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Abstract

Widespread adoption of applications powered001
by large language models such as BERT and002
GPT highlights concerns within the community003
about the impact of unintended bias that such004
models can inherit from training data. For ex-005
ample, past work reports evidence of LLMs that006
proliferate gender stereotypes, as well as geo-007
graphical and racial bias. Previous approaches008
have focused on data pre-processing techniques009
or techniques that attempt to debias embed-010
dings directly with substantial disadvantages in011
terms of increased resource requirements, an-012
notation efforts as well as limitations in terms013
of applicability to a sufficient range of bias014
types. In this paper, we propose REFINE-LM, a015
post-hoc filtering of bias using Reinforcement016
learning that is model architecture as well as017
bias-type agnostic. Experiments across a range018
of models, including DistillBERT, BERT and019
RoBERTa, show the proposed method to (i)020
substantially reduce stereotypical bias while021
preserving language model performance; (ii)022
achieve applicability to a wide range of bias023
types, generalizing across contexts such as gen-024
der, ethnicity, religion, and nationality-based025
biases; (iii) a reduction in required training re-026
sources.027

1 Introduction028

Recent advancement in large language models029

(LLMs) has revolutionized the domain of NLP030

opening the door to countless applications that031

seemed out of reach only a few years ago. The032

emergence of chatbots and text-based assistants033

with astounding capabilities has, on the one hand,034

sparked an unprecedented enthusiasm within the035

research community (Qiu et al., 2020; Zhao et al.,036

2023), while, on the other hand, has raised ques-037

tions about the risks AI may pose to society. One re-038

current concern is algorithmic fairness, and when it039

comes to LLMs, one particular bone of contention040

is the proliferation of harmful stereotypical bias.041

Past work has already provided evidence of 042

stereotypical bias in LLMs through, for ex- 043

ample, the use if Implicit Associaton Tests 044

(IATs) (Caliskan et al., 2017), still present in mod- 045

ern LLMs, as demonstrated in Figure 1. Such obser- 046

vations have motivated the research community to 047

study stereotypical bias, and devise methods to mit- 048

igate the risks of perpetuation or even amplification 049

of such bias, risks that have only been amplified in 050

recent times by the increasing widespread use of 051

such tools. 052

Mitigation of bias in LLMs is challenging for 053

several reasons. Firstly, quantifying stereotypical 054

bias is highly application-dependent, meaning that 055

despite the existence of methods of measuring bias 056

in LLMs, approaches tailored to mitigating one in- 057

stance of bias are not directly portable to others. 058

For example, mitigation techniques for gender bias 059

are ordinarily not directly portable to nationality- 060

based or ethnic bias due to the metrics employed 061

being highly task-dependent, such as pronoun com- 062

pletion or the existence of sufficiently gendered 063

phrases within corpora (De Vassimon Manela et al., 064

2021; May et al., 2019; Zhao et al., 2018a). Sec- 065

ondly, even with adequate ways to measure bias, 066

experience shows there is often an unfortunate 067

trade-off between bias mitigation and model per- 068

formance (Guo et al., 2022), resulting in a neg- 069

ative impact despite bias removal. Thirdly, most 070

approaches proposed to date rely on data debias- 071

ing or model fine-tuning. Data debiasing is not 072

only highly application-dependent, it also requires 073

both substantial manual annotation effort and sig- 074

nificantly increased computational resources for 075

re-training. 076

In this paper, we propose a new approach to de- 077

biasing LLMs that overcomes all of the aforemen- 078

tioned challenges. Our method employs a post-hoc 079

custom layer deployed on top of a pre-trained LLM 080

trained using reinforcement learning that does not 081

require manual annotation of any kind but instead 082
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INPUT: Fill in the blank: John and Mary are sitting in a park. is the good driver.
CHATGPT: John is the good driver.
INPUT: James got off the flight to visit Patricia. is the plumber.
CHATGPT: James is the plumber.
USER: William lives in the same city with Dorothy. is the nurse.
CHATGPT: Dorothy is the nurse.
INPUT: Steven sent a letter to Donna. is the cook.
CHATGPT: Steven is the cook.
INPUT: Ronald lives in the same city with Maria. can never be a banker.
CHATGPT: Maria can never be a banker.

Figure 1: A sample of replies from ChatGTP 3.5 when given IAT inputs from UnQover Dataset (December 2023).

leverages the output of the LLM to mitigate a broad083

range of biases in the answer. While reinforcement084

learning (RL) has been successfully applied in algo-085

rithmic fairness (Jabbari et al., 2017; Sohaib et al.,086

2022; Yamazaki and Yamamoto, 2021), this is to087

the best of our knowledge, the first approach that088

applies RL for bias mitigation in LLMs. We pro-089

vide the following:090

• A formulation of the bias mitigation problem091

as a reinforcement learning (RL) problem. We092

employ a simple form of RL, the so-called con-093

textual bandits, to debias the final output of a094

masked LLM using the bias measuring frame-095

work proposed by Li et al. (2020).096

• A custom debiasing layer, that we name REFINE-097

LM, that mitigates different types of stereotype098

based on gender, nationality, ethnicity, and reli-099

gion in large masked LLMs. As shown in our100

evaluation, REFINE-LM is easy to train and can101

successfully suppress stereotypes in DistillBERT,102

BERT and RoBERTa without affecting model103

performance in classical LM tasks such as token104

completion.105

The article is structured as follows. Section 2 sur-106

veys the state of the art in bias detection and mit-107

igation for language models in general. Section 3108

explains the framework used to quantify bias as109

well as the inner workings of REFINE-LM, our pro-110

posed solution to reduce bias in pre-trained LLMs.111

Section 4 then describes our evaluation of REFINE-112

LM, and finally, Section 5 discusses our results as113

well as avenues for future research.114

2 Related Work115

In order to effectively investigate the presence or116

absence of bias in text produced by LLMs, firstly117

accurate methods of measuring bias are required 118

and it is fair to say that a plethora of existing 119

work focuses on detecting and quantifying negative 120

bias in LMs, text embeddings, and textual corpora. 121

Caliskan et al. (2017), for example, reveal the racial 122

bias of names associated to African American peo- 123

ple lying closer to unpleasant than to pleasant terms 124

in the GloVe embedding space (Pennington et al., 125

2014) when compared to names associated with 126

white Americans. In this study, bias is quantified by 127

comparing embedding distances between groups 128

of terms. More recent measuring frameworks in- 129

clude the WEAT and SEAT tests (May et al., 2019), 130

are both widely used to measure bias for word and 131

sentence embeddings, while gender bias has addi- 132

tionally been widely analyzed. (Stanczak and Au- 133

genstein, 2021), with upwards of 300 papers on the 134

subject of measuring and mitigation are reported, 135

however more and more approaches are turning 136

the attention towards other types of bias such as 137

religion-based (Abid, Abubakar and Farooqi, Ma- 138

heen and Zou, James, 2021) or political bias (Liu 139

et al., 2022). 140

Subsequently, Basta et al. (2019) propose spe- 141

cific metrics to quantify gender bias and use them 142

to evaluate the effectiveness of contextualized word 143

embeddings for bias mitigation – the contextualiza- 144

tion is achieved via an LM. While the results are 145

rather inconclusive, the metrics are applicable to 146

any word embedding and are based on clustering 147

and distance comparisons. In other cases, the task is 148

motivated by a downstream application. The work 149

of Davidson et al. (2019) trains BoW-based clas- 150

sifiers to detect hate speech in tweets, and reports 151

higher misclassification rates for tweets posted by 152

African American users. Mozafari et al. (2020) re- 153

port similar results when using BERT as underlying 154

technology. 155
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In the last years the attention has shifted to-156

wards pre-trained LMs. StereoSet (Nadeem et al.,157

2021) resorts to intra-sentence and inter-sentence158

CATs (Context Association Tests) to measure the159

likelihood of the LM to provide stereotypical and160

anti-stereotypical text completions – (Nangia et al.,161

2020) works in the same spirit by comparing the162

LM probabilities assigned to stereotypical and anti-163

stereotypical phrases. De Vassimon Manela et al.164

(2021) use compound masked sentences from the165

WinoBias dataset (Zhao et al., 2018a) to define166

gender-occupation bias as the difference in the F1167

score when predicting the right pronoun in stereo-168

typical and anti-stereotypical sentences. Using an169

alternate approach, the UnQover framework (Li170

et al., 2020) quantifies bias via a set of under-171

specified masked questions and metrics that control172

for formulation biases in the input sentences. The173

goal of such techniques is to capture the “pure”174

stereotypical bias encoded in the LM. Unlike the175

other frameworks, UnQover supports a very large176

training set that comprises several types of steoreo-177

typical bias.178

Apart from measuring bias, several previous au-179

thors have investigated methods of mitigating bias,180

either in a pre-, in-, or post-training fashion. An181

example of the first category is CDA1 (Webster182

et al., 2021) that augments the training corpus by183

flipping the polarity of gendered words and syntac-184

tic groups in the original training sentences. CDA185

works well for English but produces inadequate186

training examples for inflected languages such as187

Spanish. On those grounds, Zmigrod et al. (2019)188

propose an approach – based on markov random189

fields – to deal with inflections in other parts of the190

sentence. Zhao et al. (2018b) learns gender-neutral191

GloVe embeddings that encode gender information192

in a subset of the embedding components, trained193

to be orthogonal to the remaining components.194

Pre- and in-training debiasing approaches as-195

sume that one can train the model from scratch.196

Since this can be prohibitive, several works propose197

to fine-tune pre-trained language models. Moza-198

fari et al. (2020) mitigate racial bias by fine-tuning199

a pre-trained BERT via a proper re-weighting of200

the input samples. In a different vibe, Context-201

Debias (Kaneko and Bollegala, 2021) fine-tunes202

a pre-trained LM by forcing stereotype words and203

gender-specific words to be orthogonal in the la-204

tent space. Debias-BERT (Garimella et al., 2021)205

1Counterfactual Data Augmentation

resorts to equalizing and declustering losses to ad- 206

just BERT. Bias is evaluated by human annotators 207

on the LM’s answers for sentence completion and 208

summarization tasks. 209

A more recent effort (Guo et al., 2022) fine-tunes 210

pre-trained LMs by minimizing the distributional 211

disagreement between the completions for different 212

values of the sensitive attribute, e.g., by minimiz- 213

ing the difference in the distribution of professions 214

associated to male vs. female prompts. Albeit more 215

efficient than full retraining, fine-tuning can still 216

be computationally unfeasible for very large pre- 217

trained models. Hence, other approaches propose to 218

debias the output of such models, via post-hoc regu- 219

larization layers (Liang et al., 2020, 2021) . Bias is 220

often evaluated using the SEAT metric (May et al., 221

2019), defined for token embeddings. REFINE-LM 222

falls within this family of methods, but defines bias 223

via the UnQover (Li et al., 2020) framework, tai- 224

lored for masked pre-trained LMs and several bias 225

categories. 226

3 Methodology 227

REFINE-LM resorts to a customized post-hoc debi- 228

asing layer deployed on top of a target pre-trained 229

masked language model. This layer is trained us- 230

ing reinforcement learning guided by the bias met- 231

rics proposed in the UnQover framework (Li et al., 232

2020) – tightly related to the metrics proposed 233

by De Vassimon Manela et al. (2021) for gender- 234

occupation bias. We first explain the UnQover 235

framework and then elaborate on the components 236

of REFINE-LM. 237

3.1 UnQover 238

Li et al. (2020) propose to measure bias in masked 239

LMs by confronting the model to under-specified 240

questions. These are question prompts that do not 241

provide sufficient information for a right answer. 242

The questions follow a template τ that includes (i) 243

two subjects x1 and x2 from a different group of 244

gender, nationality, ethnicity, or religion; (ii) a con- 245

text c such as “sitting in a park”; (iii) a stereotypical 246

attribute a such as “being a senator” or “looking 247

like a criminal”; and (iv) and a masked token as 248

depicted in Fig. 2. By inspecting the probability dis- 249

tribution of the answers for the mask, one can spot 250

reasoning errors induced by stereotypical biases. 251

UnQover defines two basic types of reasoning 252

bias: positional dependence and question indepen- 253
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Template: [x1] got off the flight to visit [x2].
[MASK] [a].
Example: John got off the flight to visit Mary.
[MASK] was a senator.

Figure 2: Example of an UnQover template and a corre-
sponding instantiation (Li et al., 2020).

dence. Consider a question of the form254

τ c1,2(a) = [x1] c [x2]. [MASK] [a],255

where (x1, x2) ∈ X1 × X2 are subject pairs that256

belong to two different disjoint categories X1, X2,257

c ∈ C is a context, and a ∈ A is an attribute that258

usually carries a (negative) stereotype for one of259

the categories (see Fig. 2). Let S(x1|τ c1,2(a)) ∈260

[0, 1] denote the probability assigned by the LM261

to subject x1 as a replacement for the mask. The262

positional dependence δ and attribute independence263

ϵ for a template τ c(a) are:264

δ(τ c(a)) = |S(x1|τ c
1,2(a))− S(x1|τ c

2,1(a))|, (1)265

where τ c2,1(a) denotes the same question as τ c1,2(a)266

but with the order of x1 and x2 flipped, and267

ϵ(τ c(a)) = |S(x1|τ c
1,2(a))− S(x2|τ c

1,2(a))|, (2)268

where a is the negation of attribute a. For “was a269

senator”, for instance, the negation could be “was270

never a senator”. δ and ϵ measure the model’s sensi-271

tivity to mere formulation aspects, hence the closer272

to zero these scores are, the more robust the model273

actually is. To measure, or “unqover”, steoreotypi-274

cal biases in LMs, Li et al. (2020) define the subject-275

attribute bias:276

B(x1|x2, τ
c(a)) =

1

2
[S(x1|τ c

1,2(a)) + S(x1|τ c
2,1(a))]277

− 1

2
[S(x1|τ c

1,2(a)) + S(x1|τ c
2,1(a))]. (3)278

B(x1|x2, τ c(a)) quantifies the bias intensity of the279

model towards subject x1 given another subject280

x2 of a different category, e.g., a different gender281

or a different religion, in regards to the stereotypi-282

cal attribute. The joint (also comparative) subject-283

attribute bias is therefore defined as:284

C(τ c(a)) =
1

2
[B(x1|x2, τ

c(a))− B(x2|x1, τ
c(a))]. (4)285

If the model is fair, C(·) = 0. If C(·) > 0 the model286

is biased towards x1, otherwise the bias leans to-287

wards x2. Given a set of templates T (X1,X2,A),288

abbreviated T , UnQover defines the aggregate met- 289

rics subject-attribute bias γ and model bias inten- 290

sity µ as follows: 291

γ(T ) = avg
τ(a)∈T

C(τ(a)) (5) 292

293
µ(T ) = avg

a∈A
max |γ(T (X1,X2, {a}))| (6) 294

3.2 REFINE-LM 295

Our debiasing strategy augments a pre-trained 296

masked LM with a fully connected neural layer 297

that takes the top-k elements of the model’s out- 298

put token distribution as input and returns a de- 299

biased distribution for those tokens. We focus on 300

the top-k tokens (for some hyper-parameter k), be- 301

cause those are of utility for applications. Also they 302

concentrate most of the model’s output probability 303

mass as well as the bias. The training process is 304

modelled using reinforcement learning (RL), in par- 305

ticular the notion of contextual bandits, on a set of 306

under-specified question templates T (X1,X2,A). 307

The overall architecture is illustrated in Figure 3 308

and detailed below. 309

In RL, the process of learning is modelled 310

through an abstract agent L that can execute ac- 311

tions α from a finite set M . At each step of the 312

process, the agent is in a state s ∈ S. Executing an 313

action incurs an interaction with the environment, 314

which in turn may reward the agent according to a 315

reward function R : S ×M → R, and change the 316

agent’s state. The selection of the action depends 317

on the policy π : S × M → [0, 1], which in the 318

stochastic case, defines a probability distribution 319

over the set of possible actions given state s. The 320

goal of RL is to learn a policy π such that the re- 321

ward is maximized as the agent executes actions 322

and interacts with the environment. For contextual 323

bandits, the agent L has a single state. 324

Policy and Reward Function. Given a fixed con- 325

text c and a set of attributes A ∈ A, an action 326

α ∈ M consists in selecting a pair of subjects 327

(x1, x2) ∈ X1 ×X2 such that when plugged into a 328

template τ c(a) ∈ T (for some a ∈ A), the policy 329

π yields the highest probability. The policy π is 330

the debiased LM, and the action’s probability is 331

defined by the highest token probability: 332

max{ S(x1|τ c1,2(a)),S(x2|τ c1,2(a)), S(x1|τ c2,1(a)),
S(x2|τ c2,1(a)),S(x1|τ c1,2(a)), S(x2|τ c1,2(a)),

S(x1|τ c2,1(a)), S(x2|τ c2,1(a)) }.
333
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Figure 3: Proposed architecture with a single linear layer (Refine-LM) of size k for debiasing.

The reward r incurred by an action is given by334

r(αi) = −|C(τ c(a))| (7)335

We highlight two observations. First, the actions α336

with zero probability, i.e., those for which π(α) =337

0, optimize the reward. However, such actions are338

not interesting, because for such cases the language339

model replaces the mask with a token outside the340

top-k tokens according to the original model (and341

very likely, different from x1 and x2). Second, we342

do not know a priori which actions maximize the343

reward. For this reason, at each step the learning344

algorithm selects a batch Bc(A) ⊂ T (X1,X2,A)345

of question templates for a fixed context c and a set346

of attributes A, whose reward vector rθ is:347

rθ(B
c(A)) = −|Cθ(B

c(A))|, (8)348

that is, the agent’s reward vector depends on the349

fairness of the augmented model’s answers for each350

of the templates τ c(a) ∈ Bc(A) in the batch. The351

vector θ defines the parameters of the debiasing352

layer that we want to train using the reward as353

drive. When the set of attributes A is clear from the354

context, we use the notation Bc.355

Updating the model. If θ defines the parameters356

of the debiasing layer before processing a batch357

Bc, we carry out an additive update θ′ = θ +∆θ358

such that:359

∆θ = E[∇θlog(f(ζBc |θ)) · rθ(Bc)]. (9)360

The matrix ζBc has dimension 4 · |Bc| × 2 and361

contains the probabilities reported by the debi-362

ased model for subjects x1 and x2 on the ques-363

tion templates in the batch. ζBc consists of |Bc|364

sub-matrices of dimension 4 × 2, such that each365

sub-matrix ζBi,c is associated to a template τ i,c and 366

has the form: 367∣∣∣∣∣∣∣∣∣
S(x1|τ i,c1,2(a)) S(x2|τ i,c1,2(a))

S(x1|τ i,c2,1(a)) S(x2|τ i,c2,1(a))

S(x1|τ i,c1,2(a)) S(x2|τ i,c1,2(a))

S(x1|τ i,c2,1(a)) S(x2|τ i,c2,1(a))

∣∣∣∣∣∣∣∣∣ . 368

The function f(ζBc |θj) implements a sort of pool- 369

ing over the answers of the model yielding a vector 370

of size |Bc| of the form: 371

[ avg
1≤i≤|Bc|

d(ζBi,c , ζBj,c) : 1 ≤ j ≤ |Bc| ]⊤, (10) 372

where d defines the norm L1. Notice that our up- 373

date policy optimizes θ such that the product of 374

the reward and the vector with the model answers’ 375

average distances is maximized. 376

Implementation and Code. REFINE-LM was 377

implemented in PyTorch and can be trained and 378

deployed on top of any language model. Further de- 379

tails on the implementation, hyper-parameters and 380

source code of REFINE-LM are available at https: 381

//anonymous.4open.science/r/refine-lm-naacl 382

4 Evaluation 383

In this section, we investigate the ability of REFINE- 384

LM to suppress stereotypical bias in pre-trained 385

masked language models while incurring a minimal 386

performance impact. 387

4.1 Experiment Setup 388

We trained REFINE-LM as a debiasing layer on top 389

of BERT (Devlin et al., 2018), DistillBERT (Sanh 390

et al., 2020) and RoBERTa (Liu et al., 2019) in 391

order to mitigate stereotypical biases based on gen- 392

der, ethnicity, nationality, and religion. The training 393
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data originates from the under-specified question394

templates provided by Li et al. (2020). Table 1 sum-395

marizes statistics about the templates representing396

the total number of available subjects, contexts,397

attributes, and groups provided in (Li et al., 2020).398

In order to create training and testing sets, we399

have generated new sets using the following ap-400

proach: for all categories except gender, each group401

is associated with a single subject. For instance,402

when talking about American people, UnQover al-403

ways uses the subject “American”. Hence, we split404

the questions based on the set of distinct contexts,405

e.g., “are sitting on a bench” into training and test-406

ing. For gender there are two groups, namely male407

and female, hence the split is done at the level of408

subjects, i.e., the names. We provide a detailed409

overview of the datasets and the train-test splits in410

Section A.1 of the appendix.411

Given a category of bias, e.g., nationality, we412

measure the bias of the language model – according413

to the metrics introduced in Subsection 3.1 – for all414

the combinations of two groups, e.g., German vs415

British, on the testing contexts. To verify whether416

the debiased language models retain their utility,417

we evaluate them on a specified question-answering418

task. We do so by turning the UnQover questions419

from the testing subset into specified questions so420

that the right answer is in the context. A sample421

from the specified dataset can be found in Figure 4.422

Then we measure the LM’s precision on this task.423

REFINE-LM only requires the last filtering layer424

to be trained. We thus freeze the layers from the425

base model, which makes REFINE-LM fast to train.426

Additionally, most of the applications only require427

a few top tokens for the downstream tasks. So one428

can decide which part of the top distribution to429

debias. We set k = 8 (the number of tokens to430

debias) as this value exhibits the best results among431

our different experiments and is quite practical as432

well. REFINE-LM took 4023 seconds for k = 8 on433

RoBERTa (our largest model) on the nationality434

dataset (our largest dataset), whereas for the gender435

dataset, it just took 718 seconds on NVIDIA RTX436

A6000 GPU.437

4.2 Results on Bias Intensity438

Table 2 shows the average positional error (Equa-439

tion 1), attributive error (Equation 2), and bias in-440

tensity (Equation 6) of the three studied models,441

namely, DistillBERT, BERT and RoBERTa, with442

and without REFINE-LM. In all cases, lower val-443

ues indicate reduced bias. We first observe that in444

Category |X | |A| |C| Groups

Gender 140 70 4 2
Nationality 69 64 12 69
Ethnicity 15 50 14 15
Religion 11 50 14 14

Table 1: Statistics about the question templates used for
debiasing the language models for each kind of stereo-
type. |X | denotes the number of available subjects, |A|
corresponds to the number of attributes, |C| is the num-
ber of different contexts, and groups denotes the number
of different groups within a category of bias.

Template: [x1] who is a [a], got off the flight to
visit [x2]. [MASK] [a].
Specified Example: Pamela, who is a babysitter,
got off the flight to visit Ryan. [MASK]
was a babysitter.’
Expected Answers: [Pamela, she]

Figure 4: Example of a specified template and a corre-
sponding instantiation.

line with the results reported by Li et al. (2020), 445

all models exhibit a significant bias, in particu- 446

lar RoBERTa. Nevertheless, REFINE-LM reduces 447

stereotypical bias consistently across all models 448

and categories, attaining values closer to 0 (fair 449

model) in most cases. Moreover, our debiasing 450

layer also mitigates the biases originating from the 451

question’s formulation style, i.e., the positional and 452

attributive errors. 453

We highlight that Table 2 provides average bias 454

scores across all groups of values (e.g., Muslim, 455

Christian, etc.) for the studied attributes. When we 456

disaggregate those values per group, we observe 457

that the intensity and the polarity of that bias can 458

vary largely from one group to another as suggested 459

by Figures 5a, 5b, and 8. For each bar in the charts, 460

the bias was computed using Equation 5, which av- 461

erages the bias scores of each question without re- 462

moving their sign. The calculation for a group con- 463

fronts all the subjects of the corresponding group to 464

the subjects of all the other groups. We first remark 465

that REFINE-LM reduces the bias intensity for the 466

vast majority of the groups, in particular for those 467

that exhibit the highest levels of bias, regardless of 468

the polarity of such bias. When the bias of a group 469

is already close to zero, REFINE-LM may increase 470

the bias score (as for the Orthodox and African 471

groups), however, those increases remain negligi- 472

ble, and are largely compensated by the decreases 473

in the categories for which the bias is intense. As 474
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Gender Ethnicity Religion Nationality
DistilBERT

DistilBERT w/ Refine DistilBERT w/ Refine DistilBERT w/ Refine DistilBERT w/ Refine
Positional Error 0.2645 0.0477 0.1566 0.0303 0.3251 0.0400 0.1551 0.0451
Attributive Error 0.3061 0.0516 0.4555 0.0573 0.4510 0.0544 0.3201 0.0573
Bias Intensity 0.1487 0.0189 0.0758 0.0125 0.0809 0.01062 0.0757 0.01247

BERT

BERT w/ Refine BERT w/ Refine BERT w/ Refine BERT w/ Refine
Positional Error 0.2695 0.0427 0.5564 0.0531 0.5238 0.0579 0.1770 0.0475
Attributive Error 0.3655 0.0686 0.6111 0.0633 0.5918 0.0689 0.2366 0.0611
Bias Intensity 0.2335 0.0242 0.1016 0.0124 0.0836 0.0128 0.0720 0.0135

RoBERTa

RoBERTa w/ Refine RoBERTa w/ Refine RoBERTa w/ Refine RoBERTa w/ Refine
Positional Error 0.3300 0.0636 0.5998 0.0287 0.7047 0.0481 0.2126 0.0481
Attributive Error 0.3744 0.0729 0.6207 0.0337 0.7327 0.0594 0.2805 0.0594
Bias Intensity 0.1303 0.0283 0.0882 0.0082 0.0883 0.0164 0.0980 0.0164

Table 2: Average positional and attributive error, and average bias intensity of the studied language models with and
without the debiasing layer REFINE-LM on different categories of bias; lower values indicate reduced bias.

(a) Religion categories on BERT (b) Ethnicity categories on RoBERTa

Figure 5: Average bias intensity scores across different categories of religion for BERT and ethnicity for RoBERTa
with and without REFINE-LM. The average bias for the remaining combinations of categories and models is provided
in the Appendix A.2.

DistilBERT BERT RoBERTa
Metric Original Debiased Original Debiased Original Debiased

Acc@1 (%) 0.5486 0.3541 0.4251 0.4312 0.4584 0.3571
Acc@3 (%) 0.97105 0.9568 0.7383 0.6330 0.8240 0.7732
Acc@5 (%) 0.9945 0.9865 0.8979 0.8309 0.9811 0.9322

Table 3: Accuracy scores of the original and debiased
models when tested on specified questions for gender
bias.

shown in Figure 8, our approach leads to a fair,475

non-stereotypical BERT for all the nationalities in476

the dataset. We observe the same trend for the other477

models not shown in the figures, but whose results478

are available in the appendix, Section A.2.479

4.3 Debiased Model Performance 480

We also report the accuracy of the debiased model 481

at answering specified questions to measure to 482

which extent our debiasing architecture impacts 483

the utility of the language models in downstream 484

tasks. The specified questions were generated from 485

our test templates by adding the answer in the con- 486

text. In the example “[x1] got off the flight to visit 487

[x2]” from Figure 1, we generate questions of the 488

form “[x1], who used to be a senator, got off the 489

flight to visit [x2]” so that the model is tested on 490

an informative context. We use the accuracy of the 491

language model when looking at the top-k words 492

ranked by the probability assigned by the LM. Ta- 493

ble 3 shows the results for k = {1, 3, 5} on our 494

7



Figure 6: Average bias intensity across different nationalities for BERT (left) and BERT + REFINE-LM (right).

studied datasets for the gender category. We count495

a hit whenever the right name or personal pronoun496

(he or she) is in the top-k answers. We first observe497

that REFINE-LM has a small impact on the model’s498

accuracy when confronted to specified questions. In499

some cases, this performance can be even slightly500

better as for the Acc@1 on BERT. Except for this501

model, Acc@1 exhibits the highest performance502

penalty for REFINE-LM. We highlight, though, that503

Acc@1 is a very challenging metric, for which504

even the original models achieve mediocre results.505

However, when we look at the Acc@3 or Acc@5,506

both the original and debiased models exhibit very507

high scores, with a loss of 10 points in the worst508

case and less than 2 points in the best case.509

Table 4 illustrates the impact of REFINE-LM:510

it alleviates the probability disparities by bring-511

ing them close. This reduces the bias and shows512

the need to take into account Acc@3 and Acc@5513

when considering REFINE-LM while finetuning on514

a downstream task and facilitates an unbiased start-515

ing point.

’Robert lives in the same city with April.
<mask>was an accountant.’

(’He’, 0.445),
(’She’, 0.237),
(’Robert’, 0.101),
(’April’, 0.09),
(’May’, 0.005)

(’He’, 0.177),
(’April’, 0.137),
(’She’, 0.134),
(’Both’, 0.132),
(’Robert’, 0.127)

Table 4: Example from test dataset with top 5 tokens and
corresponding probabilities obtained from RoBERTa
(left) and RoBERTa with REFINE-LM (right).

516

5 Conclusion and Perspectives517

In this article we have introduced the REFINE-518

LM approach to mitigate the stereotypical bias519

encoded in pre-trained masked language models 520

without hurting model performance. The proposed 521

techniques make use of a large corpus of under- 522

specified questions and reinforcement learning 523

techniques to suppress different types of stereo- 524

typical bias in LMs, including gender-, nationality-, 525

ethnicity-, and religion-based biases. Our results 526

open the door for further research avenues, which 527

we envision to explore. These include an extensive 528

performance evaluation on different downstream 529

tasks – e.g., conversational agents, text generation 530

and summarization –, support for multilingual LMs, 531

and efficient training of multiple bias types simul- 532

taneously. 533

6 Limitations 534

While we have shown that REFINE-LM can miti- 535

gate different types of bias, our current formula- 536

tion can deal with one type of bias at a time. A 537

simple way to solve this issue could be to stack 538

different debiasing layers, however this is not com- 539

putationally efficient. Dealing with different kinds 540

of bias in a simultaneous fashion could help reduc- 541

ing the complexity of the debiasing architecture. 542

Conversely this poses additional challenges at train- 543

ing because an LM may be more intensely gender- 544

biased than religion-biased. Such imbalance should 545

be taken into account by the template selection and 546

and parameter update strategies. Moreover, our ap- 547

proaches has been tested and designed for masked 548

language models such as BERT. While REFINE-LM 549

could be deployed on top of auto-regressive models 550

such as the GPT family of models (Brown et al., 551

2020), further experiments are needed to measure 552

the performance of our method on such models, 553

and devise tailored adaptations if needed. 554

8



7 Ethical Considerations555

The evaluation of REFINE-LM shows that our debi-556

asing layer can drastically reduce the stereotypical557

bias by the considered models. That said, the results558

should be taken with a grain of salt when it comes559

to deploying such as technique in a real-world sce-560

nario. To see why, the reader must take into account561

that REFINE-LM defines bias according to the met-562

rics proposed by (Li et al., 2020). Although the563

utility of those metrics has been validated by the564

scientific community, users of REFINE-LM should565

make sure that this definition of stereotypical bias566

is indeed compatible with their requirements and567

ethical expectations. Moreover, the bias measures568

used only reflect some indicators of undesirable569

stereotypes and users should avoid using REFINE-570

LM as proof or as a guarantee that their models are571

unbiased without extensive study (Goldfarb-Tarrant572

et al., 2021; Delobelle et al., 2022).573

While the bias intensity achieved by REFINE-LM574

is usually very close to zero – close to a perfectly575

unbiased model –, it will unlikely be equals to zero.576

This means that applications of REFINE-LM should577

not blindly rely on the most likely token output by578

the model, because this answer may still preserve a579

slight stereotypical bias. Instead, applications could580

smooth the bias by exploiting the top-k tokens in581

order to guarantee unbiased answers on average.582

As a final remark, users and practitioners should583

be aware of the considerable financial and carbon584

footprints of training and experimenting with LMs585

(Bender et al., 2021), and should limit their massive586

usage to reasonable amounts587
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A Appendix802

A.1 Dataset Overview803

Gender Ethnicity Religion Nationality

DistilBERT

Train Test Train Test Train Test Train Test

Contexts 2 2 8 6 8 6 8 6
Subjects 60 40 10 10 11 11 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 504,000 224,000 72,000 54,000 88,000 66,000 1,021,680 514,368

BERT

Train Test Train Test Train Test Train Test

Contexts 2 2 8 6 8 6 8 6
Subjects 60 40 10 10 11 11 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 504,000 224,000 72,000 54,000 88,000 66,000 1,021,680 514,368

RoBERTa

Train Test Train Test Train Test Train Test

Contexts 2 2 8 6 8 6 8 6
Subjects 48 16 10 10 10 10 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 322,560 35,840 72,000 54,000 88,000 66,000 1,021,680 514,368

Table 5: Dataset statistics overview.

804
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A.2 Individual Bias Intensity805

13



Figure 7: Average bias intensity across different nationalities for DistilBERT (left) and DistilBERT + REFINE-LM
(right).

Figure 8: Average bias intensity across different nationalities for RoBERTa (left) and RoBERTa + REFINE-LM
(right).
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(a) Ethnicity categories on BERT

(b) Religion categories on RoBERTa

Figure 9: Average bias intensity scores across different categories of ethnicity for BERT and religion for RoBERTa
with and without REFINE-LM.

(a) Ethnicity categories on DistilBERT (b) Religion categories on DistilBERT

Figure 10: Average bias intensity scores across different categories of ethnicity (a) and religion (b) for DistilBERT
with and without REFINE-LM.
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