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ABSTRACT

3D object detection for autonomous driving relies on multiple sensors, but their
parallel use increases power consumption, limiting operational time and perfor-
mance. In addition, not all scenarios require every sensor. An excessive number
of sensors not only constrains inference performance but can also degrade accu-
racy by introducing noise. To achieve the Pareto optimality between accuracy and
efficient performance, we introduce AdaSensor, an Adaptive Sensor selection
framework for power-efficient 3D object detection. The AdaSensor first designs
the Mixture of Sensors (MoS) module that employs a lightweight sensor router to
choose the necessary sensors during inference. This selective sensor activation
reduces the computational load by processing fewer inputs and lowers power con-
sumption by deactivating unused sensors. However, a naive MoS suffers from
inference instability, rooted in the latency overhead from frequent sensor switch-
ing. To mitigate this, AdaSensor incorporates a novel non-congested switching
policy to judiciously limit the switching frequency, which enhances system sta-
bility and efficiency while extending sensor lifetime. To demonstrate the effec-
tiveness and efficiency of our method, we evaluate AdaSensor on the classical
autonomous driving computing platform Nvidia Jetson Orin. On the nuScenes
dataset, our method effectively reduces system power consumption by 11.7% and
inference latency by 11.3%. The code will be made publicly available.

1 INTRODUCTION

3D object detection is crucial for autonomous driving. One important approach is the use of multi-
modal and multi-sensor inputs (Chen et al., 2022b; Gao et al., 2023; Huang et al., 2021; Liu et al.,
2023a). This is necessary due to the limitations of individual sensors. For example, cameras provide
rich color and texture information, but struggle with depth estimation. LiDAR measures precise 3D
geometry directly, yet provides less color information, and is less reliable in extreme weather, such
as heavy rain or snow. Thus, fusing camera and LiDAR data is a popular method for 3D object
detection in autonomous driving (Cui et al., 2021; Liu et al., 2023b).

Many efforts focus on using multi-sensor and multi-modal approaches for 3D object detection.
Current popular methods in autonomous driving fall into two paradigms: multi-camera fusion and
LiDAR-camera fusion. Multi-camera fusion combines outputs from multiple cameras to infer depth
information and predict 3D positions (Xie et al., 2022; Liu et al., 2022b; Yang et al., 2023a). In
contrast, LiDAR-camera fusion utilizes camera outputs along with depth information from LiDAR.

However, using more sensors introduces two critical challenges in real-world autonomous driving
systems: ❶ Power Consumption Upsurge: Using more sensors increases computational demand,
raising power consumption and inference latency. The computing platform and sensors can account
for up to 77% and 29% of total power in an autonomous driving system (Katare et al., 2023). This
power draw can reduce a vehicle’s driving range by up to 12% (Lin et al., 2018), posing a critical
challenge for systems constrained by limited battery and computational capacity. ❷ Over-Sensing:
According to different scenarios, not all sensors are necessary for perception. For example, on a
two-lane freeway, at least exist one side of the car is not necessary. In addition, the human attention
mechanism highlights the importance of focusing on critical information rather than processing all
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Figure 1: Case study. (a), (b): The Full Sensor detectors (e.g. CMT and StreamPETR) made in-
correct predictions in both the left and right columns. After masking the left column camera, the
right column’s prediction became correct. This suggests the left column camera may have intro-
duced noise to the model. (c): mAP and NDS scores on 5 nuScenes subsets divided by number of
annotations. Higher number of annotations indicates a more complex scene. Our sensor selection
outperforms full-sensor detector in the most complex subset, indicating its potential capacity.

available data. In the object detection task, oversatisfying information can dilute the attention on
critical objects, decreasing accuracy (Wang et al., 2022). Therefore, we argue that the selective
masking of sensor outputs provides a novel perspective to improving the 3D object detection Pareto
optimality between power efficiency and accuracy.

Figure 1 (a) and (b) show that masking specific sensor outputs can improve 3D object detection
accuracy. We divided the data into five subsets based on the number of objects. The construction
and visualization of these subsets are detailed in Appendix E. A higher number of objects indicates
a more complex scene. We tested the detectors in these different scenarios, both with and without
sensor selection. Using sensor selection means we only use the outputs from the identified sensors
for prediction. For without sensor selection, we use all available sensor outputs. As shown in
Figure 1 (c), the mAP and NDS scores indicate sensor selection outperforms the full-sensor detector
in the most complex scenes. These results emphasize the importance of sensor selection.

In light of the above challenges and observations, we introduce AdaSensor, an Adaptive Sensor
selection framework for power-efficient 3D object detection. Specifically, AdaSensor consists
of two novel designs: ❶ (Model Design) AdaSensor introduces a lightweight Mixture of Sensors
(MoS) module. It takes the front camera information to learning the adaptive sensor selection policy,
which selects a suitable sensor subset. Our robustness detector then uses the output from the active
sensors to perform 3D object detection. Therefore, we can directly eliminate the inactive sensors to
save power consumption. This also reduces the amount of sensor information input to the network,
which decreases the computational workload of our detector. However, the involve of the MoS is
not benefit for deployment as the sensor switch will introduce additional latency. ❷ (System De-
sign) Consequently, we introduce a novel inference strategy. It involve sensor-specific operational
duration, which enables a non-congested sensor switch policy to avoid sensor switch latency and
improve system execution stability. These two novel designs together improve the 3D object de-
tection inference efficiency (less latency and better stability) while maintaining the accuracy. Our
contributions can be summarized as follows:

• We propose an adaptive sensor selection framework for power-efficient 3D object detection.
It uses a selected sensor subset for 3D object detection to save power consumption from
both sensor running and detector computation.

• We present a Mixture of Sensors mechanism, which adaptively selects the adequate sen-
sors’ outputs for our detection model, thereby enabling a novel perspective for power effi-
ciency 3D object detection on autonomous driving.
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• We design a novel non-congested sensor switch policy to avoid sensor switching latency
and improve inference latency stability.

• We evaluate AdaSensor on the Nvidia Jetson Orin, a real-world autonomous driving
computing platform. The experimental results demonstrate that AdaSensor successfully
improves 3D object detection efficiency performance and prediction accuracy. Specifically,
AdaSensor achieves average reductions of 11.3% in latency, 23.7% in latency standard
deviation, and 11.7% in system power consumption.

2 RELATED WORKS

Camera-only 3D Object Detection Detecting 3D objects from images is challenging due to the
lack of direct depth information. Early monocular methods addressed this by inferring depth (Xu
et al., 2021), using geometric priors (Lu et al., 2021), or designing specialized loss functions (Si-
monelli et al., 2020; Miao et al., 2021). The advent of multi-view datasets (Caesar et al., 2020;
Sun et al., 2020) has spurred more advanced techniques, broadly classified into two categories.
Geometry-based methods transform image features into Bird’s-Eye View (BEV) representations.
A seminal work, Lift-Splat-Shoot (LSS) (Philion & Fidler, 2020), achieves this by predicting a per-
pixel depth distribution. Building upon LSS, BEVDet (Huang et al., 2021) adapted this transfor-
mation for detection, later enhanced by BEVDepth (Li et al., 2023) with explicit depth supervision
and by BEVDet4D (Huang & Huang, 2022) with temporal alignment for improved velocity estima-
tion. BEVHeight (Yang et al., 2023b) and BEVHeight++ (Yang et al., 2025) introduce predicting
object height from the ground as a robust alternative to depth for view transformation, later fusing
both height and depth cues to create a more comprehensive framework. Transformer-based meth-
ods leverage attention mechanisms to map perspective-view features to BEV. BEVFormer (Li et al.,
2022) employs deformable attention to query features from multi-view images. Subsequent works
like StreamPETR (Wang et al., 2023) and SparseBEV (Liu et al., 2023a) use sparse object queries
and adaptive attention mechanisms, respectively, to efficiently model spatial and temporal context.

LiDAR-Camera Fusion 3D Object Detection Fusing the rich texture from cameras with precise
depth from LiDAR can significantly improve detection accuracy and robustness. Fusion strategies
are typically categorized as feature-level or proposal-level. Feature-level fusion aims to create a uni-
fied representation. Early works like PointPainting (Vora et al., 2020) decorated point clouds with
semantic features from images. More recent approaches either transform both modalities into the
BEV space before merging, as seen in BEVFusion (Liu et al., 2023b; Liang et al., 2022), or use point
features to query and enhance corresponding image features (Gao et al., 2023; Chen et al., 2022a;b).
Frameworks such as CMT (Yan et al., 2023) adapt transformers for multi-modal fusion, while oth-
ers like SparseFusion (Li et al., 2024a) focus on improving efficiency. Proposal-level fusion first
generates proposals from each modality before combining them. For instance, F-PointNet (Qi et al.,
2018) uses 2D image detections to generate 3D frustums for narrowing down point cloud searches.
Other methods (Li et al., 2024b; Xie et al., 2023) generate separate proposals from each sensor
and then consolidate them. However, these approaches can sometimes favor one specific modality,
potentially limiting the full benefits of fusion.

The proposed AdaSensor framework utilizes two distinct detector types. These are a Camera-only
detector and a LiDAR-Camera Fusion detector. A trainable Mixture of Sensors (MoS) mechanism
then selects the appropriate detector. This selection strategy aims to effectively balance detection
accuracy with inference power consumption.

3 METHODS

The proposed AdaSensor includes two key components: the Mixture of Sensors (MoS) module
(Section 3.1) and the non-congested sensor switching policy (Section 3.3). To work effectively with
the MoS routing policy, we customized a robust training pipeline for the detector that can integrate
with the MoS routing mechanism (Section 3.2).

Figure 2 illustrates the overall framework of AdaSensor in a data flow manner. Although we need
to extract the front camera feature first, feature extraction will be performed for each input sensor.
Thus, the additional computational cost lies only in the routers of our Mixture of Sensors module.
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Figure 2: Overall Framework of AdaSensor. AdaSensor employs modality-specific routers. The Camera
Router determines which camera will be used for detection. The LiDAR Router decides which LiDAR will be
used (If only one LiDAR is available, the router will determine whether to use it). Both routers take input from
the same front camera, but they process this information differently. AdaSensor first extracts front image
features using the image backbone to make its sensor selections. Then, it uses the outputs from the selected
sensors to extract sensor-specific features. Finally, these features are fed into the Transformer decoder for 3D
bounding box prediction.

The extra computational cost from the two sensor routers is negligible. They are designed to be
lightweight and depend solely on the front camera for input.

3.1 MIXTURE OF SENSORS

Considering the heterogeneity between LiDAR and camera, our Mixture of Sensors use two separate
routers: LiDAR Router and Camera Router.

LiDAR Router. To make the LiDAR selection process learnable, we trained a LiDAR Router.
Its function is similar to that of a Mixture of Experts (MoE) router in Large Language Models
(LLMs) (Shazeer et al., 2017). Taking an image from the front camera as input, the LiDAR router
routes to an arbitrary number of available LiDARs, or to a special “Zero LiDAR”. Routing to “Zero
LiDAR” means no LiDAR is used. Thus, in the single-LiDAR case, the router effectively decides
whether to activate it. Notably, the LiDAR Router exclusively utilizes input from the front camera.
This specific design consideration serves to minimize the sensor power consumption associated with
this selection mechanism. The LiDAR Router is designed as a very lightwight 3-layer Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) to further reduce the additional computational overhead.

To achieve this, we generate pseudo-labels for each training sample by comparing the detection mean
Average Precision (mAP) of two state-of-the-art detectors: CMT (LiDAR-Camera) and Stream-
PETR (Camera Only). We do not consider LiDAR-only detectors because the front camera will
always be selected. Therefore, our minimum sensor selection subset consists of the front camera
only, and there is no scenario where only LiDAR is selected. The pseudo-labeling process is as
follows: For each sample, we first determine the maximum achievable accuracy for each LiDAR
individually. This involves evaluating all possible LiDAR activation combinations and identifying
the specific combination that yields its peak mAP on that sample. We then compare the peak accura-
cies achieved by CMT and StreamPETR. If StreamPETR’s peak accuracy surpasses that of CMT, all
LiDAR will be assigned “disabled”. Finally, the LiDAR Router is trained with these pseudo-labels
with a cross-entropy loss function. The detailed training setup is described at Section 4.2. This
LiDAR Router identifies each LiDAR as an expert and it allows “Zero LiDAR” selection.
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Figure 3: An example of our Dynamic Stability Policy with 3 sequential samples and 3 sensors. Sample 1
initially requires both Sensor 1 and Sensor 3. However, Sensor 3 is found to be inactive. Consequently, Sample
1 proceeds by utilizing only the operational Sensor 1, while Sensor 3 concurrently starts its booting process.
Subsequently, Sample 2 does not select Sensor 2. Nevertheless, because Sensor 2 had been activated very
recently, the system’s policy rejects its deactivation. This ensures Sensor 2 remains powered on, allowing the
subsequent Sample 3 to utilize it immediately without incurring a booting delay.

Camera Router. Similar to the LiDAR Router, the Camera Router predicts which cameras to acti-
vate based solely on input from the front camera. We present routing visualization in Appendix D.
Note that the Camera Router is integrated as an additional embedded module within each detector.
This embedded approach allows it to leverage the detector’s inherent feature extraction capabilities.
In practice, the Camera Router is implemented as a simple linear layer that processes front camera
features extracted by the detector’s image backbone to directly output selection probabilities for each
camera. Such a lightweight structure results in almost negligible additional computational overhead.

Our Camera Router is conceptualized as a specialized MoE router, where each camera serves as
an “expert”. However, standard MoE training paradigms are ill-suited due to two challenges. First,
unlike a typical MoE router that dispatches to a fixed number of experts, our router must dynamically
select a variable number of cameras based on the input scene. Second, the features from selected
cameras are forwarded directly to the downstream module, rather than being weighted by the router’s
continuous outputs. This direct-passing mechanism, while necessary for the downstream module,
detaches the feature pathway from the routing. This severs the computational graph, preventing
gradients from flowing to the router and making it untrainable with standard back-propagation.

To address these challenges, we introduce Differentiable Top-p Sampling, an integrated routing
mechanism that enables end-to-end training. This method first tackles the variable selection problem
by leveraging the top-p sampling principle (Huang et al., 2024). A linear routing network takes the
front camera feature as input and generates a probability distribution P over all available cameras.
Cameras are then iteratively selected in descending order of their probability until the cumulative
sum exceeds a predefined threshold p (set to 0.9 in our experiments). This formulation allows the
Camera Router to flexibly select a subset of cameras of variable size, thereby enhancing model
flexibility without requiring ground truth for optimal sensor combinations.

To bridge the severed computational graph, we devise a custom gradient approximation inspired by
the straight-through estimator (STE) (Bengio et al., 2013). In the forward pass, the continuous prob-
abilities P are used to generate a binary mask M, which assigns a value of 1 to selected cameras
and 0 to others. The camera features are then multiplied by this mask, establishing a computa-
tional link without altering the feature values themselves. During the backward pass, the gradient is
strategically channeled through this non-differentiable operation. Specifically, the gradient from a
downstream loss Lwith respect to the binarized weights W is approximated by copying the gradient
with respect to the initial probabilities P only for the selected cameras, i.e.,∇WL = (∇PL)⊙M.
This integrated approach effectively allows the Camera Router to be optimized jointly with the
downstream detector. Further details are provided in Appendix B.3 and Algorithm 1.
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As an embedded module within the detector, the Camera Router is trained directly using the original
detection loss Ldet (Wang et al., 2023; Yan et al., 2023). Considering the expert collapse issue from
the MoE training paradigm. We additionally incorporate the Load Balance Loss Lb and Dynamic
Loss Ld (Huang et al., 2024) described in Appendix B.2. The overall loss is formulated as

Lcam = Ldet + αLb + βLd (1)

For both CMT and StreamPETR, the loss weights α and β are set by default to 0.1 and 0.01, respec-
tively. Notably, the detector’s parameters remain frozen during this Camera Router training phase,
ensuring minimal training cost.

3.2 POWER-EFFICIENT ROBUSTNESS TRAINING

Traditional methods for simulating sensor absence, like zeroing inputs or using special mask fea-
tures (Chen et al., 2024; Yan et al., 2023), failed to reduce computational load as they didn’t truly
discard features from omitted sensors. Our approach combines CMT and StreamPETR models
(which use a backbone for feature extraction followed by a Transformer (Vaswani et al., 2017) to
fuse features from different sensors with cross attention), dynamically creates binary attention masks
during training, preventing model queries from accessing features of inactive sensors. Consequently,
during inference, feature extraction for these sensors is skipped, eliminating their computational load
in both the backbone and Transformer. Detailed mechanism are provided in Appendix B.1.

3.3 INFERENCE SYSTEM DESIGN

Issue of Frequent Sensor Switching Frequent sensor activation and deactivation, driven by the
sensor selection mechanism, can pose significant challenges. The time required for sensor booting
introduces instability to the detector’s inference latency. Such latency instability is unacceptable in
autonomous driving systems (Liu et al., 2022a). Moreover, high switching frequencies can shorten
the lifetime of the sensors. Consequently, from a system design perspective, it is necessary to con-
strain the sensor router’s predictions to prevent the sensors from being switched too frequently.

Baseline Policy Our baseline policy strictly follows the selections made by the sensor router. If a se-
lected sensor is not yet active, the system idles until that sensor becomes operational. Only after the
sensor is active does it use the corresponding backbone network to extract features. This operational
strategy leads to the aforementioned issue of frequent sensor switching. Furthermore, it generates
substantial GPU bubbles, thereby preventing the full utilization of computational resources.

Dynamic Stability Policy To optimize the use of GPU computational resources and inference
stability, our sensor activation policy is designed for efficiency. This policy incorporates two key
strategies: First, we prioritize active sensors to avoid delays. If a selected sensor, such as a LiDAR,
is not currently active, the system starts its booting process and concurrently employs a camera-only
detector for the current task. For cameras, the system uses the intersection of the selected cameras
and those already active. Second, we introduce a Minimum Operational Duration (MOD) for all
sensors. In contrast to the baseline policy where unselected sensors are immediately deactivated, our
system now actively rejects requests to shut down a sensor if it has been operational for less than this
minimum duration. This effectively prevents frequent switching of sensors. We provide an example
with 3 sequential samples and 3 sensors in Figure 3, illustrating various sensor state transfers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our AdaSensor on the nuScenes dataset (Caesar et al., 2020) for autonomous
driving. It comprises 1000 driving scenes, each 20 seconds long. These scenes are divided into
training, validation, and test sets, containing 700, 150, and 150 scenes, respectively. Data is collected
from a sensor suite including 6 cameras, 1 LiDAR, and 5 radars, providing a full 360◦ field of view.

Accuracy Metrics For 3D detection accuracy, we compare methods on the the nuScenes Detection
Score (NDS), mean Average Precision (mAP), mean Average Translation Error (mATE), mean Av-
erage Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error
(mAVE) and mean Average Attribute Error (mAAE).
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Table 1: Power consumption and boot time of sensors.
Sensor Type Model Info Power (W) Boot Time (s)

32-line scanning LiDAR RoboSense RS-Helios 1615 15.7 4.04
Camera Intel RealSense d455 1.2 3.21

Performance Metrics For inference system performance, we compare methods on the average la-
tency and its standard deviation, where the latter indicates the stability of the system’s inference. We
also compared the average power consumption across different components: the sensors (denoted
as Psen), the computing platform (denoted as Pplt), and the system as a whole (denoted as Psys).

4.2 IMPLEMENTATION DETAILS

Training Setup of LiDAR Router We use a 3-layer ViT with a patch size of 16, a feature dimension
of 192, and 3 attention heads to build our LiDAR Router. Training is conducted based on the
DeiT (Touvron et al., 2021) codebase. Input images are resized to a resolution of 224 × 224. We
use a batch size of 64 and a learning rate of 1.0 × 10−4, which is adjusted using a cosine decay
schedule. Gradient clipping is set to a global norm threshold of 1.0. The model is trained using
AdamW (Loshchilov & Hutter, 2017) optimizer for 50 epochs, with a warmup of 5 epochs. The
entire training process takes only approximately 15 minutes on 4 RTX3090 GPUs.

Training Setup of Camera Router Before the training of the Camera Router, we first train the
detectors employing the power-efficient robustness training technique described in Section 3.2. The
difference between the original methods of CMT and StreamPETR is that CMT performed robust-
ness training, while StreamPETR did not. For CMT, we adhere to its original training procedure,
with the sole modification of replacing its robustness training approach with our proposed method.
For StreamPETR, an initial training phase of 15 epochs is conducted strictly following its original
method. Thereafter, our efficient robustness training technique is introduced for an additional 9-
epoch training, resulting in total 24 epochs, which is aligned with the original StreamPETR. This
training enhances the perception accuracy of both detectors when sensor features are missing.

Subsequently, all parameters of the detectors are fixed. The Camera Router module is then integrated
following the image backbone of each detector. The Camera Router is subsequently trained for 5
epochs utilizing the loss function defined in Equation 1, while all other training configurations are
kept consistent with those of the respective detectors.

Inference System, Power and Latency Measurement We measure the power consumption of
required sensors for ten minutes and use the average value as the power estimation. Table 1 shows
the model information, power consumption P{L,C}, and boot time for the sensors employed in our
study. For our baseline policy, we simulate sensor booting by making the inference program sleep
for the duration of the boot time. Our inference system records the actual operating time t for each
sensor and uses the formula P̄{L,C} = t

T P{L,C} to estimate the average power consumption of
each sensor. Here, T denotes the total inference duration. To measure the power consumption of
the computing platform (e.g., an Nvidia Jetson Orin), we use the tegrastats tool to sample its
real-time power consumption at a 10 Hz frequency. The average value is used as the platform’s
estimated power consumption. For latency, we measure the average wall-clock time per sample.
The measured latency encompasses the entire data processing pipeline of a real-world autonomous
driving system, including data pre-processing, model inference, and post-processing.

4.3 COMPARISON ON DETECTION BENCHMARKS

We performed end-to-end inference on the nuScenes validation set. Table 2 presents the accuracy
results. Our AdaSensor achieves superior accuracy compared to camera-only detectors. When
evaluated against LiDAR-Camera fusion detectors, AdaSensor demonstrates notable resource ef-
ficiency. It operates using an average of only 0.75 LiDARs and 4.54 cameras. Despite this reduced
sensor usage, AdaSensor delivers 89.5% of the performance achieved by CMT (Yan et al., 2023).
This result highlights an effective balance between detection accuracy and operational efficiency.

7
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Table 2: 3D object detection accuracy on nuScenes val set. #L denotes average LiDAR count and #C denotes
average camera count.

Model #L #C mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
StreamPETR (Wang et al., 2023) 0 6 0.501 0.584 0.572 0.261 0.390 0.250 0.199
BEVNeXt (Li et al., 2024c) 0 6 0.500 0.597 0.487 0.260 0.343 0.245 0.197

CMT (Yan et al., 2023) 1 6 0.679 0.708 0.315 0.252 0.314 0.252 0.178
BEVFusion (Liu et al., 2023b) 1 6 0.685 0.714 - - - - -
DeepInteration (Yang et al., 2022) 1 6 0.699 0.726 - - - - -

AdaSensor 0.75 4.54 0.608 0.667 0.365 0.252 0.310 0.260 0.189

Table 3: Average sensor counts on nuScenes val set. #L indicates average LiDAR count; #C F, #C FR,
#C FL, #C B, #C BL, #C BR refer to average Front, Front-Right, Front-Left, Back, Back-Left, and Back-
Right Camera counts respectively.

Model #L #C F #C FR #C FL #C B #C BL #C BR

CMT 1 1 1 1 1 1 1
StreamPETR 0 1 1 1 1 1 1
AdaSensor + BP 0.83 1 0.84 0.68 0.75 0.84 0.74
AdaSensor + DSP 0.75 1 0.75 0.74 0.66 0.74 0.64

We further conducted experiments on the nuScenes-C benchmark (Dong et al., 2023) to demonstrate
that AdaSensor maintains robustness and can even significantly improve accuracy in certain sce-
narios. The detailed results are provided in Appendix C.2.

4.4 PERFORMANCE EVALUATION

We conducted experiments on the nuScenes validation set to evaluate the performance of our
AdaSensor, with both the Baseline Policy (BP) and our Dynamic Stability Policy (DSP). The
average sensor counts are presented in Table 3 and the evaluation results are illustrated in Table 4.

In terms of speed and stability, our AdaSensor with DSP demonstrates a notable advantage. It
achieves an 11.3% reduction in latency and a 23.7% decrease in latency standard deviation com-
pared to the CMT baseline. This indicates a faster and more stable inference process. Conversely,
while the AdaSensorwith BP shows a substantial increase in latency (327%), its latency SD catas-
trophically rises by 1825%. This extreme instability suggests that the system frequently idles while
waiting for sensor activation, leading to inefficient use of computational resources.

70
60
50
40
30
40
10
0

m
A
P

CMT StreamPETR Ours Ours
+SingleRouter

Figure 4: The ablation study of modal-
ity specific router v.s. single router (e.g.
modality agnostic router) design. The
red box denotes our proposed design.

Regarding power consumption, both AdaSensor policies
achieve considerable reductions. The AdaSensorwith DSP
reduces sensor power by 18.8%, platform power by 7.1%,
and overall system power by 11.7% relative to the CMT
baseline, demonstrating the superiority of our adaptive sen-
sor selection. Although the AdaSensor with BP achieves
even lower power consumption figures (26.2% reduction in
sensor power, 27.3% in platform power, and 26.9% in sys-
tem power), this is largely a consequence of its aforemen-
tioned operational inefficiency. The significant idle periods,
highlighted by the excessive latency standard deviation, mean
that the GPU is underutilized, leading to lower but misleading
power figures that do not reflect efficient system operation.

4.5 ABLATIONS

Is MoS really working? To validate the effectiveness of the sensor selection strategy learned by
MoS, we compare its performance (with MOD = 15.0) against two baselines: random selection and
a heuristic approach. For the random selection baseline, the selection probability for each sensor
is set to match the selection frequency (presented in Table 3) observed from MoS on the nuScenes
validation set. The heuristic method determines camera activation for the current frame based on
the bounding box predictions from the preceding frame; a camera is activated if its field of view

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: 3D object detection performance metrics on nuScenes val set. BP denotes our Baseline Policy and
DSP denotes our Dynamic Stability Policy. SD denotes Standard Deviation.

Model Latency↓ Latency SD↓ Psen↓ Pplt↓ Psys↓
CMT 0.397+00.0% 0.0987+00.0% 22.9+00.0% 35.2+00.0% 58.1+00.0%
StreamPETR 0.430+08.3% 0.0302-69.4% 7.2-68.6% 30.0-14.8% 37.2-36.0%
AdaSensor + BP 1.696+327% 1.8995+1825% 16.9-26.2% 25.6-27.3% 42.5-26.9%
AdaSensor + DSP 0.352-11.3% 0.0753-23.7% 18.6-18.8% 32.7-07.1% 51.3-11.7%

Table 5: 3D object detection accuracy and performance of MoS and baselines on nuScenes val set.

Method mAP↑ NDS↑ Latency↓ Latency SD↓ Psen↓ Pplt↓ Psys↓
Random 0.515 0.605 0.324 0.0883 17.1 32.8 49.9
Heuristic 0.596 0.663 0.378 0.2628 19.6 31.9 51.5
MoS 0.608 0.667 0.352 0.0753 18.6 32.7 51.3

Table 6: MOD values for our inference system. Our default setting is marked with gray .

MOD mAP↑ NDS↑ Psen↓ Pplt↓ Psys↓ Latency↓ Latency SD↓
4.0 0.597 0.660 17.0 32.1 49.1 0.353 0.0854
10.0 0.605 0.664 18.0 32.6 50.6 0.356 0.0844
15.0 0.608 0.667 18.6 32.7 51.3 0.352 0.0753
20.0 0.613 0.669 19.1 32.7 51.8 0.359 0.0766

contained the center of at least one bounding box in the previous frame. The heuristic approach
adopts the same LiDAR selections as MoS. In Table 5, MoS achieves the highest mAP and NDS,
outperforming random selection by a large margin (0.515 v.s. 0.608 in mAP). Compared to the
heuristic method, MoS achieves competitive accuracy while having lower and significantly more
stable latency (0.352 v.s. 0.378 in latency, 0.0753 v.s. 0.2628 in latency SD). Additional results for
various MOD values are available in Appendix C.1, and a semi-formal analysis of the rules learned
by MoS is provided in Appendix F. Collectively, these results confirm MoS learns an effective sensor
selection strategy that enhances accuracy while reducing both power consumption and latency.

What is an appropriate MOD? To study the impact of the MOD value (detailed in Section 3.3) on
AdaSensor, we experimented with different MODs and performed inference tests on the nuScenes
validation set. As presented in Table 6, as the MOD value increases, the perception accuracy of
AdaSensor gradually improves. Similarly, Sensor Power, Platform Power, and System Power
also show a gradual increase. Taking into account the importance of latency and system stability, we
choose MOD = 15.0, which yields the lowest latency and latency SD, as our default setting.

Why use modal-specific routers? To demonstrate the necessity of modal-specific routers, we con-
ducted an experiment using a single modal-agnostic router. This router was trained with the pseudo-
labels described in Section 3.1, using the modality combination that yields the highest mAP as the
target. As shown in Figure 4, the modal-agnostic router achieves a significantly lower end-to-end
mAP compared to our modal-specific routers (56.6 v.s. 60.8).

5 CONCLUSION

This paper introduces AdaSensor, a novel 3D detection framework utilizing adaptive sensor se-
lection. The framework features a lightweight and trainable Mixture of Sensors (MoS) mechanism.
This MoS mechanism intelligently chooses optimal sensors for 3D object detection. Notably, the
selection process depends exclusively on input from the front camera. This design significantly
lowers sensor power needs and overall computational energy use. We also developed a specialized
inference system. This system works alongside AdaSensor to effectively mitigate inference la-
tency. It also reduces system instability, a common issue arising from frequent sensor switching.
Experimental evaluations on the Nvidia Jetson Orin confirm our approach. The results show that
AdaSensor delivers substantial improvements in inference performance.
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ETHICS STATEMENT

Our AdaSensor typically reduces energy consumption and extends the limited battery life of elec-
tric vehicles, directly translating to a lower carbon footprint. Lower power requirements can lead to
longer operational ranges and potentially allow for the use of lower-cost hardware components (e.g.,
smaller batteries, less powerful processors). These factors can reduce the overall system cost of an
autonomous vehicle, making the technology viable for a broader array of applications and economic
contexts. However, adaptive systems choosing between saving power or activating an extra sensor in
ambiguous, low-risk situations must have transparent trade-off principles. Otherwise, hidden biases
in the decision logic can lead to unequal performance or risk.

REPRODUCIBILITY STATEMENT

The source code accompanying this paper is available in the supplementary ZIP file. All datasets
used in this paper are publicly available. The experiments were conducted on an Nvidia Jetson Orin
platform.
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A THE USE OF LARGE LANGUAGE MODELS

Large Language Models were used solely for the purpose of text polishing and English grammar
checking.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 POWER-EFFICIENT ROBUSTNESS TRAINING

We simulate absent sensor features during training through the construction of attention masks.
Specifically, models like CMT (Yan et al., 2023) and StreamPETR (Wang et al., 2023) employ a
similar architecture: a backbone for feature extraction and a Transformer (Vaswani et al., 2017)
subsequently fuses these extracted features with cross-attention. Specifically, the backbone features
serve as keys and values, interacting with learnable object queries within the Transformer.

During training, backbone feature extraction occurs normally. However, binary attention masks
are generated for randomly deactivated sensors. These masks zeros out the attention weights cor-
responding to deactivated sensors, preventing interaction between the Transformer and the corre-
sponding keys and values from these deactivated sensors. Obviously, this masking strategy does not
reduce computational load during the training phase. However, using attention masks in this manner
is functionally equivalent to discarding features from the masked sensors, teaching the model to ro-
bustly handle the absence of their features in the cross-attention mechanism. Therefore, at inference
time, significant computational savings are achieved. To be specific, we can completely bypass the
feature extraction for deactivated sensors. We then create a shorter, dynamic key-value sequence for
the transformer, using only features from the active sensors.

In a conclusion, the computation reduction includes the data pre-processing, backbone feature ex-
traction, and associated Transformer computations for all deactivated sensors.

B.2 LOADING BALANCING LOSS AND DYNAMIC LOSS

We adpot Load Balnacing Loss and Dynamic Loss from (Huang et al., 2024) to facilitate the training
of our Mixture of Sensors (MoS).

Load Balancing Loss The Load Balancing Loss, denoted as Lb, is introduced to prevent the router
from disproportionately favoring a limited subset of sensors. This loss function is formulated as:

Lb = N ∗
N∑
i=1

fi ∗Qi (2)

where N is the total number of sensors, fi is the fraction of samples routed to sensor si and Qi rep-
resents the average fraction of the router probability allocated for sensor si. For a batch containing
B samples, fi and Qi are calculated as:

fi =
1

B

B∑
j=1

1{si ∈ Sj}, Qi =
1

B

B∑
j=1

P j
i (3)

where Sj is the sensors selected for sample j and P j
i is the selecting probability of sensor i on

sample j. The indicator function 1{si ∈ Sj} is equal to 1 if sensor si is among the selected sensors
for sample j, and 0 otherwise.

Dynamic Loss The Dynamic Loss, denoted as Ld, aims to prevent the router from assigning uni-
formly low confidence across all sensors for a given sample. Such an assignment would result
in all sensors being selected, thereby failing to reduce energy consumption. This loss function as
formulated as the entropy of the selecting probability P = [P1, P2, · · · , PN ]:

Ld = −
N∑
i=1

Pi ∗ logPi (4)

Minimizing the entropy of the selection probability encourages the router to select as few necessary
sensors as possible for a sample.
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Algorithm 1 Top-p Sampling with Straight-Through Gradient
1: Input: Probabilities P ∈ RB×N (B: batch size, N : number of sensors), threshold p ∈ [0, 1].
2: Output: Binarized router weights with gradient W ∈ {0, 1}B×N .

3: Initialize mask M ∈ {0, 1}B×N with all zeros.
4: for i← 1 to B do ▷ Iterate over each item in the batch
5: x← Pi,: ▷ Current row from P
6: (s,k)← SortDescending(x) ▷ s: sorted values, k: original indices for elements in s
7: Initialize vector c ∈ RN . ▷ To store cumulative sums
8: for j ← 1 to N do ▷ Calculate cumulative sums
9: cj ←

∑j
l=1 sl

10: end for
11: Create temporary sorted mask m′ ∈ {0, 1}N .
12: for j ← 1 to N do
13: if cj > p then
14: m′

j ← 1
15: else
16: m′

j ← 0
17: end if
18: end for
19: Mi,: ← RestoreOriginalOrder(m′,k) ▷ Places elements of sorted mask m′ into Mi,:

according to original indices k
20: end for

21: W← ((P − StopGradient(P)) + 1B×N )⊙M
22: ▷ Forward: W = M. Backward: ∇WL = (∇PL)⊙M, where L denotes a downstream loss.
23: return W

B.3 DIFFERENTIABLE TOP-p SAMPLING

To derive binarized weights from continuous probabilities while maintaining differentiability for
end-to-end training, we employ the method detailed in Algorithm 1. This approach generates a
binary mask M using a criterion related to top-p selection (Huang et al., 2024).

In the forward pass, input probabilities P are first sorted in descending order, and their cumulative
summations are calculated. A predefined threshold p is then applied to these cumulative summations
to determine the binary mask M. The output binarized router weights W are set equivalent to this
mask M, i.e., W = M.

In the backward pass, we approximate the gradients similar to the straight-through estimator (Bengio
et al., 2013). This allows the gradient of a downstream loss L with respect to the initial probabil-
ities P to be effectively passed through the non-differentiable masking operation. Specifically, the
gradient is computed as∇WL = (∇PL)⊙M, ensuring that gradients are propagated only for ele-
ments where the corresponding mask value in M is non-zero. This mechanism enables the models
incorporating this binarized weight generation to be trained end-to-end.

B.4 TRAINING SETUP OF CAMERA ROUTER

For simplicity, we nonetheless directly utilized the original training setups of CMT and Stream-
PETR. Note that Camera Router is the sole trainable module.

CMT The Camera Router of CMT is trained with a global batch size of 16 on 4 RTX3090 GPUs.
It is trained for total 5 epochs without CBGS using AdamW optimizer. The initial learning rate is
1.0× 10−4 and we follow the cycle learning rate policy. The weight decay is set to 0.01.

StreamPETR The Camera Router of StreamPETR is trained with a global batch size of 16 on 4
RTX3090 GPUs. It is trained for total 5 epochs without CBGS using AdamW optimizer. The base
learning rate is 4×10−4 and we follow the cosine annealing learning rate policy with a 500-iteration
warm-up. The weight decay is set to 0.01.
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Table 7: 3D object detection accuracy and performance of MoS and baselines on nuScenes val set with
MOD = 10.0.

Method mAP↑ NDS↑ Latency↓ Latency SD↓ Psen↓ Pplt↓ Psys↓
Random 0.484 0.582 0.310 0.0906 15.8 32.6 48.4
Heuristic 0.592 0.661 0.378 0.2756 19.0 31.8 50.8
MoS 0.605 0.664 0.356 0.0844 18.0 32.6 50.6

Table 8: 3D object detection accuracy and performance of MoS and baselines on nuScenes val set with
MOD = 20.0.

Method mAP↑ NDS↑ Latency↓ Latency SD↓ Psen↓ Pplt↓ Psys↓
Random 0.538 0.618 0.335 0.0906 17.9 32.9 50.8
Heuristic 0.603 0.667 0.377 0.2417 20.1 32.0 52.1
MoS 0.613 0.669 0.359 0.0767 19.1 32.7 51.8

C ADDITIONAL EXPERIMENTS

C.1 BASELINE EVALUATION WITH VARIOUS MOD

We evaluate the performance of MoS against two baselines, random selection and a heuristic ap-
proach, across three settings: MOD = {10.0, 15.0, 20.0}, with MOD = 15.0 as our default. The
results are presented in Table 7, Table 5, and Table 8. Across all settings, the findings consistently
support two conclusions:

(1) MoS significantly outperforms random selection in perception accuracy, even though both meth-
ods share the same underlying sensor selection probabilities. This indicates that MoS learns an
effective, context-aware selection policy.

(2) Compared to the heuristic method, MoS achieves lower overall system power consumption
(Psys), primarily by reducing sensor power draw (Psen) through more efficient sensor selections.
Furthermore, MoS demonstrates lower and much more stable latency, avoiding the high instability
of the heuristic approach, which is unacceptable for autonomous driving systems (Liu et al., 2022a).

In summary, these comparisons validate that MoS learns an effective sensor selection strategy that
enhances perception accuracy while reducing both power consumption and latency.

C.2 ROBUSTNESS EVALUATION WITH NUSCENES-C BENCHMARK

Table 9: NDS on nuScenes-C benchmark. The “Drop” column shows the performance degradation compared
to the clean dataset.

Corruption CMT CMT Drop (%) AdaSensor+BP AdaSensor+BP Drop (%)

Clean 70.8 0.0 68.0 0.0

Snow 67.7 -4.4 66.9 -1.6
Rain 69.9 -1.3 62.9 -7.5
Fog 69.2 -2.3 55.3 -18.7
Sunlight 49.3 -30.4 61.3 -9.9
Gaussian 66.1 -6.6 64.7 -4.9
Uniform 67.8 -4.2 66.1 -2.8
Impulse 66.5 -6.1 65.0 -4.4
Moving Obj. 67.3 -4.9 63.3 -6.9
Obj. Shear 68.2 -3.7 64.1 -5.7
Obj. Scale 67.8 -4.2 63.3 -6.9
Obj. Rotation 69.8 -1.4 65.8 -3.2

Average 66.3 -6.4 63.5 -6.6

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1.000 1.000 0.776 0.719 0.616 0.753 0.696
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0.699 1.000 0.705 0.691 1.000 0.697 0.579
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Figure 5: Sensor co-activation heatmap on nuScenes val set. The CAM FRONT is consistently active, thus its
corresponding row indicates the activation probabilities of all sensors, highlighted by a red box.

To evaluate the generalization and robustness of AdaSensor, we test it on the nuScenes-C bench-
mark (Dong et al., 2023), which introduces corruptions like environmental variations, sensor noise,
and object misalignment. We use the highest severity level for each corruption type to assess the
NDS and compare the results with CMT. For this evaluation, we employ the AdaSensor+BP setting,
as it allows for a direct assessment of how corruptions affect the router’s decisions. Furthermore,
since nuScenes-C corruptions are generated online at a slow pace, using the AdaSensor+DSP setting
is technically impractical.

The results are presented in Table 9. The “Clean” row shows performance without any corruption,
while the “Drop” column indicates the relative performance degradation under each corruption type.
A smaller drop signifies greater robustness. On average, AdaSensor’s performance degradation is
comparable to that of CMT (−6.6% v.s.−6.4%). However, AdaSensor exhibits stronger robustness
under certain conditions, achieving a smaller performance drop in Snow, Gaussian, Uniform, and
Impulse corruptions. Notably, under the Sunlight corruption, AdaSensor’s absolute NDS is signifi-
cantly higher than CMT’s, showcasing the ability of its dual-detector architecture to mitigate CMT’s
weaknesses in specific scenarios.

D SENSOR CO-ACTIVATION VISUALIZATION

Figure 5 shows a sensor co-activation heatmap from the nuScenes validation set. This map covers
different sensors including 1 LiDAR and 6 cameras. Notably, CAM FRONT (the front camera) is the
only sensor found to be consistently active. This is indicated by all values in its corresponding col-
umn being 1.000. Therefore, the values in the CAM FRONT row represent the activation probability
of each respective sensor. CAM BACK and CAM BACK RIGHT have lower activation probabilities of
0.662 and 0.645 respectively, suggesting that information from these two viewpoints might be less
critical for improving perception accuracy. The heatmap also displays a darker top-left region and
a lighter bottom-right region. This pattern indicates that our MoS prefers to use the three forward-
facing cameras. This preference likely exists because these particular views are more significant for
autonomous driving tasks.
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subset-1 (0-23) subset-2 (24-47) subset-3 (48-71) subset-4 (72-95) subset-5 (96-119)

Figure 6: Visualization of CAM FRONT images across different nuScenes subsets. Each column presents 5
sample images with ground truth annotations from a specific subset. The values in parentheses denote the
interval of annotation counts within each subset.

subset-1
(0-23)

CAM_FRONT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK CAM_BACK_LEFT CAM_FRONT_LEFT

subset-2
(24-47)

subset-3
(48-71)

subset-4
(72-95)

subset-5
(96-119)

Figure 7: Visualization of all camera images across different nuScenes subsets. Each row contains images
with ground truth annotations from the 6 cameras in one sample from the subset. The values in parentheses
denote the interval of annotation counts within each subset.

E NUSCENES SUBSET CONSTRUCTION AND VISUALIZATION

E.1 SUBSET CONSTRUCTION

To facilitate a more granular analysis of model performance under varying conditions, we partitioned
the nuScenes (Caesar et al., 2020) validation set based on scene complexity. We adopted the number
of annotations present in each sample as a proxy for its complexity, where a higher annotation
count generally indicates a more crowded and thus more challenging scene. This partitioning was
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Table 10: Average sensor counts of MoS on nuScenes val set. #L indicates Average LiDAR count; #C F,
#C FR, #C FL, #C B, #C BL, #C BR refer to Average Front, Front-Right, Front-Left, Back, Back-Left, and
Back-Right Camera counts respectively.

MOD #L #C F #C FR #C FL #C B #C BL #C BR

10.0 0.74 1 0.74 0.73 0.64 0.73 0.62
15.0 0.75 1 0.75 0.74 0.66 0.74 0.64
20.0 0.77 1 0.76 0.76 0.68 0.77 0.66

applied to the entire validation set. Initially, we determined the minimum and maximum number
of annotations found across all these samples, considering all available object categories. This
overall range of annotation counts was then divided into five equal intervals. Each sample from the
validation set was subsequently assigned to one of these five subsets based on which interval its total
annotation count fell into. These subsets correspond to annotation count intervals of [0, 23], [24, 47],
[48, 71], [72, 95], and [96, 119], respectively, ordered from the subset with the lowest annotation
counts to the one with the highest. This stratification allows for evaluating model robustness across
different levels of scene complexity.

E.2 VISUALIZATION

Figure 6 shows CAM FRONT images from five nuScenes subsets. Five samples are randomly chosen
from each subset. This visualization clarifies that subset division depends solely on annotation count.
Factors like time or weather are not considered for this division. The ground truth annotations shown
allow for a qualitative assessment of annotation density. Note that the depicted annotations may not
include all annotations for each sample.

Figure 7 shows images from all cameras within the five nuScenes subsets. One sample is ran-
domly chosen from each subset. This visualization can effectively display all annotations associated
with a single sample, clearly showing that annotation density varies significantly across camera
views. For instance, in subset-1, CAM FRONT RIGHT, CAM BACK RIGHT, CAM BACK LEFT, and
CAM FRONT LEFT have no annotations. Similarly, CAM FRONT LEFT in subset-5 shows very few
annotations. Deactivating these cameras in such cases is a sensible approach to reduce power con-
sumption.

F LEARNED ROUTING RULES BY SENSOR ROUTERS

We perform a semi-formal analysis of the rules learned by the sensor routers using five subsets
detailed in Appendix E. For this analysis, we collected the activation frequencies of the LiDAR
and six cameras across these subsets and visualized them using heatmaps. Figure 8 presents the
activation frequency of the LiDAR. The activation frequencies of the six cameras are shown for
scenarios when the LiDAR is on (Figure 9) and off (Figure 10). Surprisingly, the analysis of these
heatmaps reveals several intuitive rules:

1. LiDAR usage strongly correlates with scene complexity. As shown in Figure 8, the
LiDAR activation frequency rises steadily from 0.704 in the simplest scenes to 0.974 in the
most complex scenes. This confirms the intuition that the router learns to rely on LiDAR
for robust perception in dense environments.

2. The back camera is prioritized in complex scenes when LiDAR is active. In Figure
9, the usage of CAM BACK increases significantly to 0.853 in the most complex bracket.
This suggests a learned cooperative strategy where the system uses LiDAR for forward
perception while activating the back camera to cover the rear.

3. Camera selection is more targeted when LiDAR is disabled. A comparison between
Figure 9 and Figure 10 shows that camera activations are more uniform when LiDAR pro-
vides global context. In contrast, when LiDAR is off, the router must be more deliberate,
leading to more specialized and varied camera selection patterns to compensate.
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Figure 8: LiDAR activation heatmap on five nuScenes subsets. The results are produced by the LiDAR router.
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Figure 9: Camera activation heatmap on five nuScenes subsets (LiDAR enabled). The results are produced by
the camera router of CMT.
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Figure 10: Camera activation heatmap on five nuScenes subsets (LiDAR disenabled). The results are produced
by the camera router of StreamPETR.
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