
Under review as a conference paper at ICLR 2023

DO NOT BLINDLY IMITATE THE TEACHER: LOSS
PERTURBATION FOR KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation (KD) is a popular model compression technique to trans-
fer knowledge from large teacher models to a small student model. Typically,
the student learns to imitate the teacher by minimizing the KL divergence of its
output distribution with the teacher’s output distribution. We argue that such a
learning objective is sub-optimal because there exists a discrepancy between the
teacher’s output distribution and the ground truth label distribution, and forcing
the student to blindly imitate the unreliable teacher output distribution leads to
inferior performance. To this end, we propose a novel knowledge distillation ob-
jective PTLoss by first representing the vanilla KL-based distillation loss function
via a Maclaurin series and then perturbing the leading-order terms in this series.
This perturbed loss improves the student generalizability by effectively distilling
knowledge from a shifted distribution closer to the ground truth data. We also pro-
pose a method to compute this shifted teacher distribution, named Proxy Teacher,
which enables us to select the perturbation coefficients in PTLoss. We theoreti-
cally show the perturbed loss reduces the deviation from the true population risk
compared to the vanilla KL-based distillation loss functions. Experiments on three
tasks with teachers of different scales show that our method significantly outper-
forms vanilla distillation loss functions and other perturbation methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved enormous success due to their massive sizes, expres-
sive power, and the availability of large-scale data for model training. Accompanied by their success
is the increasing need of deploying such large-scale DNNs on resource-limited devices. Knowledge
distillation (KD) is a widely-used model compression technique, which distills knowledge from
large teacher models into a much smaller student model to preserve the predictive power of teacher
models (Buciluǎ et al., 2006; Hinton et al., 2015). In the teacher-student learning paradigm of KD,
the student model is encouraged to imitate the teacher models’ outputs on a distillation dataset.

The typical training objective in KD such as KL loss (Hinton et al., 2015; Menon et al., 2021;
Stanton et al., 2021) encourages the student’s outputs to be close to the teacher’s outputs as much as
possible. This implicitly assumes the teacher’s outputs on the distillation data are perfect. However,
the teacher’s predictive distributions can be biased from the ground truth due to various factors, such
as the inductive bias encoded in the teacher’s model architecture, miscalibration in the training pro-
cedure (Menon et al., 2021), or the bias in the source dataset used for learning the teacher model (Liu
et al., 2021; Lukasik et al., 2021). Enforcing the student to blindly imitate the teacher’s outputs can
make the student inherit such biases and produce suboptimal predictions.

To overcome this challenge, one commonly used approach is to scale the teacher’s logits via a tem-
perature parameter (Hinton et al., 2015). Menon et al. (2021) show that a proper temperature can
improve the quality of the teacher model’s predictive distribution, but the shifting space offered
by the temperature scaling is limited, and the optimal temperature value relies on expensive grid
search. Along a separate line, label smoothing (Szegedy et al., 2016) is proposed as a general tech-
nique to regularize the neural networks, and modulated loss functions (Lin et al., 2017; Leng et al.,
2022) are designed to address several statistical issues (e.g.,overfitting issues and data imbalance) in
model training. However, there lack works that explore tailoring such techniques for more robust
knowledge distillation.
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We propose PTLoss for knowledge distillation, which revises the vanilla loss function in knowledge
distillation to implicitly create a debiased teacher distribution closer to the ground truth. Instead of
forcing an out-and-out imitation of the original teacher model, we relax the KL loss and add per-
turbations to the distillation objective. Specifically, we approximate the standard KL loss using the
Maclaurin series, which allows us to construct a more flexible objective and to perturb the leading-
order terms. To determine the perturbation extent, we design a method to compute the equivalent
distribution of the implicitly shifted teacher by perturbation, namely Proxy Teacher. With the com-
puted proxy teacher distribution, we measure the empirical deviation between the perturbed teacher
and the ground truth data. It leads to a systematic searching strategy for the perturbation coefficients,
i.e., the near-optimal perturbation coefficients should minimize the deviation between distilled risk
and population risk on the validation set.

Theoretically, we justify the effectiveness of the PTLoss by proving that it can reduce the devi-
ation from the distilled empirical risk compared to KL loss. We draw a connection between the
PTLoss and other perturbation method (i.e., label smoothing(Szegedy et al., 2016)). We illustrate
that the PTLoss can debias the teacher to produce higher-fidelity outputs via a finer-grained pertur-
bation, while subsuming existing perturbation techniques as special cases. Experiments on three
datasets with different-sized teacher models demonstrate the empirical advantage of the PTLoss.
Moreover, the Proxy Teacher method for perturbation coefficient search significantly outperforms
the PTLoss with random searched coefficients, which shows the superiority of this systematic pa-
rameter search method.

In summary, our key contributions are:

• A perturbed loss function PTLoss, which formulates the vanilla knowledge distillation loss in the
form of Maclaurin series and perturbs it to improve the fidelity of teacher models;

• A Proxy Teacher method to solve the implicitly shifted teacher and to determine the perturbation
coefficients in PTLoss;

• Theoretical analysis proves that we can lower the distilled empirical risk bound with PTLoss and
establishes the connection with other perturbation methods;

• Comprehensive experiments on three public datasets with different-sized teacher models demon-
strating the advantage of the PTLoss and the Proxy Teacher method.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation is first proposed in (Buciluǎ et al., 2006) to compress the large model ensem-
bles to smaller, faster models without a significant performance drop. This technique is generalized
by (Hinton et al., 2015), where the temperature parameter is introduced to smooth the prediction
and the student loss and distillation loss are integrated. With the prevalence of pre-trained language
models (Devlin et al., 2018), it becomes more urgently needed to distill such large models to de-
ploy on edge devices with limited resources. For example, DistillBERT (Sanh et al., 2019) uses
the teacher’s soft prediction probability to train the student model; TinyBERT (Jiao et al., 2019)
aligns the student’s layer outputs (including attention outputs and hidden states) with the teacher’s;
MobileBERT (Sun et al., 2020) also adopts a layer-wise training objective and equips a bottleneck
structure to distill from BERT-Large.

2.2 DISTILLATION THEORY

In parallel with the empirical success of the application of knowledge distillation, many works are
devoted to answering its mechanism. Hinton et al. (2015) propose the teacher’s soft labels can
provide “dark knowledge” via weights on the wrong labels. Menon et al. (2021) present a statistical
perspective on distillation, they observed that a good teacher model should be Bayesian to lower
the variance of the student objective via the teacher’s prediction distribution. Stanton et al. (2021)
show the discrepancy between the teacher and the student regarding their output distribution and
identify the optimization difficulty in knowledge distillation. Ji & Zhu (2020); Zhou et al. (2021);
Hsu et al. (2021) study distillation from several different aspects, but there remains a gap between
the theoretical analysis and the better distillation techniques.
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2.3 LOSS DESIGN

Our work is also related to loss function design and learning. Lin et al. (2017) propose to reshape
the cross-entropy loss to focus on the hard examples, but it cannot be directly applied in our setting
because the data imbalance issue targeted by their approach do not directly correlated with the biased
teacher model in knowledge distillation.Leng et al. (2022) propose to expand cross-entropy loss and
focal loss to a linear combination of polynomial functions and study the Poly-1 formulation on
computer vision tasks. However, the motivation is not clear under the fully supervised settings and
they skirt around the problem of hyper-parameter search in a high-dimension space when the order
of polynomials is high. Notably, TaylorGLO (Gonzalez & Miikkulainen, 2021) utilizes Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) to optimize multivariate Taylor parameterization
of a loss function and learning rate schedule during training. But they fail to provide a principled
analysis regarding the performance gain after perturbation. Instead, we theoretically and empirically
demonstrate the necessity of adding perturbation to the learning objective for knowledge distillation,
where a high-fidelity teacher is required to provide quality supervision for the student training.

3 PRELIMINARIES

We study knowledge distillation for classification tasks. For brevity, we discuss binary classification
in this paper, but the formulation can be extended to multi-class settings.

In binary classification, we are given a training sample set S = {(xn,yn)}Nn=1 ∼ PN , for distribu-
tion P over instances X and labels Y = {0, 1}2. Our goal is to learn a logits predictor f : X → R2

with minimal risk:
R(f) = E(x,y)∼P[ℓ(y, f(x))]. (1)

Here, ℓ(y, f(x)) is the loss of predicting f(x) ∈ R2 when the true label is y ∈ R2. The predicted
probabilities are p(x) = ( ef1(x)

ef1(x)+ef2(x) ,
ef2(x)

ef1(x)+ef2(x) ), which is invariant to a constant shift to both
f1(x) and f2(x). Thus we can simplify the f(x) as (0, f(x)).

In this paper, we consider the KL divergence:

ℓ(y, f(x)) = yT log(y)− yT f(x) + logZ(f(x)), (2)

where Z is the partition function Z(x) = 1T ex for x ∈ R2. For finetuning from true labels, we
approximate the risk R(f) via the empirical risk

R̂(f) =
1

N

∑
n∈[N ]

yn
T l(f(xn)) (3)

for one-hot encoding yn ∈ {0, 1}2, and vector of losses for each possible label l(f(x)) ∈ R2, which
is defined as

l(f(x)) = [−f(x) + logZ(f(x)) · 1] . (4)

The term yT log(y) is omitted in the above equation because it is always zero for one-hot hard
labels.

For distillation from teacher’s predictions, we first compute teacher class-probability estimates
pt(x) = (pt(0|x), pt(1|x)), where pt(y|x) estimates how likely x is to be classified as y. Then
we train a student model to minimize the distilled risk

R̃(pt, f ;S) =
1

N

∑
n∈[N ]

(
pt(xn)

T l(f(xn)) + pt(xn)
T log(pt(xn))

)
. (5)

Note that each loss from the above risk is the widely used distillation loss, proposed in (Hinton
et al., 2015). It is the KL divergence of the student output distribution from the teacher output
distribution1:

ℓ(pt(xn), f
s(xn)) = ℓKL

(
pt(xn),p

s(xn)
)
= KL

(
pt(xn)∥ps(xn)

)
=

∑
j∈{0,1}

pt
j(xn) log

(
pt
j(xn)

ps
j(xn)

)
,

(6)

1For simplicity, we assume the teacher model here does not contain temperature scaling, we will discuss the
impact of different temperatures in the experiment section.
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Figure 1: Intuitive understanding of PTLoss via basic forms.

where pt
j(xn) and ps

j(xn) denote the probability of the i-th example xn belonging to the j-th class
according to the teacher (student) model.

Instead of directly learning a student model ps from S, knowledge distillation learns the student
ps from a trained teacher model pt by replacing the ground truth one-hot label yn with the teacher
output probabilistic label estimates pt(xn). Then, the student model is learned by minimizing the
empirical distillation risk R̃(pt;ps, S)

.
= 1

N

∑N
n=1 ℓKL (pt(xn),p

s(xn)).

4 PERTURBED DISTILLATION LOSS

Using KL divergence as the distillation loss (in short “KL loss”) essentially assumes the teacher
model is perfect and thus forces the student model to mimic the teacher’s output label distribu-
tion. In reality, the teacher model can produce a biased estimate of label distribution and lead to
a sub-optimal student model, as demonstrated by both empirical results (Müller et al., 2019) and
theoretical analysis (Menon et al., 2021).

In this work, we present a novel distillation loss that relaxes the standard KL loss form and accom-
modates the distribution gap between (possibly biased) teacher output distribution and underlying
ground truth distribution. Inspired by the PolyLoss (Leng et al., 2022), we propose to first replace
the logarithmic terms in the standard KL loss with their corresponding Maclaurin series:

log(1− x) = −
∞∑

m=1

xm

m
, log(x) = log(1− (1− x)) = −

∞∑
m=1

(1− x)m

m
. (7)

Then we perturb the polynomial terms with two perturbation coefficients γm and ϵm:

log(1− x) ≈ −
∞∑

m=1

(
1

m
+ γm)xm, log(x) ≈ −

∞∑
m=1

(
1

m
+ ϵm)(1− x)m. (8)

Here, we essentially replace the original coefficient 1
m of the m-th order polynomial term in the

standard KL loss to ( 1
m + γm) or ( 1

m + ϵm). When γm, ϵm ∈ [− 1
m ,∞], we can further separate

these perturbation coefficients with the original coefficient and obtain:

log(1− x) ≈ log(1− x)−
∞∑

m=1

(γm)xm, log(x) ≈ log(x)−
∞∑

m=1

(ϵm)(1− x)m. (9)

Now, by replacing the term logps
0(xn) and logps

1(xn) = log (1− ps
0(xn)) in the standard KL loss

Eq. 6 with Eqs. 7 and 9, we have:
ℓKL

(
pt(xn),p

s(xn)
)
= −H

(
pt(xn)

)
+ pt

0(xn)[− logps
0(xn)] + pt

1(xn)[− logps
1(xn)]

≈ −H
(
pt(xn)

)
+ pt

0(xn)

[
− logps

0(xn) +
∞∑

m=1

ϵm(1− ps
0(xn))

m

]

+ (1− pt
0(xn))

[
− log(1− ps

0(xn)) +

∞∑
m=1

γm(ps
0(xn))

m

]
,

(10)
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where H (pt(xn)) = −pt(xn)
T logpt(xn) is the entropy of the teacher output distribution and thus

is student-independent. By further separating out perturbation coefficients on the right hand side of
the above Eq. 10, we have:

ℓKL

(
pt(xn),p

s(xn)
)
≈ −H

(
pt(xn)

)
+ pt

0(xn) [− logps
0(xn)] +

(
1− pt

0(xn)
)
[− log(1− ps

0(xn))]

+ pt
0(xn)

[
∞∑

m=1

ϵm(1− ps
0(xn))

m

]
+ (1− pt

0(xn))

[
∞∑

m=1

γm(ps
0(xn))

m

]
,

(11)
where the first line on the right hand side is essentially the original KL loss. Therefore, we finally
define our perturbed distillation loss as:

ℓPT
.
= ℓKL + pt

0(xn)

∞∑
m=1

ϵm (1− ps
0(xn))

m +
(
1− pt

0(xn)
) ∞∑
m=1

γm(ps
0(xn))

m. (12)

If we only perturb the leading M -th order terms, then we have:

ℓPT−M
.
= ℓKL + pt

0(xn)

M∑
m=1

ϵm (1− ps
0(xn))

m +
(
1− pt

0(xn)
) M∑
m=1

γm(ps
0(xn))

m. (13)

In vector form, it is

ℓPT−M
.
= ℓKL + pt(xn)

T
M∑

m=1

ηm ⊙ (1− ps(xn))
m , (14)

where ⊙ is the element-wise product, and ηm = (ϵm, γm).

Figure 1 shows some basic forms of the PTLoss to give an intuitive understanding of the loss func-
tion family and the perturbation extent. In Figure 1a, we present the simplest 1-order PTLoss to
show how the perturbation influences the student training. For example, when pt = [0.1, 0.9], the
optimal student probability on class 0 is between 0 to 1. In general, This specific PTLoss makes a
polarized adjustment to the student prediction. In Figure 1b, we show PTLoss with different per-
turbation orders, i.e., M ∈ {1, 2, · · · , 10}. For KL loss, the identical curve implies it encourages
a total imitation of the teacher’s behavior. On the other hand, the PTLoss relaxes the objective by
perturbations and thus prevents the student model from overfitting the biased teacher. The pertur-
bation granularity can be adjusted by the perturbation order and coefficients. Note that we set all
the perturbation coefficients as 2 for simplicity in Figure 1b, but in practice, we use a systematic
approach to determine the perturbation coefficients, as described in the below Section 4.1.

4.1 PROXY TEACHER

In this section, we theoretically prove that the introduced PTLoss allows for reducing the deviation
from the true population risk. We first show that PTLoss implicitly transforms the teacher’s predic-
tions, then we select the minimizer in terms of the perturbation coefficients in PTLoss to bound the
distilled empirical risk with introduced perturbation. Finally, we prove that PTLoss helps us get a
closer estimation of the predictor to the oracle signal function.

4.1.1 THEORY OF DISTILLATION

We start from the population risk R(f) defined in Eq. 1 and write it in a Bayes classifier form as

R(f) = Ex[Ey|x[ℓ(y, f(x))]] = Ex[p
∗(x)T l(f(x))], (15)

where p∗(x) = P(y|x) with y ∈ {0, 1}2 is the Bayes class probability distribution in the label space,
and ℓ(y, f(x)) and l(f(x)) were defined in Eqs. 2 and 4, respectively. Again, the term yT log(y) is
omitted in the above equation because it is always zero for one-hot hard labels.

When labeled examples are limited, people learn the student fs(x) by minimizing the distilled risk
R̃(pt, f ; S) to achieve low population risk R(fs). For any teacher model’s predictions pt, we have
the following proposition:
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Proposition 1. Given a bounded loss l2, a teacher model pt with its distilled empirical risk defined
in Eq. 5, and any predictor f : X → R2, we have:

E
[
(R̃(pt, f ; S)−R(f))2

]
≤ 2

N
· V

[
pt(x)T l(f(x))

]
+

O

((
Ex[∥pt(x)− p∗(x)∥2]

)2
+ Ex

[(
pt(x)T logpt(x)

)2
])

,
(16)

where V[·] denotes the variance of a random variable.

We defer the proof to appendix. The above proposition states that the deviation between distilled
risk and population risk depends on three terms: (1) variance of KL loss for a random example,
(2) MSE between teacher’s predictions pt and the true distribution p∗, and (3) scales of entropy
of the teacher’s predictions. The latter two terms dominate in the large N regime because the first
term can be bounded by the Cauchy-Schwartz inequality and is of order O(1/N). The second term
quantifies how close the teacher is to the true distribution. The third term quantifies the teacher’s
uncertainty. A well-calibrated and certain teacher yields improved bounds on the generalization
error of the student.

4.1.2 PROXY TEACHER

In order to lower the population risk and the generalization error of the student model, we introduce
PTLoss that implicitly transforms the teacher’s predictions to a Proxy Teacher under the KL loss.
Then we leverage the calculated proxy teacher to guide the search of the perturbation coefficients that
can minimize the right hand side of Eq. 16. Since the KL loss on the original teacher’s predictions
is a special case of PTLoss with all perturbed coefficients to be zero, we can improve the student by
searching for the optimal coefficients for perturbation.

Concretely, we replace the loss function with a perturbed form as

ℓPT (y, f(x)) = ℓ(y, f(x)) + yT
∑

m∈[M ]

ηm ⊙
(
1− ef(x)

Z(f(x))

)m

, (17)

where ⊙ denotes element-wise multiplication between two vectors and ηm = (ϵm, γm) ∈ R2 are
hyperparameters for the perturbation at order m.

Similarly, we define lPT (f(x)) = l(f(x)) +
∑

m∈[M ] ηm ⊙
(
1− ef(x)

Z(f(x))

)m

.

Replace the distillation loss by the perturbed loss, we have

R̃PT (p
t, f ; S) =

1

N

∑
n∈[N ]

(
pt(xn)

T lPT (f(xn)) + pt(xn)
T log(pt(xn)))

)
. (18)

We first solve a Proxy Teacher ptPT such that R̃(ptPT , f ; S) is close to R̃PT (p
t, f ; S). Then we find

the optimal perturbation coefficients that yield the best risk bound.

Concretely, we define a transformation function g : [0, 1]2 7→ [0, 1]2 such that

ptPT (x)T l(f(x)) + ptPT (x)T log(ptPT (x)) = pt(x)T lPT (f(x)) + pt(x)T log(pt(x)), (19)

where ptPT (x) = g(pt(x)) is the Proxy Teacher. We transform teacher’s predictions as ptPT (x) =

g (pt(x)) so that the distilled risk R̃PT (f ; S) with the original teacher’s predictions f t(x) is close
to R̃(pt, f ; S) with the proxy teacher’s predictions ptPT (x). In practice, f(x) is unknown, but we
know the minimizer of the left hand side in Eq. 19 is f tPT (x) with softmax(f tPT (x)) = ptPT (x).
Assume the student functional space is complicated enough, then we can replace the f by f tPT (x)
and solve the above equation by numerical method.

2Note that the boundedness assumption on the loss is standard (Boucheron et al. (2005), Theorem 4.1;
Menon et al. (2021), Proposition 2)
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4.1.3 BEST PROXY TEACHER

For each set of η[M ] = {ηm|m ∈ [M ]}, we can compute the risk deviation upper bound according
to Proposition 1 omitting the O(1/N) variance term:

D(η[M ]) =
(
Ex

[
∥ptPT (x)− p∗(x)∥2

])2
+ Ex

[(
ptPT (x)T logptPT (x)

)2
]
. (20)

To compute the above deviation, we replace expectation by the sample mean. We also replace
p∗(xn) with yn because it is an unbiased estimate of p∗(xn).

Then we can minimize the empirical deviation:

D̂(η[M ]) =

 1

N

∑
n∈[N ]

[
∥ptPT (xn)− yn∥2

]2

+
1

N

∑
n∈[N ]

[(
ptPT (xn)

T logptPT (xn)
)2

]
. (21)

The first term is the deviation between the equivalent teacher and the ground truth, which encourages
the teacher to be well-calibrated. The second term encourages the equivalent teacher to be as certain
as possible. We randomly generate 100 sets of η[M ] and pick the optimal η∗[M ] that minimizes D̂.

4.2 CONNECTION TO OTHER PERTURBATION METHODS

We compare PTLoss with the label smoothing method and claim that label smoothing proposed in
(Szegedy et al., 2016) is a special case of PTLoss. Per the implementation in Szegedy et al. (2016),
we can smooth the teacher labels in KD by

ptls
0 (xn) = (1− δ)pt

0(xn) + δ/2, (22)
with a smoothing parameter δ. Starting from Eq. 11, we can replace the term pt

0(xn) by its smooth
version ptls

0 (xn) and use pt
1(xn) = 1 − pt

0(xn), which holds for binary classification. Then the
original Eq. 11 with label smoothing is:

ℓlsKL

(
pt(xn),p

s(xn)
)
≈ −H

(
ptls(xn)

)
+ p

tls
0 (xn) [− logps

0(xn)] + p
tls
1 (xn) [− logps

1(xn)]

+ p
tls
0 (xn)

[
∞∑

m=1

ϵm(1− ps
0(xn))

m

]
+ (1− p

tls
0 (xn))

[
∞∑

m=1

γm(ps
0(xn))

m

]
.

(23)
For the entropy of the teacher output, the smooth version H (ptls(xn)) is different from the original
H (pt(xn)) with only a constant C. We introduce ∆pt

0(xn) = δ/2 − δpt
0(xn) and replace all the

ptls
0 in Eq. 23 by ptls

0 (xn) = pt
0(xn) + ∆pt

0(xn), then we get:

ℓlsKL

(
pt(xn),p

s(xn)
)
=ℓKL(p

t(xn),p
s(xn))

+∆pt
0(xn)[− logps

0(xn)] + (−∆pt
0(xn)) [− log(1− ps

0(xn))]

+∆pt
0(xn)

[
∞∑

m=1

ϵm(1− ps
0(xn))

m

]
+ (−∆pt

0(xn))

[
∞∑

m=1

γm(ps
0(xn))

m

]
.

(24)
Again, by replacing the term logps

0(xn) and log (1− ps
0(xn)) with Eqs. 7 and 9, we have:

ℓlsKL

(
pt(xn),p

s(xn)
)
=ℓKL(p

t(xn),p
s(xn))

+∆pt
0(xn)[

∞∑
m=1

1

m
(1− ps

0(xn))
m] + (−∆pt

0(xn))[

∞∑
m=1

1

m
(ps

0(xn))
m]

+∆pt
0(xn)

[
∞∑

m=1

ϵm(1− ps
0(xn))

m

]
+ (−∆pt

0(xn))

[
∞∑

m=1

γm(ps
0(xn))

m

]
.

(25)
Thus, by setting

ϵlsm =
∆pt

0(xn)

pt
0(xn)

(
1

m
+ ϵm), γls =

∆pt
0(xn)

pt
0(xn)

(
1

m
+ γ), (26)

we get the same form as Eq. 12:

ℓlsKL

(
pt(xn),p

s(xn)
) .
= ℓKL+pt

0(xn)
∞∑

m=1

ϵlsm (1− ps
0(xn))

m+
(
1− pt

0(xn)
) ∞∑
m=1

γls
m(ps

0(xn))
m. (27)
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Dataset Task Train Distillation Dev Test

MNLI Natural Language Inference 58,905 314,161 19,636 9,832
SST-2 Sentiment Analysis 6,734 53,870 6,736 872
BoolQ Boolean Question Answering 2,500 5,927 1,000 3,270

Table 1: Dataset Statistics

5 EXPERIMENTS

Tasks and Datasets. We conduct experiments on three public benchmark datasets, including
MNLI Williams et al. (2017) for multi-genre natural language inference, SST-2 (Wang et al., 2018)
for sentiment analysis, and BoolQ (Clark et al., 2019) for boolean question answering. The dataset
statistics are shown in Table 1.

Model Architecture. For the teacher model, we choose the T5 architecture (Raffel et al., 2020)
and select three teacher models of different scales. Specifically, we use T5-xxl with 11 billion
parameters, T5-xl with 3 billion parameters, and T5-large with 770 million parameters. For the
student model, we use BERT-base model (Devlin et al., 2018) with 110 million parameters.

Compared Methods. We compare PTLoss with the following baselines: 1) Standard KL loss
(Kullback, 1959): use standard KL loss in knowledge distillation; 2) Temperature scaling (Hin-
ton et al., 2015): scale the model logits via a temperature hyper-parameter; 3) Label smoothing
(Szegedy et al., 2016): smooth the teacher’s output by a small scalar; 4) Focal loss (Lin et al., 2017):
modulated cross-entropy loss to focus learning on hard examples.

5.1 MAIN RESULTS

Dataset Teacher Size Teacher Acc. KL Temp. Smoothing Focal PTLoss

MNLI
T5-xxl 94.68 90.21 90.79 90.15 90.30 90.94
T5-xl 92.42 90.41 90.32 88.94 88.83 90.84

T5-large 93.56 89.95 90.36 90.46 90.42 90.62

SST-2
T5-xxl 96.44 88.88 89.56 89.56 90.14 90.25
T5-xl 95.18 89.67 89.68 90.02 89.22 90.25

T5-large 95.53 88.89 89.56 89.56 89.45 90.02

BoolQ
T5-xxl 89.14 69.57 72.23 68.38 68.78 72.69
T5-xl 87.52 70.40 72.66 68.10 69.51 72.87

T5-large 77.91 69.39 70.03 69.39 69.27 70.83

Table 2: Main Results on three datasets. The student model is distilled from teacher models with
different size. We show student model’s test accuracy (%) and list the teacher model’s validation
accuracy (%) in the colored column for reference. The details of the hyper-parameter search for
each method are introduced in Appendix A.1.

Table 2 shows the performance of the PTLoss and the baselines. In this set of experiments, we set
the perturbation order as 5 in the PTLoss, the corresponding perturbation coefficients are obtained
through our Proxy Teacher method. We found that PTLoss outperform all the baselines under 9
settings, the average performance improvement to the standard KL is 1.31%. We found that for the
most challenging task BoolQ, PTLoss presents the most prominent improvement to the underlying
standard KL loss.

Among all the baselines, temperature scaling performs strongly on MNLI and BoolQ, while label
smoothing and focal loss yield competitive results on SST-2, but the PTLoss holds a lead to the
strongest baseline method on all the tasks. Besides, we present different-sized teacher models on
each dataset. The results show that the performance gain is consistent regardless of the capacity of
teacher models. Notably, we report the baseline results with an exhaustive hyper-parameter search
as shown in Appendix A.1. Instead, we only give the perturbation order for PTLoss and obtain the
perturbation coefficients via the Proxy Teacher method. Although the hyper-parameter search space
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Figure 2: PTLoss analysis.

of PTLoss is much larger than the baselines, we still save much human labor owing to the automatic
process of Proxy Teacher method compared to the baselines.

5.2 PERTURBATION COEFFICIENTS SEARCH VIA THE PROXY TEACHER

We validate the effectiveness of the Proxy Teacher method for perturbation coefficients selection.
We use MNLI as the representative dataset to show the difference between the Proxy Teacher and
the random search method. For each perturbation order, Proxy Teacher follows the procedure as in
Section 4.1.3 to select the coefficients on the development set by minimizing the empirical deviation
as shown in Eq. 21, while random search just samples a M -dimension vector with each perturbation
coefficient between [−1, 10].

In Fig. 2a, we range the perturbation order ranged from 1 to 5 and report the student model accuracy
with different perturbation coefficients obtained by either the Proxy Teacher or random search. The
consistent improvement over the random coefficient demonstrates the importance of adding appro-
priate perturbation via a systematic coefficients search. If we just randomly set the perturbation
coefficients, the student performance can drop by up to 1.2%. Comparing different perturbation or-
ders, we also found that the higher the perturbation order, the higher performance difference between
the Proxy Teacher and the random coefficients. This is because in the higher-dimension space, it
is harder for random search to get a set of appropriate perturbation coefficients, which makes the
random PTLosseven worse than the standard KL loss. Instead, equipped with the perturbation coef-
ficients obtained via Proxy Teacher PTLoss significantly outperforms the underlying KL loss.

We limit the perturbation order in practice because when the order is high, the corresponding per-
turbation term will be a low value after the power operation, compared to the leading terms. Also, a
too high perturbation order will make it difficult to search for the optimal perturbation coefficients.

5.3 CORRELATION BETWEEN THE TEACHER MODEL’S TVD AND THE STUDENT MODEL
PERFORMANCE

Fig. 2b presents the student model performance positively correlated with the total variance distance
between the teacher model’s output and the ground truth. By calculating the validation TVD of the
teacher model, we measure the discrepancy between the teacher’s output and the ground truth data.
The results demonstrate that the teacher model with higher-fidelity predictive distribution yields a
better distilled student.

6 CONCLUSION

We proposed PTLoss to perturb the teacher model’s output distribution to a high-fidelity one for
student model training in knowledge distillation, followed by the Proxy Teachermethod to system-
atically search perturbation coefficients by calculating the implicitly shifted teacher. Moreover, we
theoretically established a bounded distillation risk of the proposed PTLoss and illustrated its advan-
tage over the standard KL loss. We also demonstrated the other perturbation methods such as label
smoothing fall into the special cases of PTLoss. The empirical study further supported our theory
and validated the effectiveness of our method.
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A APPENDIX

A.1 HYPER-PARAMETERS

We list the search range of hyperparamters in Table 3. The search of batch size and learning rate is
applied to all the methods. And for each baseline, we search for the best baseline-specific hyper-
parameters.

Hyper-parameter Search Range

Learning Rate {2, 3, 5} × 10−5

Batch Size {8, 16, 32, 64, 128, 256}
Temperature T {0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10}

Label Smoothing δ {0.02, 0.05, 0.1, 0.15, 0.2}
Focal Loss τ {0.1, 0.2, 0.5, 1, 2.0, 5.0}

Random PTLoss ϵj [−1, 10]
Random PTLoss γj [−1, 10]

Table 3: The search range of hyper-parameters.

A.2

Running time For each perturbation order, we randomly sample 100 coefficients from [−1, 10]. Then
we compute and choose the best scores according to Eq. 21 on the dev dataset with 1000 examples.
The whole process takes less than two minutes on CPU with 64G memory.

A.3 PERTURBATION COEFFICIENT

Figure 3 shows a parameter study of the perturbation coefficients ϵ and γ. We adopt 1-order PTLoss
and search ϵ and γ in [−1, 5] to show how the perturbation extent determined by the perturbation
coefficients.
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Figure 3: Parameter study of PTLoss. We fix the perturbation order and varies the coefficients.

A.4 PROOF OF PROPOSITION 1

Proof. By Eqs. 5 and 15,

R̃(pt, f ; S)−R(f) =
1

N

∑
n∈[N ]

pt(xn)
T l(f(xn) +

1

N

∑
n∈[N ]

pt(xn)
T log(pt(xn)))− Ex[p

∗(x)T l(f(x))].

(28)
Let

∆ =
1

N

∑
n∈[N ]

pt(xn)
T l(f(xn)− Ex[p

∗(x)T l(f(x))],

and
H =

1

N

∑
n∈[N ]

pt(xn)
T log(pt(xn))),

then

E
[
(R̃(pt, f ; S)−R(f))2

]
= E

[
(∆ +H)2

]
≤ 2E

[
∆2

]
+ 2E

[
H2

]
= 2V [∆] + 2E [∆]

2
+ 2E

[
H2

]
where the second line is by the inequality (a+ b)2 ≤ 2a2+2b2 and linearity of expectation, and the
third line is by E

[
∆2

]
= V [∆] + E [∆]

2. Observe that

E [∆] = Ex

[
(pt(x)− p∗(x))T l(f(x))

]
≤ Ex

[
∥pt(x)− p∗(x)∥2 · ∥l(f(x))∥2

]
≤ Ex

[
∥pt(x)− p∗(x)∥2 · c1 · ∥l(f(x))∥∞

]
≤ c2Ex

[
∥pt(x)− p∗(x)∥2

]
,
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where the second line is by the Cauchy-Schwartz inequality, the third line by the equivalence of
norms with a constant c1, and the last line is by the boundedness of loss term.

Since R(f) is a constant,

V [∆] = V
[
R̃(pt, f ; S)

]
=

1

N
· V

[
pt(x)T l(f(x))

]
.

By plugging in everything above, we finish the proof.
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