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Abstract
In this paper, we initiate the study of Euclidean
clustering with Distance-based differential pri-
vacy. Distance-based privacy is motivated by the
fact that it is often only needed to protect the pri-
vacy of exact, rather than approximate, locations.
We provide constant-approximate algorithms for
k-means and k-median clustering, with additive
error depending only on the attacker’s precision
bound ρ, rather than the radius Λ of the space.
In addition, we empirically demonstrate that our
algorithm performs significantly better than pre-
vious differentially private clustering algorithms,
as well as naive distance-based private clustering
baselines.

1. Introduction
Two of the most fundamental and widely studied prob-
lems in unsupervised machine learning are the k-means
and k-median clustering problems. Solving these clus-
tering problems can allow us to group together data effi-
ciently, and hence extract valuable and concise information
from massive datasets. The goal of the k-means (resp.,
k-median) clustering problem is: given a dataset X of
points, construct a set C of k centers to minimize the clus-
tering cost

∑
x∈X d(x,C)2 (resp.,

∑
x∈X d(x,C)), where

d(x,C) represents the minimum distance between the data
point x and the closest center in C.

In general, machine learning and data mining algorithms
are prone to leaking sensitive information about individuals
who contribute data points. In certain scenarios, this can
lead to severe consequences, including losses of billions
of dollars (Neate, 2018) or even the loss of human lives
(Baraniuk, 2015). Thus, providing accurate algorithms that
protect data privacy has become crucial in algorithm design.
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Over the past decade, the notion of differential privacy (DP)
(Dwork et al., 2006) has emerged as the gold standard for
privacy-preserving algorithms, both in theory and in prac-
tice, and has been implemented by several major companies
and the US Census (Erlingsson et al., 2014; Shankland,
2014; Ding et al., 2017; Abowd, 2018). Informally, DP
requires the output (distribution) of the algorithm to remain
almost the same under a small adversarial perturbation of
the input. Hence, even the knowledge of all but one data
point, along with the output of the algorithm, still cannot
reveal significant information about the final data point.

The importance of k-means and k-median clustering, as
well as preserving data privacy, has led to a large interest
in designing differentially private clustering algorithms in
Euclidean space (Blum et al., 2005; Nissim et al., 2007;
Feldman et al., 2009; Gupta et al., 2010; Mohan et al., 2012;
Wang et al., 2015; Nissim et al., 2016; Nock et al., 2016; Su
et al., 2016; Feldman et al., 2017; Balcan et al., 2017; Nis-
sim & Stemmer, 2018; Huang & Liu, 2018; Stemmer & Ka-
plan, 2018; Stemmer, 2020; Ghazi et al., 2020; Jones et al.,
2021; Chang et al., 2021; Nguyen et al., 2021; Chaturvedi
et al., 2022; Blocki et al., 2021; Cohen-Addad et al., 2022a;
Epasto et al., 2022; Cohen-Addad et al., 2022b; Mahpud
& Sheffet, 2022). Here, the goal is to design a differen-
tially private set of k centers, such that the clustering cost
with respect to these centers is only a small factor larger
than the optimal (non-private) clustering cost. Importantly,
the work of (Stemmer & Kaplan, 2018; Ghazi et al., 2020;
Cohen-Addad et al., 2022b) led to efficient polynomial-time
and differentially private algorithms that achieve constant
multiplicative approximation ratios.

While we can obtain DP algorithms with low multiplicative
error, all such algorithms also require an additional addi-
tive error. If Λ is the radius of a ball that is promised to
contain all data points, even the best private clustering al-
gorithms are known to have an additive error proportional
to poly(k, d) · Λp, where p = 2 for k-means and p = 1
for k-median. This factor of Λp is in fact unavoiadable, as
a single individual datapoint can be moved up to distance
Λ and the algorithm must preserve privacy with respect to
this change. If we do not have a good bound of Λ, this
factor may dominate the error, and may make the clustering
algorithm highly inaccurate. Even if the bound is known
exactly, errors scaling with Λ may however be unnecessary
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and unacceptable in certain situations.

The additive error depending on Λ is necessary because stan-
dard differential privacy requires us to protect learning any-
thing about the location of any point. However, in practice
this may not be necessary as it might be enough to not know
the location of a point up to a certain error. For instance, in
address data, the risk is leaking the actual location, but un-
certainty within a few miles in a city is sufficient to protect
the privacy of the person (Chatzikokolakis et al., 2013).
Another motivation is in smart meters (Chatzikokolakis
et al., 2013, Section 6.1), where accurately learning the fine-
grained consumption can result in spectacular privacy leaks
(e.g. learning which TV channel is being watched (Greveler
et al., 2012; Lam et al., 2007)) but slight uncertainty on
the measurements is sufficient to protect from such attacks.
Moreover, when differential privacy is used to protect the
algorithm from adversarial inputs, it is often sufficient to
protect against small perturbations as large perturbations
can be detected or removed otherwise (Lécuyer et al., 2019).

These cases can be modeled by variants of differential pri-
vacy, such as dX privacy (a.k.a. extended differential pri-
vacy) (Chatzikokolakis et al., 2013; Fernandes et al., 2021),
and pixelDP (Lécuyer et al., 2019). All such models are
adaptations or generalizations of DP which take into account
a metric over the datasets.

In this paper, we study a concrete formulation of distance-
based privacy which we call dist-DP. An algorithm is
(ε, δ, ρ)-dist-DP if the algorithm protects (ε, δ)-differential
privacy of a single data point if it is moved by at most ρ in
a metric space. This is a less restrictive version of DP, as
usually the neighboring datasets are defined to be any two
datasets with a single point allowed to move anywhere.

The main question we study in this paper is the following:
can we obtain much better approximation results (and al-
gorithms better in practice) if we allow the algorithm to
resist small movements, as opposed to arbitrary movements,
of a point for instance for clustering? In other words, can
we design ρ-dist-DP algorithms that perform significantly
better than the state of the art regular DP algorithms for
k-means or k-median clustering?

1.1. Our Results

In this work, we answer the above question affirmatively,
by providing an efficient and accurate theoretical algorithm,
and showing empirically that our algorithm outperforms
clustering algorithms with standard differential privacy.

1.1.1. THEORETICAL RESULTS

From a theoretical perspective, we are able to obtain O(1)-
approximate algorithms for k-means and k-median cluster-
ing with ρ-dist-DP, and with additive error essentially only

depending on the smaller distance ρ as opposed to the full
radius Λ. More precisely, our main theorem is the following.

Theorem 1.1. Let n, k, d be integers, ρ ∈ (0,Λ], ε, δ ∈
(0, 1] be privacy parameters, and p ∈ {1, 2}. Then, given a
dataset X = {x1, . . . , xn} of points in a given ball of radius
Λ in Euclidean space Rd, there exists a polynomial-time
(ε, δ, ρ)-dist-DP algorithm A that outputs a set of centers
C = {c1, . . . , ck}, such that

n∑
i=1

d(xi, C)p ≤ O(1) · min
C∗⊂Rd

|C∗|=k

n∑
i=1

d(xi, C
∗)p

+poly

(
k, d, log n,

1

ε
, log

1

δ
, log

Λ

ρ

)
·ρp.

Here, p = 1 for k-median and p = 2 for k-means.

Qualitatively, Theorem 1.1 has similar guarantees to (Stem-
mer & Kaplan, 2018), who provided an (ε, δ)-differentially
private algorithm with an O(1)-approximation algorithm
and additive error that was poly(k, d, log n, 1

ε , log
1
δ ) · Λ

p.
The main difference is that we drastically reduce the addi-
tive error by reducing the dependence on Λ to a dependence
on the distance privacy parameter ρ.

Running time and parallel computation. The runtime
of a straightforward implementation of our algorithm is
Õ(nkd) + poly(k) · d,1 if we also ignore polynomial fac-
tors in log Λ

ρ . By using approximate near neighbor algo-
rithms, we can improve this further to Õ(nd) + poly(k) · d,
which for k at most a small polynomial in n, is nearly lin-
ear. In addition, the algorithm can be easily implemented in
the massively parallel computation (MPC) model (Karloff
et al., 2010; Beame et al., 2017) (an abstraction of MapRe-
duce (Dean & Ghemawat, 2004)) using O(1) rounds and
near linear total space where each machine has sublinear
space. We discuss these further at the end of Appendix C
(see the Supplementary material).

Finally we remark that the ρp dependence in the additive
error is required for ensuring ρ-dist-DP. We prove in Ap-
pendix D (see the Supplementary material) that any (ε, δ, ρ)-
dist-DP algorithm must incur Ω(k · ρ2)-additive error for
k-means and Ω(k · ρ)-additive error for k-median.

1.1.2. EMPIRICAL RESULTS

We empirically studied the performance of our algorithm
on public and real-world datasets. We compare the ap-
proximation guarantee of our algorithm with the standard
DP clustering algorithm and the standard non-private k-
clustering algorithm. Experiments show that our algorithm
outperforms the DP clustering algorithm and is only slightly

1Õ(f(n)) denotes O(f(n) log f(n)).
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worse than the non-private algorithm. In addition, we show
that smaller ρ provides a better approximation guarantee,
which aligns with our theoretical study. We refer readers for
more details of our empirical study to Section 3.

2. Technical Overview
In this section, we describe the high-level ideas for obtaining
Theorem 1.1. For simplicity, in this overview we focus on
k-median and assume the dimension is d = (log n)O(1).

Our approach follows two high-level steps, inspired by the
work of (Chen, 2009; Cohen-Addad et al., 2022b). The
insight used in (Cohen-Addad et al., 2022b), which proved
highly efficient private clustering algorithms, is to start by
generating a crude but private solution that may use a large
number of centers and have a large approximation, but has
small additive error. Then, one can apply the crude solution
to partition the Euclidean space Rd into smaller regions,
and apply some regular differentially private clustering algo-
rithm in the regions. We follow a similar high-level template
to (Cohen-Addad et al., 2022b). However, we still need to
implement each of these steps, which require several techni-
cal insights to ensure we maintain privacy while only losing
additive error roughly proportional to poly(k, d) · ρ.

To obtain a crude approximation, we use a technique based
on partitioning the space Rd into randomly shifted grids at
various levels (also known as the Quadtree). In the Quadtree,
the 0th level is a very coarse grid containing the large ball
of radius Λ, and each subsequent level refines the previ-
ous level with smaller grid cells. For a single grid and
knowledge of which point lies in which grid cell, a natural
approach for minimizing cost would be to output the centers
of the “heaviest” cells, i.e., those with the most number of
points. Indeed, it is known that outputting the O(k) heaviest
cells at each grid level provides a good approximation, at
the cost of having more than k centers.

While this is not DP, a natural way of ensuring privacy
would be to add Laplace noise to each count and add the
heaviest cells after this. Unfortunately, doing so will lead to
error depending on the full radius Λ. For example, if there
was only a single data point, there will be at least ed cells
even at coarse levels, and several of them may have large
noisy counts. Hence, we are likely to choose completely
random cells, which will cause additive error to behave like
Λ as opposed to ρ. Another option is to add noise to the
points first and then compute the heaviest cells. While this
avoids additive dependence on Λ, the additive dependence
will behave like n · ρ where n is the full size of the dataset.

Surprisingly, we show that we can combine both of these
observations in the right way. Namely, for coarse cells (i.e.,
with length larger than Õ(ρ)), we add noise (of distance
proportional to Õ(ρ)) to the data points directly to generate

private points x̃i, and then compute the heaviest cells with-
out adding noise to the counts. For fine cells (length smaller
than Õ(ρ)), we do not add noise to the data points, but we
add Laplace noise to the cell counts.

To explain the intuition behind this, suppose that the n data
points happen to be perfectly divided into n/k clusters,
where every point has distance r to its nearest cluster center.
If r ≫ ρ, then even if we add Õ(ρ) noise to each data
point, we will still find cluster centers that are within Õ(r)
of each correct center. So, the k-means cost should only
blow up by a small multiplicative factor, without additive
error. Alternatively, if r ≪ ρ, then the grid cells of side
length Õ(r) should contain the entire cluster, and hence
have n/k points in them. Assuming n ≫ d · k, even if we
add Laplace noise to each of ed cells, none of them will
exceed n/k. Alternatively, if n ≪ d · k, then our approach
of simply adding noise to the points and obtaining n ·ρ error
will be only O(dk) · ρ, which is small.

In summary, we can generate a crude approximation F with
roughly O(k) cells per grid level (and Õ(k) centers total),
with small additive ratio. But we desire for the number of
centers to be exactly k, and the multiplicative ratio to be
O(1), whereas ours will end up being dO(1). To achieve
such an accurate result, we use F to partition the data into
regions, and apply a private coreset algorithm on each. By
combining these coresets together, we may obtain a private
coreset of the full data, and then we can apply an O(1)-
approximate non-private algorithm on the coreset.

A first attempt, inspired by (Chen, 2009; Cohen-Addad
et al., 2022b), is to send each xi to a region Sj if fj ∈ F
is the closest center to xi, and then compute a standard
(i.e., not dist-DP) private coreset on each region Sj . To
avoid dealing with large additive errors depending on Λ,
we further split each region into a close and far region,
depending on whether the distance from xi to fj is more
than or less than S · ρ for some parameter S.

This attempt will still suffer from a large additive cost. For
instance, if a point moves, even by distance ρ, it may move
from a close region to a far region. Hence, the far region may
have 1 more point, and since the far regions have diameter
Λ, an algorithm that is private to adding or deleting a point
must incur error proportional to Λ.

Our fix for this is to assign each xi to a region not based
on its closest point and distance, but instead based on x̃i’s
closest point and distance, where we recall that x̃i the noisy
version xi. For the points {xi} that are mapped to a far
region (meaning x̃i is far from its nearest fj), we will simply
use {x̃i} as the coreset, as x̃i is already dist-DP. However,
for points that are mapped to a close region, while we use
x̃i to determine which region the point xi is mapped to, we
compute a private coreset using (Stemmer & Kaplan, 2018)
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on the points xi, rather than use the points x̃i.

To explain why this algorithm is accurate, for the close
regions, we obtain additive error proportional to S · ρ as we
apply the private coreset on a ball of radius S·ρ. There is one
region for each center in F , which multiplies the additive
error by |F | = Õ(k). For the far regions, we first note that
d(x̃i, C) = d(xi, C)± Õ(ρ) for any set of k centers C, as
d(xi, x̃i) ≤ Õ(ρ). Hence, we have additive error Õ(ρ) per
point. While this seems bad as this might induce additive
error for n points, we in fact show that this additive error
can be “charged” to multiplicative error. To see why, if xi

mapped to the far regions, this means d(x̃i, F ) ≥ ρ · S,
which also means d(xi, F ) ≥ Ω(ρ ·S), If there were T such
points, then the total cost of X with respect to F is at least
T · ρ ·S, whereas the additive error is roughly T · ρ. Finally,
in our crude approximation we show cost(X;F ) is at most
dO(1) times the optimum k-means cost, which means for
S ≫ dO(1) the additive error is small even compared to the
optimum cost. Hence, we can charge the additive error to
multiplicative error. We still have additive error from the
close regions, but for S = dO(1), the additive error is only
poly(k, d) · ρ.

To summarize, while our techniques are inspired by (Cohen-
Addad et al., 2022b), one important novel technical contri-
bution of our work is that while (Cohen-Addad et al., 2022b)
uses the true locations of the points to assign them to re-
gions, we first add Gaussian noise to the points to determine
their region, and then use the noised points only for the “far”
regions and the true points only for the “close” regions. This
change is crucial in ensuring the analysis is successful. In
addition, we must set several parameters carefully to charge
the additional incurred cost either to a small additive or
small multiplicative factor.

3. Empirical Evaluation
In this section, we study the emperical approximation of our
ρ-dist-DP k-means clustering algorithm.
Datasets. We evaluate our algorithm on 6 well-known
public datasets brightkite (51406×2), gowalla (107092×2),
shuttle (58000×10), skin (Bhatt & Dhall, 2010) (245057×
4), rangequeries (Savva et al., 2018) (200000 × 6) and
s-sets (Fränti & Sieranoja, 2018) (5000 × 2). Brightkite
and gowalla are datasets of geographic locations (latitude
and longitude) of users and can be found in Stanford Large
Network Dataset Collection (SNAP) (Leskovec & Krevl,
2014), shuttle, skin and rangequeries are non-geographic
datasets and can be found on UCI Repository (Dheeru
& Karra Taniskidou, 2017), and s-sets is another non-
geographic dataset and can be found in the clustering
benchmark dataset2. We preprocess each dataset to fit into
[−1, 1]d. We refer readers to Appendix E in the Supplemen-
tary material for more details of the preprocessing steps.

2https://cs.joensuu.fi/sipu/datasets/.

Setup. We compare our algorithm with three other algo-
rithms. We report the k-means cost of all algorithms. The
three compared baseline algorithms are as follows.

1. Non-private baseline: We compare our algorithm with
the non-private k-means solver using k-means++ seed-
ing implemeted by Python scikit-learn package (Pe-
dregosa et al., 2011). The output k-means cost of this
baseline can be regarded as the groudtruth cost.

2. DP baseline: This is a k-means clustering algorithm
in the standard DP setting implemented in part of a
standard open-source DP library 3.

3. ρ-Dist-DP baseline: We run non-private k-means
solver on a dataset X̃ , where we apply (ε, δ, ρ)-dist-DP
preserving noise directly to each data point.

In all experiments, we fix privacy parameters ε = 1, δ =
10−6. We evaluate our algorithms for different choices of
the privacy parameter ρ. Note that the parameter ρ should
not be determined by our algoirhtm. We try different ρ to
show how the choice of ρ affects the clustering quality. We
refer readers to Section 7 (in the Supplementary material)
for more discussions of the choice of ρ.

Our Results. We run all algorithms for k = 4, 6, 8, 12, 16.
For each experiment, we repeat 10 times and report the mean
and the standard error. In the experiments shown in Figure
1 in the full paper (see the Supplementary material), we
fix ρ = 0.054. The k-means cost of our dist-DP k-means
algorithm is always smaller than the cost of DP k-means
baseline and is only slightly worse than the non-DP base-
line which is as expected. The dist-DP baseline introduces
a large k-means cost which implies that our partitioning
straties are indeed necessary and can improve the clustering
quality significantly in practice. Finally, we fix k = 8 and
investigate how the changes of ρ affect the k-means cost
of our dist-DP k-means algorithm. We run our algorithm
on all datasets for ρ = 1, 0.08, 0.008, 0.0001. As shown in
Figure 2 in the full paper, the k-means cost decreases as ρ
decreases, which is as expected. For running time, though
we did not optimize our implementation, each algorithm
runs within at most a few minutes in a single thread mode.

In summary, for a reasonable range of ρ, we significantly
outperform previous DP k-means algorithms, whereas more
naive distance-based DP algorithms perform far worse. In
addition, we have comparable approximation guarantees
even to the non-private k-means algorithm.

3https://ai.googleblog.com/2021/10/
practical-differentially-private.html.

4We show advantages of our clustering for an example ρ which
neither depends on our algorithm nor be optimized. An example
of the privacy guarantee of ρ = 0.05: For geographic (latitude and
longitude) datasets (e.g., brightkite, gowalla), an attacker is hard
to distinguish whether a user was in New York or in Toronto.
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