
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A MATHEMATICS-INSPIRED LEARNING-TO-OPTIMIZE
FRAMEWORK FOR DECENTRALIZED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most decentralized optimization algorithms are handcrafted. While endowed
with strong theoretical guarantees, these algorithms generally target a broad class
of problems, thereby not being adaptive or customized to specific problem fea-
tures. This paper studies data-driven decentralized algorithms trained to exploit
problem features to boost convergence. Existing learning-to-optimize methods
typically suffer from poor generalization or prohibitively vast search spaces. In
addition, the vast search space of communicating choices and final goal to reach
the global solution via limited neighboring communication cast more challenges
in decentralized settings. To resolve these challenges, this paper first derives the
necessary conditions that successful decentralized algorithmic rules need to satisfy
to achieve both optimality and consensus. Based on these conditions, we propose a
novel Mathematics-inspired Learning-to-optimize framework for Decentralized
optimization (MiLoDo). Empirical results demonstrate that MiLoDo-trained al-
gorithms outperform handcrafted algorithms and exhibit strong generalizations.
Algorithms learned via MiLoDo in 100 iterations perform robustly when running
100,000 iterations during inferences. Moreover, MiLoDo-trained algorithms on
synthetic datasets perform well on problems involving real data, higher dimensions,
and different loss functions.

1 INTRODUCTION

With the ever-growing scale of data and model sizes in modern machine learning and optimization,
there is an increasing demand for efficient distributed algorithms that can harness the power of
multiple computing nodes. Traditional centralized approaches that rely on global communication and
synchronization face significant communication overhead and latency bottlenecks. This challenge
has given rise to decentralized learning, an emerging area that promises to alleviate these issues.

In decentralized learning, computing resources like CPUs/GPUs (known as nodes) are connected
via a network topology and only communicate with their immediate neighbors, averaging model
parameters locally. This neighbor-based averaging eliminates the need for global synchronization,
drastically reducing communication costs compared to centralized methods. Moreover, decentralized
algorithms exhibit inherent robustness, maintaining convergence despite node or link failures, as long
as the network remains connected. Decentralized optimization has emerged as a standard paradigm
for distributed training without centralizing data (Liu et al., 2024), offering significant advantages in
communication efficiency (Lian et al., 2017) and privacy protection (Yu et al., 2024), making it a
promising approach for privacy-preserving distributed learning across data centers.

Motivations for data-driven decentralized algorithms. Most existing decentralized algorithms
are handcrafted, driven by optimization theories and expert knowledge. Notable examples include
primal algorithms such as DGD (Nedic & Ozdaglar, 2009; Yuan et al., 2016) and Diffusion (Lopes &
Sayed, 2008; Chen & Sayed, 2012), dual algorithms like dual averaging (Duchi et al., 2011), and
primal-dual algorithms such as decentralized ADMM (Shi et al., 2014), EXTRA (Shi et al., 2015a),
Exact-Diffusion (Yuan et al., 2018b) (also known as NIDS (Li et al., 2019)), and Gradient-Tracking
(Nedic et al., 2017; Xu et al., 2015; Di Lorenzo & Scutari, 2016). These handcrafted decentralized
algorithms are designed to address a wide range of optimization problems, making them versatile
and broadly applicable. Furthermore, their convergence guarantees are valid in worst-case scenarios,
ensuring strong reliability. However, due to their emphasis on theoretical guarantees and broad

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

applicability, handcrafted algorithms often fail to leverage problem-specific features in data and thus
exhibit sub-optimal performance in practice. This motivates us to explore data-driven decentralized
algorithms that exploit problem-specific features to improve performance.

Learning to Optimize (L2O). Our main idea draws inspiration from the L2O paradigm (Gregor
& LeCun, 2010; Andrychowicz et al., 2016; Bengio et al., 2021; Monga et al., 2021; Chen et al.,
2022) that utilizes machine learning techniques to develop optimization algorithms (also known as
“optimizers”). Specifically, L2O employs a data-driven procedure where an optimizer is trained by its
performance on a set of representative example problems (which we call “optimizees”). Through this
training process, the learned optimizer becomes tailored and adaptive to the structures of problems
similar to those in the training set, potentially outperforming general-purpose, handcrafted algorithms.

Two mainstreams in L2O are algorithm unrolling (Gregor & LeCun, 2010; Monga et al., 2021) and
the generic L2O (Andrychowicz et al., 2016). Algorithm unrolling conceptualizes each iteration of a
certain hand-crafted optimization algorithm as a layer in a neural network, inducing a feed-forward
network. In contrast, the generic L2O does not impose any prior mathematical knowledge on the
optimizer to be learned. Instead, it crudely parameterizes the optimizer with a recurrent neural
network and learns it through end-to-end training.

Challenges in applying L2O to decentralized optimization. While algorithm unrolling and generic
L2O have shown strong empirical successes (Andrychowicz et al., 2016; Lv et al., 2017; Wichrowska
et al., 2017; Wu et al., 2018; Metz et al., 2019; Chen et al., 2020a; Micaelli & Storkey, 2021; Metz
et al., 2022b; Liu et al., 2023; Gregor & LeCun, 2010; Moreau & Bruna, 2017; Chen et al., 2018; Liu
& Chen, 2019; Ito et al., 2019; Yang et al., 2016; Zhang & Ghanem, 2018; Adler & Öktem, 2018;
Solomon et al., 2019), their direct application to decentralized settings poses several challenges.

• Memory bottleneck. Algorithm unrolling requires storing a neural network with as many layers
as optimization iterations, which easily exhausts available memory, especially as the number of
unrolled iterations increases. This situation becomes even more challenging in decentralized
optimization, where researchers are usually constrained to test their algorithms on simple target
problems (Nedic et al., 2017; Shi et al., 2014; Xu et al., 2015; Shi et al., 2015a; Yuan et al.,
2018b) within dozens of nodes (Chen & Sayed, 2012; Wang et al., 2021; Shi et al., 2015b; Xu
et al., 2015; Nedic et al., 2017), and we shall maintain much more memory than traditional
decentralized algorithms during the training stage.

• Vast search space. While more memory-efficient, the generic L2O faces a significant challenge:
how to parameterize an optimizer properly. The parameter space of the generic L2O is vast, ren-
dering its training highly ineffective. This challenge is exacerbated in decentralized optimization
due to the extra need to learn inter-node interaction (e.g., when and with whom to communicate,
and what information to exchange), thereby further expanding the parameter space.

• Consensus constraint. In decentralized optimization, nodes must achieve consensus through
local communication with immediate neighbors. This consensus constraint incurs significant
complexity to L2O, as nodes, with trained optimizers, must adapt their behaviors to ensure
convergence towards a common solution despite lacking global communication.

• Weak generalization. L2O often struggles to generalize to out-of-distribution tasks. Without
theoretical guidance, it is challenging for L2O to handle the more sophisticated loss landscapes
encountered in unseen problems. Refer to Section 4.4 and Figures 7 and 8 in Chen et al. (2022)
This challenge naturally carries over in decentralized L2O.

Contributions. To address the aforementioned challenges, this paper proposes a novel Mathematics-
inspired Learning-to-optimize framework for Decentralized optimization (MiLoDo). MiLoDo adopts
the generic L2O strategy to circumvent memory bottlenecks. However, instead of learning an
optimizer directly from an unconstrained parameter space, we introduce mathematical structures
inherent in decentralized optimization to guide MiLoDo’s learning process. This significantly narrows
the parameter space, enforces asymptotic consensus among nodes, and ensures generalization across
out-of-domain tasks. Our contributions can be summarized as follows:

• We derive fundamental mathematical conditions that learning frameworks for decentralized
optimization that converges quickly to the exact solution should satisfy. These conditions will
serve as guiding principles for training decentralized optimizers that can achieve consensus and
optimality.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Building upon these conditions, we derive a math-inspired neural network structure for MiLoDo.
Utilizing this structure, we demonstrate that for MiLoDo-trained optimizers, any fixed point
attains consensus across nodes and achieves the solution to the target decentralized problem.

• We develop effective training strategies for MiLoDo, which are critical to ensuring the fast and
robust convergence of learned optimizers. We conduct extensive experiments to validate the
strong generalization and superior convergence of MiLoDo-trained optimizers.

Experimental results. Our experimental results demonstrate that MiLoDo-trained optimizers exhibit
strong generalization to out-of-distribution tasks. Specifically, they can adapt to tasks with varying
data distributions, problem types, and feature dimensions. For instance, in the high-dimensional
LASSO problem illustrated in Fig. 1, while trained to operate for 100 iterations when solving prob-

0 1 2 3 4 5
Iteration (×1e5)

10−14

10−11

10−8

10−5

10−2

101

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
LPG-EXTRA
DAPG
ODAPG

0 50 100

100

102

Figure 1: Numerical comparison between decentralized
algorithms in solving LASSO problems of dimension
30,000. Experimental details are deferred to Sec. 5.

lems in the training dataset, the MiLoDo-trained
optimizer performs exceptionally well for way
more iterations (e.g., 200,000 iterations) when
solving unseen problems in the test dataset. Fur-
thermore, our observations indicate that even
when trained on LASSO problems of dimen-
sion 300, these optimizers can proficiently solve
the LASSO problem with dimension 30,000, as
shown in Fig. 1. More impressively, MiLoDo-
trained optimizer achieves about 1.5× ∼ 2×
speedup in convergence compared to state-of-
the-art handcrafted decentralized algorithms.
These phenomena justify the necessity to in-
corporate mathematical structures into L2O for
decentralized optimization.

Related work on decentralized L2O. Previous studies have designed various L2O algorithms for
decentralized optimization, most of which are based on algorithm unrolling. Kishida et al. (2020) and
Ogawa & Ishii (2021) use algorithm unrolling to learn decentralized algorithms for the consensus
problem. Noah & Shlezinger (2023) unrolls D-ADMM, while Wang et al. (2021) unrolls prox-DGD
and PG-EXTRA. Hadou et al. (2023) proposed an unrolled algorithm called U-DGD. However,
none of these learned optimizers can operate for more than 100 iterations due to the explosive
memory cost caused by algorithm unrolling. Additionally, a recent work Zhu & Lu (2023) employs
a reinforcement learning agent to control local update rules through a coordinator linked with all
computing nodes, which is not fully decentralized. More related works on decentralized optimization
and learning-to-optimize are discussed in Appendix A.

2 PRELIMINARIES

Generic L2O. Let’s begin by addressing a fundamental inquiry: Given a set of optimization problems
F , how can we learn an optimizer from this dataset? Consider a parameterized optimizer seeking to
minimize minx f(x), represented as:

xk+1 = xk +mk(∇f(xk);θ), k = 0, 1, · · · ,K − 1 (1)

where mk is a learnable update rule typically implemented as a deep neural network1 parameterized by
θ. To determine θ, we evaluate and refine the performance of the optimizer (1) over the initial K steps
on the dataset F . Specifically, this entails minimizing a loss function Ef∈F [

1
K

∑K
k=1 f(x

k)]. This
loss minimization process is termed training an optimizer, with the employed dataset F referred to
the training set. Upon determining θ, the learned update rule mk(·,θ) will map the gradient ∇f(xk)
to a desirable descent direction per iteration. Compared to standard gradient-based algorithms, such
an optimizer is tailored to F and ideally exhibits faster convergence on unseen problems similar to
those in the training set. In this context, the generalization of a trained optimizer involves two aspects:
generalizing to iterations beyond K and generalizing to diverse problems f ̸∈ F .

Decentralized optimization. In this paper, we aim to learn a decentralized optimizer. To formally
define decentralized optimization, we first introduce several definitions used throughout this paper.

1A common approach is using Recurrent Neural Network (RNN) ϕ: (mk,hk) = ϕ(∇f(xk),hk−1;φ),
where hk is the hidden state at iteration k, and φ represents the learnable parameters in the RNN model ϕ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 1 (Decentralized network topology): We use G = (V, E) to denote the undirected network
topology in a decentralized system, where V = {1, 2, · · · , n} represents the set of all n nodes and
E = {{i, j} | i ̸= j, node i can communicate with node j} denotes the set of all edges.

Throughout this paper, we assume the decentralized network is strongly connected, meaning there is
always a path connecting any pair of nodes in the network topology.
Definition 2 (Families of objective functions): We define the following function families:

F(Rd) =
{
f : Rd → R | f is closed, proper and convex

}
,

FL(Rd) =
{
f : Rd → R | f is convex, differentiable and L-smooth

}
.

This paper targets to solve the following problem over a network of n collaborative computing nodes:

x⋆ = arg min
x∈Rd

{
1

n

n∑
i=1

fi(x) + r(x)

}
(2)

Here, the local cost function fi(x) ∈ FL(Rd) is privately maintained by node i, and r(x) ∈ F(Rd)
is a regularization term shared across the entire network. We assume each node i can locally evaluate
its own gradient ∇fi(x) and must communicate to access information from other nodes. Additionally,
communication is confined to the neighborhood defined by the underlying network topology; if two
nodes are not direct neighbors, they cannot exchange messages.

A naive approach to extend generic L2O to decentralized optimization. A straightforward
approach to extend generic L2O (1) to the decentralized setting is as follows:

xk+1
i = xk

i +mk
i

(
{xk

j ,∇fj(x
k
j)}j∈N (i)∪{i};θi

)
, ∀i ∈ V, (3)

where xk
i represents the local variable maintained by node i at iteration k, mi denotes a learnable

update rule with parameter θi retained by node i, and notation N (i) signifies the set of immediate
neighbors of node i. While general, the naive update rule mi encounters two significant challenges:
(I) its vast search space, as finding an effective mi requires exploring all possible combinations of
the iterative variables, gradients, and neighbors’ information. This complexity makes it difficult to
identify a suitable rule, especially when training samples are limited. (II) The update rule in (3)
lacks a mechanism to ensure that all nodes reach consensus and converge to the common solution
of problem (2), i.e., x⋆

1 = · · · = x⋆
n = x⋆, where x⋆

i represents the limit of sequence of {xk
i }∞k=1.

These two limitations inspire us to introduce mathematical structures into gi to narrow the search
space and enforce asymptotic consensus among nodes.

3 MATHEMATICS-INSPIRED UPDATE RULES FOR DECENTRALIZED
OPTIMIZATION

This section establishes the mathematical principles underlying decentralized optimization and
utilizes them to motivate the learning-to-optimize update rules for decentralized optimization. In the
subsequent subsections, we will first determine the base update rules that decentralized optimizers
should follow, and then specify the concrete structure for each base rule.

3.1 BASE UPDATE RULES

The base rule serves as a fundamental mechanism to update optimization variables. While it delineates
the necessary inputs, it does not specify a particular structure that the rule must follow. Examples
include m(·,θ) in generic L2O (1) and mi(·,θi) in naive decentralized L2O (3). This subsection
aims to identify improved base update rules that resolve the aforementioned issues.

Decentralized optimization interpreted as constrained optimization. One limitation in the naive
update rule in (3) is that it cannot explicitly enforce variable consensus during updates. To address this
limitation, we reformulate the unconstrained problem (2) as the following constrained optimization:

min
X∈Rn×d

1

n

n∑
i=1

fi(xi) + r(xi), s.t. xi = xj , ∀ {i, j} ∈ E . (4)

Here, the optimization variable X = [x⊤
1 ,x

⊤
2 , · · · ,x⊤

n]
⊤ ∈ Rn×d stacks the local variables across

all nodes. The consensus constraints in (4) are imposed according to the structure of the underlying
network topology. Since the network is strongly connected, we have x1 = x2 = · · · = xn.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Primal-dual algorithm and its implication. The Lagrangian function of (4) is given as follows

L(X, {νi,j}{i,j}∈E) =
1

n

n∑
i=1

(fi(xi) + r(xi)) +
∑

{i,j}∈E

⟨νi,j ,xi − xj⟩, (5)

with νi,j the dual variable of constraint xi = xj . The primal-dual algorithm to solve (4) is given by:

xk+1
i = xk

i − γ

n

(
∇fi(x

k
i) + gk+1

i + yk
i

)
, gk+1

i ∈ ∂r(xk+1
i), (6)

yk+1
i = yk

i + 2γ
∑

j∈N (i)

(xk+1
i − xk+1

j), (7)

where yi := n
∑

j∈N (i)(νi,j − νj,i) explicitly satisfies
∑n

i=1 yi = 0. Updates (6) and (7) imply
optimality and consensus in the optimization process. To see it, let x⋆

i and y⋆
i denotes the fixed points

that updates (6) and (7) converge to for any i ∈ {1, · · · , n}. It follows that

• Update (7) implies consensus. With xk
i → x⋆

i ,y
k
i → y⋆

i , we have

x⋆
i = (1/|N (i)|)

∑
j∈N (i)

x⋆
j , ∀i ∈ {1, · · · , n} =⇒ x⋆

1 = · · · = x⋆
n. (8)

• Update (6) implies optimality. With the consensus property established in (8), we introduce
x⋆ := x⋆

i . Since xk
i → x⋆,yk

i → y⋆
i and

∑n
i=1 y

⋆
i = 0, we have

∇fi(x
⋆) + ∂r(x⋆) + y⋆

i ∋ 0 =⇒ 1

n

n∑
i=1

∇fi(x
⋆) + ∂r(x⋆) ∋ 0, (9)

which implies that the consensual fixed point x⋆ is the solution to problem (2).

Mathematics-inspired base update rules. To learn better update rules than the handcrafted primal-
dual updates (6) and (7), we propose the following base parameterized update rules

xk+1
i = xk

i −mk
i (∇fi(x

k
i), g

k+1
i ,yk

i ;θi,1), gk+1
i ∈ ∂r(xk+1

i), (10)

yk+1
i = yk

i + ski ({xk+1
i − xk+1

j }j∈N (i);θi,2), (11)

where mi and si are primal and dual update rules, maintained by node i and parameterized by
θi,1 and θi,2, respectively. We expect the learned updates (10) and (11) to enforce optimality and
consensus when mi and si satisfy certain conditions (see Sec. 3.2 for details). The formats of the
inputs to the base update rules in (10) and (11) are inspired by (6) and (7).

However, the above update rules can be further improved. Note that, (10) does not utilize the
communicated information when updating the primal variables xi. Intuitively, it is more efficient
to use neighbors’ information, i.e., {xj ,∇fi(xj), gj}j∈N (i) to update both the primal and dual
variables. Therefore, we propose

zk+1
i = xk

i −mk
i (∇fi(x

k
i), g

k+1
i ,yk

i ;θi,1), gk+1
i ∈ ∂r(zk+1

i), (12)

yk+1
i = yk

i + ski ({zk+1
i − zk+1

j }j∈N (i);θi,2), (13)

xk+1
i = zk+1

i − uk
i ({zk+1

i − zk+1
j }j∈N (i);θi,3). (14)

where zi is a local auxiliary variable to estimate xi after one local update (12) within node i, and
ui is the newly introduced update rule to update xi with neighbor’s information. Base update rules
mi, si and ui serve as foundations to our MiLoDo framework.

3.2 STRUCTURED UPDATE RULES

To ensure the sufficient capacity of update rules mi, si and ui in practice, one should opt for
neural networks to parameterize them. Inspired by the universal approximation theorem, which
states that neural networks can approximate any continuous functions, it follows that searching the
parameter space of a neural network model is similar to searching the entire continuous function
space. Therefore, in this subsection, we suppose mi, si and ui are picked from the following space
without specific parameterization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 3 (Family of learnable functions): Given a domain Z , we let Jf(z) denote the Jacobian
matrix of the map f : Z → Rd and ∥ · ∥F denote the Frobenius norm. We define

DC(Z) =
{
f : Z → Rd | f is differentiable, ∥Jf(z)∥F ≤ C,∀z ∈ Z

}
as the family of learnable functions.

Specifically, we assume mi ∈ DC(R3d), and si,ui ∈ DC(R|N (i)|d). This ensures that our results
do not depend on particular parameterizations but rather reflect general principles.

Mathematical conditions that a good update rule should satisfy. One may naturally ask: do
all the mappings in DC(Z) serve as effective rules within the framework of (12)–(14)? If not, can
we identify the subset of DC(Z) containing desirable update rules by considering fundamental
conditions that these rules must fulfill?

Now we examine the mathematical conditions that base update rules (12)–(14) need to satisfy in order
to guarantee both consensus and optimality, i.e., x⋆

1 = · · · = x⋆
n = x⋆. Inspired by the primal-dual

algorithm discussed in Section 3.1, we refer to the base update rules in (12)–(14) as good ones if they
satisfy the following two conditions.
Condition 1 (FIXED POINT): For any x⋆ ∈ argminx∈Rd f(x) + r(x), g⋆

i ∈ ∂r(x⋆) and y⋆
i =

−∇fi(x
⋆)− g⋆

i , it holds for any i ∈ V that

lim
k→∞

mk
i (∇fi(x

⋆), g⋆
i ,y

⋆
i) = lim

k→∞
ski ({0d}j∈N (i)) = lim

k→∞
uk
i ({0d}j∈N (i)) = 0d. (15)

Remark. Here x⋆ is an optimal primal solution, and y⋆
i is the dual solution retained at node i,

according to (9). Condition 1 is derived from a fundamental requirement for a good update rule:
if (xk

i ,y
k
i , z

k
i) stay at an optimal solution (x⋆,y⋆

i ,x
⋆), the next iterate (xk+1

i ,yk+1
i , zk+1

i) should
be fixed. By substituting xk

i = zk
i = x⋆,yk

i = y⋆
i ∈ −∇fi(x

⋆) − ∂r(x⋆) and xk+1
i = zk+1

i =

x⋆,yk+1
i = y⋆

i into (12)-(14), we will obtain mk
i (∇fi(x

⋆), g⋆
i ,y

⋆
i) = 0d, ski ({0d}j∈N (i)) = 0d,

and uk
i ({0d}j∈N (i)) = 0d, and Condition 1 reflects these conditions.

Condition 2 (GLOBAL CONVERGENCE): For any sequences generated by the base update rules in
(12)-(14), there exists x⋆ ∈ argminx∈Rd f(x) + r(x), y⋆

i ∈ −∇fi(x
⋆)− ∂r(x⋆) such that

lim
k→∞

xk
i = lim

k→∞
zk
i = x⋆, lim

k→∞
yk
i = y⋆

i , ∀i ∈ V. (16)

Remark. With Condition 2, any fixed points of (12)-(14) will be the optimal primal and dual solution
to problem (2). This condition enforces both consensus and optimality for update rules in (12)-(14).

Deriving mathematical structures for base update rules. The following theorem derives the
mathematical structures that the base update rules in (12)–(14) should possess to satisfy the necessary
mathematical conditions mentioned above:
Theorem 1 (MATHEMATICS-INSPIRED STRUCTURE): Given fi ∈ FL(Rd), r ∈ F(Rd) and base
update rules {mk

i , s
k
i ,u

k
i }∞k=0 with mk

i ∈ DC(R3d), ski ,u
k
i ∈ DC(R|N (i)|d), if Conditions 1 and 2

hold, there exist P k
i ,P

k
i,j,1,P

k
i,j,2 ∈ Rd×d and bki,1, b

k
i,2, b

k
i,3 ∈ Rd satisfying

mk
i (∇fi(x

k
i), g

k+1
i ,yk

i) = P k
i (∇fi(x

k
i) + gk+1

i + yk
i) + bki,1, (17)

ski ({zk+1
i − zk+1

j }j∈N (i)) =
∑

j∈N (i)

P k
i,j,1(z

k+1
i − zk+1

j) + bki,2, (18)

uk
i ({zk+1

i − zk+1
j }j∈N (i)) =

∑
j∈N (i)

P k
i,j,2(z

k+1
i − zk+1

j) + bki,3, (19)

with P k
i ,P

k
i,j,1,P

k
i,j,2 uniformly upper bounded and bki,1, b

k
i,2, b

k
i,3 → 0d as k → ∞. If we further

assume P k
i to be positive definite, base update rule (12) can be uniquely determined through

zk+1
i = proxr,P k

i

(
xk
i − P k

i (∇fi(x
k
i) + yk

i)− bki,1
)
, (20)

where notation proxϕ,M (x) := argminy ϕ(y) + 1
2∥y − x∥2M−1 and ∥x∥M :=

√
x⊤Mx for

positive definite M .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark. Theorem 1 illustrates that the update rules mi, si, and ui are not completely free under
Conditions 1 and 2. It suggests mathematically-inspired structures for the base update rules, as shown
in (17)–(19), where P k

i ,P
k
i,j,1,P

k
i,j,2 can be regarded as preconditioners, while bki,1, b

k
i,2, b

k
i,3 are

bias terms. We name (17)–(19) as structured update rules. As shown in Sec. 5, compared to the base
update rules in (12)–(14), these structured update rules benefit from a significantly more condensed
parameter space and ensure consensus and optimality upon convergence.

4 MILODO: AN EFFICIENT MATH-INSPIRED L2O FRAMEWORK

Inspired by the structured update rules derived in (17)–(19), this section develops a practical L2O
framework that can be used to learn effective decentralized optimizers for solving problem (2).

4.1 MAKING STRUCTURED UPDATE RULES EFFICIENT TO LEARN

To ensure computational efficiency of the update rules in (17)–(19), we specify those P matrices
as diagonal ones. Inspired by Theorem 1, which indicates that the bias terms bki,1, b

k
i,2, b

k
i,3 vanish

asymptotically, we eliminate these terms. Specifically, we set:
P k

i = Diag(pk
i), P

k
i,j,1 = Diag(pk

i,j,1), P
k
i,j,2 = Diag(pk

i,j,2), b
k
i,1 = bki,2 = bki,3 = 0d, (21)

where pk
i ,p

k
i,j,1,p

k
i,j,2 ∈ Rd

+, and pk
i,j,1 = pk

j,i,1, ∀{i, j} ∈ E . With (21), the structured update rules
in (17)–(19) can be further simplified as:

zk+1
i = proxr,Diag(pk

i)

(
xk
i − pk

i ⊙ (∇fi(x
k
i) + yk

i)
)
, (22)

yk+1
i = yk

i +
∑

j∈N (i)

pk
i,j,1 ⊙ (zk+1

i − zk+1
j), (23)

xk+1
i = zk+1

i −
∑

j∈N (i)

pk
i,j,2 ⊙ (zk+1

i − zk+1
j). (24)

Here, ⊙ denotes element-wise production. We name (22)–(24) as MiLoDo update rules.

Remark. MiLoDo update rules cover state-of-the-art handcrafted decentralized algorithms. If r ≡ 0
and we let pk

i = γ ·1d, pk
i,j,1 = (wij/(2γ)) ·1d, pk

i,j,2 = (wij/2) ·1d, where 1d = [1, 1, · · · , 1]⊤ ∈
Rd, MiLoDo update rules reduce to Exact-Diffusion (Yuan et al., 2018b) with symmetric doubly-
stochastic gossip matrix W = (wij)n×n and learning rate γ. However, MiLoDo update rules are
more general than Exact-Diffusion due to the learnable preconditioner pi and mixing weight pi,j .

The following theorem provides theoretical guarantees for MiLoDo update rules, demonstrating that
their fixed points are the primal and dual optimal solutions to problem (2). To our knowledge, no
existing decentralized L2O algorithms could guarantee that their fixed points are optimal solutions.
Theorem 2 (EXACT CONVERGENCE): Assume G = (V, E) is strongly connected, {fi}i∈V ⊂
FL(Rd), r ∈ F(Rd) and there exists 0 < m < M < ∞ such that [pk

i]l ≥ m, m ≤ [pk
i,j,1]l ≤ M ,

|[pk
i,j,2]l| ≤ M for all k ≥ 0 and 1 ≤ l ≤ d. Here [x]l denotes the l-th coordinate of the vector x. If

a sequence generated by (22)-(24) with initialization y0
i = 0d converges to {x⋆

i ,y
⋆
i , z

⋆
i }ni=1, then

this limit must be the primal and dual optimal solutions to problem (2). In other words, there exists
x⋆ ∈ argminx∈Rd f(x) + r(x) such that x⋆

i = z⋆
i = x⋆ and y⋆

i ∈ −∇fi(x
⋆)− ∂r(x⋆) holds.

4.2 LSTM PARAMETERIZATION FOR MILODO UPDATE RULES

This subsection discusses how to learn pk
i , pk

i,j,1 and pk
i,j,2 in MiLoDo update rules (22)–(24). To this

end, we parameterize pk
i , pk

i,j,1 and pk
i,j,2 through three local coordinate-wise LSTM neural networks

ϕM,i, ϕS,i, ϕU,i. Each network is constructed with a single LSTM cell, followed by a 2-layer MLP
and an output activation layer. Specifically,

pk
i ,h

k+1
M,i = ϕM,i(∇f(xk

i),y
k
i ,h

k
M,i;θM,i), (25)

{p̃k
i,j,1}j∈N (i),h

k+1
S,i = ϕS,i({zk+1

i − zk+1
j }j∈N (i),h

k
S,i;θS,i), (26)

{pk
i,j,2}j∈N (i),h

k+1
U,i = ϕU,i({zk+1

i − zk+1
j }j∈N (i),h

k
U,i;θU,i), (27)

where hk
M,i,h

k
S,i, h

k
U,i are hidden states in the LSTM modules with random-initialization, θM,i,θS,i,

θU,i are learnable parameters in ϕM,i, ϕS,i, ϕU,i, respectively. To achieve pk
i,j,1 = pk

j,i,1, we compute

pk
i,j,1 = pk

j,i,1 = (p̃k
i,j,1 + p̃k

j,i,1)/2. (28)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: MiLoDo Framework
Input: Optimizee objectives {fi}i∈V , r, network topology G = (V, E), LSTM modules

{ϕM,i, ϕS,i, ϕU,i}i∈V , number of iterations K.
for all nodes i ∈ V in parallel do

Initialize variables x0
i = y0

i = z0
i = 0d;

Initialize hidden states h0
M,i, h

0
S,i and h0

P,i randomly by normal distribution;
for k = 0, 1, · · · ,K − 1 do

Compute pk
i through (25), update zk+1

i through (22);
Communicate zk+1

i with all neighbors, compute p̃k
i,j,1, pk

i,j,2 through (26)(27);
for j ∈ N (i) do

Send p̃k
i,j,1 to and receive p̃k

j,i,1 from node j;

Compute pk
i,j,1 through (28), update yk+1

i , xk+1
i through (23)(24).

Combining the structured update rules with LSTM parameterization, we obtain the complete archi-
tecture of MiLoDo framework, as illustrated in Algorithm 1.

4.3 TRAINING MILODO FRAMEWORK

To determine Θ = {θM,i,θS,i,θU,i}ni=1 in (25) – (27), we evaluate and refine the performance of
the optimizer over the initial K steps on a batch of training optimizees FB , i.e.,

min
Θ

LK(Θ,FB) :=
1

|FB |
∑

f∈FB

[
1

K

K∑
k=1

f(x̄k)

]
. (29)

The variable x̄k = 1
n

∑n
i=1 x

k
i is the average of local variables xi’s. Typically, we set K = 100

and train the model by truncated Back Propagation Through Time (BPTT) with a truncation length
of KT = 20, following a common setup in previous L2O approaches (Chen et al., 2017; Lv et al.,
2017; Wichrowska et al., 2017; Metz et al., 2019; Cao et al., 2019; Chen et al., 2020c;b). More
specifically, we divide the K iterations into K/KT segments of length KT and train the optimizer on
them separately. Such a training strategy is denoted by (KT ,K) = (20, 100) throughout this paper.
More training techniques such as initialization and multi-stage training are in Sec. E.1.

5 EXPERIMENTAL RESULTS

This section presents numerical experiments to validate the strong generalization capability of the
MiLoDo-trained optimizer to out-of-distribution tasks. Additionally, we compare it with state-of-
the-art handcrafted optimizers such as Prox-DGD, PG-EXTRA, Prox-ATC, Prox-ED, DAPG (Ye
et al., 2020), ODAPG (Ye & Chang, 2023), as well as the learned optimizer LPG-EXTRA (Wang
et al., 2021). Note that LPG-EXTRA, an algorithm unrolling method, is confined to solving unseen
problems in the test dataset for a maximum of 100 iterations due to the memory bottleneck imposed
by its unrolling structure. Conversely, all handcrafted and MiLoDo-trained optimizers can be tested
over much longer horizons, typically in the order of 105.

Experimental setup. In our experiments, we use a special initialization and a multi-stage training
strategy discussed in Sec. E.1. Specifically, we train MiLoDo in five stages with (KT ,K) = (5, 10),
(10, 20), (20, 40), (40, 80), and (20, 100), using Adam with learning rates of 5× 10−4,1× 10−4,5×
10−5,1× 10−5, and 1× 10−5, for 20, 10, 10, 10, and 5 epochs, respectively. Throughout all stages,
the Adam optimizer is configured with momentum parameters (β1, β2) = (0.9, 0.999) and the batch
size is set at 32. More data collection/generation and training details can be found in Appendix E.

Target problems. Our target problems include LASSO, logistic regression, MLP and ResNet. In all
experiments, we use the shape (n, d,N, λ) to represent different characteristics of the optimizees,
where n represents the number of nodes in the decentralized network, d represents the feature
dimension, N represents the number of data samples held by each worker, and λ represents the ℓ1
regularization coefficient. Without further clarification, we consider a ring topology for the network.

Training sets. MiLoDo optimizers in this section are trained on two different training sets: spe-
cialized and meta training set. Specifically, the specialized training set consists of 512 synthetic

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 0.5 1.0 1.5 2.0 2.4
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

)
/ F

(x
*) LPG-EXTRA stops here

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
LPG-EXTRA
DAPG
ODAPG

0 1 2 3 4 5
Iteration (×1e5)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Co
ns

en
su

s
Er

ro
r

LPG-EXTRA stops here

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
LPG-EXTRA
DAPG
ODAPG

Figure 2: MiLoDo-optimizer trained on synthetic
LASSO(10, 300, 10, 0.1) and tested on unseen
LASSO(10, 300, 10, 0.1) instances.

0 1 2 3 4 5
Iteration (×1e5)

10−14

10−11

10−8

10−5

10−2

101

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
LPG-EXTRA
DAPG
ODAPG

0 50 100

100

102

0 2 4 6 8 10
Iteration (×1e5)

10−14

10−11

10−8

10−5

10−2

101

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
LPG-EXTRA
DAPG
ODAPG0 50 100

10−2
100
102

Figure 3: MiLoDo-optimizer trained on synthetic
LASSO(10, 300, 10, 0.1) and tested on synthetic
LASSO(10, 30000, 1000, 0.1).

0 0.5 1.0 1.5
Iteration (×1e3)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 0.5 1.0 1.5 2.0 2.5
Iteration (×1e4)

10−17

10−14

10−11

10−8

10−5

10−2

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

Figure 4: MiLoDo-optimizer trained on meta training
set and tested on LASSO(10, 200, 10, 0.05) with real
dataset BSDS500(Martin et al., 2001).

0 0.5 1.0
Iteration (×1e3)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

d=50
d=200
d=500
d=1000

0 0.5 1.0 1.5
Iteration (×1e3)

10−19

10−16

10−13

10−10

10−7

10−4

Co
ns

en
su

s
Er

ro
r

d=50
d=200
d=500
d=1000

Figure 5: MiLoDo-optimizer trained on meta training
set and tested on Logistic(10, d, 100, 0.1) with d ∈
{50, 200, 500, 1000}.

LASSO(10, 300, 10, 0.1) instances, while the meta training set consists of 1280 synthetic instances
with various sizes, including 64 LASSO(10, 500, N, 0.1) for each N ∈ {5, 10, 15, · · · , 100}.

Generalization to longer testing iterations. MiLoDo optimizer, trained to operate for a small
number of iterations with training problem sets, performs well for significantly more iterations when
solving unseen problem sets. As illustrated in Fig. 2, MiLoDo trained on LASSO(10, 300, 10, 0.1)
with (KT ,K) = (20, 100), performs robustly for up to 100,000 testing iterations on unseen
LASSO(10, 300, 10, 0.1) instances. In contrast, the other learned optimizer, LPG-EXTRA, can
only be applied for 100 iterations limited by its memory bottleneck. Moreover, compared with
handcrafted optimizers, MiLoDo achieves a 1.7× speedup in convergence and more than a 2×
speedup in consensus.

Generalization to higher problem dimensions. MiLoDo optimizer trained with low-dimensional
problems can be generalized to solve problems with much higher dimensions. As illustrated in Fig. 3,
MiLoDo trained on LASSO(10, 300, 10, 0.1) with a problem dimension 300 performs consistently
well on LASSO(10, 30000, 1000, 0.1) instances with a much higher dimension of 30,000.

Generalization to real data distributions. MiLoDo optimizer trained with meta training dataset
(synthetic LASSO) can be generalized to real data distributions. As illustrated in Fig. 4, MiLoDo
trained on the meta training set performs consistently well on LASSO(10, 200, 10, 0.05) constructed
with real dataset BSDS500 (Martin et al., 2001), achieving more than a 2.5× speedup in both
convergence and consensus rate.

Generalization to different problem types. MiLoDo optimizer trained with meta-training set can
generalize to different problem types. As depicted in Fig. 5, MiLoDo trained on the meta-training
set, which consists solely of LASSO problems, converges precisely to the global solutions of unseen
logistic regression problems with varying feature dimensions d ∈ {50, 200, 500, 1000}.

Efficacy in neural network training scenarios. The efficacy of MiLoDo extends to the realm
of neural network training, a domain characterized by high computational complexity and strong
non-convexity. As shown in Fig. 6, MiLoDo consistently achieves a 2× speedup in training MLP
on the MNIST (Deng, 2012) dataset, compared to other baseline methods. MiLoDo also achieves a
2× speedup in training ResNet on the CIFAR-10 (Krizhevsky, 2009) dataset, as illustrated in Fig. 7.
This performance underscores MiLoDo’s ability to efficiently navigate neural networks’ complex
loss landscapes, significantly enhancing distributed deep learning.

Scalability to more complex topologies and larger networks. MiLoDo optimizer consistently
performs well on complex and large-scale networks, showcasing its superior scalability. As shown
in Fig.8, MiLoDo consistently enhances efficiency on more complex network topologies and larger
networks, achieving a 1.5× speedup on an exponential graph topology, and a 3× speedup on a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 3 6 9 12
Iteration (×1e2)

10−2

10−1

100

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 3 6 9 12
Iteration(×1e2)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy Prox-DGD

PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

Figure 6: MiLoDo-optimizer trained on MLP(10,
13002, 1000, 0) with MNIST dataset and tested on
MLP(10, 13002, 5000, 0).

0 3 6 9 12 15
Iteration (×1e2)

10−1

100

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 3 6 9 12 15
Iteration(×1e2)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy Prox-DGD

PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

Figure 7: MiLoDo-optimizer trained on ResNet (5,
78042, 500, 0) with CIFAR-10 dataset and tested on
ResNet(5, 78042, 5000, 0).

0 1 2 3 4 5
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 3 6 9 12 15
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

Figure 8: MiLoDo-optimizer trained on different
network settings: (left) an exponential graph topology
of 10 nodes, (right) a network of 50 nodes.

0 25 50 75 100 125 150 175 200
Iteration

0.0

0.5

1.0

1.5

2.0

F(
x)

 -
F(

x*
) MiLoDo update rules (22) - (24)

Base update rules (12) - (14)

0 25 50 75 100 125 150 175 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

en
su

s
Er

ro
r

MiLoDo update rules (22) - (24)
Base update rules (12) - (14)

Figure 9: Testing trained optimizer using base up-
date rules and structured update rules on synthetic
LASSO(10, 10, 5, 0).

50-node network. Further tests confirm its effectiveness across various topologies and a 100-node
network. Detailed results are in Appendix E.4.

Influence of math-inspired structures. The mathematics-inspired structures are crucial for the
success of MiLoDo. To see this, we directly parameterize the base update rules (12)-(14) targeting a
smooth problem LASSO(10, 10, 5, 0). Detailed experimental setups are deferred to Appendix E.5.
As illustrated in Fig. 9, directly parameterizing the base update rules fails to learn good optimizers.

Runtime studies. When compared to handcrafted optimizers like Prox-ED, MiLoDo faces a higher
per-iteration computational cost due to additional neural network calculations for {pk

i ,p
k
i,j,1,p

k
i,j,2}.

To assess whether its benefits outweigh these costs, we compre its running time with Prox-ED. As
illustrated in Table 1, MiLoDo exhibits only a slight increase in computational cost, about 18.4%,
while achieving a significant convergence speedup, resulting in a 1.6× ∼ 2.1× speedup in total.

Table 1: Runtime Comparison on LASSO(10, 30000, 1000, 0.1).

Stopping condition: Gap < 10−7 Stopping condition: Gap < 10−15

Time/Iters Iters Total Time Iters Total Time

MiLoDo 5.91 ms 2.45e+04 144.80 s 1.62e+05 957.42 s
Prox-ED 4.99 ms 6.22e+04 310.38 s 3.07e+05 1531.93 s

More experimental results. More testing results on MiLoDo optimizers trained with meta training
set and Logistic regression optimizees are in Appendix E.4. We also conduct ablation studies on the
mixing matrices, see Appendix E.5.

6 CONCLUSIONS AND LIMITATIONS

We propose MiLoDo, a mathematics-inspired L2O framework for decentralized optimization. With
its mathematics-inspired structure, the MiLoDo-trained optimizer can generalize to tasks with varying
data distributions, problem types, and feature dimensions. Moreover, MiLoDo-trained optimizer
outperforms handcrafted optimizers in convergence rate. MiLoDo currently learns separate parameters
specifically for each neighbor relationship (i.e., communication links), but training a set of shared
parameters across all nodes could simplify the framework. This would align MiLoDo with message-
passing graph neural networks, which are more scalable and inherently permutation-equivariant,
making them well-suited for graph-based problems. This presents a promising future direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE transactions on medical
imaging, 37(6):1322–1332, 2018.

M. Aharon, M. Elad, and A. Bruckstein. rmk-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, pp. 4311–4322,
Nov 2006. doi: 10.1109/tsp.2006.881199. URL http://dx.doi.org/10.1109/tsp.
2006.881199.

Sulaiman A Alghunaim, Ernest K Ryu, Kun Yuan, and Ali H Sayed. Decentralized proximal
gradient algorithms with linear convergence rates. IEEE Transactions on Automatic Control, 66
(6):2787–2794, 2020.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. SIAM review,
46(4):667–689, 2004.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
Advances in Neural Information Processing Systems, 32, 2019.

Jianshu Chen and Ali H Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. IEEE Transactions on Signal Processing, 60(8):4289–4305, 2012.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and Zhangyang
Wang. Training stronger baselines for learning to optimize. Advances in Neural Information
Processing Systems, 33:7332–7343, 2020a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang, Howard Heaton, Jialin Liu, and
Wotao Yin. Learning to optimize: A primer and a benchmark. The Journal of Machine Learning
Research, 23(1):8562–8620, 2022.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
unfolded ista and its practical weights and thresholds. Advances in Neural Information Processing
Systems, 31, 2018.

Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, and Le Song. Learning to stop while learning to predict.
In International Conference on Machine Learning, pp. 1520–1530. PMLR, 2020b.

Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction by
learning unrolled algorithms. arXiv preprint arXiv:2002.05810, 2020c.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient descent.
In International Conference on Machine Learning, pp. 748–756. PMLR, 2017.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE Transactions on
Signal and Information Processing over Networks, 2(2):120–136, 2016.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic control, 57(3):
592–606, 2011.

11

http://dx.doi.org/10.1109/tsp.2006.881199
http://dx.doi.org/10.1109/tsp.2006.881199

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro. Stochastic unrolled federated learning.
arXiv preprint arXiv:2305.15371, 2023.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases. arXiv preprint arXiv:2209.11208, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Daisuke Ito, Satoshi Takabe, and Tadashi Wadayama. Trainable ista for sparse signal recovery. IEEE
Transactions on Signal Processing, 67(12):3113–3125, 2019.

Deepali Jain, Krzysztof M Choromanski, Kumar Avinava Dubey, Sumeet Singh, Vikas Sindhwani,
Tingnan Zhang, and Jie Tan. Mnemosyne: Learning to train transformers with transformers.
Advances in Neural Information Processing Systems, 36, 2023.

Masako Kishida, Masaki Ogura, Yuichi Yoshida, and Tadashi Wadayama. Deep learning-based
average consensus. IEEE Access, 8:142404–142412, 2020.

Ron Kohavi. Census Income. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5GP7S.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Ilya Kuruzov, Gesualdo Scutari, and Alexander Gasnikov. Achieving linear convergence with
parameter-free algorithms in decentralized optimization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Jiaxiang Li, Xuxing Chen, Shiqian Ma, and Mingyi Hong. Problem-parameter-free decentralized
nonconvex stochastic optimization. arXiv preprint arXiv:2402.08821, 2024.

Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network independent
step-sizes and separated convergence rates. IEEE Transactions on Signal Processing, 67(17):
4494–4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017.

Changxin Liu, Nicola Bastianello, Wei Huo, Yang Shi, and Karl H Johansson. A survey on secure
decentralized optimization and learning. arXiv preprint arXiv:2408.08628, 2024.

Jialin Liu and Xiaohan Chen. Alista: Analytic weights are as good as learned weights in lista. In
International Conference on Learning Representations (ICLR), 2019.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards constituting
mathematical structures for learning to optimize. arXiv preprint arXiv:2305.18577, 2023.

Cassio G Lopes and Ali H Sayed. Diffusion least-mean squares over adaptive networks: Formulation
and performance analysis. IEEE Transactions on Signal Processing, 56(7):3122–3136, 2008.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In International Conference on Machine Learning, pp. 2247–2255. PMLR, 2017.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416–423. IEEE, 2001.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Learned optimizers that outperform sgd on wall-clock and test loss. In Proceedings of the 2nd
Workshop on Meta-Learning, MetaLearn, volume 2019, 2018.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565. PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers. In Confer-
ence on Lifelong Learning Agents, pp. 142–164. PMLR, 2022a.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022b.

Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
Advances in Neural Information Processing Systems, 34:10798–10809, 2021.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Thomas Moreau and Joan Bruna. Understanding neural sparse coding with matrix factorization. In
International Conference on Learning Representation (ICLR), 2017.

Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Dadam: A consensus-based
distributed adaptive gradient method for online optimization. IEEE Transactions on Signal
Processing, 70:6065–6079, 2022.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Yoav Noah and Nir Shlezinger. Limited communications distributed optimization via deep unfolded
distributed admm. arXiv preprint arXiv:2309.14353, 2023.

Shoya Ogawa and Koji Ishii. Deep-learning aided consensus problem considering network centrality.
In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–5. IEEE, 2021.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations, 2020.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in
decentralized consensus optimization. IEEE Transactions on Signal Processing, 62(7):1750–1761,
2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015a.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for decentralized
composite optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023, 2015b.

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, Qiong He, Jianwen Luo, Ruud JG van Sloun, and
Yonina C Eldar. Deep unfolded robust pca with application to clutter suppression in ultrasound.
IEEE transactions on medical imaging, 39(4):1051–1063, 2019.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. Learning to learn,
pp. 3–17, 1998.

Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors
for model based reconstruction. In 2013 IEEE Global Conference on Signal and Information
Processing, pp. 945–948. IEEE, 2013.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

He Wang, Yifei Shen, Ziyuan Wang, Dongsheng Li, Jun Zhang, Khaled B Letaief, and Jie Lu.
Decentralized statistical inference with unrolled graph neural networks. In 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 2634–2640. IEEE, 2021.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International conference on machine learning, pp. 3751–3760. PMLR, 2017.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Augmented distributed gradient methods for multi-agent
optimization under uncoordinated constant stepsizes. In IEEE Conference on Decision and Control
(CDC), pp. 2055–2060, Osaka, Japan, 2015.

Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Distributed algorithms for composite opti-
mization: Unified framework and convergence analysis. IEEE Transactions on Signal Processing,
69:3555–3570, 2021.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep admm-net for compressive sensing mri. In
Proceedings of the 30th international conference on neural information processing systems, pp.
10–18, 2016.

Haishan Ye and Xiangyu Chang. Optimal decentralized composite optimization for strongly convex
functions. arXiv preprint arXiv:2312.15845, 2023.

Haishan Ye, Ziang Zhou, Luo Luo, and Tong Zhang. Decentralized accelerated proximal gradient
descent. Advances in Neural Information Processing Systems, 33:18308–18317, 2020.

Wenrui Yu, Qiongxiu Li, Milan Lopuhaä-Zwakenberg, Mads Græsbøll Christensen, and Richard
Heusdens. Provable privacy advantages of decentralized federated learning via distributed opti-
mization. arXiv preprint arXiv:2407.09324, 2024.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016.

Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H Sayed. Variance-reduced stochastic learning by
networked agents under random reshuffling. IEEE Transactions on Signal Processing, 67(2):
351–366, 2018a.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H Sayed. Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development. IEEE Transactions on Signal Processing,
67(3):708–723, 2018b.

Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
image compressive sensing. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1828–1837, 2018.

Daokuan Zhu and Jie Lu. A deep reinforcement learning approach to efficient distributed optimization.
arXiv preprint arXiv:2311.08827, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

CONTENTS

A More related work 15

B Missing proofs 16

B.1 Preliminaries . 16

B.2 Proof of Theorem 1 . 16

B.3 Proof of Theorem 2 . 17

C Illustration of MiLoDo framework 18

D Robust implementation of decentralized algorithms 18

E Experimental specifications 19

E.1 Training strategies . 19

E.2 Target problems . 20

E.3 Implementation details . 20

E.4 Additional results . 22

E.5 Ablation studies . 25

E.6 Hyperparameter settings . 28

A MORE RELATED WORK

Learning to optimize. The concept of L2O dates back to the 1990s (Thrun & Pratt, 1998). Different
L2O approaches exist: Plug-and-Play (PnP) (Venkatakrishnan et al., 2013) approximates expensive
functions in traditional algorithms; algorithm unrolling (Gregor & LeCun, 2010; Moreau & Bruna,
2017; Chen et al., 2018; Liu & Chen, 2019; Ito et al., 2019; Yang et al., 2016; Zhang & Ghanem,
2018; Adler & Öktem, 2018; Solomon et al., 2019) models the entire procedure as a neural network,
effective for domains like image/signal processing; generic L2O (Andrychowicz et al., 2016; Lv et al.,
2017; Wichrowska et al., 2017; Wu et al., 2018; Metz et al., 2019; Chen et al., 2020a; Shen et al.,
2020; Harrison et al., 2022; Micaelli & Storkey, 2021; Metz et al., 2018; 2022a;b; Jain et al., 2023;
Liu et al., 2023), which is more related to this paper, parameterizes update rules using current states,
enabling flexibility across applications. Some other studies also atempts to learn machine learning
models to accelerate the discrete problems solving(Bengio et al., 2021).

Decentralized optimization. Decentralized optimization has been extensively studied, dating back
to early algorithms like decentralized gradient descent (DGD) (Nedic & Ozdaglar, 2009; Yuan et al.,
2016), Diffusion (Lopes & Sayed, 2008; Chen & Sayed, 2012), and dual averaging (Duchi et al.,
2011) from the signal processing and control communities. These were followed by primal-dual
methods such as ADMM variants (Shi et al., 2014), explicit bias-correction techniques (Shi et al.,
2015a; Yuan et al., 2018b; Li et al., 2019), Gradient-Tracking (Xu et al., 2015; Di Lorenzo & Scutari,
2016; Nedic et al., 2017). More recently, decentralized stochastic gradient descent (DSGD) (Lian
et al., 2017) has gained significant attentions in deep learning. For non-smooth optimization problems,
effective algorithms like PG-EXTRA (Shi et al., 2015b), PG-Exact-Diffusion (Yuan et al., 2018a),
and PG-Gradient-Tracking (Alghunaim et al., 2020) utilize the proximal gradient method to solve
them. A unified decentralized framework is developed in Alghunaim et al. (2020) and Xu et al. (2021)
to unify various decentralized algorithms. All these algorithms are driven by expert knowledge.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B MISSING PROOFS

B.1 PRELIMINARIES

Lemma 1 (Liu et al. (2023), Lemma 1): For any operator o ∈ DC(Rm×n) and any x1, y1, · · · xm,
ym ∈ Rn, there exists matrices J1, J2, · · · , Jm ∈ Rn×n such that

o(x1, · · · ,xm)− o(y1, · · · ,ym) =

m∑
j=1

Jj(xj − yj),

and ∥J1∥F ≤
√
nC, · · · , ∥Jm∥F ≤

√
nC.

This lemma is an extension of the mean value theorem.

B.2 PROOF OF THEOREM 1

Proof. By Lemma 1, there exists Qk
i,1,Q

k
i,2,Q

k
i,3 ∈ Rd×d such that ∥Qk

i,1∥F ≤
√
dC, ∥Qk

i,2∥F ≤√
dC, ∥Qk

i,3∥F ≤
√
dC and

mk
i (∇fi(x

k
i), g

k+1
i ,yk

i) =mk
i (∇fi(x

⋆),−∇fi(x
⋆)− y⋆

i ,y
⋆
i) +Qk

i,1(∇fi(x
k
i)−∇fi(x

⋆))

+Qk
i,2(g

k+1
i +∇fi(x

⋆) + y⋆
i) +Qk

i,3(y
k
i − y⋆

i)

=Qk
i,2(∇fi(x

k
i) + gk+1

i + yk
i) + (Qk

i,1 −Qk
i,2)(∇fi(x

k
i)−∇fi(x

⋆))

+ (Qk
i,3 −Qk

i,2)(y
k
i − y⋆

i) +mk
i (∇fi(x

⋆),−∇fi(x
⋆)− y⋆

i ,y
⋆
i).

Letting
P k

i = Qk
i,2

and
bki,1 =(Qk

i,1 −Qk
i,2)(∇fi(x

k
i)−∇fi(x

⋆)) + (Qk
i,3 −Qk

i,2)(y
k
i − y⋆

i)

+mk
i (∇fi(x

⋆),−∇fi(x
⋆)− y⋆

i ,y
⋆
i),

the above equation can be reorganized into (17). Addtionally, we have ∥P k
i ∥F ≤

√
dC and bki,1 → 0d

thanks to Condition 1. Similarly, there exists Qk
i,j,1,Q

k
i,j,2 ∈ Rd×d such that ∥Qk

i,j,1∥F ≤
√
dC,

∥Qk
i,j,2∥F ≤

√
dC and

ski ({zk+1
i − zk+1

j }j∈N (i)) =ski ({0d}j∈N (i)) +
∑

j∈N (i)

Qk
i,j,1(z

k+1
i − zk+1

j),

uk
i ({zk+1

i − zk+1
j }j∈N (i)) =uk

i ({0d}j∈N (i)) +
∑

j∈N (i)

Qk
i,j,2(z

k+1
i − zk+1

j).

Thus, it is sufficient to obtain (18) and (19) by letting P k
i,j,1 = Qk

i,j,1, P k
i,j,2 = Qk

i,j,2, bki,2 =

ski ({0d}j∈N (i)), and bki,3 = uk
i ({0d}j∈N (i)).

Now we rewrite (12) as

zk+1
i = xk

i − P k
i (∇fi(x

k
i) + gk+1

i + yk
i)− bki,1, gk+1

i ∈ ∂r(zk+1
i). (30)

If we further assume P k
i to be symmetric positive definite, (30) implies

0d ∈ ∂r(zk+1
i) + (P k

i)
−1

(
zk+1
i − xk

i + bki,1 + P k
i (∇fi(x

k
i) + yk

i)
)
.

Consequently, zk+1
i coincides with the unique solution to the following strongly-convex optimization

problem:

min
x∈Rd

r(x) +
1

2
∥x− (xk

i − P k
i (∇fi(x

k
i) + yk

i)− bki,1)∥2(P k
i)−1 ,

i.e.,

zk+1
i = proxr,P k

i
(xk

i − P k
i (∇fi(x

k
i) + yk

i)− bki,1),

which finishes the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.3 PROOF OF THEOREM 2

Proof. Let Il = {i ∈ V | [z⋆
i]l = maxj∈V [z

⋆
j]l} be the set of indices i’s with the largest [z⋆

i]l’s. We
first prove the following statement:

i ∈ Il ⇒ N (i) ⊂ Il. (31)

Suppose there exists i ∈ Il and j ∈ N (i)\Il, it holds that [z⋆
i]l > [z⋆

j]l. Define δ = [z⋆
i]l− [z⋆

j]l > 0

and choose an ϵ ∈
(
0, mδ

2(nM+1)

)
. By convergence property there exists K ≥ 0 such that for any

k ≥ K,

|[xk
i]l − [x⋆

i]l| ≤ ϵ, |[yk
i]l − [y⋆

i]l| ≤ ϵ, |[zk
i]l − [z⋆

i]l| ≤ ϵ, ∀i ∈ V, 1 ≤ l ≤ d.

By iteration step (23) we have

[yk+1
i]l = [yk

i]l +
∑

j∈N (i)

[pk
i,j,1]l([z

k+1
i]l − [zk+1

j]l).

Fix k ≥ K and let N1 = {j ∈ N (i)|[zk+1
i]l ≥ [zk+1

j]l}, N2 = {j ∈ N (i)|[zk+1
i]l < [zk+1

j]l},

we have

m(δ − 2ϵ) ≤[pk
i,j,1]l([z

k+1
i]l − [zk+1

j]l) ≤
∑
τ∈N1

[pk
i,τ,1]l([z

k+1
i]l − [zk+1

τ]l)

=[yk+1
i]l − [yk

i]l −
∑
τ∈N2

[pk
i,τ,1]l([z

k+1
i]l − [zk+1

τ]l)

≤2ϵ+M(n− 1) · (2ϵ),
which implies

mδ ≤ 2(nM + 1)ϵ,

a contradiction. Consequently, (31) holds and thus together with the strongly connectivity we obtain
Il = V , i.e., [z⋆

1]l = [z⋆
2]l = · · · = [z⋆

n]l. By arbitrariness of l, we conclude that there exists x⋆ ∈ Rd

such that z⋆
i = x⋆ for any i ∈ V . By iteration step (24) and |[pk

i,j,2]l| ≤ M we have

x⋆
i = lim

k→∞
xk+1
i = lim

k→∞

zk+1
i −

∑
j∈N (i)

pk
i,j,2 ⊙ (zk+1

i − zk+1
j)

 = x⋆, ∀i ∈ V.

By iteration step (22), we have

zk+1
i =proxr,Diag(pk

i)

(
xk
i − pk

i ⊙ (∇fi(x
k
i) + yk

i)
)

=argmin
x∈Rd

r(x) +
1

2
∥x− xk

i + pk
i ⊙ (∇fi(x

k
i) + yk

i)∥2(Diag(pi))−1 ,

which is equivalent to

0 ∈ ∂r(zk+1
i) + (Diag(pi))

−1
(
zk+1
i − xk

i + pk
i ⊙ (∇fi(x

k
i) + yk

i)
)

⇔−∇fi(x
k
i)− yk

i − (Diag(pi))
−1(zk+1

i − xk
i) ∈ ∂r(zk+1

i).

Denote gk+1
i = −∇fi(x

k
i)− yk

i − (Diag(pi))
−1(zk+1

i − xk
i) ∈ ∂r(zk+1

i), we have

r(x) ≥ r(zk+1
i) + ⟨gk+1

i ,x− zk+1
i ⟩, ∀x ∈ Rd. (32)

Since r ∈ F(Rd) inherits lower semi-continuity, and 0 < [pk
i]

−1
l ≤ 1/m, (32) implies

r(x) ≥ lim inf
k→∞

r(zk+1
i) + lim

k→∞
⟨gk+1

i ,x− zk+1
i ⟩

≥r(x⋆) + ⟨−∇fi(x
⋆)− y⋆

i ,x− x⋆⟩, ∀x ∈ Rd.

As a result, g⋆
i := −∇fi(x

⋆)− y⋆
i ∈ ∂r(x⋆). The last thing is to show x⋆ ∈ argminx∈Rd f(x) +

r(x). Adding (23) for all i ∈ V , we have

∑
i∈V

yk+1
i =

∑
i∈V

yk
i +

∑
j∈N (i)

pk
i,j,1 ⊙ (zk+1

i − zk+1
j)


17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

=
∑
i∈V

yk
i +

∑
{i,j}∈E

(pk
i,j,1 − pk

j,i,1)⊙ (zk+1
i − zk+1

j)

=
∑
i∈V

yk
i , ∀k ≥ 0, (33)

where the last equality uses pk
i,j,1 = pk

j,i,1. By initialization y0
i = 0d, (33) implies∑

i∈V
y⋆
i = lim

k→∞

∑
i∈V

yk
i = lim

k→∞
0d = 0d,

thus

∂r(x⋆) ∋ 1

n

n∑
i=1

g⋆
i =

1

n

n∑
i=1

−∇fi(x
⋆)− y⋆

i = −∇f(x⋆),

which is exactly x⋆ ∈ argminx∈Rd f(x) + r(x).

C ILLUSTRATION OF MILODO FRAMEWORK

To better understanding the two components, i.e., the MiLoDo update rules (22)-(24) and the LSTM
parameterization (25)-(27) and how they make up the whole MiLoDo optimizer, we illustrate the
interaction beween them in Fig. 10.

Figure 10: The interaction between MiLoDo update rules (22)-(24) and the LSTM parameterization
(25)-(27).

D ROBUST IMPLEMENTATION OF DECENTRALIZED ALGORITHMS

Common implementation. Traditional decentralized algorithms like Prox-ED, PG-EXTRA, Prox-
ATC use a doubly-stochastic gossip matrix W for information aggregation. A common implementa-
tion of the aggregation step X̃ = WX is to compute

x̃i =
∑

j∈N (i)

wijxj (34)

on each node i. However, (34) is not a robust implementation. As illustrated in Fig. 11, using (34)
and the same hyperparameter settings, Prox-ED with FP32 fails to converge to the desired precision
while that with FP64 succeeds.

Robust implementation. When represented with FP32, the elements in matrix W tend to have
bigger noise, which largely violates the row-stochastic property. Continually applying such an inexact

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

estimation of W is the major reason behind the failure of the common implementation. This motivates
us to consider the following equivalent implementation:

x̃i = xi −
∑

j∈N (i)

wij(xi − xj). (35)

Implementation (35) is more robust as it maintains the row-stochastic property of the gossip matrix
no matter how much noise is added to W by the low presentation precision. As illustrated in Fig. 11,
Prox-ED with robust implementation successfully converges to the desired precision under the same
hyperparameter settings.

0 0.3 0.6 0.9 1.2 1.5
Iteration (×1e3)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

F(
x)

 -
F(

x*
)

FP32-Common
FP64-Common
FP32-Robust
FP64-Robust

Figure 11: Testing results on synthetic LASSO(10, 50, 10, 0) of Prox-ED with different implementa-
tion under varying precision settings. ’Common’ and ’Robust’ represent common implementation
(34) and robust implementation (35), respectively.

Robustness of MiLoDo. It’s worth noting that, the structured update rules of MiLoDo does not
depend on the doubly-stochastic matrix W . The utilization of term zk

i − zk
j when aggregating

neighboring information in update rules of MiLoDo is also similar to the robust implementation (35).
In practice, we observe that applying FP32 in our experiments does not affect the exact convergence
of MiLoDo-trained optimizers.

E EXPERIMENTAL SPECIFICATIONS

E.1 TRAINING STRATEGIES

Initialization strategies. We consider two initialization strategies for MiLoDo training: random
and special initialization. In random initialization, all learnable parameters {θM,i,θS,i,θU,i}i∈V are
randomly initialized using PyTorch defaults. In special initialization, parameters are initialized to
mimic traditional decentralized algorithms by setting the weights of the final affine layers to zero and
biases to desired output values. Specifically, given the gossip matrix W = (wij)n×n and learning
rate γ utilized in Exact-Diffusion, biases in the final affine layers for pk

i , p̃k
i,j,1, pk

i,j,2 are initialized
as γ, ln(wij/(2γ)), wij/2, respectively. Applying ln(·) accounts for Exponential activation.

We would like to remark that each of the two initialization strategies has its pros and cons. With
random initialization, the objective function value is likely to blow up quickly, leading to excessively
large gradients or meaningless values (e.g., inf/NaNs). With special initialization, it may be too close
to local minima, such that MiLoDo might not gain enough advantage over handcrafted algorithms.

Multi-stage training. As discussed above, random initialization of the MiLoDo optimizer results in
numerical instability during training. To address this issue, we initially teach the model to optimize
within a few iterations by using a short training length such as (KT ,K) = (5, 10). As the model starts
exhibiting desired behaviors, such as

∑5
k=1 f(x̄

k) >
∑10

k=6 f(x̄
k), we progressively increase the

training length. This iterative process is repeated across several stages until reaching a training length
of (KT ,K) = (20, 100). Empirically, employing multi-stage training also enhances performance for
special initialization. With multi-stage training, both initialization approaches yield MiLoDo-trained
optimizers with comparable performance, prompting our focus on special initialization due to its
reduced warmup stages.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The multi-stage training method draws inspiration from curriculum learning in reinforcement learning,
where models are first trained on easier tasks before progressing to more difficult ones. In our context,
we initially train the optimizer with a short iteration length, which is easier to train. For instance,
consider the extreme case of training an optimizer for just one iteration – this is analogous to training
a simple one-layer neural network, which is inherently easier. Once this simpler stage is complete,
we gradually extend the iteration length. Starting with easier tasks and then using the results of this
stage to initialize the next stage with more complex tasks (longer iteration processes in our context)
significantly improves training stability compared to starting directly with difficult tasks from scratch.

E.2 TARGET PROBLEMS

LASSO regression. Decentralized LASSO regression problem with shape (n, d,N, λ) is defined as:

min
x∈Rd

1

2n

n∑
i=1

∥Aix− bi∥22 + λ∥x∥1,

where Ai ∈ RN×d and bi ∈ RN are kept on nodes i out of a total of n nodes. To generate LASSO
optimizees with shape (n, d,N, λ), we first sample A ∈ RnN×d and a vector x⋆ ∈ Rd from normal
distribution. Then, we pick 75% of x⋆’s entries with the smallest magnitude and reset them to zero.
Afterwards, we generate b = Ax⋆ + ϵz, where ϵ = 0.1 is the noise scale and z ∈ RnN is sampled
from standard Gaussian. Finally, we distribute A and b evenly to each node so that each Ai ∈ RN×d

and bi ∈ RN .

Logistic regression. Decentralized logistic regression problem with ℓ1-regularization and shape
(n, d,N, λ) is defined as:

min
x∈Rd

1

n

n∑
i=1

 1

N

N∑
j=1

bij ln
(
1 + exp(−a⊤

ijx)
)
+ (1− bij) ln

(
1 + exp(a⊤

ijx)
)+ λ∥x∥1,

where Ai = (a⊤
i1, · · ·a⊤

iN)⊤ ∈ RN×d and bi = (bi1, · · · , biN)⊤ ∈ {0, 1}N . To generate synthetic
logistic regression optimizees with shape (n, d,N, λ), we first sample A ∈ RnN×d and x⋆ ∈ Rd

from normal distribution. Then we pick 75% of x⋆’s entries with the smallest magnitude and reset
them to zero. Afterwards, we generate b = (b1, · · · , bnN)⊤ by bi = 1{a⊤

i x⋆≥0}. Finally, we
distribute A and b evenly to each node so that each Ai ∈ RN×d and bi ∈ {0, 1}N .

MLP training. We consider a decentralized MLP training problem using MNIST dataset. The model
structure is illustrated as in Fig. 12. The total number of trainable parameters in the MLP is 13002.
The optimizees are constructed by randomly selecting data from MNIST’s training dataset for all
nodes.

ResNet training. We consider a decentralized ResNet training problem using CIFAR-10 dataset.
The model structure is illustrated as in Fig. 13. The total number of trainable parameters in the
ResNet model is 78042. The optimizees are constructed by randomly selecting data from CIFAR-10’s
training dataset for all nodes.

E.3 IMPLEMENTATION DETAILS

Model structure. We use the same model structure throughout our experiments. Specifically, ϕM,i

has input dimension 2 and output dimension 1 with ReLU activation, ϕS,i has input dimension |N (i)|
and output dimension |N (i)| with Exponential activation. ϕU,i has input dimension |N (i)| and output
dimension |N (i)| with ReLU activation. We use ReLU activation in the middle of the 2-layer MLP.
The hidden/output dimensions of the LSTM cells, input/hidden/output dimensions of the MLP are all
set to 20.

Training details. In our experiments, we employ special initialization and a multi-stage training
strategy. As described in Sec. 5, we continually train MiLoDo in five stages with training lengths
(KT ,K) = (5, 10), (10, 20), (20, 40), (40, 80) and (20, 100) by Adam with learning rate 5e-04,
1e-04, 5e-05, 1e-05, 1e-05, for 20, 10, 10, 10, 5 epochs, respectively. Throughout all stages, the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 12: MLP model structure.

Figure 13: ResNet model structure.

Adam optimizer is configured with momentum parameters (β1, β2) = (0.9, 0.999) and the batch size
is fixed to 32.

LASSO with real data. To generate LASSO(10, 200, 10, 0.05) from BSDS500(Martin et al., 2001)
dataset, we first extract a 10 × 10 patch from testing images and flatten to vector b ∈ R100. We
normalize b by subtracting the mean. Afterwards, we conduct K-SVD(Aharon et al., 2006) to obtain
A ∈ R100×200. Finally, we distribute A and b evenly to each node so that each Ai ∈ R10×200 and
bi ∈ R10. We generate a total of 1000 instances as the testing set in the experiments.

Construction of meta training set. As illustrated in Sec. 5, the meta training set consists of synthetic
LASSO problems with 20 different shapes: (10, 500, N, 0.1) where N ∈ {5, 10, 15, · · · , 100}. We
generate 64 distinct problem instances for each shape, hence 1280 instances in total.

Evaluation metric. We evaluate solution X = [x⊤
1 ,x

⊤
2 , · · · ,x⊤

n]
⊤ of decentralized problem (4) via

loss f(x̄)+ r(x̄) and consensus error 1
n

∑n
i=1 ∥xi − x̄∥2, where x̄ = 1

n

∑n
i=1 xi. All testing curves

display averaged performance on 512 instances, except for problems with over 10,000 dimensions
which are highly time-consuming to test. For those high-dimensional problems, we display testing
performance on a single instance chosen randomly, as results on other instances are quite similar.

Implementation of baseline algorithms. Following Appendix D, we have the following robust
implementation for the considered baselines, where the learning rate γ is manually tuned optimal
for each experiment, and we use W = (wij)n×n with wij = 1/3 · 1{i=j, or {i,j}∈E} as the doubly-
stochastic goissp matrix for the ring topology.

• Prox-DGD. Initialized with x0
i = 0d, Prox-DGD uses the following update rules:

zk+1
i =xk

i − γ∇fi(x
k
i),

xk+1
i =proxγr

zk+1
i −

∑
j∈N (i)

wij(z
k+1
i − zk+1

j)

 .

• Prox-ATC. Initialized with x0
i = ỹ0

i = z0
i , Prox-ATC uses the following update rules:

zk+1
i =xk

i − γ∇fi(x
k
i),

z̃k+1
i =ỹk

i − zk+1
i + zk

i ,

yk+1
i =2ỹk

i − z̃k+1
i +

∑
j∈N (i)

wij(z̃
k+1
i − z̃k+1

j),

ỹk+1
i =yk+1

i −
∑

j∈N (i)

wij(y
k+1
i − yk+1

j),

xk+1
i =proxγr(ỹ

k+1
i).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• PG-EXTRA. Initialized with x0
i = 0d, PG-EXTRA uses the following update rules:

zk+1
i =xk

i −
∑

j∈N (i)

wij(x
k
i − xk

j)− γ∇fi(x
k
i),

z̃k+1
i =

{
zk+1
i , if k = 0,

zk+1
i + z̃k

i − xk−1
i + 1

2

∑
j∈N (i) wij(x

k−1
i − xk−1

j) + γ∇fi(x
k−1
i), if k > 0,

xk+1
i =proxγr(z̃

k+1
i).

• Prox-ED. Initialized with x0
i = ỹ0

i = z0
i = 0d, Prox-ED uses the following update rules:

zk+1
i =xk

i − γ∇fi(x
k
i),

yk+1
i =ỹk

i + zk+1
i − zk

i ,

ỹk+1
i =yk+1

i − 1

2

∑
j∈N (i)

wij(y
k+1
i − yk+1

j),

xk+1
i =proxγr(ỹ

k+1
i).

Computational resources. We conduct all the experiments within a single NVIDIA A100 GPU
server with a GPU memory of 80G.

E.4 ADDITIONAL RESULTS

Training on logistic regression. Fig. 14 displays the in-distribution testing results of MiLoDo opti-
mizer trained on a specialized dataset including 512 synthetic Logistic(10, 50, 100, 0.1) optimizees.
Fig. 15 displays the testing results of MiLoDo optimizer trained on a specialized dataset including
512 real data Logistic(10, 14, 100, 0.1) optimizees using Census Income (Kohavi, 1996) dataset.

More testing results of MiLoDo optimizer trained on the meta training set. As a supplement to
the results in Sec. 5, Fig. 16, we further tests MiLoDo trained on the meta training set on synthetic
LASSO(10, 20000, 1000, 0.1). While trained on non-smooth optimizees only, the MiLoDo-trained
optimizer is consistently fast in solving smooth optimization problems such as linear regression, as
illustrated in Fig. 17.

Testing results of MiLoDo optimizer trained on more complex topologies. Beyond the findings
presented in Sec.5 and Fig.8 (left), further tests were conducted on commonly used topologies.
Fig18 demonstrates that MiLoDo optimizer exhibits consistent performance, achieving a 2 to 3 times
acceleration, which highlights its scalability and robustness across various topologies.

Testing results of MiLoDo optimizer trained on a larger network. Extending the analyses
discussed in Sec.5 and illustrated in Fig.8 (right), additional experiments were carried out on networks
with 100 nodes. As depicted in Fig.23, MiLoDo optimizer maintained a high level of effectiveness,
delivering a 2× to 3× speedup. This not only confirms the optimizer’s efficiency but also highlights
its scalability and robustness in larger networks.

Testing results under strict dataset separation strategies. In order to better validate the gen-
eralization ability and performance of MiLoDo optimizer, we further validate its performance
on the CIFAR-10 dataset, where data subsets used for training the optimizer, optimizees and
computing the test accuracy, are strictly different. As illustrated in Fig.19, MiLoDo optimizer
trained on ResNet(5, 78042, 500, 0) performs consistently better than other baseline algorithms on
ResNet(5, 78042, 5000, 0).

Comparison with existing step-size-tuning algorithms. Existing step-size-tuning algorithms in
decentralized optimization, e.g., D-NASA (Li et al., 2024), DADAM (Nazari et al., 2022) and Kuruzov
et al., primarily focus on smooth problems. Consequently, we compare MiLoDo optimizer with
D-NASA, DADAM and Algorithm 1 in Kuruzov et al. on smooth, LASSO(10, 300, 10, 0) optimizees.
As illustrated in Fig.20, MiLoDo optimizer clearly outperforms these baseline algorithms.

Generalization to higher data heterogeneity. We tested the training of a 3-layer MLP on MNIST
while generating data distributions with varying degrees of heterogeneity using Dirichlet sampling,
where the larger the Dirichlet concentration parameter α is, the more identical the distributions are

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(Hsu et al., 2019). We trained MiLoDo optimizer on MLP(10, 13002, 1000, 0) using the uniformly
distributed MNIST dataset which inherits low data heterogeneity and tested it in high heterogeneity
scenarios with α = 100, 10 or 1, to assess its generalization ability. The results in Fig.21 demonstrate
that, even without being explicitly trained on highly heterogeneous data, MiLoDo outperforms other
algorithms in terms of convergence speed and accuracy. This suggests that MiLoDo does not simply
"memorize" the data distribution of specific optimization tasks but instead learns how to adaptively
address optimization problems based on their underlying characteristics.

0 1 2 3
Iteration (×1e2)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 2 4 6 8 10
Iteration (×1e2)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 14: MiLoDo optimizer trained on synthetic Logistic(10, 50, 100, 0.1) and tested on unseen
Logistic(10, 50, 100, 0.1) instances.

0 1 2 3 4
Iteration (×1e3)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 2 4 6 8
Iteration (×1e3)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 15: MiLoDo optimizer trained on Logistic(10, 14, 100, 0.1) with Census Income (Kohavi,
1996) dataset and tested on Logistic(10, 14, 100, 0.1) with unseen data in Census Income dataset.

0 0.2 0.4 0.6 0.8 1.0
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

)
/ F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 0.2 0.4 0.6 0.8 1.0
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 16: MiLoDo trained on meta learning set and tested on LASSO(10, 20000, 1000, 0.1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1.0 1.2
Iteration (×1e4)

10−17

10−14

10−11

10−8

10−5

10−2

101

104

F(
x)

 -
F(

x*
)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 0.5 1.0 1.5 2.0
Iteration (×1e4)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 17: MiLoDo optimizer trained on meta training set and tested on linear regression problems
as LASSO(10, 15000, 1000, 0).

0 1 2 3 4 5
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

(a)

0 1 2 3 4 5
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

(b)

0 1 2 3 4 5
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

(c)

0 1 2 3 4 5
Iteration (×1e5)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

(d)

Figure 18: Topology and testing results on (a) LASSO(9,270,10,0.1) on grid topology, (b)
LASSO(10,300,10,0.1) on tree topology, (c) LASSO(10,300,10,0.1) on exponential topology, (d)
LASSO(10,300,10,0.1) on Erdős-Rényi topology.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 3 6 9 12 15
Iteration(×1e2)

10−1

100

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 3 6 9 12 15
Iteration(×1e2)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 19: MiLoDo optimizer trained on ResNet(5, 78042, 500, 0) using the CIFAR-10 dataset and evaluated
on ResNet(5, 78042, 5000, 0), with strict separation between meta-training and testing datasets.

0 3 6 9 12 15
Iteration (×1e2)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

F(
x)

 -
F(

x*
)

MiLoDo
D-NASA
DADAM
Kuruzov (Alg 1)

0 3 6 9 12 15
Iteration (×1e2)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Co
ns

en
su

s
Er

ro
r

MiLoDo
D-NASA
DADAM
Kuruzov (Alg 1)

Figure 20: Testing results on LASSO(10,300,10,0.0) of MiLoDo optimizer and step-size-tuning baseline
algorithms.

E.5 ABLATION STUDIES

Ablation studies on the mixing matrices for baseline algorithms. The adaptive preconditioners and
mixing weights are critical to MiLoDo’s performance gain. To better address MiLoDo’s advantages,
we conduct ablation experiments on the mixing matrices used in the baseline methods. Fig. 22
demonstrates that the performance of using strategically designed and fixed weights (1/3 in our
experiments) are almost the same , which provides a stronger validation of MiLoDo ’s advantages.

Ablation on base update rules (12)-(14). We specify detailed experimental setups for directly
learning optimizers from the base update rules (12)-(14), as discussed in Sec. 5. For simplicity, we
use r ≡ 0 so that the implicit rule in (12) can be explicitly modeled as

zk+1
i = xk

i −mk
i (∇fi(x

k
i),y

k
i ;θi,1).

Without coordinate-wise structures, the scale of the neural network has to be correlated with the opti-
mizees’ dimension. Consequently, we fix the problem dimension d = 10 and use LASSO(10, 10, 5, 0)
as the training and testing optimizees. We parameterize each of the base update rules with a LSTM
model consists of a single LSTM cell and a 2-layer MLP with ReLU activation. The input sizes of
the LSTM models are 20, 10|N (i)|, 10|N (i)| for mi, si, ui, respectively. The output sizes are 10
according to the problem dimension. All hidden dimensions in the LSTM cells and MLPs are set to
100. We use random initialization and multi-stage training strategy similar to MiLoDo to train the
parameterized base update rules.

Ablation studies on the multi-stage training method. The stable training of optimizers in the
Learning to Optimize field is a widely recognized challenge. A commonly used approach is the
single-stage training strategy, where the optimizer is trained for many epochs with a fixed training
length of (KT ,K) = (20, 100). However, we observed that this approach is highly sensitive to the
choice of training hyperparameters. Specifically, when the learning rate is too small or the number of

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 1 2 3
Iteration (×1e3)

10−1

100

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 1 2 3
Iteration(×1e3)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy Prox-DGD

PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

(a)

0 1 2 3 4
Iteration (×1e3)

100

F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 1 2 3 4
Iteration(×1e3)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy Prox-DGD

PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

(b)

0 2 4 6 8 10
Iteration (×1e3)

100F(
x)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

0 2 4 6 8 10
Iteration(×1e3)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy Prox-DGD

PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo
DAPG
ODAPG

(c)

Figure 21: MiLoDo optimizer trained on MLP(10, 13002, 1000, 0) using the MNIST dataset and tested on
MLP(10, 13002, 3000, 0) under varying heterogeneity levels: (a) α = 100, (b) α = 10, (c) α = 1.

0 1 2 3 4 5 6 7 8 9
Column Index

0
1

2
3

4
5

6
7

8
9

Ro
w

In
de

x

0.003 0.498 0 0 0 0 0 0 0 0.499

0.498 0.001 0.501 0 0 0 0 0 0 0

0 0.501 0.000 0.498 0 0 0 0 0 0

0 0 0.498 0.003 0.499 0 0 0 0 0

0 0 0 0.499 0.003 0.498 0 0 0 0

0 0 0 0 0.498 0.003 0.499 0 0 0

0 0 0 0 0 0.499 0.000 0.501 0 0

0 0 0 0 0 0 0.501 0.001 0.498 0

0 0 0 0 0 0 0 0.498 0.001 0.501

0.499 0 0 0 0 0 0 0 0.501 0

Matrix 1

0 1 2 3 4 5 6 7 8 9
Column Index

0
1

2
3

4
5

6
7

8
9

Ro
w

In
de

x

0.333 0.333 0 0 0 0 0 0 0 0.333

0.333 0.333 0.333 0 0 0 0 0 0 0

0 0.333 0.333 0.333 0 0 0 0 0 0

0 0 0.333 0.333 0.333 0 0 0 0 0

0 0 0 0.333 0.333 0.333 0 0 0 0

0 0 0 0 0.333 0.333 0.333 0 0 0

0 0 0 0 0 0.333 0.333 0.333 0 0

0 0 0 0 0 0 0.333 0.333 0.333 0

0 0 0 0 0 0 0 0.333 0.333 0.333

0.333 0 0 0 0 0 0 0 0.333 0.333

Matrix 2

0 1 2 3 4 5 6 7 8 9
Column Index

0
1

2
3

4
5

6
7

8
9

Ro
w

In
de

x

0.500 0.250 0 0 0 0 0 0 0 0.250

0.250 0.500 0.250 0 0 0 0 0 0 0

0 0.250 0.500 0.250 0 0 0 0 0 0

0 0 0.250 0.500 0.250 0 0 0 0 0

0 0 0 0.250 0.500 0.250 0 0 0 0

0 0 0 0 0.250 0.500 0.250 0 0 0

0 0 0 0 0 0.250 0.500 0.250 0 0

0 0 0 0 0 0 0.250 0.500 0.250 0

0 0 0 0 0 0 0 0.250 0.500 0.250

0.250 0 0 0 0 0 0 0 0.250 0.500

Matrix 3

0 1 2 3 4 5 6 7 8 9
Column Index

0
1

2
3

4
5

6
7

8
9

Ro
w

In
de

x

0.900 0.100 0 0 0 0 0 0 0 0

0.100 0.800 0.100 0 0 0 0 0 0 0

0 0.100 0.800 0.100 0 0 0 0 0 0

0 0 0.100 0.800 0.100 0 0 0 0 0

0 0 0 0.100 0.800 0.100 0 0 0 0

0 0 0 0 0.100 0.800 0.100 0 0 0

0 0 0 0 0 0.100 0.800 0.100 0 0

0 0 0 0 0 0 0.100 0.800 0.100 0

0 0 0 0 0 0 0 0.100 0.800 0.100

0 0 0 0 0 0 0 0 0.100 0.900

Matrix 4

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0 1 2 3 4 5
Iteration (×1e3)

10−3

10−2

10−1

100

101

102

F(
x)

 -
F(

x*
)

ED-Topo1
ED-Topo2
ED-Topo3
ED-Topo4
MiLoDo

(b)

Figure 22: Ablation on mixing matrices. (a) describes different choices of mixing matrices, where matrix 1 is
computed by solving the FMMC problem via projected subgradient algorithm (Boyd et al., 2004); (b) displays
testing results of solving LASSO problem by Prox-ED with different mixing matrices, showcasing that the
1/3-strategy (matrix 2) is already good enough.

epochs is insufficient, the model tends to underfit. Conversely, when the learning rate or the number of
epochs is too large, the loss may explode during training, leading to instability. This hyperparameter
sensitivity poses significant challenges to the stable and reliable training of the MiLoDo optimizer.

To address these challenges, we propose a multi-stage training strategy designed to improve training
stability by dividing the training process into multiple stages with distinct objectives. To validate
the effectiveness of this approach, we conducted ablation studies comparing the conventional single-
stage training method and the proposed multi-stage training strategy. Specifically, we evaluated the
performance of trained optimizers on the LASSO optimization problem (10, 300, 100, 0.1) under
various hyperparameter settings, with detailed configurations summarized in Table 2.

In the single-stage training strategy, where (KT ,K) = (20, 100) is fixed, we observed that small
changes in the learning rate or the number of epochs resulted in significant variations in performance,
as shown in Fig 24a. This highlights the high sensitivity of this approach to hyperparameter configu-
rations. In contrast, the multi-stage training strategy demonstrated significantly reduced sensitivity by
dividing the process into multiple stages, as shown in Fig 24b. For simplicity, we ablated only the
hyperparameters of the first stage. This simplification is reasonable, as our observations indicate that
early-stage training has a critical impact on the final performance. Thus, modifying hyperparameters
in the first stage alone is sufficient to validate the robustness and stability of the multi-stage training
strategy without compromising the reliability of our conclusions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Iteration(×1e4)

10−12

10−10

10−8

10−6

10−4

10−2

100

102

(F
(x

)
- F

(x
*)

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

0 2 4 6 8 10
Iteration(×1e4)

10−11

10−9

10−7

10−5

10−3

10−1

Co
ns

en
su

s
Er

ro
r

Prox-DGD
PG-EXTRA
Prox-ATC
Prox-ED
MiLoDo

Figure 23: MiLoDo optimizer trained on a large network with 100 nodes, and tested on LASSO(10,
300, 10, 0.1).

0 2 4 6 8 10
Iteration (×1e3)

10−4

10−3

10−2

10−1

100

101

102

103

F(
X)

 -
F(

X*
)

Setting 1
Setting 2
Setting 3
Setting 4
Setting 5
Setting 6
Setting 7

(a) Single-stage training: the optimizer is trained
with a fixed training length of (KT ,K) =
(20, 100) while varying the learning rate and num-
ber of epochs.

0 2 4 6 8 10
Iteration (×1e3)

10−4

10−3

10−2

10−1

100

101

102

103

F(
X)

 -
F(

X*
)

Setting 1
Setting 2
Setting 3
Setting 4
Setting 5
Setting 6

(b) Multi-stage training: the optimizer is trained in
multiple stages, and ablation studies are conducted
by modifying the hyperparameters of only the first
stage.

Figure 24: Comparison of hyperparameter settings between single-stage and multi-stage training.

Table 2: Hyperparameter settings in single-stage and multi-stage training strategies.

Single-Stage Training (KT ,K = 20, 100)

Setting Epochs Learning Rate

1 20 0.0001
2 40 0.0001
3 60 0.0001
4 20 0.0005
5 40 0.0005
6 60 0.0005
7 20 0.001

Multi-Stage Training (KT ,K = 5, 10)

Setting Epochs Learning Rate

1 20 0.0001
2 20 0.0005
3 20 0.001
4 40 0.0001
5 40 0.0005
6 40 0.001

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.6 HYPERPARAMETER SETTINGS

We specify the manually-tuned optimal learning rates of baseline algorithms for all the experiments
in Table 3.

Table 3: Optimal learning rates of baseline algorithms chosen in different experiments.

Experiment Prox-ED PG-EXTRA Prox-ATC Prox-DGD DAPG ODAPG

LASSO(10, 300, 10, 0.1) 0.03 0.02 0.025 0.04 0.01 0.02
LASSO(10, 30000, 1000, 0.1) 0.03 0.02 0.025 0.04 0.01 0.02

LASSO(10, 200, 10, 0.1) 0.05 0.04 0.045 0.05 0.02 0.03
LASSO(10, 20000, 1000, 0.1) 0.05 0.04 0.045 0.05 / /
LASSO(10, 15000, 1000, 0.0) 0.08 0.05 0.085 0.09 / /

Logistic (10, 50, 100, 0.1) 1.0 0.8 0.4 1.0 / /
Logistic (10, 14, 100, 0.1) 1.9 1.7 1.8 2.0 / /
MLP(10, 13002, 5000, 0) 0.09 0.06 0.06 0.05 0.03 0.055
ResNet(5, 78042, 5000, 0) 0.1 0.07 0.08 0.05 0.05 0.07

28

	Introduction
	Preliminaries
	Mathematics-inspired Update Rules for Decentralized Optimization
	Base update rules
	Structured update rules

	MiLoDo: An Efficient Math-inspired L2O Framework
	Making structured update rules efficient to learn
	LSTM Parameterization for MiLoDo update rules
	Training MiLoDo framework

	Experimental results
	Conclusions and Limitations
	More related work
	Missing proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2

	Illustration of MiLoDo framework
	Robust implementation of decentralized algorithms
	Experimental specifications
	Training strategies
	Target problems
	Implementation details
	Additional results
	Ablation studies
	Hyperparameter settings

