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Abstract

Likelihood approximations for images are not
trivial to compute and can be useful in many ap-
plications. We examine the use of Contrastive
Language-Image Pre-training (CLIP) to assess
the likelihood of images and captions. We intro-
duce Whitened CLIP, a novel transformation of
the CLIP latent space via an invertible linear oper-
ation. This transformation ensures that each fea-
ture in the embedding space has zero mean, unit
standard deviation, and no correlation with all
other features, resulting in an identity covariance
matrix. We show that the whitened embeddings
statistics can be well approximated as a standard
normal distribution, thus, the log-likelihood is
estimated simply by the square Euclidean norm
in the whitened embedding space. The whiten-
ing procedure is completely training-free and per-
formed using a pre-computed whitening matrix,
hence, is very fast. We present several preliminary
experiments demonstrating the properties and ap-
plicability of these likelihood scores to images
and captions. Our code is available here.

1. Introduction
Computing likelihoods for images is a challenging yet valu-
able task with numerous applications in computer vision,
such as image generation (Ramesh et al., 2022) and editing
(Kawar et al., 2023). Traditional approaches, including dif-
fusion models, primarily rely on the likelihood gradient or
score function, limiting direct likelihood computation (Ho
et al., 2020; Song et al., 2020).

Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021) has become a widely adopted embedding for
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Figure 1. Raw, centered and whitened CLIP geometry. The
whitened CLIP space is isotropic, transforming the original ellip-
soid shaped space into an hypersphere. In this space, the embed-
ding norm reflects likelihood level. Higher norms correspond to
lower probabilities.

dual text-image semantics. However, its potential as a likeli-
hood surrogate remains unexplored. This paper introduces
Whitened CLIP (W-CLIP), a linear whitening transformation
of the CLIP latent space, where each feature is standard-
ized to have zero mean and identity covariance. In this
whitened space, we validate by statistical tests that the em-
beddings approximate normal distribution, hence negative
log-likelihood estimations are a function of the Euclidean
norm in the transformed space.

To the best of our knowledge, this represents the first direct
computation of likelihood functions for images and text
prompts under the CLIP-learned distribution.

Our main contributions are as follows:

1. We propose Whitened CLIP (W-CLIP), based on an
invertible linear operation, allowing likelihood assess-
ments while retaining the generative and semantic ca-
pabilities of CLIP.

2. We perform quantitative statistical experiments using
Anderson-Darling and D’Agostino-Pearson tests, indi-
cating the features in the whitened space can be well
approximated by a normal distribution.

3. We are the first to propose a direct computation of
likelihood functions for images and text prompts, under
the CLIP learned distribution. For images, to the best
of our knowledge, this is the first direct likelihood
computation with semantic capabilities.
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Figure 2. Log-likelihood of real and generated images with artifacts. Real images of a hand and a dog (left) and three similar AI
generated images with artifacts. Real images have higher log-likelihood than generated images with artifacts.

4. We show W-CLIP can be used to estimate probability
drifts in generative models, discover artifacts in im-
age generation and rank statistical deviation of out-of-
distribution (OOD) benchmarks, such as ImageNet-C
and ImageNet-R, compared to in-distribution (ID) sets.

5. For image manipulation, we use W-CLIP to extend
Spherical Linear Interpolation (SLERP) by introduc-
ing full-circle SLERP, enabling both interpolation and
extrapolation between two given images.

2. Related Work
Estimating the likelihood of images, P (X), is a fundamen-
tal task with numerous downstream applications, including
super-resolution (Li et al., 2022a; Gao et al., 2023), denois-
ing (Tian et al., 2020; Goyal et al., 2020), and inpainting
(Yu et al., 2018; Elharrouss et al., 2020). Early approaches
relied on assumptions about natural image smoothness (Ge-
man & Geman, 1984; Ruderman & Bialek, 1993) and patch
distribution (Zoran & Weiss, 2011). Generative models such
as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020), Autoencoders (AEs) (Hinton & Salakhutdinov,
2006; Kingma, 2013), Energy-Based Models (EBMs) (Du
& Mordatch, 2019; Ou et al., 2024) and Diffusion models
(Ho et al., 2020; Song et al., 2020) have further advanced
image synthesis by implicitly estimating P (X). However,
these methods do not provide explicit access to P (X); for
instance, diffusion models approximate the score function,
∇x logP (X), rather than P (X) itself.

In natural language processing (NLP), large language mod-
els (LLMs) estimate probabilities directly (Devlin, 2018;
Brown et al., 2020), while vision-language models (VLMs),
including CLIP (Radford et al., 2021) and other recent mod-
els (Desai et al., 2023; Chou & Alam, 2024), embed images
and text into a shared space. Despite its success in enabling
applications such as captioning (Mokady et al., 2021) and
image manipulation (Kawar et al., 2023), CLIP’s latent
space remains underexplored. Known phenomena include
the Narrow Cone Effect, where embeddings occupy limited
angular space (Schrodi et al., 2024) and the Modality Gap,
where image and text distributions are disjoint (Liang et al.,
2022; Shi et al., 2023; Levi & Gilboa, 2025). Mokady et al.
(2021) introduce a mapping network to bridge the modality
gap for image captioning.

To the best of our knowledge, this work is the first to analyze
CLIP embeddings from a probabilistic perspective and to
propose leveraging its latent space as a probability estimator,
particularly for the challenging domain of images.

3. Method: CLIP Likelihoods
3.1. Notations

Let X = {x1, · · ·xN} be a set of N random vectors of
dimension d, xi ∈ Rd, where µ = 1

NΣN
1 xi is the mean

vector. We denote by x̂i = xi − µ the centered vector,
where X̂ = {x̂1, · · · x̂N}. Let Σ ∈ Rd×d be the empirical
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Figure 3. Norm histograms of ImageNet variations. Top left: ImageNet-A, comprising of natural adversarial examples, closely aligns
with clean ImageNet due to their natural origins. Top right: ImageNet-C histograms under varying impulse noise levels of severity display
significantly larger norms than clean ImageNet, indicating distributional deviations. Bottom: ImageNet-R comparison shows that different
styles cause varying likelihood shifts, with graffiti closest to real images and video game renditions exhibiting the largest shifts.

covariance matrix of X:

Σ =
1

N
X̂X̂⊤. (1)

We recall that the covariance matrix is symmetric, positive
semi definite and that the diagonal contains the variance of
each feature in the vector.

3.2. Whitening transform

Given a set of random vectors with a non-singular covari-
ance matrix Σ, let W ∈ Rd×d be a matrix that satisfies
W⊤W = Σ−1. We note that W is not unique. A common
way to obtain it is by principal component analysis (PCA).
Let us diagonalize the covariance matrix Σ = V ΛV ⊤,
where Λ ∈ Rd×d is a diagonal matrix of the eigenvalues, λi,
and V ∈ Rd×d consists of the corresponding eigenvectors.
Then, the whitening matrix W can be defined as:

W = Λ− 1
2V ⊤. (2)

Note that W is an invertible matrix. A single vector x is
whitened by y = Wx̂ and the whitened matrix Y ∈ Rd×N

corresponding to the raw measurement matrix X is

Y = W X̂. (3)

Y consists of isotropic random vectors, that is, each vector
has zero mean and an identity covariance matrix (µY =

0,ΣY = I) (see App. D.2). The inverse transform from the
whitened space to the original space is performed simply by
x = W−1y+µ and in matrix notation X = W−1Y+µ ·1,
where 1 ∈ R1×N is a row vector of 1’s.

Given a set of raw CLIP embeddings, The whitening proce-
dure offers three key advantages:

1. W is obtained in a purely data-driven process, without
additional meta-parameters.

2. Since the transform is invertible, all existing applica-
tions developed in the raw embedding space can be
seamlessly integrated with this approach.

3. The computation of W is performed only once and a-
priori, based on a representative dataset. Memory and
computational requirements are very mild, allowing
efficient use also in low-resource settings.

It is known that the CLIP latent spaces of images and cap-
tions are disjoint (Liang et al., 2022; Levi & Gilboa, 2025).
Therefore, we treat the distribution of each modality in-
dependently. Additional implementation details and the
complete whitening algorithm are in App. D.1, Alg. 1.

3.3. Whitened CLIP embeddings

Our likelihood estimation relies on modeling the whitened
CLIP space as following approximately independent and

3



Whitened CLIP as a Likelihood Surrogate of Images and Captions

Figure 4. Raw CLIP and W-CLIP analytic comparison. The covariance matrices of raw CLIP (a) and W-CLIP (b) demonstrate
the effectiveness of the whitening transformation in achieving unit variance and zero correlation among features. Histograms of four
CLIP features (c) vary in mean and variance, whereas four W-CLIP features (d) exhibit zero mean and unit variance. Cosine similarity
histograms for all image pairs (e) across raw, centered, and W-CLIP embeddings reveal that W-CLIP’s cosine similarity is concentrated
around zero, indicating significantly improved uniformity compared to the centered and raw CLIP spaces.

identically distributed (i.i.d) standard normal distribution.
We thus first examine the validity of this approximation.

Normal distribution tests. To assess how well the whitened
embeddings approximate normal distribution, we employ
two statistical tests: Anderson-Darling (Anderson & Dar-
ling, 1954) and D’Agostino-Pearson (D’agostino & Pearson,
1973). The Anderson-Darling test evaluates how well the
empirical cumulative distribution function (CDF) matches
the expected CDF of a normal distribution, placing higher
weight on the tails to detect deviations. The D’Agostino-
Pearson test combines skewness and shape characteristics
measures to assess normality, offering sensitivity to both
symmetric and asymmetric deviations. See App. D.3 for
additional details regarding these tests, specifically Eq. (12),
Eq. (13). For stability, the 5000 embeddings of MS-COCO
validation set (Lin et al., 2014) are divided into 20 equal
groups of 250 samples each. As shown in Tab. 1, the results
validate that a normal distribution is a good approximation
for both image and text embeddings. Specifically, in both
tests, more than 90% of the text features, and more than
98% of the image features conform to a normal distribution,
with average scores that satisfy the test criteria by a large
margin. Additional details regarding these tests, empirical
statistics, and plots are provided in App. D.3.

Independent and identically distributed (i.i.d). Let us
break this assumption into independence and identical dis-
tributed conditions. For the former, in normal distribution,
non-correlation is a sufficient condition for independence.
In Fig. 4, the 20 first features of the covariance matrices of
raw CLIP embeddings (a) and W-CLIP embeddings (b) are
presented. While the CLIP embeddings exhibit correlations
between features, the covariance matrix of the whitened
embeddings is almost exactly diagonal, indicating that the
features are uncorrelated. This is expected, since the whiten-
ing transform is designed for exactly this purpose. A metric

measuring the proximity of a matrix to being diagonal (in
the range [0, 1] with 1 being exactly diagonal) is

Diagonal Score =

∑
i |Σi,i|∑
i,j |Σi,j |

, (4)

where Σi,j is an element at row i and column j of the covari-
ance matrix. Scores of the full matrices verify that, provided
the normal distribution model is valid, the independence
assumption holds as well. Regarding the latter, in Fig. 4 the
CLIP features exhibit varied mean and variance values (c),
while W-CLIP features have all zero mean and unit variance
(d), see further results in Fig. 18, App. D.3. Consequently,
the whitened embeddings can be approximated reasonably
well as i.i.d. features.

Table 1. Anderson-Darling and D’Agostino-Pearson scores for
image and text embeddings. The Avg. column contains the
average score for all features, and Normal Features represents the
percentage of features passing the normal distribution test based on
their average score. The threshold score (in brackets) indicates the
required condition for normal distribution, with the sign showing
whether higher or lower results imply normal distribution.

Avg. Normal Features
Anderson-Darling ( < 0.752)

Image 0.4890 98.3%
Text 0.5926 90.1%

D’Agostino-Pearson ( > 0.05 )
Image 0.3624 99.3%
Text 0.2568 99.2%

3.4. Log probabilities using W-CLIP

Embedding likelihood. The explicit likelihood of a d-
dimensional random vector, x, with i.i.d standard normal
variables is:
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Figure 5. Likelihood variation for different levels of details. The original MS-COCO caption is marked with an arrow, with deviations
underlined. Left: Removing details, such as character names or locations, increases likelihood. Right: Adding specificity, such as
replacing “woman” with “bride” or “Jenny”, decreases likelihood.

P (x) =
1

(2π)
d
2

exp

(
−1

2
∥x∥2

)
, (5)

where ∥x∥2 = x⊤x. The log-likelihood is:

ℓ(x) = logP (x) = −1

2

(
d log(2π) + ∥x∥2

)
. (6)

Thus, we propose ℓ(x) to be an approximation of the log
likelihood of image or caption instances, based on the W-
CLIP embedding. To the best of our knowledge, this is the
first method to directly obtain a probability score for image
or text embeddings using CLIP and the first probability com-
putation for images which is not based on low-level patch
statistics but on high-level semantics. In contrast, natural
language processing (NLP) language models can directly
approximate the negative log-likelihood (NLL) for a text
prompt. The relationship between our log-likelihood mea-
sure and those of language models is discussed in Sec. 4.4.

Norm distribution in W-CLIP. According to Eq. (6), the
norm is directly related to the log-likelihood. We thus high-
light some consequences and recall the distribution of norms
under standard normal statistics. We first note that the most
probable sample resides at the center of the whitened em-
bedding space, nevertheless, the likelihood of sampling this
singular point out of the entire space is zero in practice. In
general, high-dimensional normal distributions have close
to zero mass near the origin. This follows a phenomenon
called Thin Shell (App. D.4), which reveals that the major-
ity of the distribution is concentrated near the surface of a
sphere of radius

√
d. The chi distribution (χd), is the appro-

priate model for the distribution of norms in the whitened

space. We denote the norm of x by S =
√∑d

i=1 x
2
i . The

log-likelihood of S is:

log(P (S)) = C(d) +

(
d

2
− 1

)
log(S2)− 1

2
S2, (7)

where C(d) = − log
(
2(

d
2 )−1Γ(d2 )

)
and Γ is the Gamma

function. The expected value and standard deviation of S
are:

E[S] =
√
2
Γ
(
d+1
2

)
Γ
(
d
2

) , Std(S) =
√
d− µ2

S . (8)

For large d, E[S] →
√

d− 1
2 . The comparison between

theoretical and empirical measurements in Tab. 2, based on
MS-COCO, reaffirms the assumed framework of normal dis-
tribution. The mean and standard-deviation of the whitened
image embeddings closely align with the expected values,
while the text embeddings exhibit slightly greater deviation;
a trend consistent with the results in Tab. 1.

Table 2. Empirical and theoretical measurements. For d = 768;
relative deviation of the empirical (Emp.) from the theoretical
(Theo., Eq. (8)) values are shown in brackets.

Mean (Emp. / Theo.) Std (Emp. / Theo.)
Image 27.43/27.7(0.98%) 3.94/3.96(0.55%)
Text 28.49/27.7(2.85%) 5.72/6.60(13.24%)

4. Experiments
All the experiments in this section employ the CLIP ViT-
L/14 model and utilize the MS-COCO validation set to
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Figure 6. Bias in image generation. Left: Using CLIP-encoded images in MS-COCO validation set as a condition for generating new
images. The histogram shows a bias towards lower likelihoods in generated images. Right: Iteratively using UnCLIP to generate images
encoded by CLIP with a fixed seed. The raw process gradually becomes noisy (Top), whereas with normalization (to

√
d at each encoding

step), the content drifts but remains within the natural and reasonable image space.

compute the whitening matrix W .

4.1. Attributes of W-CLIP

Text complexity. Our observation is that more complex
and specific words, such as names, are expected to yield
lower likelihood scores. In Fig. 5 we show results of caption
editing. Words are replaced with either generic or specific
terms, for example, by adding or removing names. The
likelihood scores adjust accordingly, decreasing for more
specific terms and increasing for more generic ones. Addi-
tional examples are available in Figs. 25, 26, App. H.

Uniformity enhancement. An additional desirable prop-
erty promoted naturally in the whitened space is uniformity
(Wang & Isola, 2020). Fig. 4.e presents a histogram of
cosine similarities between all possible image pairs (pre-
dominantly composed of negative examples) in the raw,
centered and whitened spaces. In the whitened space, co-
sine similarities are concentrated near zero with smaller
variance. In contrast, the centered space exhibits higher
variance, while the raw CLIP space has similarities centered
around 0.5 with high variance. These results indicate that
the whitened CLIP distribution is more uniform.

4.2. Data Analysis using W-CLIP

Artifact detection. An important attribute of any image
likelihood function is its capacity to discriminate between
authentic and synthetic images, with particular emphasis
on identifying artifacts present in synthetic counterparts.
In Fig. 2, we compare the likelihood of real images, and
AI-generated ones from the SynArtifact dataset (Cao et al.,
2024) containing notable artifacts. All generated images
have lower likelihoods than their real counterparts. Addi-
tional examples are provided in Fig. 9, App. B.1.

Domain shift. Fig. 3 evaluates a subset of ImageNet

(Deng et al., 2009), as presented in Kan et al. (2018),
in comparison to ImageNet-A (Hendrycks et al., 2021b),
ImageNet-C (Hendrycks & Dietterich, 2019), and ImageNet-
R (Hendrycks et al., 2021a). Here we show the distribution
of norms of each set, instead of the likelihood estimation.
Following Eq. (6), we have

∥x∥ =
√
−2ℓ(x)− d log(2π),

where ℓ(x) is the log-likelihood estimation of x. Thus it is a
simple monotonic transformation, which in some cases may
serve as an alternative, more convenient, visualization. One
should notice that a higher norm indicates lower likelihood.
ImageNet-A consists of natural adversarial images. Since
the images are natural, their norm distribution is similar to
that of ImageNet, apart from a slight shift toward higher
values. ImageNet-C introduces common corruptions (e.g.,
impulse noise), with higher noise levels corresponding to
lower likelihoods and distributions consistently below Im-
ageNet. ImageNet-R assesses robustness to domain shifts
with renditions like art, graffiti, and video games. Rendi-
tions closer to real images, like graffiti, have lower norms
than video games, but all renditions exhibit higher norms
than ImageNet. For additional Imagenet-C corruptions see
Fig. 11, App. B.3.

4.3. Image manipulations

Image generation bias and variance. Generative models
may produce outputs which are more likely or less likely
than intended. Here we give an example how this can be
quantified, allowing to obtain likelihood-bias and likelihood-
variance of a generator, as shown in Fig. 6. Image generation
was performed using UnCLIP (Ramesh et al., 2022), condi-
tioned by a CLIP embedding. In this experiment, each image
from MS-COCO validation set was encoded using CLIP and
subsequently ten images were generated by UnCLIP with
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Figure 7. Differences between likelihood functions. Our proposed likelihood estimation is highly sensitive to grammatical errors
(a), demonstrated by the removal of all nouns from the captions, and text type (b), where Text Data refers to a general text dataset
(OpenWebText) and Caption Data refers to MS-COCO captions. However, it remains less sensitive to caption length (c). In contrast,
language models are highly sensitive to caption length and treat captions as being within the distribution of general text. The removal of
nouns from the captions causes only negligible changes to the overall distribution of the model’s likelihood. Histograms of all language
models are in Figs. 12, 13, App. C.

different random seeds. A histogram showing the likelihood
differences between the original and the generated embed-
dings is provided in Fig. 6.a. The results demonstrate a clear
bias towards lower likelihoods. This result indicates that our
likelihood approximation method can potentially be lever-
aged as a generated image detector. Thorough investigation
of this task will be conducted in future work.

To further understand this phenomena, we implemented an
iterative sequence, starting with a real image encoded by
CLIP. The resulting embedding is used to generate a new
image, which is re-encoded to CLIP. This iterative process
caused the generated images to drift in content, quickly de-
grading into noise. According to the chi distribution, an
embedding is most likely to have a norm of approximately√
d (Eq. (8)). We use this to normalize each embedding

in W-CLIP to a norm of
√
d and project back to CLIP

space, mitigating this issue. While the iterative process
still has a semantic drift, reasonable images were consis-
tently produced. Fig. 6.b illustrates this process. Additional
experiments are provided in App. G (Figs. 23, 24).

Full circle SLERP. Ramesh et al. (2022) propose spheri-
cal interpolation (SLERP) on image CLIP embeddings to
interpolate between images. SLERP is defined as:

SLERP(t;E1,E2) =
sin((1− t)θ)

sin(θ)
E1 +

sin(tθ)

sin(θ)
E2, (9)

where E1 and E2 are embeddings, θ is the angle be-

tween them (calculated as the normalized dot product), and
t ∈ [0, 1] is the interpolation step. SLERP assumes em-
beddings lie on a hypersphere (Liang et al., 2022; Wang &
Isola, 2020) and is mathematically valid for t beyond [0, 1].
Fig. 20 (App. F) illustrates SLERP on a 2D circle. When
one point is off the circle, interpolation forms an ellipse
near the perimeter; if shifted from the origin, the ellipse
deviates significantly further. Full-circle SLERP uses an
interpolation degree ω, with t = ω

θ in Eq. (9). In the raw
CLIP space, full-circle SLERP often produces noise, with
reasonable images only near and between the original em-
beddings. In the whitened space, it generates consistent
images across all angles, with semantic diversity, indicating
embeddings remain within the distribution. Images from full
circle SLERP examples are in Fig. 8 and App. F (Fig. 21). In
Fig. 8, at 300 degrees, which is extrapolation of the source
embedding to the reverse direction from the destination em-
bedding, the dog with a bottle of bear (source embedding)
becomes a man sitting next to bottles of bear. This is an
interesting extrapolation result, not specifically guided. In
order to further evaluate this phenomena, and quantify it
to quantitative measures we perform an additional exper-
iment. Using MS-COCO validation set, for each image,
we performed full-circle SLERP in both the raw CLIP and
W-CLIP embedding spaces. In this process, a source image
is interpolated toward a destination image along a circu-
lar path within the embedding space. Crucially, the image
generated at the 180◦ position from the source—referred
to as the “opposite image” (generated from the “opposite

7



Whitened CLIP as a Likelihood Surrogate of Images and Captions

Figure 8. Full circle SLERP example. The full circle SLERP is performed in both the raw CLIP space (a) and in the W-CLIP space (b).
The different angle between embeddings in both space is presented. In the raw CLIP space the full circle SLERP results with noise for
most of the degrees not between the source and destination embeddings. In the W-CLIP space for all degrees real images are generated.

embedding”)—is invariant to the chosen destination and de-
termined solely by the source. While other positions along
the path are influenced by the destination embedding, the
opposite embedding is a fixed, symmetric counterpart.

We generate these opposite images using both CLIP and
W-CLIP embeddings and observe a stark contrast: in the
CLIP space, opposite images degrade into structured noise,
whereas in the W-CLIP space, they remain visually natural
and semantically meaningful, as shown in Fig. 8. The struc-
tured noise produced by CLIP exhibits 4×4 pixel blocks and
a restricted color palette, suggesting synthetic artifacts. We
provide a large visual example in App. F (Fig. 22).

To quantify these differences, we compute Total Variation
(TV), Entropy, and the percentage of extreme saturation
values (top or bottom 1% of the pixel range). All metrics
are computed per channel and averaged per image across
three sets: original MSCOCO images, CLIP opposites, and
W-CLIP opposites. The results are summarized in Tab. 4.
These findings confirm that W-CLIP opposites are statis-
tically similar to natural images, whereas CLIP opposites
exhibit significantly reduced entropy and variation and much
higher percentage of saturation values, indicating a lack of
natural structure.

4.4. Relations to language model probabilities

In natural language processing (NLP), large language mod-
els (LLMs) minimize the negative log-likelihood (NLL)
during training to learn a probability distribution over se-
quences. At inference, the NLL is computed by summing
the negative log probabilities of each token in the prompt,
conditioned on previous tokens. The final NLL is averaged
over all tokens, with lower NLL scores indicating higher

sequence likelihood under the model’s learned distribution
(Bishop & Nasrabadi, 2006; Murphy, 2012). Our proposed
log-likelihood score (Eq. (6)) approximates the likelihood
of text prompts based on a single embedding vector for the
entire prompt. We evaluated MS-COCO validation set cap-
tions using our method and various language models. Both
LLMs (GPT-2 (Radford et al., 2019), NEO (Black et al.,
2021) , OPT (Zhang et al., 2022)) and VLMs (BLIP (Li
et al., 2022b), GIT (Wang et al., 2022)) were tested. Our
method computes log-likelihood values in a different range
of values, with correlation values between 0.33 and 0.48
with all language models. See Fig. 14, App. C, for full de-
tails. In Fig. 7, we highlight three main differences between
our likelihood score and those of language models:

1. Caption length. All language models approximate
lower mean likelihood scores as caption length in-
creases. In contrast, our likelihood score is less sen-
sitive to caption length, Fig. 7.c. Levy et al. (2024)
recently demonstrated a degradation in LLM perfor-
mance on long inputs, particularly in reasoning tasks.

2. Text type. While text models are trained on general
text, CLIP is trained specifically on captions of im-
ages. We sampled 5,000 sentences from OpenWeb-
Text (Gokaslan et al., 2019), a general text dataset,
ensuring that their lengths are comparable to those of
MS-COCO captions, and compared both likelihood
histograms. For LLMs captions align with the general
text distribution, whereas VLMs and our method result
in separable distributions (Fig. 7.b).

3. Grammatical errors. Wu et al. (2023) demonstrates
that ChatGPT performs poorly on datasets containing
grammatical errors, particularly on long sentences. On
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Table 3. Cross dataset comparison. COCO: MS-COCO, F8k: Flickr8k. Data T: dataset used for tests, Data W: dataset used to calculate
the whitening transform. Avg. AD, DP: the average Anderson-Darling, D’Agostino-Pearson p-value test scores (threshold is under 0.752
and above 0.05, respectively). Correlation is calculated between likelihood scores on the test data using different whitening matrices.

Image Text
Data T Data W Avg. AD Avg. DP Correlation Avg. AD Avg. DP Correlation

COCO COCO 0.489 0.362 0.69 0.592 0.257 0.74F8k 0.466 0.380 0.574 0.282

F8k COCO 0.641 0.317 0.77 0.735 0.226 0.88F8k 0.522 0.329 0.626 0.242

Table 4. Opposite image comparison. Total Variation (TV), En-
tropy and percentage of saturation pixels (SAT[%]) for natural
images (MS-COCO) and the opposite images generated using
CLIP and W-CLIP embedding spaces. W-CLIP represents better
the statistics of natural images.

Method TV Entropy Sat [%]
MS-COCO 222.3 7.3 4.2
CLIP 156.7 4.8 55.5
W-CLIP 215.9 7.2 6.4

the other hand, we noticed our method is sensitive to
grammatical errors and nonsensical inputs. To test this,
we remove all the nouns from the MS-COCO captions
and compare likelihood before and after. Our likeli-
hood score is significantly affected, while the language
models demonstrate less sensitivity, Fig. 7.a.

In Figs. 12, 13, App. C, histograms of all other language
models are available. In Table 5, we quantify the separation
between the likelihoods of different data types and captions
with and without nouns. We employ the AUC metric, as
defined in Eq. (10) (App. C), to evaluate the separation be-
tween distributions. Additional text examples are provided
in Fig. 15, App. C. It is shown that the likelihood approx-
imated using W-CLIP positively correlates with language
model likelihoods but contains unique information derived
from CLIP’s learned distribution.

Table 5. Likelihood separation with grammatical errors and
different text types. AUC values indicating the separation be-
tween likelihood distributions. Type compares the separation be-
tween captions and general text prompts, while Nouns compares
the separation between original captions and the same captions
with nouns removed. Vision-language models (VLMs) show a high
separation for different text types and slightly higher separation
when removing nouns compared to language models (LLMs). Our
method yields the best separation, especially for Nouns.

LLMs VLMs OursGPT2 OPT NEO BLIP GIT
Type 0.8 0.8 0.77 0.92 0.97 0.999
Nouns 0.43 0.58 0.58 0.66 0.69 0.94

4.5. Data generalization

As W-CLIP is completely data-driven we test its generaliza-
tion capabilities. Flickr8k (Hodosh et al., 2013), similarly
to MS-COCO, is a benchmark for image-captioning tasks
that emphasizes real-world imagery and descriptive diver-
sity. In Tab. 3, we compare results using MS-COCO and
Flickr8k as both the whitening and testing datasets. We eval-
uate the normal distribution test scores (Anderson-Darling
and D’Agostino-Pearson) as in Sec. 3.3, and the correlation
of likelihoods computed for the same data, using different
datasets for whitening. The results show that whitening
with one dataset and testing on another yields similar nor-
mal distribution test scores for features, and moderate to
high correlations between likelihoods. Additional ablation
studies, including different dataset size and utilizing a dif-
ferent CLIP model, are provided in App. E. These findings
confirm that, although W-CLIP is data-driven, it generalizes
well across datasets within the same domain. However, as
shown in Fig. 3, W-CLIP is sensitive to domain shifts.

5. Conclusion
This paper introduces Whitened CLIP, transforming the raw
CLIP latent space into an isotropic space. Whitened CLIP
is statistically verified to approximate well normal distri-
bution with independent and identically distributed (IID)
components, and exhibits enhanced uniformity. The key
contribution of this work is the proposal of a direct compu-
tation of likelihood functions for images and text prompts
within the CLIP-learned distribution. Embeddings in the
whitened space approximately follow the standard normal
distribution, enabling the use of the squared Euclidean norm
to estimate log-likelihood. These likelihood functions ef-
fectively identify artifacts, domain shifts, and demonstrate
sensitivity to the complexity of details in text captions. Bi-
ases in generative models can be detected by comparing
the likelihood of generated images to those of real images.
Furthermore, the introduction of full-circle SLERP in the
whitened space facilitates both interpolation and extrapola-
tion between images. We believe the results of this research
can further benefit numerous applications.
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A. Reproducibility
Our code along detailed instructions is available HERE. The repository includes: 1) Implementation of our method,
reproducing most of our experiments, including simple demo notebooks; 2) Whitening matrices; 3) Additional examples
beyond those in the paper and in the appendix, specifically video demonstrations of the full circle SLERP.

B. Artifacts and Domain Shifts Examples
B.1. Image artifacts

In Fig. 9 we offer additional examples of real images compared to similar generated images with artifacts, as presented in
Fig. 2 in Sec. 4.2.

B.2. Text artifacts

Trying to generate artifacts in text captions we remove the first or last words from a caption, or one of the middle words.
Examples in Fig. 10. In all cases the original caption has the highest log-likelihood score.

B.3. ImageNet datasets

In Fig. 11 we provide histograms using different corruptions from ImageNet-C. All corruptions have a lower log-likelihood
compared to ImageNet.

Figure 9. Log-likelihood of real and generated images with artifacts. Real images of zebras and a surfer (left) and three similar AI
generated images with artifacts. Real images have higher log-likelihoods than AI generated images with artifacts.
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Figure 10. Log-likelihood of real captions and captions with artifacts. Real captions, framed with a blue frame and atrifacted captions,
where we removed the first or last words from a caption, or one of the middle words. In all cases the original caption has the highest
log-likelihood score.

C. Comparison with Language Models Examples
In Fig. 14, we present the log-likelihood values for the MS-COCO validation set using language models, along with the
correlation between these log-likelihoods and those computed using our method. Our approach yields log-likelihood scores
with larger absolute values and greater variance, aligning with its intended design.

Figs. 12, 13 display histograms replicating the experiments from Figs. 7.a,b for additional models. The LLMs (OPT, NEO)
exhibit behavior very similar to GPT-2. The VLMs (BLIP, GIT) also show behavior similar to GPT-2, but with some
deviations trending toward our method’s likelihood. This observation is reasonable, as these models, like CLIP, are trained
(or fine-tuned) on caption data rather than general text data. In Fig. 15, we present additional examples of captions with
varying relative likelihood scores. We sort the likelihood scores of 5,000 captions from MS-COCO in ascending order and
examine the sorted index for different captions. The comparison includes our method, an LLM (GPT2), and a VLM (BLIP).
Each set of examples demonstrates one of the three differences discussed in Sec. 4.4 (e.g. text type, grammatical errors and
caption length).

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC, AUC for simplicity) evaluates the ability of
a model to distinguish between two classes. It measures the trade-off between the true positive rate (TPR) and the false
positive rate (FPR) at various threshold levels. The AUC score in Tab. 5 is mathematically defined as:

AUC =

∫ 1

0

TPR(FPR−1(x)) dx , TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(10)

where TP are true positives, FP are false positives, TN are true negatives and FN are false negatives. In the context of Tab. 5
the MS-COCO captions are defined as positives and the general text or captions without nouns are defined as negatives.
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Figure 11. ImageNet-C histograms on all corruptions. All corruptions have a significantly higher norm (lower log-likelihood) than
ImageNet. For most corruptions, as level of corruption increases the norm increases. Some corruptions do not show this monotonic
behavior (motion/glass blur for example) for different levels of corruption.
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Figure 12. Likelihood for different text types. Comparing likelihood values computed for MS-COCO captions and OpenWebText
general text sentences. The sentences from OpenWebText are filtered to have similar lengths to MS-COCO captions. LLMs (OPT, NEO,
GPT2) treat captions similarly to general text while VLMs (BLIP, GIT) show some separation. No model shows strong separation like our
likelihood does (Tab. 5).

Figure 13. Likelihood drift when removing nouns Comparing likelihood values computed for MS-COCO captions with and without
nouns. None of the models show a drift like our likelihood (Tab. 5).
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Figure 14. Log-likelihood values and correlations. Log-likelihoods are computed on 5,000 captions from the MS-COCO validation set,
with correlations measuring the alignment of each model’s log-likelihood and ours.

Figure 15. Examples of differences between language models and our method. The sorted index represents the position out of 5000
captions from MS-COCO, ranked from low to high likelihood values. The relative likelihood index is compared among GPT2 (LLM),
BLIP (VLM), and our method. Top left: Our method shows a significant drop in relative likelihood compared to the language models
when the sentence is cut-off. Top right: Captions that do not describe images receive the lowest relative likelihood from our method, the
highest from GPT2, and intermediate scores from BLIP. Bottom: Long captions are assigned low relative likelihoods by language models,
while our method assigns them average relative likelihood scores.

D. Implementation and Theoretical Details
D.1. Implementation details

As explained in Sec. 3.2 if x is a random vector in Rd with a non-singular covariance matrix Σ (and with zero mean),
then W satisfying WTW = Σ−1 is called the whitening matrix. One common approach to achieve whitening is through
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Principal Component Analysis (PCA), although other methods like Zero-Phase Component Analysis (ZCA) whitening and
Singular Value Decomposition (SVD) whitening exist. PCA whitening transforms the data into a new coordinate system
defined by the principal components of the covariance matrix. It rescales each component to have unit variance, effectively
“whitening” the data. Steps of PCA whitening:

• Compute the covariance matrix of the data.

• Perform eigenvalue decomposition to obtain eigenvalues (Λ) and eigenvectors (V ).

• Transform the data:
Xwhitened = Λ−1/2V ⊤X. (11)

The main advantages of PCA whitening are that it ensures that the resulting features are uncorrelated and transforms data
along principal axes, which often correspond to meaningful directions in the dataset. It can be efficient for dimensionality
reduction, something we do not use in our work. The main limitation is the loss of original geometry (ZCA whitening for
instance maintains the original geometry).

When the features in the original data are highly correlated, the matrix W becomes unstable and may not be invertible. To
address this issue, we remove one of the highly correlated features and replace it with random noise. In our experiments,
this situation occurs only when whitening text embeddings and not with image embeddings. While this introduces some
randomness into the process, it has minimal impact on the empirical results. Our full whitening code, together with scripts
repeating our experiments is available here.

Algorithm 1 Whitening Process
Input: Dataset X ∈ RN×d, correlation threshold τ
Output: Whitening matrix W

Step 1: Compute Correlation Matrix.
Calculate the correlation matrix:

Cij =
Cov(Xi,Xj)

σiσj
.

Step 2: Remove Highly Correlated Features.
Identify feature pairs (i, j) where |Cij | > τ .
For each pair, remove one feature (e.g., j) and replace it with random noise r, Denote the updated dataset as X′:

r ∼ N (0, 0.1).

Step 3: Compute Covariance Matrix.
Calculate the covariance matrix:

Σ =
1

N
(X′⊤X′).

Step 4: Perform Eigenvalue Decomposition.
Decompose Σ into eigenvalues Λ and eigenvectors V :

Σ = V ΛV ⊤.

Step 5: Compute Whitening Matrix and Transform Data.
Calculate the whitening matrix:

W = Λ−1/2V ⊤,

where Λ−1/2 is a diagonal matrix with elements given by the inverse square root of the eigenvalues:

1√
λi

.
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D.2. Isotropic random vectors

An isotropic random vector is one where all components are identically distributed and statistically independent, with zero
mean and unit variance, e.g it’s covariance matrix Σ is the unit matrix. In other words, an isotropic vector is uniformly
distributed across the space, exhibiting no directional bias. Such vectors often arise in high-dimensional statistical models
and machine learning applications, where isotropy ensures that the data’s statistical properties are invariant to rotation or
translation (Mardia & Jupp, 2000). Isotropic distributions are particularly relevant in contexts such as embedding spaces,
where uniformity and independence across features simplify analysis and facilitate probabilistic modeling (Vershynin, 2018).

D.3. Normal distribution tests

Normality tests assess whether a dataset follows a Normal distribution, a critical assumption in many statistical methods. As
discussed above in Sec. 3.3 the Anderson-Darling test evaluates how well the empirical cumulative distribution function
(CDF) matches the expected CDF of a normal distribution, placing higher weight on the tails to detect deviations (Anderson
& Darling, 1954). The D’Agostino-Pearson test combines skewness and shape characteristics measures to assess normality,
offering sensitivity to both symmetric and asymmetric deviations (D’agostino & Pearson, 1973). The Anderson-Darling test
statistic is defined as:

A2 = −n− 1

n

n∑
i=1

[(2i− 1) (lnF (yi) + ln (1− F (yn+1−i)))] (12)

Where n is the sample size, y1 ≤ y2 ≤ · · · ≤ yn are the ordered data samples and F (y) is the Cumulative Distribution
Function (CDF) of the hypothesized distribution. The D’Agostino-Pearson test statistic combines skewness and kurtosis:

K2 = z21 + z22 , z1 =
g1√

6
n

, z2 =
g2 − 3√

24
n

(13)

where K2 is the D’Agostino-Pearson test statistic, z1, z2 are the standardized skewness and kurtosis. g1, g2 are the sample
skewness and kurtosis and n is the sample size. For details regarding skewness and kurtosis please refer to Groeneveld &
Meeden (1984).

These tests are well-suited for high-dimensional data as they are robust to various types of distributional departures, making
them effective for validating Normal approximations in the context of our proposed whitened embedding spaces. Bellow we
present statistics of image (Fig. 16) and text (Fig. 17) embeddings, on both tests. Mean values (on all groups of data) with
standard deviation and histograms of mean values are presented. In addition, in Fig. 18 we present the mean and variance of
all the whitened features, demonstrating minor deviation from the expected values (zero mean and unit variance).
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Figure 16. Normal distribution tests on image embeddings. Top row - mean value and standard deviation per feature, over all groups
of embeddings. Bottom - histogram of mean values of each feature. In all plots the red line represents the test threshold. Left -
Anderson-Darling test, threshold is 0.752, lower is better. Right - D’Agostino-Pearson test, threshold is 0.05, higher is better.

Figure 17. Normal distribution tests on text embeddings. Top row - mean value and standard deviation per feature, over all groups
of embeddings. Bottom - histogram of mean values of each feature. In all plots the red line represents the test threshold. Left -
Anderson-Darling test, threshold is 0.752, lower is better. Right - D’Agostino-Pearson test, threshold is 0.05, higher is better.
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Figure 18. Mean and variance of all whitened features. We show the mean and variance of all the 768 features of the whitened
embeddings. There are minor deviations from 0 (for mean) and 1 (for variance). For mean values the deviation is up to 0.0015% and in
the case of the variance the deviations are up to 1%.

D.4. Thin shell theory

The thin shell theory (Paouris, 2006) is a concept in high-dimensional geometry. According to the thin shell theory most of
the volume of a high dimensional convex space is concentered near the surface of the space. Specifically, for a convex space
K ⊆ Rd, the majority of points in K lie at an approximated distance r from the origin. This can be formally described in
terms of the concentration of measure, where the typical distance of a random point from the origin is concentrated around a
specific radius:

P(∥x∥ ∈ [r − ϵ, r + ϵ]) ≈ C(d)

ϵd
(14)

where x is a random sample from the space K, r is the typical radius of the space, ϵ is a small deviation (ϵ ≪ 1) and C is
a constant that depends on the dimensions d. This result indicates that as the dimension d grows, the concentration near
the thin shell becomes sharper. The thin shell phenomenon is closely related to the chi distribution described above (Eq.

(7)). Specifically relating Eq. (8) to Eq. (14) we get r =
√
d− 1

2 . Combining both phenomena, as d increases, the space
expands and concentration near the surface emerges because the majority of the space’s mass resides near its boundary.
Consequently, most points are located near the surface, even as the overall space grows.

E. Ablation Study with Different Data and CLIP Model
We apply the whitening transform to embeddings of MS-COCO validation set using a second CLIP model - CLIP ViT-B/32,
which encodes embeddings with 512 features (compared to embeddings with 768 features encoded by CLIP ViT-L/14).
Results are in Tab. 6. Results are very similar to CLIP ViT-L-14, used in the paper, verifying that our method is general for
different CLIP models.

Table 6. Normal distribution tests using a different CLIP model Avg. AD, DP - the average Anderson-Darling, D’Agostino-Pearson
p-value test scores (threshold is under 0.752 and above 0.05, respectively). MS-COCO validation set tested using CLIP ViT-B/32, which
has 512 features in each embedding.

Avg. AD Avg. DP
Image 0.65 0.31
Text 0.61 0.25

We conduct an ablation study, examining the influence of the size of the data used for computing the whitening matrix
W . For each size (1k, 2k, 3k, 4k) we randomly sampled 5 subsets of MS-COCO validation set. The average scores
with standard deviation are plotted in Fig. 19. The tests are performed on the full MS-COCO validation set (5k images).
For the D’Agostino-Pearson test, for all data sizes the tested embeddings comply with the normal distribution. For the
Anderson-Darling test using 1k samples for computing W results with tested embeddings that do not comply with the
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normal distribution. Using at least 2k results with tested embeddings that comply with the normal distribution. For both
tests, using more data to compute W results with improved results. As the whitening transform is completely data-driven it
is expected that using additional data improves the results. However we note that the improvement between using 4k and 5k
samples is small.

Figure 19. Normal distribution tests with different data sizes Anderson-Darling average scores and standard deviation (a) and
D’Agostino-Pearson p-value average scores and standard deviation (b). Threshold is under 0.752 (marked with a black line) and above
0.05, respectively. Computing the whitening matrix W with different data sizes. For each size (1k, 2k, 3k, 4k) we randomly sampled 5
subsets of MS-COCO validation set and present the average score with standard deviation. The tests are performed on the full MS-COCO
validation set (5k images).

F. Full circle SLERP Examples
In Fig. 20 a simple 2D scenario of full circle SLERP is demonstrated. The main observation is that if the source and
destination points are on a circle around the origin (allowing small deviations) the full circle SLERP points (blue) remain on
(or near) the original circle (orange). However, if the circle is skewed from the origin the SLERP points deviate far from the
original circle.

We present an additional example of sets of images from a full circle SLERP, as discussed in Sec. 4.3, in Fig. 21. As in
Fig. 8, also in this case it is clear that a full circle SLERP is not practical in the raw CLIP space, while resulting with real
images throughout the full circle in the W-CLIP space.
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Figure 20. 2D full circle SLERP example. The SLERP points are in blue and the circle perimeter is in orange. Examples of a simple 2D
case of full circle SLERP. When both points are on the circle (a) the SLERP points follow the circle perimeter perfectly. If one of the
points deviates from the circle (b) the SLERP points form an ellipse, but remain close to the circle perimeter. If the circle is skewed from
the origin (c) the SLERP points form a large ellipse, that distances far from the circle perimeter.

Figure 21. Full circle SLERP example. The full circle SLERP is performed in both the raw CLIP space (a) and in the W-CLIP space (b).
The different angle between embeddings in both space is presented. In the raw CLIP space the full circle SLERP results with noise for
most of the degrees not between the source and destination embeddings. In the W-CLIP space for all degrees real images are generated.
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Figure 22. Opposite image generated in the raw CLIP space. The structured noise produced by CLIP exhibits 4×4 pixel blocks and a
restricted color palette (black (’0’ in all color channels), white (’1’ in all color channels), red, green, blue, magenta (’1’ in red and blue
channels), cyan (’1’ in green and blue channels), and yellow (’1’ in red and green channels)), suggesting synthetic artifacts.
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G. Image Generation Bias Examples
In Figs. 23, 24 additional examples of the bias in image generation models are presented. Different random seeds lead to
different results due to the image generation model. In all cases the images become noise when no normalization is applied
in the whitened space. Normalizing embeddings in the whitened space to have a norm of

√
d in each iteration results with

reasonable images, with varying content.

Figure 23. Generation bias. Iteratively using UnCLIP to generate images encoded by CLIP with two fixed seeds. The raw process
gradually becomes noisy, whereas with normalization (to

√
d at each encoding step), the content drifts but remains within a natural and

reasonable image space.
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Figure 24. Generation bias. Iteratively using UnCLIP to generate images encoded by CLIP with two fixed seeds. The raw process
gradually becomes noisy, whereas with normalization (to

√
d at each encoding step), the content drifts but remains within a natural and

reasonable image space.

H. Text Complexity Examples
In Figs. 25, 26 we repeat the experiment presented in Fig. 5, showing additional examples how adding and removing details
from concepts (not the concepts themselves) decreases/increases the likelihood respectively.

Figure 25. Adding details to concepts. The original caption from MS-COCO is framed in blue. Adding details decreases the likelihood.
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Figure 26. Removing details from concepts. The original caption from MS-COCO is framed with a blue frame. Removing different
details increases the likelihood.
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