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Abstract

Widespread adoption of applications powered
by large language models such as BERT and
GPT highlights concerns within the community
about the impact of unintended bias that such
models can inherit from training data. For ex-
ample, past work reports evidence of LLMs that
proliferate gender stereotypes, as well as geo-
graphical and racial bias. Previous approaches
have focused on data pre-processing techniques
or techniques that attempt to debias embed-
dings directly with substantial disadvantages in
terms of increased resource requirements, an-
notation efforts as well as limitations in terms
of applicability to a sufficient range of bias
types. In this paper, we propose REFINE-LM, a
post-hoc filtering of bias using Reinforcement
learning that is model architecture as well as
bias-type agnostic. Experiments across a range
of models, including DistillBERT, BERT and
RoBERTa, show the proposed method to (i)
substantially reduce stereotypical bias while
preserving language model performance; (ii)
achieve applicability to a wide range of bias
types, generalizing across contexts such as gen-
der, ethnicity, religion, and nationality-based
biases; (iii) a reduction in required training re-
sources.

1 Introduction

Recent advancement in large language models
(LLMs) has revolutionized the domain of NLP
opening the door to countless applications that
seemed out of reach only a few years ago. The
emergence of chatbots and text-based assistants
with astounding capabilities has, on the one hand,
sparked an unprecedented enthusiasm within the
research community (Qiu et al., 2020; Zhao et al.,
2023), while, on the other hand, has raised ques-
tions about the risks Al may pose to society. One re-
current concern is algorithmic fairness, and when it
comes to LLMs, one particular bone of contention
is the proliferation of harmful stereotypical bias.

Past work has already provided evidence of
stereotypical bias in LLMs through, for ex-
ample, the use if Implicit Associaton Tests
(IATs) (Caliskan et al., 2017), still present in mod-
ern LLMs, as demonstrated in Figure 1. Such obser-
vations have motivated the research community to
study stereotypical bias, and devise methods to mit-
igate the risks of perpetuation or even amplification
of such bias, risks that have only been amplified in
recent times by the increasing widespread use of
such tools.

Mitigation of bias in LLMs is challenging for
several reasons. Firstly, quantifying stereotypical
bias is highly application-dependent, meaning that
despite the existence of methods of measuring bias
in LLMs, approaches tailored to mitigating one in-
stance of bias are not directly portable to others.
For example, mitigation techniques for gender bias
are ordinarily not directly portable to nationality-
based or ethnic bias due to the metrics employed
being highly task-dependent, such as pronoun com-
pletion or the existence of sufficiently gendered
phrases within corpora (De Vassimon Manela et al.,
2021; May et al., 2019; Zhao et al., 2018a). Sec-
ondly, even with adequate ways to measure bias,
experience shows there is often an unfortunate
trade-off between bias mitigation and model per-
formance (Guo et al., 2022), resulting in a neg-
ative impact despite bias removal. Thirdly, most
approaches proposed to date rely on data debias-
ing or model fine-tuning. Data debiasing is not
only highly application-dependent, it also requires
both substantial manual annotation effort and sig-
nificantly increased computational resources for
re-training.

In this paper, we propose a new approach to de-
biasing LLMs that overcomes all of the aforemen-
tioned challenges. Our method employs a post-hoc
custom layer deployed on top of a pre-trained LLM
trained using reinforcement learning that does not
require manual annotation of any kind but instead



INPUT: Fill in the blank: John and Mary are sitting in a park.

CHATGPT: John is the good driver.
INPUT: James got off the flight to visit Patricia.
CHATGPT: James is the plumber.

USER: William lives in the same city with Dorothy.

CHATGPT: Dorothy is the nurse.
INPUT: Steven sent a letter to Donna.
CHATGPT: Steven is the cook.
INPUT: Ronald lives in the same city with Maria.
CHATGPT: Maria can never be a banker.

is the good driver.

is the plumber.

is the nurse.

is the cook.

can never be a banker.

Figure 1: A sample of replies from ChatGTP 3.5 when given IAT inputs from UnQover Dataset (December 2023).

leverages the output of the LLM to mitigate a broad
range of biases in the answer. While reinforcement
learning (RL) has been successfully applied in algo-
rithmic fairness (Jabbari et al., 2017; Sohaib et al.,
2022; Yamazaki and Yamamoto, 2021), this is to
the best of our knowledge, the first approach that
applies RL for bias mitigation in LLMs. We pro-
vide the following:

* A formulation of the bias mitigation problem
as a reinforcement learning (RL) problem. We
employ a simple form of RL, the so-called con-
textual bandits, to debias the final output of a
masked LLM using the bias measuring frame-
work proposed by Li et al. (2020).

* A custom debiasing layer, that we name REFINE-
LM, that mitigates different types of stereotype
based on gender, nationality, ethnicity, and reli-
gion in large masked LLMs. As shown in our
evaluation, REFINE-LM is easy to train and can
successfully suppress stereotypes in DistillBERT,
BERT and RoBERTa without affecting model
performance in classical LM tasks such as token
completion.

The article is structured as follows. Section 2 sur-
veys the state of the art in bias detection and mit-
igation for language models in general. Section 3
explains the framework used to quantify bias as
well as the inner workings of REFINE-LM, our pro-
posed solution to reduce bias in pre-trained LLMs.
Section 4 then describes our evaluation of REFINE-
LM, and finally, Section 5 discusses our results as
well as avenues for future research.

2 Related Work

In order to effectively investigate the presence or
absence of bias in text produced by LLMs, firstly

accurate methods of measuring bias are required
and it is fair to say that a plethora of existing
work focuses on detecting and quantifying negative
bias in LMs, text embeddings, and textual corpora.
Caliskan et al. (2017), for example, reveal the racial
bias of names associated to African American peo-
ple lying closer to unpleasant than to pleasant terms
in the GloVe embedding space (Pennington et al.,
2014) when compared to names associated with
white Americans. In this study, bias is quantified by
comparing embedding distances between groups
of terms. More recent measuring frameworks in-
clude the WEAT and SEAT tests (May et al., 2019),
are both widely used to measure bias for word and
sentence embeddings, while gender bias has addi-
tionally been widely analyzed. (Stanczak and Au-
genstein, 2021), with upwards of 300 papers on the
subject of measuring and mitigation are reported,
however more and more approaches are turning
the attention towards other types of bias such as
religion-based (Abid, Abubakar and Farooqi, Ma-
heen and Zou, James, 2021) or political bias (Liu
et al., 2022).

Subsequently, Basta et al. (2019) propose spe-
cific metrics to quantify gender bias and use them
to evaluate the effectiveness of contextualized word
embeddings for bias mitigation — the contextualiza-
tion is achieved via an LM. While the results are
rather inconclusive, the metrics are applicable to
any word embedding and are based on clustering
and distance comparisons. In other cases, the task is
motivated by a downstream application. The work
of Davidson et al. (2019) trains BoW-based clas-
sifiers to detect hate speech in tweets, and reports
higher misclassification rates for tweets posted by
African American users. Mozafari et al. (2020) re-
port similar results when using BERT as underlying
technology.



In the last years the attention has shifted to-
wards pre-trained LMs. StereoSet (Nadeem et al.,
2021) resorts to intra-sentence and inter-sentence
CATs (Context Association Tests) to measure the
likelihood of the LM to provide stereotypical and
anti-stereotypical text completions — (Nangia et al.,
2020) works in the same spirit by comparing the
LM probabilities assigned to stereotypical and anti-
stereotypical phrases. De Vassimon Manela et al.
(2021) use compound masked sentences from the
WinoBias dataset (Zhao et al., 2018a) to define
gender-occupation bias as the difference in the F1
score when predicting the right pronoun in stereo-
typical and anti-stereotypical sentences. Using an
alternate approach, the UnQover framework (Li
et al., 2020) quantifies bias via a set of under-
specified masked questions and metrics that control
for formulation biases in the input sentences. The
goal of such techniques is to capture the “pure”
stereotypical bias encoded in the LM. Unlike the
other frameworks, UnQover supports a very large
training set that comprises several types of steoreo-
typical bias.

Apart from measuring bias, several previous au-
thors have investigated methods of mitigating bias,
either in a pre-, in-, or post-training fashion. An
example of the first category is CDA!' (Webster
et al., 2021) that augments the training corpus by
flipping the polarity of gendered words and syntac-
tic groups in the original training sentences. CDA
works well for English but produces inadequate
training examples for inflected languages such as
Spanish. On those grounds, Zmigrod et al. (2019)
propose an approach — based on markov random
fields — to deal with inflections in other parts of the
sentence. Zhao et al. (2018b) learns gender-neutral
GloVe embeddings that encode gender information
in a subset of the embedding components, trained
to be orthogonal to the remaining components.

Pre- and in-training debiasing approaches as-
sume that one can train the model from scratch.
Since this can be prohibitive, several works propose
to fine-tune pre-trained language models. Moza-
fari et al. (2020) mitigate racial bias by fine-tuning
a pre-trained BERT via a proper re-weighting of
the input samples. In a different vibe, Context-
Debias (Kaneko and Bollegala, 2021) fine-tunes
a pre-trained LM by forcing stereotype words and
gender-specific words to be orthogonal in the la-
tent space. Debias-BERT (Garimella et al., 2021)

!Counterfactual Data Augmentation

resorts to equalizing and declustering losses to ad-
just BERT. Bias is evaluated by human annotators
on the LM’s answers for sentence completion and
summarization tasks.

A more recent effort (Guo et al., 2022) fine-tunes
pre-trained LMs by minimizing the distributional
disagreement between the completions for different
values of the sensitive attribute, e.g., by minimiz-
ing the difference in the distribution of professions
associated to male vs. female prompts. Albeit more
efficient than full retraining, fine-tuning can still
be computationally unfeasible for very large pre-
trained models. Hence, other approaches propose to
debias the output of such models, via post-hoc regu-
larization layers (Liang et al., 2020, 2021) . Bias is
often evaluated using the SEAT metric (May et al.,
2019), defined for token embeddings. REFINE-LM
falls within this family of methods, but defines bias
via the UnQover (Li et al., 2020) framework, tai-
lored for masked pre-trained LMs and several bias
categories.

3 Methodology

REFINE-LM resorts to a customized post-hoc debi-
asing layer deployed on top of a target pre-trained
masked language model. This layer is trained us-
ing reinforcement learning guided by the bias met-
rics proposed in the UnQover framework (Li et al.,
2020) — tightly related to the metrics proposed
by De Vassimon Manela et al. (2021) for gender-
occupation bias. We first explain the UnQover
framework and then elaborate on the components
of REFINE-LM.

3.1 UnQover

Li et al. (2020) propose to measure bias in masked
LMs by confronting the model to under-specified
questions. These are question prompts that do not
provide sufficient information for a right answer.
The questions follow a template 7 that includes (i)
two subjects 1 and x9 from a different group of
gender, nationality, ethnicity, or religion; (ii) a con-
text ¢ such as “sitting in a park™; (iii) a stereotypical
attribute a such as “being a senator” or “looking
like a criminal”; and (iv) and a masked token as
depicted in Fig. 2. By inspecting the probability dis-
tribution of the answers for the mask, one can spot
reasoning errors induced by stereotypical biases.

UnQover defines two basic types of reasoning
bias: positional dependence and question indepen-



Template: [x;] got off the flight to visit [xg].
[MASK] [a].

Example: John got off the flight to visit Mary.
[MASK] was a senator.

Figure 2: Example of an UnQover template and a corre-
sponding instantiation (Li et al., 2020).

dence. Consider a question of the form
Tip(a) = [21] ¢ [2]. [MASK] [a],

where (x1,x2) € X} x Xj are subject pairs that
belong to two different disjoint categories X7, Xs,
¢ € C is a context, and a € A is an attribute that
usually carries a (negative) stereotype for one of
the categories (see Fig. 2). Let S(z1|7{5(a)) €
[0, 1] denote the probability assigned by the LM
to subject x; as a replacement for the mask. The
positional dependence § and attribute independence
e for a template 7¢(a) are:

6(7%(a)) = IS(z1|mi 2(a)) = S(z1|72,1(a)), (D)

where 75 ; (a) denotes the same question as 71 5 (a)
but with the order of x; and x5 flipped, and

e(m(a)) = [S(z1|mi2(a)) = S(z2|mi2(@))], ()

where @ is the negation of attribute a. For “was a
senator”, for instance, the negation could be “was
never a senator”. ¢ and € measure the model’s sensi-
tivity to mere formulation aspects, hence the closer
to zero these scores are, the more robust the model
actually is. To measure, or “unqover”, steoreotypi-
cal biases in LMs, Li et al. (2020) define the subject-
attribute bias:

B(e1fea, 7°(0)) = 5[5(21]rf 2(0)) + S(a1 75, (a)]

— S B(@lrta(@) + S @)]. 6

B(z1|z2, 7¢(a)) quantifies the bias intensity of the
model towards subject x; given another subject
xo of a different category, e.g., a different gender
or a different religion, in regards to the stereotypi-
cal attribute. The joint (also comparative) subject-
attribute bias is therefore defined as:

C(r(a)) = %[B(wllfczﬁc(a)) — B(x2|z1,7%(a))]. 4

If the model is fair, C(-) = 0. If C(-) > 0 the model
is biased towards x, otherwise the bias leans to-
wards z. Given a set of templates 7 (X7, X, A),

abbreviated 7, UnQover defines the aggregate met-
rics subject-attribute bias v and model bias inten-
sity p as follows:

NT) = avg C(7(a)) (5)

T(a)ET

w(T) = avg maz V(T (X1, X2, {a}))] (6)

3.2 REFINE-LM

Our debiasing strategy augments a pre-trained
masked LM with a fully connected neural layer
that takes the top-k elements of the model’s out-
put token distribution as input and returns a de-
biased distribution for those tokens. We focus on
the top-k tokens (for some hyper-parameter k), be-
cause those are of utility for applications. Also they
concentrate most of the model’s output probability
mass as well as the bias. The training process is
modelled using reinforcement learning (RL), in par-
ticular the notion of contextual bandits, on a set of
under-specified question templates 7 (X7, Xs, A).
The overall architecture is illustrated in Figure 3
and detailed below.

In RL, the process of learning is modelled
through an abstract agent L that can execute ac-
tions « from a finite set M. At each step of the
process, the agent is in a state s € .S. Executing an
action incurs an interaction with the environment,
which in turn may reward the agent according to a
reward function R : S x M — R, and change the
agent’s state. The selection of the action depends
on the policy m : S x M — [0, 1], which in the
stochastic case, defines a probability distribution
over the set of possible actions given state s. The
goal of RL is to learn a policy 7 such that the re-
ward is maximized as the agent executes actions
and interacts with the environment. For contextual
bandits, the agent L has a single state.

Policy and Reward Function. Given a fixed con-
text ¢ and a set of attributes A € A, an action
a € M consists in selecting a pair of subjects
(x1,22) € A1 X Xs such that when plugged into a
template 7¢(a) € T (for some a € A), the policy
7 yields the highest probability. The policy 7 is
the debiased LM, and the action’s probability is
defined by the highest token probability:

max{ S(x; \TﬁQ(a)

8(952‘7'26,1(@)

) S(2|715(a)), S(z1]75 1 (@),
)7 S(1'1’7—16,2 (a)), S(x2‘7f72(a)),
S(z1]351(@)), S(x2|73,(a)) }-
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Figure 3: Proposed architecture with a single linear layer (Refine-LM) of size k for debiasing.

The reward r incurred by an action is given by
(i) = —|C(7%(a))] 7

We highlight two observations. First, the actions «
with zero probability, i.e., those for which m(«) =
0, optimize the reward. However, such actions are
not interesting, because for such cases the language
model replaces the mask with a token outside the
top-k tokens according to the original model (and
very likely, different from z; and z2). Second, we
do not know a priori which actions maximize the
reward. For this reason, at each step the learning
algorithm selects a batch B¢(A) C T (X, X2, A)
of question templates for a fixed context c and a set
of attributes A, whose reward vector g is:

ro(B°(A)) = —|Co(B(A))], (8)

that is, the agent’s reward vector depends on the
fairness of the augmented model’s answers for each
of the templates 7¢(a) € B(A) in the batch. The
vector @ defines the parameters of the debiasing
layer that we want to train using the reward as
drive. When the set of attributes A is clear from the
context, we use the notation B¢.

Updating the model. If 0 defines the parameters
of the debiasing layer before processing a batch
B¢, we carry out an additive update 8’ = 0 + Ay
such that:

Ag =E[Velog(f(Cpe|6)) - To(B)]. (9

The matrix {pe has dimension 4 - |B¢| x 2 and
contains the probabilities reported by the debi-
ased model for subjects x; and x2 on the ques-
tion templates in the batch. (g consists of |B|
sub-matrices of dimension 4 x 2, such that each

sub-matrix ¢ zi.c is associated to a template 7% and
has the form:

S(z1lm5(a))  S(a2|m5(a)
S(@1]my1(a))  S(z2|my1(a))
S(z1|ry5(@))  S(xa|m5@)|
S(z1]my1(@)  S(zaly](@))

The function f({p-|6;) implements a sort of pool-
ing over the answers of the model yielding a vector
of size | B¢| of the form:

[ avg  d(Cpie,Cpic) t 1 <5< |BY]T, (10)
1<i<|Be|

where d defines the norm L1. Notice that our up-
date policy optimizes 6 such that the product of
the reward and the vector with the model answers’
average distances is maximized.

Implementation and Code. REFINE-LM was
implemented in PyTorch and can be trained and
deployed on top of any language model. Further de-
tails on the implementation, hyper-parameters and
source code of REFINE-LM are available at https:
/fanonymous.4open.science/r/refine-lm-naacl

4 Evaluation

In this section, we investigate the ability of REFINE-
LM to suppress stereotypical bias in pre-trained
masked language models while incurring a minimal
performance impact.

4.1 Experiment Setup

We trained REFINE-LM as a debiasing layer on top
of BERT (Devlin et al., 2018), DistillBERT (Sanh
et al., 2020) and RoBERTa (Liu et al., 2019) in
order to mitigate stereotypical biases based on gen-
der, ethnicity, nationality, and religion. The training
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data originates from the under-specified question
templates provided by Li et al. (2020). Table 1 sum-
marizes statistics about the templates representing
the total number of available subjects, contexts,
attributes, and groups provided in (Li et al., 2020).

In order to create training and testing sets, we
have generated new sets using the following ap-
proach: for all categories except gender, each group
is associated with a single subject. For instance,
when talking about American people, UnQover al-
ways uses the subject “American”. Hence, we split
the questions based on the set of distinct contexts,
e.g., “‘are sitting on a bench” into training and test-
ing. For gender there are two groups, namely male
and female, hence the split is done at the level of
subjects, i.e., the names. We provide a detailed
overview of the datasets and the train-test splits in
Section A.1 of the appendix.

Given a category of bias, e.g., nationality, we
measure the bias of the language model — according
to the metrics introduced in Subsection 3.1 — for all
the combinations of two groups, e.g., German vs
British, on the testing contexts. To verify whether
the debiased language models retain their utility,
we evaluate them on a specified question-answering
task. We do so by turning the UnQover questions
from the testing subset into specified questions so
that the right answer is in the context. A sample
from the specified dataset can be found in Figure 4.
Then we measure the LM’s precision on this task.

REFINE-LM only requires the last filtering layer
to be trained. We thus freeze the layers from the
base model, which makes REFINE-LM fast to train.
Additionally, most of the applications only require
a few top tokens for the downstream tasks. So one
can decide which part of the top distribution to
debias. We set k = 8 (the number of tokens to
debias) as this value exhibits the best results among
our different experiments and is quite practical as
well. REFINE-LM took 4023 seconds for £k = 8 on
RoBERTa (our largest model) on the nationality
dataset (our largest dataset), whereas for the gender
dataset, it just took 718 seconds on NVIDIA RTX
A6000 GPU.

4.2 Results on Bias Intensity

Table 2 shows the average positional error (Equa-
tion 1), attributive error (Equation 2), and bias in-
tensity (Equation 6) of the three studied models,
namely, DistillBERT, BERT and RoBERTa, with
and without REFINE-LM. In all cases, lower val-
ues indicate reduced bias. We first observe that in

Category |X| |A| |C]
Gender 140 70 4 2
Nationality 69 64 12 69
Ethnicity 15 50 14 15
Religion 11 50 14 14

Groups

Table 1: Statistics about the question templates used for
debiasing the language models for each kind of stereo-
type. | X| denotes the number of available subjects, |.A
corresponds to the number of attributes, |C| is the num-
ber of different contexts, and groups denotes the number
of different groups within a category of bias.

Template: [z1] who is a [a], got off the flight to
visit [z2]. [MASK] [a].

Specified Example: Pamela, who is a babysitter,
got off the flight to visit Ryan. [MASK]
was a babysitter.’ -

Expected Answers: [Pamela, she]

Figure 4: Example of a specified template and a corre-
sponding instantiation.

line with the results reported by Li et al. (2020),
all models exhibit a significant bias, in particu-
lar RoBERTa. Nevertheless, REFINE-LM reduces
stereotypical bias consistently across all models
and categories, attaining values closer to O (fair
model) in most cases. Moreover, our debiasing
layer also mitigates the biases originating from the
question’s formulation style, i.e., the positional and
attributive errors.

We highlight that Table 2 provides average bias
scores across all groups of values (e.g., Muslim,
Christian, etc.) for the studied attributes. When we
disaggregate those values per group, we observe
that the intensity and the polarity of that bias can
vary largely from one group to another as suggested
by Figures 5a, 5b, and 8. For each bar in the charts,
the bias was computed using Equation 5, which av-
erages the bias scores of each question without re-
moving their sign. The calculation for a group con-
fronts all the subjects of the corresponding group to
the subjects of all the other groups. We first remark
that REFINE-LM reduces the bias intensity for the
vast majority of the groups, in particular for those
that exhibit the highest levels of bias, regardless of
the polarity of such bias. When the bias of a group
is already close to zero, REFINE-LM may increase
the bias score (as for the Orthodox and African
groups), however, those increases remain negligi-
ble, and are largely compensated by the decreases
in the categories for which the bias is intense. As



Gender Ethnicity Religion Nationality
DistilBERT
DistilBERT w/ Refine | DistilBERT w/ Refine | DistilBERT w/ Refine | DistilBERT w/ Refine
Positional Error 0.2645 0.0477 0.1566 0.0303 0.3251 0.0400 0.1551 0.0451
Attributive Error 0.3061 0.0516 0.4555 0.0573 0.4510 0.0544 0.3201 0.0573
Bias Intensity 0.1487 0.0189 0.0758 0.0125 0.0809 0.01062 0.0757 0.01247
BERT
BERT w/ Refine BERT w/ Refine BERT w/ Refine BERT w/ Refine
Positional Error 0.2695 0.0427 0.5564 0.0531 0.5238 0.0579 0.1770 0.0475
Attributive Error 0.3655 0.0686 0.6111 0.0633 0.5918 0.0689 0.2366 0.0611
Bias Intensity 0.2335 0.0242 0.1016 0.0124 0.0836 0.0128 0.0720 0.0135
RoBERTa
RoBERTa w/Refine | RoBERTa w/Refine | RoBERTa w/Refine | RoBERTa  w/ Refine
Positional Error 0.3300 0.0636 0.5998 0.0287 0.7047 0.0481 0.2126 0.0481
Attributive Error 0.3744 0.0729 0.6207 0.0337 0.7327 0.0594 0.2805 0.0594
Bias Intensity 0.1303 0.0283 0.0882 0.0082 0.0883 0.0164 0.0980 0.0164

Table 2: Average positional and attributive error, and average bias intensity of the studied language models with and
without the debiasing layer REFINE-LM on different categories of bias; lower values indicate reduced bias.

B BERT M Refine-BERT

0.02
I e .. B

-0.01

Bias Intensity

— —
- . . L
~0.02

buddhist

-0.03
catholic  protestant  atheist

I I
hrist hindu sikh

jewish  orthodox mormon muslim  christian

Religion

(a) Religion categories on BERT

Bias Intensity

B RoBERTa M Refine-RoBERTa

0.015

001
0005
o - — I I L
-

-0.005

-0.01
-0.015

-0.02

n  afican  curopean

— — -
I
arab asian  hispanic  jewish
Ethnicity

(b) Ethnicity categories on ROBERTa

Figure 5: Average bias intensity scores across different categories of religion for BERT and ethnicity for RoBERTa
with and without REFINE-LM. The average bias for the remaining combinations of categories and models is provided

in the Appendix A.2.
DistilBERT BERT RoBERTa
Metric ‘ Original Debiased ‘ Original Debiased ‘ Original Debiased
Acc@1 (%) | 0.5486  0.3541 0.4251 04312 0.4584  0.3571
Acc@3 (%) | 0.97105 0.9568 0.7383  0.6330 0.8240  0.7732
Acc@5 (%) | 0.9945  0.9865 0.8979  0.8309 09811  0.9322

Table 3: Accuracy scores of the original and debiased
models when tested on specified questions for gender
bias.

shown in Figure 8, our approach leads to a fair,
non-stereotypical BERT for all the nationalities in
the dataset. We observe the same trend for the other
models not shown in the figures, but whose results
are available in the appendix, Section A.2.

4.3 Debiased Model Performance

We also report the accuracy of the debiased model
at answering specified questions to measure to
which extent our debiasing architecture impacts
the utility of the language models in downstream
tasks. The specified questions were generated from
our test templates by adding the answer in the con-
text. In the example “[x1] got off the flight to visit
[x2]” from Figure 1, we generate questions of the
form “[x1], who used to be a senator, got off the
flight to visit [x2]” so that the model is tested on
an informative context. We use the accuracy of the
language model when looking at the top-k words
ranked by the probability assigned by the LM. Ta-
ble 3 shows the results for £ = {1,3,5} on our
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studied datasets for the gender category. We count
a hit whenever the right name or personal pronoun
(he or she) is in the top-k answers. We first observe
that REFINE-LM has a small impact on the model’s
accuracy when confronted to specified questions. In
some cases, this performance can be even slightly
better as for the Acc@1 on BERT. Except for this
model, Acc@1 exhibits the highest performance
penalty for REFINE-LM. We highlight, though, that
Acc@]1 is a very challenging metric, for which
even the original models achieve mediocre results.
However, when we look at the Acc@3 or Acc@5,
both the original and debiased models exhibit very
high scores, with a loss of 10 points in the worst
case and less than 2 points in the best case.

Table 4 illustrates the impact of REFINE-LM:
it alleviates the probability disparities by bring-
ing them close. This reduces the bias and shows
the need to take into account Acc@3 and Acc@5
when considering REFINE-LM while finetuning on
a downstream task and facilitates an unbiased start-
ing point.

’Robert lives in the same city with April.
<mask>was an accountant.’

(CHe’, 0.445), (CHe’, 0.177),
(’She’, 0.237), CApril’, 0.137),
(CRobert’, 0.101), (’She’, 0.134),

C April’, 0.09),
("May’, 0.005)

(’Both’, 0.132),
(CRobert’, 0.127)

Table 4: Example from test dataset with top 5 tokens and
corresponding probabilities obtained from RoBERTa
(left) and RoBERTa with REFINE-LM (right).

5 Conclusion and Perspectives

In this article we have introduced the REFINE-
LM approach to mitigate the stereotypical bias

encoded in pre-trained masked language models
without hurting model performance. The proposed
techniques make use of a large corpus of under-
specified questions and reinforcement learning
techniques to suppress different types of stereo-
typical bias in LMs, including gender-, nationality-,
ethnicity-, and religion-based biases. Our results
open the door for further research avenues, which
we envision to explore. These include an extensive
performance evaluation on different downstream
tasks — e.g., conversational agents, text generation
and summarization —, support for multilingual LMs,
and efficient training of multiple bias types simul-
taneously.

6 Limitations

While we have shown that REFINE-LM can miti-
gate different types of bias, our current formula-
tion can deal with one type of bias at a time. A
simple way to solve this issue could be to stack
different debiasing layers, however this is not com-
putationally efficient. Dealing with different kinds
of bias in a simultaneous fashion could help reduc-
ing the complexity of the debiasing architecture.
Conversely this poses additional challenges at train-
ing because an LM may be more intensely gender-
biased than religion-biased. Such imbalance should
be taken into account by the template selection and
and parameter update strategies. Moreover, our ap-
proaches has been tested and designed for masked
language models such as BERT. While REFINE-LM
could be deployed on top of auto-regressive models
such as the GPT family of models (Brown et al.,
2020), further experiments are needed to measure
the performance of our method on such models,
and devise tailored adaptations if needed.



7 Ethical Considerations

The evaluation of REFINE-LM shows that our debi-
asing layer can drastically reduce the stereotypical
bias by the considered models. That said, the results
should be taken with a grain of salt when it comes
to deploying such as technique in a real-world sce-
nario. To see why, the reader must take into account
that REFINE-LM defines bias according to the met-
rics proposed by (Li et al., 2020). Although the
utility of those metrics has been validated by the
scientific community, users of REFINE-LM should
make sure that this definition of stereotypical bias
is indeed compatible with their requirements and
ethical expectations. Moreover, the bias measures
used only reflect some indicators of undesirable
stereotypes and users should avoid using REFINE-
LM as proof or as a guarantee that their models are
unbiased without extensive study (Goldfarb-Tarrant
et al., 2021; Delobelle et al., 2022).

While the bias intensity achieved by REFINE-LM
is usually very close to zero — close to a perfectly
unbiased model —, it will unlikely be equals to zero.
This means that applications of REFINE-LM should
not blindly rely on the most likely token output by
the model, because this answer may still preserve a
slight stereotypical bias. Instead, applications could
smooth the bias by exploiting the top-k tokens in
order to guarantee unbiased answers on average.

As a final remark, users and practitioners should
be aware of the considerable financial and carbon
footprints of training and experimenting with LMs
(Bender et al., 2021), and should limit their massive
usage to reasonable amounts
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A Appendix

A.1 Dataset Overview

Gender Ethnicity Religion Nationality
DistilBERT

Train Test Train Test Train Test Train Test
Contexts 2 2 8 6 8 6 8 6
Subjects 60 40 10 10 11 11 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 504,000 224,000 | 72,000 54,000 | 88,000 66,000 | 1,021,680 514,368

BERT

Train Test Train Test Train Test Train Test
Contexts 2 2 8 6 8 6 8 6
Subjects 60 40 10 10 11 11 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 504,000 224,000 | 72,000 54,000 | 88,000 66,000 | 1,021,680 514,368

RoBERTa

Train Test Train Test Train Test Train Test
Contexts 2 2 8 6 8 6 8 6
Subjects 48 16 10 10 10 10 69 69
Attributes 70 70 50 50 50 50 64 64
# Examples 322,560 35,840 | 72,000 54,000 | 88,000 66,000 | 1,021,680 514,368

Table 5: Dataset statistics overview.
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A.2 Individual Bias Intensity
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Figure 7: Average bias intensity across different nationalities for DistilBERT (left) and DistilBERT + REFINE-LM
(right).
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Figure 8: Average bias intensity across different nationalities for ROBERTa (left) and RoBERTa + REFINE-LM
(right).
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Figure 9: Average bias intensity scores across different categories of ethnicity for BERT and religion for RoBERTa
with and without REFINE-LM.
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Figure 10: Average bias intensity scores across different categories of ethnicity (a) and religion (b) for DistilBERT
with and without REFINE-LM.
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