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ABSTRACT

Transformer-based detection and segmentation methods use a list of learned de-
tection queries to retrieve information from the transformer network and learn
to predict the location and category of one specific object from each query. We
empirically find that random convex combinations of the learned queries are still
good queries for the corresponding models. We then propose to learn a convex
combination with dynamic coefficients based on the high-level semantics of the
image. The generated dynamic queries better capture the prior of object locations
and categories in the different images. Equipped with our dynamic queries, a wide
range of DETR-based models achieve consistent and superior performance across
multiple tasks (object detection, instance segmentation, panoptic segmentation)
and on different benchmarks (MS COCO, CityScapes, YoutubeVIS).

1 INTRODUCTION

Object detection is a fundamental yet challenging task in computer vision, which aims to localize
and categorize objects of interest in the images simultaneously. Traditional detection models (Ren
et al., 2015; Cai & Vasconcelos, 2019; Duan et al., 2019; Lin et al., 2017b;a) use complicated an-
chor designs and heavy post-processing steps such as Non-Maximum-Suppression (NMS) to remove
duplicated detections. Recently, Transformer-based object detectors such as DETR (Carion et al.,
2020) have been introduced to simplify the process. In detail, DETR combines convolutional neu-
ral networks (CNNs) with Transformer (Vaswani et al., 2017) by introducing an encoder-decoder
framework to generate a series of predictions from a list of object queries. Following works improve
the efficiency and convergence speed of DETR with modifications to the attention module (Zhu
et al., 2021; Roh et al., 2021), and divide queries into positional and content queries (Liu et al.,
2022; Meng et al., 2021). This paradigm is also adopted for instance/panoptic segmentation, where
each query is associated with one specific object mask in the decoding stage of the segmentation
model (Cheng et al., 2021a).

The existing DETR-based detection models always use a list of fixed queries, regardless of the input
image. The queries will attend to different objects in the image through a multi-stage attention
process. Here, the queries are served as global priors for the location and semantics of target objects
in the image. In this paper, we would like to associate the detection queries with the content of the
image, i.e., adjusting detection queries based on the high-level semantics of the image in order to
capture the distribution of object locations and categories in this specific scene. For example, when
the highlevel semantics show the image is a group photo, we know that there will be a group of
people (category) inside the image and they are more likely to be close to the center of the image
(location).

Since the detection queries are implicit features that do not directly relate to specific locations and
object categories in the DETR framework, it is hard to design a mechanism to change the queries
while keeping them within a meaningful “query” subspace to the model. Through an empirical
study, we notice that convex combinations of learned queries are still good queries to different
DETR-based models, achieving similar performance as the originally learned queries (See Section
3.2). Motivated by this, we propose a method to generate dynamic detection queries based on the
high-level semantics of the image in DETR-based methods while constraining the generated queries
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Figure 1: Comparison of DETR-based detection models integrated with and without our methods
on MS COCO (Lin et al., 2014) val benchmark. ResNet-50 is used as the backbone.

in a sequence of convex hulls spanned by the static queries. Therefore, the generated detection
queries are more related to the target objects in the image and stay in a meaningful subspace. Exten-
sive experiments on MS COCO (Lin et al., 2014), CityScapes (Cordts et al., 2016) and YouTube-VIS
(Yang et al., 2019) benchmarks with multiple tasks, including object detection, instance segmenta-
tion, and panoptic segmentation show superior performance of our approach combined with a wide
range of DETR-based models. In Figure 1, we show the performance of our method on object
detection combined with two baseline models. When integrated with our proposed method, the
mAP of recent detection models DAB-Deformable-DETR (Liu et al., 2022) can be increased by
1.6%. With fewer dynamic detection queries and less computation in the transformer decoder, our
method can still achieve better performance than baseline models on both Deformable-DETR and
DAB-Deformable-DETR.

2 RELATED WORKS

Transformers for object detection. Traditional CNN-based object detectors require manually de-
signed components such as anchors (Ren et al., 2015; Tian et al., 2019) or post-processing steps
such as NMS(Neubeck & Van Gool, 2006; Hosang et al., 2017). Transformer-based detectors di-
rectly generate predictions for a list of target objects with a series of learnable queries. Among
them, DETR (Carion et al., 2020) first combines the sequence-to-sequence framework with learn-
able queries and CNN features for object detection. Following DETR, multiple works were proposed
to improve its convergence speed and accuracy. Deformable-DETR (Zhu et al., 2021) and Sparse-
DETR (Roh et al., 2021) replace the self-attention modules with more efficient attention operations
where only a small set of key-value pairs are used for calculation. Conditional-DETR (Tian et al.,
2020) changes the queries in DETR to be conditional spatial queries, which speeds up the conver-
gence process. Anchor-DETR (Wang et al., 2021b) generates the object queries using anchor points
rather than a set of learnable embeddings. DAB-DETR (Liu et al., 2022) directly uses learnable
box coordinates as queries which can be refined in the Transformer decoder layers. DINO (Zhang
et al., 2022) and DN-DETR Li et al. (2022) introduce a strategy to train models with noisy ground
truths to help the model learn the representation of the positive samples more efficiently. Recently,
Group-DETR Chen et al. (2022) and HDETR Jia et al. (2022) both added auxiliary queries and a
one-to-many matching loss to improve the convergence of the DETR-based models. They still use
static queries which does not change the general architecture of DETR. All these Transformer-
based detection methods use fixed initial detection queries learned on the whole dataset. In contrast,
we propose to modulate the queries based on the image’s content, which generates more effective
queries for the current image.

Transformers for object segmentation. Besides object detection, Transformer-based models are
also proposed for object segmentation tasks including image instance segmentation, panoptic seg-
mentation (Kirillov et al., 2019; Wang et al., 2021a; Zhang et al., 2021) and video instance seg-
mentation (VIS) (Yang et al., 2019). In DETR (Carion et al., 2020), a mask head is introduced on
top of the decoder outputs to generate the predictions for panoptic segmentation. Following DETR,
ISTR (Hu et al., 2021) generates low-dimensional mask embeddings, which are matched with the
ground truth mask embeddings using Hungarian Algorithm for instance segmentation. SOLQ (Dong
et al., 2021) uses a unified query representation for class, location, and object mask. Mask2Former
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Model DAB-DETR Deformable-DETR Mask2Former
r = 2 r = 4 r = 2 r = 4 r = 2

Convex Combination 37.9(±0.10) 30.4(±0.20) 35.0(±0.20) 24.2(±0.05) 41.2(±0.10)
Non-convex Combination 37.0(±0.10) 29.5(±0.10) 32.6(±0.25) 24.0(±0.10) 40.7(±0.45)
Averaged Combination 37.0 28.4 32.9 22.5 40.9
Queries sampled randomly 39.7(±0.05) 33.9(±0.15) 39.8(±0.30) 28.1(±0.30) 41.7(±0.10)

Table 1: Comparison of pretrained detection models DAB-DETR (Liu et al., 2022) and Deformable-
DETR and segmentation model Mask2Former (Cheng et al., 2021a) with different queries. The
shown metrics are box mAP for detection and mask mAP for segmentation. ResNet-50 is used as
the backbone and models are evaluated on MS COCO val.

(Cheng et al., 2021a) introduces masked attention to extract localized features, and predict output for
panoptic, instance and semantic segmentation in a unified framework. SeqFormer (Wu et al., 2021)
utilizes video-level instance queries where each query attends to a specific object across frames in
the video. These Transformer-based models follow the general paradigm of DETR and use fixed
queries regardless of the input.

Dynamic deep neural networks. Dynamic deep neural networks (Han et al., 2021) aim at adjusting
the computation procedure of a neural network adaptively in order to reduce the overall computation
cost or enhance the model capacity. Slimmable networks (Yu et al., 2018; Yu & Huang, 2019; Li
et al., 2021) introduce a strategy to adapt to multiple devices by simply changing channel numbers
without the need for retraining. Dynamic Convolution (Chen et al., 2020) proposes a dynamic
perceptron that uses dynamic attention weights to aggregate multiple convolution kernels based on
the input features. On object detection, Dynamic R-CNN (Zhang et al., 2020) proposes a new
training strategy to dynamically adjust the label assignment for two-stage object detectors based
on the statics of proposals. Cui et al. (2022) proposes to train a single detection model which can
adjust the number of proposals based on the complexity of the input image. Wang et al. (2021c)
introduces a Dynamic Transformer to determine the number of tokens according to the input image
for efficient image recognition, by stacking multiple Transformer layers with increasing numbers of
tokens. In contrast to the existing work, we explore generating dynamic queries for a wide range of
DETR-based models using the same framework. Our focus is not to reduce the computation cost
of DETR-based models, but to improve the model performances with queries more related to the
content of each individual image.

3 METHODOLOGY

3.1 PRELIMINARY

We first summarize the inference process of the existing Transformer-based models for a series of
tasks, including object detection, instance segmentation, and panoptic segmentation, as the following
Equation:

Y = Nt (Ndec (Nenc (F ) ,Q)) .
(1)

For the object detection task, given the input image I , multi-scale features F are extracted from
the backbone network and then fed into a Transformer encoder Nenc. After processing the features
with multiple encoder layers, the output features are fed into a Transformer decoder Ndec together
with n randomly initialized query vectors Q ∈ Rn×f , where n and f denote the number of queries
and length of each query respectively. Each query can be a feature vector (Carion et al., 2020; Zhu
et al., 2021), or a learned anchor box (Liu et al., 2022). The outputs of Ndec is then fed into a task
head Nt to generate the final predictions Y = {(bi, ci) , i = 1, 2, . . . , n}, where bi, ci represent the
bounding boxes and their corresponding categories of the detected objects. Then, the predictions are
matched with the ground truths Y ⋆ using the Hungarian Algorithm (Carion et al., 2020) to generate
a bipartite matching. Then, the final loss is computed based on this bipartite matching:

L = LHungarian (Y ,Y ⋆) . (2)

For the segmentation tasks, the final predictions are updated to Y = {(bi, ci,mi) , i = 1, 2, . . . , n},
where mi denotes the predicted masks for different object instances. Since there is no direct cor-
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respondence of the predictions with the ground truth annotations, a bipartite matching is also com-
puted to find the correspondence of the predictions and the ground truths Y ⋆. The final loss is then
computed based on the matching. In some models such as Mask2Former (Cheng et al., 2021a),
there will be no Transformer encoder Nenc to enhance the feature representations, while the other
computational components follow the same paradigm.

3.2 FIXED QUERY COMBINATIONS

Though some existing works analyze the contents of the queries for the decoder, such as Conditional-
DETR (Tian et al., 2020) and Anchor-DETR (Wang et al., 2021b), they always exam each query
individually. To the best of our knowledge, there is no work studying the interaction between the
queries in Q. Here, we would like to explore what kind of transformations conducted between the
learned queries still generate “good” queries. If we compute the average of a few queries, is it still
an effective query? If we use different types of linear transformations, which would be better to
produce good queries?

We conduct experiments to analyze the results of queries generated by different perturbations
from the original queries. The procedure of the experiments is as follows: given a well-
trained Transformer-based model, the initial queries for the decoder are denoted as QP ={
qP
1 , q

P
2 , . . . , q

P
n

}
∈ Rn×f . The first type of perturbation uses linear combinations of the origi-

nal queries. We first separate the n queries into m groups, where each group has r = n
m queries

and generates one new query. Then, we initialize the combination coefficients W ∈ Rm×r, where
wij ∈ W is the coefficient used for the i-th group, j-th queries, denoted as qP

ij , to generate a group
of new queries QC = {qC

1 , q
C
2 , . . . , q

C
m} ∈ Rm×f . The process can be summarized as:

qC
i =

r∑
j=1

wijq
P
ij , (3)

We use three settings to evaluate the impact of different coefficients in Equation 3, namely Convex
Combination, Non-convex Combination, and Averaged Combination. In Convex Combination, qC

i

is within the convex hull of qP
ij , j = 1, 2, . . . , r. The combination coefficients wij are randomly

initialized using uniform distribution in [−1, 1] and then passed through a softmax function to sat-
isfy the criteria: wij ≥ 0,

∑r
j=1 wij = 1. For Non-convex Combination, wij are initialized in the

same way as those in the convex combination, and the sum of wij is forced to be 1. However, there is
no guarantee on its range and wij can be negative values. For Averaged Combination, we generate
qC
i by averaging qP

ij , j = 1, 2, . . . , r. As a baseline, we evaluate the model on m queries ran-
domly sampled from QP . The experiments are conduct on MS COCO benchmark (Lin et al., 2014)
for object detection, and instance segmentation, using DAB-DETR (Liu et al., 2022), Deformable-
DETR (Zhu et al., 2021) and Mask2Former (Cheng et al., 2021a), with ResNet-50 as the backbone.
The results are summarized in Table 1. From Table 1, we notice that Convex Combination achieves
the best results among all the compared settings except the baseline. Convex Combination only de-
generate slightly compared with learned queries on DAB-DETR and Mask2Former. In addition, the
performance of Convex Combination only has very small variances across different models, proving
that convex combinations of the group-wise learned queries are naturally high-quality object queries
for different Transformer-based models on both detection and segmentation tasks. n is set to 300 for
detection models and 100 for Mask2Former. We run each setting 6 times to compute the variance.

3.3 DYNAMIC QUERY COMBINATIONS

From the previous section, we learn that fixed convex combinations of learned queries are still able
to produce a reasonable accuracy compared to the learned queries. In this section, we propose a
strategy to learn dynamic query combinations for the Transformer-based models instead of randomly
generating the coefficients wij for query combinations. Our model predicts their values according
to the high-level content of the input images. Therefore, each input image will have a distinct set of
object queries fed into the Transformer decoder.

To generate dynamic queries, a naive idea is to generate the modulated queries directly from the in-
put features F . This method will increase the number of parameters dramatically, causing it difficult
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(a) (b)

Figure 2: The framework of the proposed method. (a) Model pipeline with dynamic query combi-
nations. The step with dashed line is only used in training. (b) Illustration of generating modulated
queries from basic queries given combination coefficients.

to optimize and inevitably computationally inefficient. To verify this, we conduct an experiment on
Deformable-DETR (Zhu et al., 2021) with ResNet-50 as the backbone. We replace the original ran-
domly initialized queries with those generated by a multi-layer perceptron (MLP), which transforms
the image feature F to Q. With 50 epochs, the model only achieves 45.1% mAP, which is lower
than the original model with 46.2%.

Inspired by the dynamic convolution (Chen et al., 2020), which aggregates the features with multiple
kernels in each convolutional layer, we propose a query modulation method. We first introduce two
types of queries: basic queries QB ∈ Rn×f and modulated queries QM ∈ Rm×f , where n,m are
the number of queries and n = rm. Equation 3 is updated as:

qM
i =

r∑
j=1

wD
ijq

B
ij ,

(4)

where WD ∈ Rm×r is the combination coefficient matrix and wD
ij ∈ WD is the coefficient for the

i-th group, j-th query in QB , denoted as qB
ij . To guarantee our query combinations to be convex,

we add extra constraints to the coefficients as wD
ij ≥ 0,

∑r
j=1 w

D
ij = 1.

In our dynamic query combination module, the coefficient matrix WD is learned based on the input
feature F through a mini-network, as:

WD = σ (θ (A (F ))) , (5)

where A is a global average pooling to generate a global feature from the feature map F , θ is
an MLP, σ is a softmax function to guarantee the elements of WD satisfy the convex constraints.
Here we try to make the mini-network as simple as possible to show the potential of using dynamic
queries. This attention-style structure happens to be a simple and effective design choice.

During the training process, we feed both QM and QB to the same decoder to generate the corre-
sponding predictions Y M and Y B as follows,

Y M = Nt

(
Ndec

(
Nenc (F ) ,QM

))
Y B = Nt

(
Ndec

(
Nenc (F ) ,QB

))
(6)

The final training loss is then updated to

L = LHungarian
(
Y M ,Y ⋆

)
+ βLHungarian

(
Y B ,Y ⋆

)
(7)

where β is a hyperparameter. During the inference, only QM is used to generate the final predictions
Y M while the basic queries QB are not used. Therefore, the computational complexity increases
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Backbone Method mAP AP0.5 AP0.75

ResNet-50

Conditional-DETR (Tian et al., 2020) 40.9 61.7 43.3
DQ-Conditional-DETR 42.0↑1.1 63.3↑1.6 44.2↑0.9
SMCA-DETR (Gao et al., 2021) 41.0 61.5 43.5
DQ-SMCA-DETR 42.1↑1.1 63.3↑1.8 44.9↑1.4
DAB-DETR (Liu et al., 2022) 42.1 63.1 44.6
DQ-DAB-DETR 43.7↑1.6 64.4↑1.3 46.6↑2.0
Deformable-DETR (Zhu et al., 2021) 46.2 65.0 49.9
DQ-Deformable-DETR 47.0↑0.8 65.5↑0.5 50.9↑1.0
DAB-Deformable-DETR (Liu et al., 2022) 48.1 66.4 52.0
DQ-DAB-Deformable-DETR 49.7↑1.6 68.1↑1.7 54.2↑2.2

Swin-Base

Deformable-DETR (Zhu et al., 2021) 50.9 70.5 55.3
DQ-Deformable-DETR 53.2↑2.3 72.8↑2.3 57.7↑2.4
DAB-Deformable-DETR Liu et al. (2022) 52.7 71.8 57.4
DQ-DAB-Deformable-DETR 53.8↑1.1 72.8↑1.0 58.6↑1.2

Table 2: Comparison of existing DETR-based object detectors with/without our proposed methods
integrated on MS COCO val split. ResNet-50 is used as the backbone.

for our models are negligible compared to the original DETR-based models. The only difference
in the computation is that we have an additional MLP and a convex combination to generate the
modulated queries. Since the role of modulated queries in our model is exactly the same as the fixed
object queries in the original models, we use modulated queries and queries interchangeably to refer
to the modulated queries.

4 EXPERIMENTS

To evaluate the effectiveness of our proposed methods, we first conduct experiments on a series of
tasks, including object detection, instance segmentation, panoptic segmentation, and video instance
segmentation with different DETR-based models. Then we conduct several ablation studies to in-
vestigate the impact of different hyperparameters in our model. Detailed experiment setups and
visualization examples are provided in the supplementary materials.

4.1 EXPERIMENT SETUP

Datasets. For the object detection task, we use MS COCO benchmark (Lin et al., 2014) for eval-
uation, which contains 118, 287 images for training and 5, 000 for validation. For instance and
panoptic segmentation, besides the MS COCO benchmark (80 “things” and 53 “stuff” categories),
we also conduct experiments on the CityScapes (Cordts et al., 2016) benchmark (8 “things” and 11
“stuff” categories) to validate the effectiveness of our proposed method. For the VIS task, YouTube-
VIS-2019 (Yang et al., 2019) is used for evaluation. For experiments on VIS, we pretrain our models
on MS COCO and finetune them on the training set of YouTube-VIS-2019.

Evaluation metrics. For panoptic segmentation, the standard PQ (panoptic quality) metric (Kirillov
et al., 2019) is used for evaluation. For instance segmentation (image or video) and object detection,
we use the standard mAP (mean average precision) metric for evaluation. For VIS, mAP and AR
(average recall) on video instances are the evaluation metrics.

Implementation details. The query ratio r used to generate the combination coefficients is set
to 4 by default. β is set to be 1. θ is implemented as a two-layer MLP with ReLU as nonlinear
activations. The output size of its first layer is 512, and that of the second layer is the length of
WD in corresponding models. For detection models, we use 300 queries if not specified otherwise.
For segmentation models, we use 50 queries for Mask2Former on image segmentation tasks, 100
queries for Mask2Former on VIS, and 300 queries for SeqFormer on VIS. ResNet50 is used as the
backbone for different models.
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Methods mAP AP0.5 AP0.75

Mask R-CNN (He et al., 2017) 35.4 56.4 37.9
QueryInst (Fang et al., 2021) 39.8 61.8 43.1

Mask2Former (Cheng et al., 2021a) (50 queries) 42.4 64.3 45.7
DQ-Mask2Former (50 queries) 43.2↑0.8 65.2↑0.9 46.7↑1.0
Mask2Former (100 queries) 43.3 65.5 46.9
DQ-Mask2Former (100 queries) 44.1↑0.8 66.5↑1.0 47.4↑0.5

Table 3: Comparison of existing instance segmentation approaches and DQ-Mask2Former on MS
COCO val split. All models use ResNet-50 as the backbone.

Methods PQ RQ PQth RQth

UPSnet (Xiong et al., 2019) 42.5 52.5 48.6 59.6
DETR (Carion et al., 2020) 43.4 53.8 48.2 59.5

Mask2Former (Cheng et al., 2021a) 50.4 59.9 55.8 65.9
DQ-Mask2Former 51.1↑0.7 60.6↑0.7 56.9↑1.1 67.1↑1.2

Table 4: Comparison of existing panoptic segmentation approaches with DQ-Mask2Former on MS
COCO val split with ResNet-50 as the backbone.

Method Panoptic Instance
PQ RQ PQth RQth mAP AP0.5

Mask2Former 60.3 73.2 50.6 63.0 36.7 60.9
DQ-Mask2Former 61.6↑1.3 74.3↑0.9 53.5↑2.9 65.7↑2.7 37.5↑0.8 62.2↑1.3

Table 5: Comparison of Mask2Former and DQ-Mask2Former on panoptic and instance segmenta-
tion tasks on CityScapes val split with ResNet-50 as the backbone.

4.2 MAIN RESULTS

Object detection. We evaluate our proposed methods with the DETR-based models Deformable-
DETR (Zhu et al., 2021), SMCA-DETR (Gao et al., 2021), Conditional-DETR (Tian et al., 2020),
DAB-DETR and DAB-Deformable-DETR (Liu et al., 2022) for object detection on the MS COCO
benchmark. For a fair comparison, we run the original model integrated with and without our
proposed dynamic queries using the same experimental settings, including the number of queries
and epochs. The models equipped with our dynamic query combinations are denoted as DQ-
Deformable-DETR, DQ-SMCA-DETR, DQ-Conditional-DETR, DQ-DAB-DETR, and DQ-DAB-
Deformable-DETR, respectively. The results are shown as in Table 2. From Table 2, when integrated
with our proposed method, mAP can be improved consistently by at least 0.8% for all the models
listed in the table. For DAB-Deformable-DETR, the mAP can be improved by 1.6% with ResNet50
backbone and 1.1% with Swin-B backbone. For Deformable-DETR, the mAP can be improved
significantly by 2.3% with Swin-B backbone. This proves the benefit of our method with different
backbones. Note that models with dynamic queries only have negligible increased computation cost
compared to the original models.

Instance/panoptic segmentation. Mask2Former(Cheng et al., 2021a) is a recent state-of-the-art
model that can be used for different segmentation tasks with a unified model architecture. We com-
pare Mask2Former with/without our dynamic queries for image instance and panoptic segmentation
tasks on the MS COCO (Lin et al., 2014) and CityScapes (Cordts et al., 2016) benchmarks. The
model plugged with dynamic queries is named DQ-Mask2Former. The results are shown as in Table
3, 4 and 5. We use 50 queries for all the listed settings. For instance segmentation (Table 3 and 5),
our model DQ-Mask2Former achieves consistent improvement across different metrics compared
to the original Mask2Former. For example, the performance on mAP is improved by around 0.8%
on both MS COCO and CityScapes. For panoptic segmentation, as shown in Table 4 and 5, DQ-
Mask2Former again significantly outperforms Mask2Former (Cheng et al., 2021a) across all the
evaluation metrics on both MS COCO and CityScapes.
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Method mAP AP0.5 AP0.75 AR

MaskTrack R-CNN (Yang et al., 2019) 30.3 51.1 32.6 35.5
IFC (Hwang et al., 2021) 42.8 65.8 46.8 51.2

Mask2Former (Cheng et al., 2021a) 45.2 65.8 48.9 55.4
DQ-Mask2Former 46.3↑1.1 68.6↑2.8 50.6↑1.7 56.4↑1.0
SeqFormer (Wu et al., 2021) 46.0 68.5 50.4 53.6
DQ-SeqFormer 47.5↑1.5 70.3↑1.8 52.0↑1.6 55.0↑1.4

Table 6: Comparison of existing video instance segmentation approaches with DQ-Mask2Former
and DQ-SeqFormer on YouTube-VIS-2019 val split with ResNet-50 as the backbone.

β mAP AP0.5 AP0.75 APS APM APL

0.0 45.6 64.1 49.4 27.2 49.1 60.5
0.5 46.4 65.0 50.3 28.1 49.2 62.6
1.0 47.0 65.5 50.9 28.8 50.1 62.2

Table 7: Analysis of β using DQ-Deformable-DETR (ResNet-50 as the backbone) on the MS COCO
benchmark with different settings.

Video instance segmentation. Besides image tasks, we also evaluate our method on the video
instance segmentation task. We evaluated our method on two state-of-the-art VIS methods
Mask2Former (Cheng et al., 2021b) and SeqFormer (Wu et al., 2021). Results are shown in Ta-
ble 6. It can be seen from Table 6 that when integrated with our dynamic queries, mAP and AR of
Mask2Former are improved by at around 1.0%. The mAP of SeqFormer is significantly boosted by
1.5%. Note the additional computation cost are negligible for these two models.

4.3 MODEL ANALYSIS

Analysis of number of queries. We use Deformable-DETR and DAB-Deformable-DETR as base-
line models to study the effects of number of queries on the performance of object detection. We
compare the baseline models with DQ-Deformable-DETR and DQ-DAB-Deformable-DETR inte-
grated with different numbers of queries as in Figure 1. Note that we include the additional compo-
nents of our models into the FLOPs computation of the decoder. When integrated with our method,
even by reducing the number of queries from 300 to 100, the mAP of DQ-Deformable-DETR and
DQ-DAB-Deformable-DETR are still better than the baseline models with 300 queries. We are also
able to reduce the computation cost of the decoders of Deformable-DETR and DAB-Deformable-
DETR by about 14% and 24% by using our method with 100 queries, respectively. However, we
do not observe significant speedup using our method with fewer queries mainly because the main
computation costs are from the backbones and the transformer encoders.

Analysis of number of training epochs. In Figure 3 (a), we show the impact of the number of
training epochs on a sample model DQ-Deformable-DETR together with the original Deformable-
DETR. From the figure, the mAP of DQ-Deformable-DETR is always better than that of the orig-
inal Deformable-DETR at different epochs on the MS COCO benchmark. At early epochs around
30, DQ-Deformable-DETR achieves an even more significant performance gain compared then
Deformable-DETR compared with later epochs.

Analysis of β. We analyze the impact of the scale of β on models equipped with our dynamic
queries. We conduct experiments using Deformable-DETR with ResNet-50 as the backbone on the
MS COCO benchmark with different values of β. Results are shown in Table 7. As shown in the
table, when β is set to be 0, where no loss is directly computed with the prediction from the basic
queries, the performance drops by 2.4% compared to the original setting. In this case, the basic
queries are not necessarily proper queries for the detection model, which will affect the quality of
the modulated queries produced by them. The performance can be improved by increasing the value
of β to 0.5. Empirically we find β = 1 is a good choice to balance the scale of losses between the
basic and modulated queries.

Analysis of query ratio. We use DQ-Deformable-DETR (Zhu et al., 2021) to analyze the perfor-
mance of our proposed methods with different query ratios 2, 4, and 8, as in Figure 3 (b). From
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(a) (b)

Figure 3: Analysis of the impact of number of epochs and query ratios on the performance.

Figure 4: t-SNE visualization of WD on 200 images from MS COCO val. Zoom in to see details.

the figure, using 4 as the query ratio achieves the best performance for DQ-Deformable-DETR with
300 queries. However, other query ratio choices still generate better accuracies than the original
Deformable-DETR, which validates the effectiveness and robustness of our method.

Visualization of WD. Since WD is conditioned on the high-level content of the image, we con-
jecture that images with similar scenes or object categories may have similar WD parameters. We
choose 200 images from the validation set of MS COCO and compute their WD from DQ-DAB-
DETR with 300 queries. The resulting WD are first flattened into vectors, and then projected onto
a two-dimensional space using t-SNE(Van der Maaten & Hinton, 2008). We visualize the projected
WD parameters along with their corresponding input images as Figure 4. We can see that some
object categories tend to be clustered. For example, we can see a lot of transportation vehicles in
the top right corner of the figure, and wild animals tend to be in the lower part of the figure, which
indicates that the model uses some high-level semantics of the image to produce the combination
coefficients.

5 CONCLUSION

In this paper, we propose to use dynamic queries depending on the input image to enhance DETR-
based detection and segmentation models. We find that convex combinations of learned queries are
naturally high-quality object queries for the corresponding models. Based on this observation, we
design a pipeline to learn dynamic convex combinations of the basic queries, adapting object queries
according to the high level semantics of the input images. This approach consistently improves the
performance of a wide range of DETR-based models on object detection and segmentation tasks.
The gain of our model is agnostic to the different designs of the Transformer decoders and different
types of object queries. We believe this approach opens the door to designing dynamic queries and
creates a new perspective for Transformer-based models.
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