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Abstract

Models for student reading performance can empower educators and institutions to
proactively identify at-risk students, thereby enabling early and tailored instruc-
tional interventions. However, there are no suitable publicly available educational
datasets for modeling and predicting future reading performance. In this work, we
introduce the Enhanced Core Reading Instruction (ECRI) dataset, a novel large-
scale longitudinal tabular dataset collected across 44 schools with 6,916 students
and 172 teachers. We leverage the dataset to empirically evaluate the ability of
state-of-the-art machine learning models to recognize early childhood educational
patterns in multivariate and partial measurements. Specifically, we demonstrate a
simple self-supervised strategy in which a Multi-Layer Perception (MLP) network
is pre-trained over masked inputs to outperform several strong baselines while
generalizing over diverse educational settings. To facilitate future developments
in precise modeling and responsible use of models for individualized and early
intervention strategies, our data and code are available at https://ecri-data.github.io/.

1 Introduction

Approximately 37% of fourth graders in the United States are not reading at grade level—a trend
that persists into other grades [46]. As reading proficiency is closely correlated with academic,
economic, and social outcomes [37], there is an urgent need to improve reading instruction practices.
Currently, students are identified as needing additional educational support using a ‘wait-to-fail’
approach, i.e., waiting until a child has not made expected gains in reading before there is a re-
evaluation of their instructional needs. A prediction model identifying which children would benefit
from specific educational interventions could hold significant implications for achieving early and
effective remediation. However, despite unprecedented interest in AI and education (e.g., the recently
introduced AI Education Act [11]), there are no suitable publicly available datasets for training
and evaluation of models for reading performance prediction and intervention success. As a result,
predictive Machine Learning (ML) techniques have yet to be rigorously studied in early educational
settings, such as for improving risk identification and proactively ensuring foundational reading
abilities [12, 14, 36, 49, 51, 67].

Field datasets in early childhood education can be difficult to collect due to logistical factors related
to working with young children, e.g., educators have limited time available for data collection.
Students often transfer between schools and programs, making tracking difficult. Moreover, reliably
assessing students with learning disabilities can present additional logistical issues, such as the need
for specialized assessment tools and trained personnel to accurately evaluate and accommodate
unique needs. These challenges have limited prior research to small-scale studies [15, 16, 25, 58]
that did not release data nor can be leveraged to train high-capacity predictive ML models, i.e., for
modeling complex relationships among multidimensional individual and instructional factors.
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In this work, our goal is to develop a benchmark and framework for training accurate and precise ML
models for predicting student reading performance. This includes predictability of responsiveness,
i.e., leveraging data collected during well-validated first-grade reading interventions [6, 7, 24, 47, 55].
Our contributions are as follows: First, we introduce a longitudinal large-scale benchmark consisting
of literacy assessment measurements from 6,916 first-grade students from 44 US schools. To
ensure our findings are relevant to current intervention practices and generalize across settings, the
data was collected as part of an IRB-approved study with an established multi-tiered intervention
framework [6, 47]. Second, towards scalable modeling in realistic educational contexts, we perform
a comprehensive comparative analysis among approaches for learning from tabular and missing
data. Specifically, we demonstrate that predicting reading performance and outcomes for educational
interventions involves a challenging modeling task, i.e., due to the inherent diversity in students with
learning disabilities. To handle missing and diverse data, we demonstrate that a simple strategy for
pre-training MLPs works particularly well in capturing complex interactions among various student,
classroom, and school-level factors. As far as we are aware, we are the first to surface challenges in
data-driven ML models that predict students’ pre-to-post-intervention gains in large-scale and diverse
early education generalization settings. The data and code will be made publicly available to facilitate
future research in supporting early identification and individualized instructional support for students
and teachers.

2 Related Work

Based on our survey of student reading assessment and modeling research, we identify a current gap
in scalable modeling of reading skills in early education, which we discuss next.

Reading Skill Assessment: According to the National Assessment of Educational Progress
(NAEP) [46] a significant portion of children in the US struggle with developing reading skills.
Among all the states and jurisdictions that participated in a 2022 NAEP fourth-grade survey, the
range of students performing below the NAEP basic level spanned 20-52%, with a national average of
39% for public school students. Therefore, it is critical to assess students’ reading ability at an early
stage, i.e., to inform the development of instructional strategies commensurate with identified areas of
need to avoid students’ reading deficiencies. Assessment of reading skills typically involves various
word identification, spelling, sound-symbol knowledge, cloze tests, contextual reading, and text
annotation tasks [5, 9, 29, 39, 62]. Within the context of our research, we focus on two fundamental
literacy skills that young learners cultivate during their initial foray into the realm of reading and
understanding language, i.e., word identification and word attack tasks [2, 6, 47]. More specifically,
word identification entails the recognition of frequently occurring words through visual memorization,
while word attack emphasizes a more challenging task of deciphering unfamiliar words by applying
principles of phonics and phonetic knowledge.

Enhanced Core Reading Instruction: To facilitate predictive ML models that can predict stu-
dent response to standard interventions, we have incorporated in a subset of our data a common
methodology for providing additional reading skill support in classrooms, referred to as the Enhanced
Core Reading Instruction (ECRI). ECRI is a methodology that emphasizes prioritized content and
structured teaching routines aimed at improving the quality of explicit instruction in Tier 1 settings,
along with core-aligned small-group instruction in Tier 2 settings [6]. In Tier 1, ECRI enhancements
prioritize instructional delivery of content related to beginning reading skills, including phonemic
awareness, phonics, word reading, reading fluency, vocabulary, and comprehension. Students identi-
fied as at risk for reading difficulties receive the ECRI Tier 2 intervention. This intervention includes
structured opportunities to preview and practice foundational skills such as phonemic awareness,
phonics, word reading, and reading fluency, all aligned with Tier 1 instruction, delivered in a 30-
minute small-group lesson. A key feature of ECRI is its dual focus: (a) enhanced core reading
instruction in Tier 1, and (b) a supplemental Tier 2 small-group intervention for students at risk of
reading difficulties. In our work, we collect intervention records and incorporate such information
as additional context inputted to the model. We envision teachers employing our model to predict
outcomes of interventions and thus inform tailored instructional strategies, e.g., providing additional
reading support.
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Machine Learning for Education: ML in education is currently receiving significant attention
due to diverse potential use cases, such as personalized learning, early identification of at-risk
students, automated grading, adaptive curriculum development, and more [11, 35, 66]. For instance,
Kabakchieva [38] utilized machine learning techniques for content analytics to improve university
student management. Similarly, Djambic et al. [20] proposed an adaptive ML system that utilizes
reinforcement learning to create diverse learning materials tailored to individual learners’ needs and
conditions. There is a substantial amount of literature that focuses on forecasting students’ future
performance [1, 14, 20, 27, 36, 48, 60]. However, the application of ML methodologies has been
primarily focused on higher education, with elementary and early education levels receiving less
attention. According to a review by Xu et al. [61], only 1.69% and 11.86% of AI in education
research between 2011 and 2021 focused on kindergarten and elementary school. Moreover, the
exploration of ML in large-scale educational contexts with diverse data and student profiles remains
limited. Consequently, the limitations of state-of-the-art deep learning-based approaches for modeling
student reading skills in early stages remain mostly unexplored.

Handling Missing Values in Tabular Data: Educational datasets from real-world scenarios often
suffer from a high incidence of missing values, particularly in large-scale data collection settings.
This issue can be attributed to a variety of factors, such as unsuccessful data gathering (e.g., student
absences during assessments or transfer to different schools) and errors in data entry [23, 50, 52].
To address learning from partial information in the data, traditional approaches generally impute
the missing values, e.g., with a fixed constant and indicator. In recent years, the development of
deep generative models has introduced approaches to generate missing entries based on available
information [10, 54, 65, 68]. However, even with more advanced modeling techniques, directly
imputing missing entries in the data can introduce noise and mask complex interrelationships between
variables. This challenge becomes more pronounced with categorical data, such as gender or ethnicity,
where imputed values need to be assigned to specific categories. In this work, we pursue an orthogonal
direction by adopting a self-supervised model pre-training technique that enables robustness to the
missing data by inferring missing information within an embedding space without explicitly filling in
missing values. This technique allows for seamless integration of categorical and numerical data, as
it avoids the hard-coded categorization of imputed values. In our analysis, we demonstrate that our
pre-training with subsequent fine-tuning not only enhances data representation but also regularizes
training to consistently improve model performance.

Self-Supervised Learning in Tabular Data: Given the novelty of the dataset, we aim to com-
prehensively analyze various models and training strategies for learning from tabular data. Due to
the remarkable success of self-supervised learning in handling textual and visual data [22, 28, 41],
researchers have recently started exploring self-supervised learning techniques for tabular data.
VIME [64] applied self- and semi-supervised deep learning framework for tabular data, employing
pretext tasks such as mask vector estimation and feature vector estimation to train an encoder that
generates informative representations of raw input data. Similarly, SCARF [4] applies random feature
corruption and introduces a self-supervised contrastive learning method that further demonstrates the
potential of self-supervised learning techniques for tabular data. While we analyze such baselines
within our reading performance prediction task, we also investigate their role when learning from
missing data, which is under-discussed by prior literature. Specifically, we find that reported benefits
of reconstruction loss-based VIME and contrastive and auxiliary losses in SCARF do not translate
to our domain, i.e., to not outperform a simple MLP-based baseline that leverages self-supervised
masked pre-training.

3 Dataset

Our goal is to surface limitations in scalable modeling of early childhood reading performances. In
this section, we introduce the protocol and large-scale collection process used to source our novel
dataset. The dataset will then be used to benchmark various ML methods in Sec. 5.

3.1 Enhanced Core Reading Instruction Dataset

Enhanced Core Reading Instruction, or ECRI, interventions have proven to be effective in supporting
students who are at risk of reading difficulties [6, 24, 47, 55]. Specifically, first-grade students
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who participated in ECRI were shown to exhibit marked improvement in key reading skills such as
phonemic decoding, oral reading fluency, and word recognition.

Data Collection: Our data was collected as part of an IRB-approved study in 44 elementary
schools. We collected student-level demographic data, including special education status, gender,
and English proficiency status every year. Class size, school size, and the number of students at risk
of reading failure are obtained from the school’s enrollment records based on student participation
in the fall screening assessment. Besides student and school attributes, our data includes student
assessments, teacher surveys, and classroom observations. Assessors underwent comprehensive
training, comprising three days of initial training on administration and scoring procedures prior to
the fall assessment, supplemented by four additional days of training in the winter and spring. To
ensure inter-rater reliability, assessment coordinators evaluated scoring consistency through shadow
scoring and feedback on test administration. Teachers reported average daily instruction time and
completed an online survey in the spring to assess their understanding of early reading instruction.
Additionally, observations were conducted in treatment and control group classrooms during core
reading instruction in November, February, and April, using Classroom Observations of Student
Teacher Interactions [56], Ratings of Classroom Management and Instructional Support [21], and
Quality of Explicit Instruction [47]. More details can be found in the supplementary material.

Demographics: Our study collected the dataset through an extensive study conducted over an
entire academic year, involving 99 elementary schools across the United States. Throughout the
study, 6, 916 first-grade students and 172 teachers were recruited and assigned into control and
intervention groups through clustered randomization that nested students and teachers within schools.
We de-identified all student and school names from our dataset to ensure privacy protection. Of
the participants, 47.31% underwent intervention, while the remaining 52.68% did not. The gender
distribution was 51.32% male and 48.68% female. The average percentage of Hispanic students was
20.40% (10.73% intervention, 9.61% control), the average percentage of Black American students
was 3.39% (1.80% intervention, 1.59% control), and the average percentage of Asian American and
Pacific Islander students was 6.96% (2.89% intervention, 3.18% control). Among our data samples,
48.61% were eligible to receive Free and Reduced Price Lunch (FRL, 25.17% intervention, 23.44%
control). We incorporate student and classroom-level variables into the model, including current
reading level measures, age, gender, number of at-risk readers in the class, and a teacher knowledge
score, as discussed next.

Assessment: The control group classes followed established core reading programs that aligned
with the standard practices of their school districts, while enhanced core reading instructions were
used in classes in intervention groups. Students underwent comprehensive reading assessments at
the beginning and the end of the school year to evaluate various aspects of reading abilities. The
assessments included Dynamic Indicators of Basic Early Literacy Skills (DIBELS) [30], Stanford
Achievement Test [32], and Woodcock Reading Mastery Test (WRMT) [59]. We also included
results from the Teacher Knowledge Survey (TKP) [45] and Ratings of Classroom Management
and Instructional Support (RCMIS) [21] as measurements of teachers’ understanding of reading
instructions and teaching quality.

Data Characteristics and Processing: Missing data is prevalent in our dataset due to factors such as
incomplete documentation or students being absent on the day of assessment. Out of 6,916 students
and a total of eight reading assessment measurements, 30.48% of the data is missing. While we
retain the samples with missing data for pre-training, we exclude them for fine-tuning, evaluation,
and analysis. Our analysis primarily focuses on students’ progress on word identification and word
attack tasks, given their strong correlation with overall student reading performance. The data is
processed into a binary classification task to predict how well students responded to the intervention.
Specifically, we use the average performance improvement of the control group over a school year
as the reference, as most scores naturally increase at the end of the school year, and students with
greater improvements are considered positive samples. Otherwise, we categorize them as negative
samples. We note that this quantization occurs over the performance differences of all students, i.e.,
regardless of whether a student is from the intervention group or the control group, to indicate notable
improvement in their performance. We also note that while this classification task is fundamental
to determine whether additional support is required from the teachers in addition to the standard
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intervention of more instructional time, our framework can be readily applied over more refined
output quantization choices.

4 Method

In this section, we first outline the problem formulation, which involves predicting whether students
will show improvement in reading ability. We then elaborate on the details of our simplified self-
supervised pre-training methodology repurposed for handling missing data.

4.1 Problem Formulation

Feature 
Extractor

Cosine 
Embedding

Loss

Random
Masking

Input

Masked
Input

Feature
Embedding

Masked
Feature

EmbeddingMissing or masked value

Figure 1: Self-Supervised MLP Pre-Training. We randomly
mask parts of the input variables, i.e., as missing values, and train
the model using a loss derived from both the original and masked
input to a common feature extractor (we employ a cosine embed-
ding loss to enforce similarity among the two embeddings).

We consider the problem of learn-
ing to classify student progress
from observed or partially ob-
served variables x ∈ Rd as learn-
ing a mapping function fΘ, pa-
rameterized by weights Θ, to the
probability y ∈ [0, 1] ⊆ R of
likelihood of the student making
sufficient progress, which in our
case is defined as higher than the
average in the control group for
word identification and word at-
tack tasks. We learn the model
over all students, both in the con-
trol and intervention groups, and
employ a set of d = 16 input vari-
ables, including the eight initial
reading assessment measures (two
from the Woodcock Reading Mastery test, two from the Nonsense Word Fluency test, one from
the Oral Reading Fluency test, and three from a Stanford Achievement Test), as well as student
and classroom-level variables, such as gender, intervention (i.e., additional reading instruction time)
group status, age, number of at-risk readers in the class, and teacher rating based on an administered
assessment. As noted in Sec. 3, missing data entries are common in our dataset, thus requiring special
handling as discussed next.

4.2 MaskMLP Pre-Training

While missing data is common in real-world data collection settings, the component that is partially
observed can still provide useful modeling cues. However, missing data entries are often imputed
during training [44]. To better leverage information in all of the collected data, we analyze a pre-
training technique, referred to as MaskMLP and depicted in Fig. 1. It is important to note that our
method differs from the traditional approaches to handling missing data: we neither drop nor impute
any missing values. Moreover, the approach simplifies self-supervised training methods in literature,
such as VIME and SCARF. Instead, the pre-training approach enables the model to infer missing
information within an embedding space without explicitly filling in missing values, which results in a
smoother training process while maintaining the integrity of the original data structure.

For a given input vector x, we first address missing features by marking them with an indicator value
of −1. Subsequently, we randomly select a subset of observed features and mask them with −1 in
order to generate the masked input xmask. The original input x and the masked input xmask are both
computed from the same student, enabling the model to learn relations among variables under partial
observation.

The proposed training process draws inspiration from two aspects, the successful applications of
pre-training strategies in language [18], vision [34], and tabular data domains [3, 4, 63, 64], as well
as recent developments in deep learning demonstrating the alignment of multi-modal data in a shared
high-dimensional embedding space [43, 53]. However, the aforementioned methods do not study the
role of the masking mechanism and self-supervised pre-training process for benefiting from partially
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observed data. We leverage a multi-layer perception (MLP) network that generates latent embeddings
Ei ∈ Rh and Emask ∈ Rh for the original input and masked input respectively, where h denotes the
hidden layer size. A cosine embedding loss is used for the pre-training objective,

Lpretrain(Ei,Emask) = 1− Ei ·Emask

∥Ei∥ · ∥Emask∥
(1)

Following the pre-training phase, we augment the MLP architecture by attaching a classification head
and fine-tuning the network for a binary cross-entropy loss [8].

5 Experiments

In this section, we leverage the introduced large-scale benchmark in order to uncover the limitations
of ML-based models for the student reading performance prediction task, as well as validate the
efficacy of self-supervised pre-training.

Experimental Setup: We use a group k-fold strategy [31] with grouping based on student and school
ID, where k = 5. This ensures our partitioning maintains the integrity of student and school identifiers.
We assign a value of −1 to missing variables during training, as none of our collected measurements
are below zero. Thus, −1 effectively serves as an indicator [44], signaling the absence of a particular
feature in a given data sample. Despite employing all data samples during pre-training, it is essential
to highlight that no labels are used in the pre-training process. For MaskMLP, we randomly mask
25% of the observed variables as missing to compute the cosine embedding loss. In our large-scale
benchmark, we provide a breakdown of both all students in the dataset and the intervention subgroup.
This provides further insights into the effectiveness of the model over a group that receives additional
reading instruction time. To produce a summarized analysis, we adopt accuracy and area under the
precision-recall curve (AUC) [44] to evaluate model classification performances.

Baselines: Given the limited number of studies applying ML in our area, we also extensively
benchmark diverse ML approaches that can be used for predicting early childhood education students’
reading performance. Our analysis includes standard models such as logistic regression model [42],
LightGBM [40], XGBoost [13], MLP [33], TabNet [3], VIME [64], SCARF [4], and MaskMLP.
We also ablate several common strategies for handling missing data based on value replacement
and indication [44]. In particular, following standard practices [44], we train our MLP using four
different configurations: (1) measurements with zero-filling, (2) measurements with mean-filling, (3)
incorporation of missing data indicators, and (4) utilization the self-supervised masked pre-training
strategy (i.e., MaskMLP). We note that while TabNet [3] also employs a pre-training strategy, it is not
effective for handling missing values. TabNet’s pre-training requires an additional decoder, i.e., to
reconstruct input variables where the pre-training loss is calculated using reconstructed and original
values. Yet, as the latter may be partially missing in our settings, we instead leverage a loss defined
over the embedding space, i.e., without requiring the complete original sample values.

5.1 Results

Model Performances: In our study, we utilize both demographic and assessment-based features to
predict the specified target in word identification or word attack tasks, as described in Sec. 3.1. As
illustrated in Table 1, MLP outperforms multiple baselines, including logistic regression, XGBoost,
and LightGBM, as it can model complex relationships among the variables in the data without doing
any feature engineering. In our experiments, we found a three-layer MLP model with a hidden
size equal to 64 to perform best (complete ablations are provided in our supplementary document).
In addition, the simplified pre-training is shown to consistently outperform the strong baselines of
TabNet, VIME, and SCARF when learning from our noisy and partial data. Specifically, we find
the additional optimization and auxiliary tasks, e.g., in the input space, to hinder leveraging missing
information.

Furthermore, we analyze our method’s impact on students who underwent an intervention of additional
instructional time [6, 47] through targeted evaluation in Table 1. The analysis reveals that all
approaches show improved performance in the intervention subset by 10% in both word identification
and word attack tasks, suggesting the interventions create a more distinct feature space that positively
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Table 1: Results on the Large-Scale ECRI Dataset. We report model performance for the two main
reading skill prediction tasks over different generalization settings. School-split enforces disjoint
schools in training and testing, while student-split allows students within the same school to be in the
training and testing split. Model performances are shown for the entire set of test students and over
the intervention subset (received additional instruction time). The best results are shown in bold.

Method
Word Identification Word Attack

All Students Intervention Group All Students Intervention Group
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

School Split:
Logistic Regression [42] 0.6119 0.6121 0.6214 0.5850 0.5923 0.5591 0.6311 0.5130
XGBoost [13] 0.6503 0.6515 0.6504 0.6536 0.6090 0.5817 0.6376 0.5628
LightGBM [40] 0.6651 0.6653 0.7086 0.6903 0.6223 0.5593 0.6958 0.5472
TabNet [3] 0.6385 0.6311 0.6925 0.6773 0.6328 0.5797 0.7120 0.5862
GRAPE [65] 0.6205 0.6238 0.6359 0.6281 0.6002 0.5426 0.6510 0.5349
TabNet (Pretrain) [3] 0.6458 0.6468 0.6926 0.6716 0.6208 0.5821 0.7186 0.5981
VIME [64] 0.6651 0.6585 0.7125 0.7012 0.6698 0.6322 0.7320 0.6281
SCARF [4] 0.6656 0.6586 0.7325 0.7222 0.6608 0.6258 0.7418 0.6602
MLP (Zeros) 0.6725 0.6670 0.7410 0.7319 0.6535 0.6303 0.7346 0.6369
MLP (Mean) 0.6695 0.6640 0.7281 0.7152 0.6371 0.5849 0.7476 0.6236
MLP (Indicator) 0.6710 0.6607 0.7539 0.7394 0.6698 0.6321 0.7412 0.6403
MaskMLP 0.6726 0.6693 0.7704 0.7633 0.6697 0.6545 0.7704 0.6869
Student Split:
Logistic Regression [42] 0.6207 0.6201 0.6474 0.6394 0.6281 0.5666 0.6796 0.5503
XGBoost [13] 0.6607 0.6603 0.6699 0.6659 0.6119 0.5743 0.6731 0.5849
LightGBM [40] 0.6711 0.6702 0.7121 0.6986 0.6385 0.5763 0.7022 0.5749
TabNet [3] 0.6519 0.6496 0.6989 0.6956 0.6356 0.5737 0.7184 0.5850
GRAPE [65] 0.6468 0.6402 0.6625 0.6570 0.6329 0.5976 0.6881 0.5972
TabNet (Pretrain) [3] 0.6652 0.6598 0.6892 0.6777 0.6563 0.6148 0.7021 0.6161
VIME [64] 0.6785 0.6763 0.7250 0.7193 0.6564 0.6121 0.7631 0.6930
SCARF [4] 0.6563 0.6549 0.7142 0.7112 0.6652 0.6372 0.7656 0.6944
MLP (Zeros) 0.6756 0.6745 0.7120 0.7002 0.6756 0.6368 0.7638 0.6956
MLP (Mean) 0.6652 0.6627 0.7186 0.7171 0.6563 0.6214 0.7572 0.6799
MLP (Indicator) 0.6889 0.6873 0.7411 0.7198 0.6637 0.6202 0.7670 0.6851
MaskMLP 0.6919 0.6899 0.7766 0.7537 0.6741 0.6485 0.7865 0.7333

Word Identification
Student Split

Word Identification
School Split

Word Attack
Student Split

Word Attack
School Split
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Figure 2: Breakdown Results Across Quantile Groups on ECRI. A five-class model accuracy
breakdown with classes defined over five quantiles of student performance by improvement amount
from the first assessment, from large regression, slight regression, no change, slight improvement,
and large improvement.

affects students’ reading skills (this underlines the significant role of such interventions). Our
proposed MaskMLP method consistently achieves the best performance on the intervention subset,
with larger accuracy and AUC gains over the baselines compared to results over the entire student
set. We also conduct statistical tests to identify whether our model outperforms the other models
by comparing MaskMLP against MLP and VIME over five different folds using a paired samples
t-test [19, 17]. For the MLP baseline, the t-statistic was 3.876, and the p-value was 0.0090, suggesting
that MaskMLP’s improvements are statistically significant. For VIME [64], the t-statistic was 2.1023,
and the p-value was 0.0517, indicating a trend toward significance. When comparing with SCARF [4],
the t-statistic in word identification was 2.0954, and the p-value was 0.0521.

Model Performance Across Student Progress: We classify students into five distinct categories
based on their progression quantiles: regression, slight regression, no change, slight improvement, and
large progress. We then analyze classification performance separately for each of the five categories,
with results shown in Fig. 2. We find our model to perform better among students who have made
greater progress than those who have regressed, especially for the word attack task. In contrast, the
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Good initial word identification performance, lower 
initial word attack performance; Small improvement 
overtime

Lower initial word identification and 
word attack performance; Modest 
improvement overtime 

Good initial word identification and 
word attack performance; Small 
improvement overtime 

Low initial word identification performance, 
modest initial word attack performance; 
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Figure 3: Visualization of t-SNE-based Embedding and Student Profile Analysis. The visual-
ization uses embeddings derived from the MLP (left) and MaskMLP (right) models for the word
identification task, with negative samples shaded in gray and positive samples shaded in green. The
pre-training step in MaskMLP results in an embedding with greater separation among student profiles.

model exhibits lower success rates for student skill improvement prediction over the students with
lower performance gains. This finding highlights a current model limitation that requires further
study in the future, e.g., the need to carefully handle data imbalance among various potential student
groupings and students.

0 0.02 0.04 0.06 0.08

Gender
Intervention

Fidelity
TKP Score

SAT Sentence Reading
Group Rate

Age
RCMIS Score

SAT Word Reading
At Risk Number

NWF Letter Sounds
NWF Words Recoded

ORF Words Read
SAT Total Reading Score

Word Attack
Word Identification

Decrease in ACC

Figure 4: Feature Importance Analysis. We show
feature importance by plotting the decrease in model
accuracy on word identification classification after
dropping each input variable, one at a time. All liter-
acy assessment measures used for input are obtained
at the start of the school year.

Feature Importance: We systematically ex-
clude each feature individually from ECRI
and assess feature importance based on its
impact on final model classification perfor-
mance. We calculate the decrease in classi-
fication accuracy after excluding each input
feature, with a larger decrease in accuracy
indicating greater importance to the model.
For classification on word identification task
(Fig. 4), the word identification performance
at the beginning of the school year is most
influential, followed by other literacy evalua-
tions including the SAT, DIBELS Oral Read-
ing Fluency (ORF) and Nonsense Word Flu-
ency (NWF) measures. To a lesser degree,
classroom features such as teacher knowl-
edge (TKP Score), classroom management
behaviors (RCMIS Score), and fidelity to
the implementation of ECRI curriculum (Fi-
delity) are also important contributors to dif-
ferentiating student response. Additional ablations and results can be found in the supplementary.

Impact of Pre-Training on Learned Embedding Space: To better understand the role of our
proposed pre-training method in the latent high-dimensional embedding space, we extract feature
embeddings of all students from ECRI using MLP and MaskMLP and leverage a t-SNE [57] to project
and visualize the high-dimensional embeddings in 2D space, as shown in Fig. 3. Notably, the feature
embeddings extracted by MaskMLP exhibit separable and well-defined clusters, each representing a
distinct student profile. MaskMLP is found to group similar features in embedding space without the
need for explicit supervision, thereby enhancing downstream prediction performance.

Bias Characterization: To characterize predictive bias in our context, we provided a detailed
breakdown of three specific demographic groups: gender, at-risk students, and socio-economic

8



Table 2: Breakdown Based on Gender, At-Risk, and Socio-Economic Status. We report a detailed
breakdown of three specific demographic groups: gender, at-risk students, and socio-economic status
of our MaskMLP model.

Subset
Word Identification Word Attack

All Students Intervention Group All Students Intervention Group
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

School Split:
Overall 0.6726 0.6693 0.7704 0.7633 0.6697 0.6545 0.7704 0.6869
At-Risk 0.6692 0.6672 0.7195 0.7140 0.6436 0.6170 0.7326 0.6429
Male 0.6753 0.6753 0.7784 0.7698 0.6736 0.6572 0.7585 0.6896
Female 0.6636 0.6606 0.7620 0.7521 0.6422 0.6486 0.7765 0.6754
High FRL 0.6200 0.5770 0.7500 0.7624 0.6281 0.6178 0.6042 0.5556
Low FRL 0.6874 0.6979 0.5873 0.6129 0.5574 0.5297 0.6785 0.6066
Student Split:
Overall 0.6919 0.6899 0.7766 0.7537 0.6741 0.6485 0.7865 0.7333
At-Risk 0.6691 0.6693 0.7096 0.7043 0.6707 0.6434 0.7558 0.6731
Male 0.6969 0.6968 0.7864 0.7666 0.6782 0.6496 0.7725 0.7202
Female 0.6728 0.6755 0.7620 0.7425 0.6706 0.6349 0.7886 0.7426
High FRL 0.6217 0.5717 0.7500 0.7579 0.6656 0.6178 0.6301 0.6048
Low FRL 0.6736 0.6417 0.7143 0.6667 0.5575 0.5298 0.7358 0.6128

status, as shown in Table 2. We found that despite a relatively balanced gender distribution in our
dataset, some performance differences were observed between different groups. Additionally, our
model demonstrates lower performance for at-risk students. This outcome is potentially due to the
heterogeneity within the at-risk group, where multiple overlapping challenges (e.g., language barriers,
learning disabilities, and socio-emotional issues) confound accurate prediction, highlighting the need
for more comprehensive data and context-aware model design to enhance support for this population.

We further sought racial-ethnic and free/reduced-price lunch (FRL) data from participating schools
and districts to investigate the relationship between socio-economic status (SES) and model perfor-
mance. Due to confidentiality concerns, we opted to use and publish race-ethnicity and FRL data only
at the school level. Our analysis reveals a consistent trend of higher model predictive performance
in schools with higher SES (i.e., fewer FRL students). Notably, there were substantial SES and
race/ethnicity differences between student groups (e.g., 8% versus 35% Hispanic, and 2% versus
7% African American students). Although there may be some external factors, such as students
of higher socioeconomic status often benefit from additional resources beyond school instruction,
such as private tutoring, we found that model performance on students from high socioeconomic
status students was higher. Additionally, we observed that the effects of teacher knowledge and
experience on student achievement were reduced in classrooms with the intervention. In contrast, the
effects of teacher differences were more pronounced in classrooms without the intervention, which
used a variety of instructional approaches common in U.S. schools. These findings suggest that the
consistent use of evidence-based strategies can help reduce disparities in educational delivery and
promote more equitable outcomes.

6 Limitations

Our models can predict the outcomes of instructional interventions, facilitating timely and appropriate
actions, such as additional instructional support from teachers. However, model generalizability and
robustness—such as performance across different schools and student profiles—remain limited to
certain student groups. While our dataset and methods have the potential to improve educational out-
comes, irresponsible use could negatively impact students’ educational experiences and development.
Given the inherent data and model biases, AI techniques may fail for atypical profiles and could
perpetuate biases if not applied cautiously. By releasing publicly available data and open-source
models, we aim to increase prediction transparency to help mitigate potential harms. Our models
should be accompanied by educational materials, and we provide users with guidelines regarding
common failure modes and potential risks, especially for rare student profiles from diverse educational
and personal backgrounds.

We recognize the critical ethical and societal implications of using machine learning in education,
especially regarding bias mitigation to minimize risks. We envision ML predictions as tools to assist
teachers in identifying at-risk students for timely intervention. However, these benefits may not
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be realized if the underlying datasets contain biases. Even with diverse and representative data,
model failure or misuse can potentially harm students already at risk, such as through mislabeling or
misidentification. We hope this dataset will contribute to a better understanding of bias issues at the
intersection of machine learning and education and serve as a step toward addressing them.

7 Conclusion and Future Work

In our study, we explore challenges and opportunities in applying machine learning models for
predicting early childhood reading performance. We develop a benchmark using multiple ML models
on a comprehensive longitudinal dataset of literacy assessments and an evidence-based intervention
for at-risk early learners. Despite the large proportion of missing data, we develop a self-supervised
pre-training strategy, referred to as MaskMLP, which was shown to better handle missing values and
provide accuracy gains compared to multiple state-of-the-art approaches. Our findings and insights
surface several implications for advancing preventive approaches in education and improving the
delivery of tailored support to address diverse needs across various educational settings, specifically
for raising awareness of the current limitations of ML models over various evaluation settings
and student types. We envision our models responsibly used to augment teacher decision-making
processes, allowing them to provide timely support to enhance student reading and learning outcomes.

In future work, we plan to apply our study to educational environments in situ, which would allow
us to investigate prediction uncertainty and information about model failure cases to better provide
educators with effective information to improve timely support and facilitate responsible use given
widespread bias issues in data-driven systems, particularly for rare and outlying data samples [26].
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