80) and (20,100) by Adam with learning rate 5e-04,
le-04, 5e-05, 1e-05, 1e-05, for 20, 10, 10, 10, 5 epochs, respectively. Throughout all stages, the

20

Under review as a conference paper at ICLR 2025

(Conv 16, 3X3)|
Batch Norm + RelU

v
Conv 16, 3X3
Batch Norm + RelLU
Conv 16, 3x3
Batcthorm

(Add + RelU)

- A2
Linear 784x16 Conv 32, 3x3, stride 2
RelLU Batch Norm + ReLU [Conv 32, 1x1, stride 2
Linear 16 x16 Conv 32, 3X3 [Batch Norm
RelLU Batch Norm
Linear 16x10 I
Softmax (Add + RelU)

Conv 64 3;3 stride 2
. Batch Norm + ReLU [Conv 64, 1x1, stride 2
Figure 12: MLP model structure. el [BatCth"""

Batcthorm

2
Add + RelU

Average Pooling
Linear 64x10
Softmax

Figure 13: ResNet model structure.

Adam optimizer is configured with momentum parameters (31, S2) = (0.9,0.999) and the batch size
is fixed to 32.

LASSO with real data. To generate LASSO(10, 200, 10,0.05) from BSDS500(Martin et al.,[2001)
dataset, we first extract a 10 x 10 patch from testing images and flatten to vector b € RV, We
normalize b by subtracting the mean. Afterwards, we conduct K-SVD(Aharon et al., |2006) to obtain
A € R100%200 Finally, we distribute A and b evenly to each node so that each A; € R19%200 and
b; € R19. We generate a total of 1000 instances as the testing set in the experiments.

Construction of meta training set. As illustrated in Sec.[5] the meta training set consists of synthetic
LASSO problems with 20 different shapes: (10,500, N,0.1) where N € {5,10,15,--- ,100}. We
generate 64 distinct problem instances for each shape, hence 1280 instances in total.

Evaluation metric. We evaluate solution X = &/, 2, ,--- , 2,]T of decentralized problem () via

loss f (&) + r(&) and consensus error L Y% | |l@; — Z||2, where & = L Y% | @;. All testing curves
display averaged performance on 512 instances, except for problems with over 10,000 dimensions
which are highly time-consuming to test. For those high-dimensional problems, we display testing

performance on a single instance chosen randomly, as results on other instances are quite similar.

Implementation of baseline algorithms. Following Appendix D} we have the following robust
implementation for the considered baselines, where the learning rate is manually tuned optimal
for each experiment, and we use W = (wi;)nxn With wi; = 1/3 - Lgi—; or {i,j}ee} as the doubly-
stochastic goissp matrix for the ring topology.

¢ Prox-DGD. Initialized with ¥ = 0,4, Prox-DGD uses the following update rules:
2T =a) — Vi),
ot =prox, [2} - Z wij (2T — 2
JEN (1)
* Prox-ATC. Initialized with ¥ = §? = 20, Prox-ATC uses the following update rules:

zH =af — AV fi(2),

Skl _ =~k k+1 k

zp =Y -7tz

k+1 _o~k sk+1 sk+1 sk+1
Yy, =2y -z Z wij (% —Zj)

JEN(9)
k41 k+1 k+1 k+1
Yy, =Y § wi; (y; Y,),
JEN (D)

k41 _ k41
x;" =prox,,.(g;"").

21

Under review as a conference paper at ICLR 2025

* PG-EXTRA. Initialized with ¥ = 0,4, PG-EXTRA uses the following update rules:

2 =al — N wi(af - 2k) -V ixh),

JEN ()
TR e if k=0,
S {zf“ & - g Y e wi (@i T = 2T Vi), ifk >0,
ol =prox., (2] 11).

* Prox-ED. Initialized with) = g9 = 2 = 04, Prox-ED uses the following update rules:

2 =al -V i),

k

'Rl

. 1 i

g =yt - 3 > wiylyf T -y,
JEN (i)

—prox,,, (§57).

k+1 _ ~k k+1
yi =Y, + ZZ- —Z

kT
Computational resources. We conduct all the experiments within a single NVIDIA A100 GPU
server with a GPU memory of 80G.

E.4 ADDITIONAL RESULTS

Training on logistic regression. Fig.[I4]displays the in-distribution testing results of MiLoDo opti-
mizer trained on a specialized dataset including 512 synthetic Logistic(10, 50, 100, 0.1) optimizees.
Fig.[I3]displays the testing results of MiLoDo optimizer trained on a specialized dataset including
512 real data Logistic(10, 14, 100, 0.1) optimizees using Census Income (Kohavi, 1996) dataset.

More testing results of MiL.oDo optimizer trained on the meta training set. As a supplement to
the results in Sec. [5] Fig.[I6] we further tests MiLoDo trained on the meta training set on synthetic
LASSO(10, 20000, 1000,0.1). While trained on non-smooth optimizees only, the MiLoDo-trained
optimizer is consistently fast in solving smooth optimization problems such as linear regression, as
illustrated in Fig.[T7]

Testing results of MiLoDo optimizer trained on more complex topologies. Beyond the findings
presented in Sec[5] and Fig[§] (left), further tests were conducted on commonly used topologies.
FigI8 demonstrates that MiLoDo optimizer exhibits consistent performance, achieving a 2 to 3 times
acceleration, which highlights its scalability and robustness across various topologies.

Testing results of MiLoDo optimizer trained on a larger network. Extending the analyses
discussed in Sec[5|and illustrated in Fig[8] (right), additional experiments were carried out on networks
with 100 nodes. As depicted in Fig[23] MiLoDo optimizer maintained a high level of effectiveness,
delivering a 2x to 3x speedup. This not only confirms the optimizer’s efficiency but also highlights
its scalability and robustness in larger networks.

Testing results under strict dataset separation strategies. In order to better validate the gen-
eralization ability and performance of MiLoDo optimizer, we further validate its performance
on the CIFAR-10 dataset, where data subsets used for training the optimizer, optimizees and
computing the test accuracy, are strictly different. As illustrated in Fig[T9} MiLoDo optimizer
trained on ResNet(5, 78042, 500, 0) performs consistently better than other baseline algorithms on
ResNet(5, 78042, 5000, 0).

Comparison with existing step-size-tuning algorithms. Existing step-size-tuning algorithms in
decentralized optimization, e.g., D-NASA (Li et al.,[2024), DADAM (Nazari et al.,|2022) and Kuruzov:
et al., primarily focus on smooth problems. Consequently, we compare MiL.oDo optimizer with
D-NASA, DADAM and Algorithm 1 in|Kuruzov et al.| on smooth, LASSO(10, 300, 10, 0) optimizees.
As illustrated in Fig[20] MiLoDo optimizer clearly outperforms these baseline algorithms.

Generalization to higher data heterogeneity. We tested the training of a 3-layer MLP on MNIST
while generating data distributions with varying degrees of heterogeneity using Dirichlet sampling,
where the larger the Dirichlet concentration parameter « is, the more identical the distributions are

22

Under review as a conference paper at ICLR 2025

(Hsu et al.l 2019). We trained MiLoDo optimizer on MLP(10, 13002, 1000, 0) using the uniformly
distributed MNIST dataset which inherits low data heterogeneity and tested it in high heterogeneity
scenarios with &« = 100, 10 or 1, to assess its generalization ability. The results in Fig[2T|demonstrate
that, even without being explicitly trained on highly heterogeneous data, MiLoDo outperforms other
algorithms in terms of convergence speed and accuracy. This suggests that MiLoDo does not simply
"memorize" the data distribution of specific optimization tasks but instead learns how to adaptively
address optimization problems based on their underlying characteristics.

.y —
10 —<— Prox-DGD 1072 —<— Prox-DGD
10-3 —4&— PG-EXTRA _a —4— PG-EXTRA

- > Prox-ATC 10 —— Prox-ATC

% 1075 —e— Prox-ED ‘g‘ 10-6 —e— Prox-ED

w 10-7 —=— MiLoDo 5 . —=— MiLoDo

- 1 10~

o) 5

bt 1079 %10—10

—;; 10711 g 1012

g o

~ 1013/ 10-14

- -16 - e
10-15 10 .. ~Pr
| I -
o 1 2 3 (1] 2 4 6 8 10
Iteration (x1e2) Iteration (x1e2)

Figure 14: MiLoDo optimizer trained on synthetic Logistic(10, 50,100, 0.1) and tested on unseen
Logistic(10, 50, 100, 0.1) instances.

10°

10-1 —<&— Prox-DGD —<&— Prox-DGD
s —4— PG-EXTRA 102 —4+— PG-EXTRA
10~
~ ~»— Prox-ATC 10-4 —»— Prox-ATC
X -
2 10-5 —e— Prox-ED s . —e— Prox-ED
> 107 —#— MiLoDo 5 107 —=— MiLoDo
o) 5 1078
X o 2
I-l.- 3 10-10
z 107 S 1012
L 0-13 ©
10 10-14
10715 10-16
o 1 2 3 4 (1] 2 4 6 8
Iteration (x1e3) Iteration (x1e3)

Figure 15: MiLoDo optimizer trained on Logistic(10, 14,100, 0.1) with Census Income (Kohavil
1996) dataset and tested on Logistic(10, 14, 100, 0.1) with unseen data in Census Income dataset.

101/ 10t
—< Prox-DGD : —<— Prox-DGD
10714 ~4— PG-EXTRA 107t —————— PG-EXTRA
¥ 1073 ' :’°""2;° _ 10° —— Prox-ATC
= —&— Prox-| i
£ 10754 —=— MiLoDo £ 10~ o= firoxED
~ frr} —#— MiLoDo
g 1077 3 1077
= "]
107y § 10
X 1071, § 101
. o
~10-13] 10713
10154 10-15
0 0.2 0.4 0.6 0.8 1.0 1} 0.2 0.4 0.6 0.8 1.0
Iteration (x1e5) Iteration (x1e5)

Figure 16: MiLoDo trained on meta learning set and tested on LASSO(10, 20000, 1000, 0.1).

23

Under review as a conference paper at ICLR 2025

104 —<— Prox-DGD 10° —< Prox-DGD
~#— PG-EXTRA . ~4— PG-EXTRA
10* 10-2
—»— Prox-ATC —»— Prox-ATC
10-2 —e— Prox-ED E 10~ —e— Prox-ED
% —#— MiLoDo = —#— MiLoDo
X w 40-6
L 10°5 2
- g 107°
X 108 2
e < 10-10
10~ v 10-12
10-14 10-14
10717 L~ T T T T T T T T T T T
o 0.2 04 06 08 1.0 1.2 0 0.5 1.0 1.5 2.0
Iteration (x1ed4) Iteration (x1ed4)

Figure 17: MiLoDo optimizer trained on meta training set and tested on linear regression problems

as LASSO(10, 15000, 1000, 0).

(a) (b) © (@

Figure 18: Topology and testing results on (a) LASSO(9,270,10,0.1) on grid topology,
LASS0(10,300,10,0.1) on tree topology, (c) LASSO(10,300,10,0.1) on exponential topology,
LASS0(10,300,10,0.1) on Erd6s-Rényi topology.

24

(b)
(d)

Under review as a conference paper at ICLR 2025

L —— Prox-DGD
PG-EXTRA
—— Prox-ATC 100%
100+
F —— Prox-ED 20%
r MiLoDo 80%
2 [70%
T L
L 2 60%|
g 50%|
[< a0%)
30%F : —— Prox-DGD
Joi} — pemma
r 10% —_ Pr_ox-ED
0 3 6 9 12 15 oo — Mitobo

o 3 6 9 12 15

Iteration(x1e2) Iteration(x1e2)

Figure 19: MiLoDo optimizer trained on ResNet(5, 78042, 500, 0) using the CIFAR-10 dataset and evaluated
on ResNet(5, 78042, 5000, 0), with strict separation between meta-training and testing datasets.

102 10°
0
10 10-2
102 S . .
~ £ 10 .
x 104 w —eo— MiLoDo
g 2 106 —s— D-NASA
~ 107 2 DADAM
5 s 3 10-8 == Kuruzov (Alg 1)
w 10 <
—e— MiLoDo 8 10-10
10-10 —=— D-NASA
10-12 DADAM 10-12
—— Kuruzov (Alg 1)
107141 T r - - T 107141 T r r - -
[} 3 6 9 12 15 (1] 3 6 9 12 15
Iteration (x1e2) Iteration (x1e2)

Figure 20: Testing results on LASSO(10,300,10,0.0) of MiLoDo optimizer and step-size-tuning baseline
algorithms.

E.5 ABLATION STUDIES

Ablation studies on the mixing matrices for baseline algorithms. The adaptive preconditioners and
mixing weights are critical to MiLoDo’s performance gain. To better address MiLoDo’s advantages,
we conduct ablation experiments on the mixing matrices used in the baseline methods. Fig.[22]
demonstrates that the performance of using strategically designed and fixed weights (1/3 in our
experiments) are almost the same , which provides a stronger validation of MiLoDo ’s advantages.

Ablation on base update rules (I12)-(I4). We specify detailed experimental setups for directly
learning optimizers from the base update rules (12)-(14), as discussed in Sec.[5] For simplicity, we
use r = 0 so that the implicit rule in (T2) can be explicitly modeled as

z =2l - mE(Vi()),yi’ 0ia).

Without coordinate-wise structures, the scale of the neural network has to be correlated with the opti-
mizees” dimension. Consequently, we fix the problem dimension d = 10 and use LASSO(10, 10, 5, 0)
as the training and testing optimizees. We parameterize each of the base update rules with a LSTM
model consists of a single LSTM cell and a 2-layer MLP with ReLLU activation. The input sizes of
the LSTM models are 20, 10| (¢)|, 10|N (2)| for my;, s;, u;, respectively. The output sizes are 10
according to the problem dimension. All hidden dimensions in the LSTM cells and MLPs are set to
100. We use random initialization and multi-stage training strategy similar to MiLoDo to train the
parameterized base update rules.

Ablation studies on the multi-stage training method. The stable training of optimizers in the
Learning to Optimize field is a widely recognized challenge. A commonly used approach is the
single-stage training strategy, where the optimizer is trained for many epochs with a fixed training
length of (K, K') = (20, 100). However, we observed that this approach is highly sensitive to the
choice of training hyperparameters. Specifically, when the learning rate is too small or the number of

25

Under review as a conference paper at ICLR 2025

—— Prox-DGD —— Prox-DGD —— Prox-DGD
—— PG-EXTRA —— PG-EXTRA —— PG-EXTRA
1000 —— Prox-ATC —— Prox-ATC —— Prox-ATC
E —— Prox-ED o —— Prox-ED —— Prox-ED
—— MiLoDo 0% —— MiLoDo
< — DAPG % [—— DAPG <
reg —— ODAPG g i 0%
10711
] 1 2 3] 1 2 3 a4 o 2 a 6 8 10
Iteration (x1e3) Iteration (x1e3) Iteration (x1e3)
100% 100% 1.0
90% 90%/- 0.9~
80% 80% 0.8-
70% 70% 0.7-
g 60% g 60% go.6r
© 5 —— Prox-DGD 14 o —— Prox-DGD © —— Prox-DGD
3 50% —— PG-EXTRA 3 50% —— PG-EXTRA 3051 —— PG-EXTRA
& 40% —— Prox-ATC & 40% —— Prox-ATC & 0.4F —— Prox-ATC
30% —— Prox-ED 30%F —— Prox-ED 0.3F —— Prox-ED
—— MiLoDo —— MiLoDo —— MiLoDo
o o L
20% — DAPG 20% —— DAPG 0:2 — DAPG
10% —— ODAPG 10%- —— ODAPG 0.1 —— ODAPG
0% 0% 0.0
o 1 2 3 o 1 2 3 4 o 2 4 6 8 10
Iteration(x1e3) Iteration(x1e3) Iteration(x1e3)
(a) (b) (©)

Figure 21: MiLoDo optimizer trained on MLP(10, 13002, 1000, 0) using the MNIST dataset and tested on
MLP(10, 13002, 3000, 0) under varying heterogeneity levels: (a) a = 100, (b) o = 10, (¢) a = 1.

—— ED-Topol
—4— ED-Topo2
10 ~—»— ED-Topo3
—e— ED-Topod

—#— MiLoDo

F(x) - F(x*)

2 3 a 5
Iteration (x1e3)

(b)

Figure 22: Ablation on mixing matrices. (a) describes different choices of mixing matrices, where matrix 1 is
computed by solving the FMMC problem via projected subgradient algorithm [2004); (b) displays
testing results of solving LASSO problem by Prox-ED with different mixing matrices, showcasing that the
1/3-strategy (matrix 2) is already good enough.

(@)

epochs is insufficient, the model tends to underfit. Conversely, when the learning rate or the number of
epochs is too large, the loss may explode during training, leading to instability. This hyperparameter
sensitivity poses significant challenges to the stable and reliable training of the MiLoDo optimizer.

To address these challenges, we propose a multi-stage training strategy designed to improve training
stability by dividing the training process into multiple stages with distinct objectives. To validate
the effectiveness of this approach, we conducted ablation studies comparing the conventional single-
stage training method and the proposed multi-stage training strategy. Specifically, we evaluated the
performance of trained optimizers on the LASSO optimization problem (10, 300, 100, 0.1) under
various hyperparameter settings, with detailed configurations summarized in Table 2]

In the single-stage training strategy, where (K, K) = (20, 100) is fixed, we observed that small
changes in the learning rate or the number of epochs resulted in significant variations in performance,
as shown in Fig[24a] This highlights the high sensitivity of this approach to hyperparameter configu-
rations. In contrast, the multi-stage training strategy demonstrated significantly reduced sensitivity by
dividing the process into multiple stages, as shown in Fig[24b] For simplicity, we ablated only the
hyperparameters of the first stage. This simplification is reasonable, as our observations indicate that
early-stage training has a critical impact on the final performance. Thus, modifying hyperparameters
in the first stage alone is sufficient to validate the robustness and stability of the multi-stage training
strategy without compromising the reliability of our conclusions.

26

Under review as a conference paper at ICLR 2025

20
10 < < <« —<+ Prox-DGD \ < < <+ —< Prox-DGD
1000 PG-EXTRA 107t PG-EXTRA
—»— Prox-ATC s —— Prox-ATC
_ = _3|
_ 1072t —e— Prox-ED s 10 —e— Prox-ED
% 10-4- —=— MiLoDo frr 10-5 —=— MiLoDo
e 4] -r
< 1075} 2
2 g 1071
w
= 1078 5
O 107°F
107101
—-11[
107124 1o
o 2 4 6 8 10 o 2 4 6 8 10
Iteration(x1e4) Iteration(x1e4)

Figure 23: MiLoDo optimizer trained on a large network with 100 nodes, and tested on LASSO(10,
300, 10, 0.1).

103 103
—e— Setting 1 —eo— Setting 1
102 1 Setting 2 1024 Setting 2
. —A— Setting 3 N —4— Setting 3
- 10 —¥— Setting 4 - 10%4 —¥— Setting 4
*5 100 —o— Setting 5 *5 100/ —4— Setting 5
w —e— Setting 6 w —e— Setting 6
S 10-1 Setting 7 S 10-1
w w
1072 1072
103 103
10741~ . . \ . T 1074 — - ; : . -
o 2 4 6 8 10 o 2 4 6 8 10
Iteration (x1e3) Iteration (x1e3)

(a) Single-stage training: the optimizer is trained (b) Multi-stage training: the optimizer is trained in

with a fixed training length of (Kr,K) = multiple stages, and ablation studies are conducted
(20, 100) while varying the learning rate and num- by modifying the hyperparameters of only the first
ber of epochs. stage.

Figure 24: Comparison of hyperparameter settings between single-stage and multi-stage training.

Table 2: Hyperparameter settings in single-stage and multi-stage training strategies.

Single-Stage Training (K7, K = 20, 100)

Setting Epochs Learning Rate

1 20 0.0001
2 40 0.0001
3 60 0.0001
4 20 0.0005
5 40 0.0005
6 60 0.0005
7 20 0.001

Multi-Stage Training (K7, K = 5,10)

Setting Epochs Learning Rate

1 20 0.0001
2 20 0.0005
3 20 0.001
4 40 0.0001
5 40 0.0005
6 40 0.001

27

Under review as a conference paper at ICLR 2025

E.6 HYPERPARAMETER SETTINGS

We specify the manually-tuned optimal learning rates of baseline algorithms for all the experiments
in Table 3]

Table 3: Optimal learning rates of baseline algorithms chosen in different experiments.

Experiment Prox-ED PG-EXTRA Prox-ATC Prox-DGD DAPG ODAPG
LASSO(10, 300, 10,0.1) 0.03 0.02 0.025 0.04 0.01 0.02
LASSO(10, 30000, 1000,0.1) 0.03 0.02 0.025 0.04 0.01 0.02
LASSO(10, 200, 10,0.1) 0.05 0.04 0.045 0.05 0.02 0.03
LASSO(10, 20000, 1000,0.1) 0.05 0.04 0.045 0.05 / /
LASSO(10, 15000, 1000,0.0) 0.08 0.05 0.085 0.09 / /
Logistic (10, 50, 100, 0.1) 1.0 0.8 0.4 1.0 / /
Logistic (10, 14,100, 0.1) 1.9 1.7 1.8 2.0 / /
MLP(10, 13002, 5000, 0) 0.09 0.06 0.06 0.05 003 0.055
ResNet(5, 78042, 5000, 0) 0.1 0.07 0.08 0.05 0.05 0.07

28

	Introduction
	Preliminaries
	Mathematics-inspired Update Rules for Decentralized Optimization
	Base update rules
	Structured update rules

	MiLoDo: An Efficient Math-inspired L2O Framework
	Making structured update rules efficient to learn
	LSTM Parameterization for MiLoDo update rules
	Training MiLoDo framework

	Experimental results
	Conclusions and Limitations
	More related work
	Missing proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2

	Illustration of MiLoDo framework
	Robust implementation of decentralized algorithms
	Experimental specifications
	Training strategies
	Target problems
	Implementation details
	Additional results
	Ablation studies
	Hyperparameter settings

