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Abstract—This paper presents a novel data-driven parallel
framework for autonomous voltage control (AVC) of the power
grid. The proposed framework employs a distributed Deep Rein-
forcement Learning algorithm named Asynchronous Advantage
Actor-Critic (A3C) to regulate voltage profiles in a power grid.
A well-trained accelerated agent is obtained in the proposed
framework by employing multiple workers simultaneously and
interacting with a power grid simulator repeatedly. With the
proposed framework, multiple threads can run in parallel. A
well-trained agent, which utilizes the parameters acquired by
the joint training of multiple workers, is obtained and tested
through a realistic Illinois 200-bus system with consideration
of N-1 contingencies. The training and testing results show the
significant speedup capability and excellent numerical stability
of the proposed framework.

Index Terms—Artificial Intelligence, Autonomous Voltage Con-
trol, Parallel Deep Reinforcement Learning, A3C, On-policy
Learning

I. INTRODUCTION

Keeping a secure voltage profile is essential for the power
system to prevent cascading outages. With rapidly increased
penetration of renewable energy, demand response, and power
electronic devices, modern power systems are facing grand
challenges in regulating voltage profiles due to the inherently
complex dynamics and high uncertainty brought by these
elements. Under certain circumstances, local voltage violations
could eventually lead to wide-area blackouts if no effective
control actions are applied in time [1]. Therefore, maintaining
the system’s ability to rapidly restore the voltage back to
nominal after severe disturbances is of great importance [2].

Traditionally, off-line decision and control strategies are
adopted at the device level [3], e.g., manually switching on/off
the shunt or adjusting voltage set points of generators. Such
control strategies may be only confined to neighboring areas
thus have limited control effects. Moreover, the predefined
control actions may not be suitable for real-time applications,
due to the stochastic nature of the power grids. Several
automatic voltage control strategies have been proposed in
[4]–[8] to resolve this issue by regulating the voltage profile in
a hierarchical manner. However, such control strategy highly
relies on the accuracy of the real-time system-wide models.
Those models may become inaccurate under large disturbances
that violate the quasi-steady state assumptions. Besides, the
computation time for deriving optimal control actions may
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increase exponentially for large-scale power networks, which
further limits their applications in real-time.

Recently, Deep Reinforcement Learning (DRL) has made
several improvements and achieved state-of-the-art perfor-
mance on many control and decision-making tasks. These
model-free DRL methods do not rely on dynamic system
models and can be quickly deployed after training, which
makes it suitable for online applications. Besides, once the
DRL agent is well trained, it is easily adapted to random
variations of system loads and renewable energy resources
and provides robust control commands in real-time. Several
DRL-based methods have been proposed to regulate voltage
in an autonomous manner [8]-[12]. References [9]–[11] re-
formulate the continuous control problem to discrete control
space and employ the discrete control actions, which may
not be accurate enough. Reference [12] utilizes an off-policy
algorithm, i.e., deep deterministic policy gradient (DDPG), to
solve a continuous control problem. Nevertheless, DDPG, as
an off-policy learning approach, is reported to have relatively
unstable performance and can be sensitive to hyperparameters
though it can sample the training experiences efficiently [12].

This paper proposes an accelerated agent using A3C-based
approach to solve the autonomous voltage control problem in
order to overcome the downside of DDPG-based approaches
and aim for the continuous control space. A3C algorithm
adopts an on-policy learning strategy, it provides a multi-
threaded asynchronous parallel framework, therefore, it is
faster, simpler, and more robust comparing to off-policy meth-
ods such as DDPG. More specifically, the A3C algorithm
has the following advantages. First of all, by asynchronously
launching multiple workers, it gathers more training data in
unit time, thus expediting the training process. Secondly, it
does not rely on experience replay buffer, which is typi-
cally used in off-policy methods, and potentially requires
less memory and less computation per interaction with the
environment. Finally, since every single worker also has its
own environment, it receives more diversified data that reduce
the correlations between training experiences. Thus the trained
agent can be more robust with better overall performance. This
paper extends the work presented in [1,11], in which effective
DRL agents based on DQN and DDPG were proposed.

The remainder of this paper is organized as follows.
Section II provides an overview of the parallel architecture of
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the A3C-based accelerated agent and its main components.
Section III describes the detailed implementation of the
accelerated agent. In Section IV, case studies are conducted
with N-1 contingency considered. The agent shows excellent
performance for both training and testing stage on the Illinois
200-bus system [13]. Finally, conclusions are reached in
Section V, and future research work is also included.

II. THE A3C-BASED PARALLEL FRAMEWORK FOR AVC

A. Parallel DRL Design for AVC

AVC is used to regulate the voltage automatically and keep
the voltage profile within a predefined normal range after any
disturbances. Conventional methods for AVC are designed
highly rely on the accuracy of system-wide models [4]–[8].
DRL is a model-free method that provides an alternative data-
driven solution. However, the training process of sequential
DRL agent is quite time-consuming and unstable [1], [12]. To
tackle this issue, several distributed DRL algorithms have been
proposed and reported in [14]–[16]. In this work, we applied
one distributed DRL algorithm, i.e., the A3C-based parallel
algorithm to build the accelerated agents to provide coordi-
nated, continuous voltage control for power grid operation.
The proposed framework supports parallelism in both data
usage and model parameters update on a single server with a
multi-core CPU. More details regarding each component are
provided in the subsequent sections.

B. Overall Architecture Design

The overview architecture of the proposed A3C-based ac-
celerated agent is shown in Fig.1. The accelerated agent
utilizes an asynchronous, parallel training pattern to learn more
efficiently. With this parallel framework, the training time can
be dramatically reduced due to the accelerated convergence
rate. Moreover, the performance of accelerated agent on the
training set will be more stable compared to the other DRL
agents like DQN or DDPG [1], [12].

Fig. 1. Diagram of the high-level architecture of the framework.

As can be seen from Fig.1, the parallel framework mainly
consists of two components. The central process thread on the
left is the master agent, whereas the other children process
threads on the right are known as local worker agents. All
agents share the same actor and critic neural networks. In the
training process, the master agent serves as a central controller
to synchronize the shared set of network parameters across dif-
ferent workers. The synchronization takes place by receiving
gradient updates computed by local workers asynchronously
and then apply changes to the shared networks as soon as
they are received. Then the updated neural network parameters

need to be broadcasted to all other worker processes, when the
worker agents are interacting with multiple Grid Simulator
instances using multi-threads. In this way, local worker agents
can collect independent experiences from each other, and then
calculate the value, the policy losses and the gradients, with
respect to its own temporal network parameters.

C. A3C-Based Accelerated Agent

The accelerated agent leverages the A3C-based parallel
framework to perform on-policy learning. It can be charac-
terized by three main properties: Asynchronous, Actor-Critic,
and Advantage [16].

1) Asynchronous: unlike sequential DQN or DDPG algo-
rithm with a single agent, A3C is a parallel algorithm
where multiple worker agents are trained on multiple
CPU cores simultaneously on a single server, each with
their own copy of the model and the environment.

2) Actor-Critic: it refers to the set of neural networks used
by the agents. Each agent is equipped with an actor
network and a critic network.

3) Advantage: the advantage is a value that used to replace
a normal discounted reward. One benefit of the advan-
tage estimation is that the agent is able to calculate how
much better its actions turn out to be comparing to its
expectation, allowing the algorithm to concentrate on the
difference, and making up to it.

The A3C algorithm learns two networks: the actor (policy)
network and the critic (value) network. During the learning
process, the actor network adjusts probabilities for actions
given the estimated advantage of certain actions. The critic
network learns to estimate the advantage based on the feedback
from the environment following the actions taken. To further
stabilizes the learning process, the A3C algorithm uses an n-
step return mechanism, e.g., it updates the policy and value-
function every n steps using the n-step return. The policy π
and the value function V are updated after tmax actions are
taken, or when a terminal state has been reached [16].

The gradient update rule for accumulated gradients with
respect to policy parameter θ is:

dθ ← dθ +∇θ′ logπ(ai|si; θ′)(R− V (si; θ
′
v)) (1)

and the accumulated gradients with respect to local value
network parameter θv is updated by:

dθv ← dθv + ∂(R− V (si; θ
′
v))

2/∂θ′v (2)

where π(at|st; θ) is the policy and V (st; θ) is the estimation
of the value function. R − V (si) is the advantage value.
Parameters θ′ and θ′v are calculated by accumulating gradients
for n steps within each worker thread. The value function for
the specific policy π is defined as (the subscript t means the
value at time step t):

V π(s) = E[Rt|st = s] (3)

where Rt is the total accumulated discount return from time
step t with a discount factor from 0 to 1.

The loss function for the critic (value) network is given by:

Lc = (R− V (si))
2 (4)
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And the loss function for the actor (policy) network:

Lp = log (π(ai|si) · (R− V (si)))− β ∗H(π) (5)

where H(π) is the entropy and β is the normalization factor
for the entropy.

To demonstrate how the agent interacts with the environ-
ment and learns from the interactions, the steps in one training
episode is presented in Algorithm 1.

Algorithm 1: A3C for AVC - pseudocode for each actor-
learner thread.

Result: Finish when all episodes are trained
Initialize global actor and critic networks parameters
randomly;

Initialize t← 1, T ← 0;
while T < Tmax do

Randomly perform load change (with/without
contingency) to obtain initial state S;

Check for violation or divergence based on S;
n = 0;
Reset gradients to 0;
Synchronize parameters from global network to local

network;
tstart ← t;
if Violation then

while terminal st or t− tstart == tmax do
Perform at according to policy π;
Receive reward rt and new state st+1;
t← t+ 1;
T ← T + 1;

end
Calculate Reward R;
Apply discounted Reward to R;
Calculate gradients and upload to global

networks;
else

Check for divergence;
end

end

This procedure ensures that each worker thread is commu-
nicating with its own instance of the environment, thus to
support a parallel training process. This parallelism realizes
more server capacity for training, which can substantially
accelerate the overall training procedure. More specifically, the
more workers to process the training data in parallel, the less
time it requires to complete the training. More importantly,
the updates of accumulated n-step gradients are sent back to
the master by each worker thread in an asynchronous way,
which reduces the variance of overall actor-critic model and
stabilizes the training process.

III. DEPLOYMENT OF A3C-BASED ACCELERATED AGENT

A. The Deployment Platform

In this work, the A3C-based accelerated agent is developed
with TensorFlow in Python that runs on a Linux platform
with 528 GB memory and 32 cores. The environment used

for the training process is an in-house, high-fidelity power
grid simulator to mimic the real power system response at the
quasi-steady state [1, 11].
B. Components of A3C-based Accelerated Agent

In this section, the following notations are defined in the
context specific to the AVC task.
• Goal For the proposed accelerated agent, the goal is to

generate a set of actions from an infinite, continuous
action space when abnormal bus voltages are observed,
the agent attempts to regulate the voltage profiles.

• Episode As defined in [1], in the AVC task, an episode
represents any operating condition collected from real-
time measurement systems such as supervisory control
and data acquisition (SCADA) or phasor measurement
units (PMUs). In the task, episodes are generated by
randomly changing the loading conditions, generation
dispatches, system typologies, and considering contingen-
cies. N-1 contingencies are randomly selected from 85
lines in this work. Totally 40,000 episodes are partitioned
randomly and assigned to multiple workers in order to
allow data parallelism.

• State The original state in the task is an 890-dimensional
vector, including bus voltages, phase angles, active and
reactive power flows on transmission lines. To remove
less important information for voltage control tasks, we
keep the 200-dimensional bus voltage as an input state.

• Action Similar to [1, 11], and without loss of generality,
we take the generator voltage set points modification as
the action to regulate system voltages, and it takes values
from a continuous action space within the range of [0.95,
1.05].

The reward function used in the model is defined as follow:

R =



∑N
i 0.05− |1− vi|, ∀vi ∈ V : 0.95 ≤ vi ≤ 1.05

−20, ∃vi ∈ V : vi < 0.80|vi > 1.25

−1000, if pfs failed with A

−
∑N
i |1− vi| otherwise

(6)
where V is the set of voltages of the 200 buses, and A

is the action taken by the agent. The pfs stands for the
power flow solver program. The reward of a taken action
is determined solely on the voltage value of the buses. As
described in equation (6), the exact value of the reward is
calculated differently when the voltage of a bus is in four
different ranges. Firstly, the reward is positive only when
voltages of all 200 buses are within the range of [0.95, 1.05]
in p.u. If this is the case, then the agent receives the highest
reward when the voltage of a bus is at 1.00 pu, and receives a
smaller positive reward when the voltage value deviates from
the value 1.00 p.u. The total reward is the sum of the rewards
of all 200 buses. Secondly, a total negative reward is given if
any bus voltage drops below 0.80 p.u or rises over 1.25 p.u.
Finally, when the power flow solver fails to solve the state
with the provided action, a hefty penalty is given too. If all
buses are within the violation range (0.80, 1.25) but are out of
the normal range [0.95, 1.05] in p.u, a small negative reward
is given for each bus voltage violation. The further away the
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voltage is from 1.00 pu, the larger the penalty. Still, in this
case, the total reward is the sum of all 200 buses’ rewards.
The final reward for an episode with n steps is the sum of
rewards in each step divided by the number of steps:

Final Reward =

n∑
i=1

Ri/n (7)

The design of this reward function aims to serve the
following purposes:

1) Encourages the agent to take actions that drive the
voltage of buses towards 1.00 pu as much as possible.

2) Prevents the agent from taking actions that will cause
divergence in the power system.

3) Prevents the agent from taking actions that will result in
a failed power flow case.

4) Discourages the agent to take actions that lead to abnor-
mal voltage profiles.

C. Neural Network Architecture Design

The same neural network structure is used for all cases
in this work. Having a shared neural network architecture
indicates that the framework of accelerated agent is robust
to hyper-parameter changes i.e., the number of neurons and
the number of layers in the networks. For the actor network,
three layers of neurons are applied: the first layer consists
of a batch normalization layer with 200 neurons and a linear
activation function. Then the second layer is a fully-connected
layer with 200 neurons and a Rectified Linear Units(ReLU)
activation function. The last layer is also a fully connected
layer with 38 neurons and a tanh activation function. The
critic network has three layers as well. The first layer is a batch
normalization layer with 200 neurons and a linear activation
function, followed by two fully connected layers, with 100 and
1 neurons, ReLU, and linear activation functions, respectively.
The batch normalization layer is proved to be efficient in
computing the gradients [17]. It normalizes the layer inputs,
and therefore reduces the co-variance shift and increases the
stability of a neural network. The optimizer used for both actor
and critic networks is the Adam Optimizer with a learning rate
of 10−4. We also experimented with other hyper-parameter
sets and found that the system is robust to hyper-parameter
changes.

IV. CASE STUDIES

In this section, 40,000 cases in total are considered for
training the agent. Besides, 10,000 test cases are generated
to test the performance of the trained agent. Using a separate
test set allows us to evaluate the trained agent’s ability to
generalize on an unseen dataset.
A. Normal Operating Conditions without Contingencies

In this case, the only perturbation added to the system is the
random load variations. Each bus’s load is randomly perturbed
from 70% to 130% of its original loading condition. After that,
the generators are re-dispatched according to their original
participation factors, to maintain the active power balance of
the system [1]. A total of 40,000 training cases with random
load perturbation are generated by the Powerflow & Short cir-
cuit Assessment Tool (PSAT), developed by Powertech Labs.

In each of the generated cases, information for a converged
power flow is provided, including bus voltage, phase angle,
and other information representing the operating status of
the 200-bus system. Our agent only uses the 200-vector bus
voltage to determine its next action. The information for each
case is saved in a PTI v33 format. The reward obtained by
an A3C-based accelerated agent during the training is given
in Fig.2. The figure demonstrates the experiments conducted

Fig. 2. Reward received in each worker agent in the training process using
40,000 episodes without considering contingencies.

Fig. 3. Number of steps taken for 40,000 training episode without considering
contingencies.

with 4 workers. The reward curves show a similar trend for
all workers, which is starting with massive fluctuations and
ending up with convergence to positive rewards around 8
within 4 minutes. According to the reward function definition
in Eq.(6), positive rewards indicate the accelerated agent can
provide actions to adjust all abnormal voltages to normal
range successfully. Note that the minimum episode reward is
-1000, whereas the maximum is around 8, so for visualization
purposes, the negative rewards are normalized to -10.

Fig.3 demonstrates the number of steps needed to complete
the training process. Note that the maximum number of steps
allowed is 20, which indicates if an agent requires more than
20 steps to adjust the voltage, then this episode is considered
failed, and a new episode is initiated. The graph shows that
four workers demonstrate a common trend for the agent’s
performance, which explains how the worker is able to reach
convergence within four minutes. As the primary control
objective, the agent needs to adjust all bus voltages back to the
normal range with as few steps as possible. Our experiments
show that 10,000 test cases are completed with only one step,
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which proves the training is effective.
B. Considering N-1 Contingencies

In this case studies, the N-1 contingency (one line between
two buses) is considered to cover the topology change. Unlike
the previous case study without contingencies, a topology
change introduces more uncertainties to the power grid and
therefore is more difficult to handle. The training results
are given in Fig.4 and Fig.5. Note that to make the N-1
contingency cases to converge, the agent needs a bit more
time than the cases without contingencies, as expected. The
testing result on the 10,000 test cases also shows that only
one step is needed to eliminate bus voltage violations. In

Fig. 4. Reward received in each worker agent in the training process using
40,000 episodes considering N-1 contingencies

Fig. 5. Number of steps taken for 40,000 test episode considering N-1
contingencies

addition, the acceleration from DDPG or DQN to A3C is
noticeable. For a DQN agent to converge on the AVC task
with N-1 contingency, 12,000 episodes and about 40 minutes
of training are required, as described in [1]. For a DDPG agent
to converge on the AVC task without contingency, it requires
10,000 training episodes and about 30 minutes of training
time, as shown in [12]. However, the accelerated agent trained
by four workers in this paper only takes 1,500 episodes and
about 4 minutes of training time to converge in both scenarios,
demonstrating a considerable acceleration and training speed
improvement.

V. CONCLUSIONS

A novel A3C-based parallel framework is presented for
training an intelligent accelerated agent for the AVC task.
The case studies on the Illinois 200-bus system show that
the proposed A3C-based accelerated agent can achieve higher

performance on the task compared to a sequential agent.
Firstly, it enables data parallelism and gradients to update
parallelism in multiple agents, facilitating a faster convergence
rate. Secondly, experience replay buffer for DQN/DDPG based
agents is no longer needed. Therefore the system can be easily
scaled on massive data sets. Finally, the accelerated agent can
attain a more diversified training experience as each worker’s
experience is independent. The independence introduces extra
robustness to the training model. As a result, the model is
less sensitive to hyper-parameter changes. With all of these
features, the A3C-based accelerated agent can behave more
stable than other DRL agents for solving AVC problems.
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