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ABSTRACT

Safe Reinforcement Learning from partial observations frequently struggles with
rapid performance degradation and often fails to satisfy safety constraints. Upon
deeper analysis, we attribute this problem to the lack of necessary information
in partial observations and inadequate sample efficiency. World Models can help
mitigate this issue, as they offer high sample efficiency and the capacity to memo-
rize historical information. In this work, we introduce AsymDreamer, an approach
based on the Dreamer framework that specializes in exploiting low-dimensional
privileged information to build world models, thereby enhancing the prediction ca-
pability of critics. To ensure safety, we employ the Lagrangian method to incorpo-
rate safety constraints. Additionally, we formulate our approach as an Asymmetric
CPOMDPs (ACPOMDPs) framework and analyze its superiority compared to the
standard CPOMDP framework. Various experiments conducted on the Safety-
Gymnasium benchmark demonstrate that our approach outperforms existing ap-
proaches dramatically in terms of performance and safety.

1 INTRODUCTION

As reinforcement learning (RL) has been successfully applied to various control problems Mnih
et al.| (2015); [Yu et al|(2019), ensuring safety is crucial for real-world deployment |Dulac-Arnold
et al.| (2021)); Liu et al. (2021)) . Given that partial observability is a fundamental aspect of real-world
RL control problems|Baisero & Amato|(2021), Safe Reinforcement Learning (SafeRL) must account
for partial observations. These problems are often formulated as Constrained Partially Observable
Markov Decision Processes (CPOMDPs) |Lee et al.| (2018]), where the agent operates based on a
history of past observations and actions, without direct access to the true underlying states. Although
significant research has been dedicated to addressing these challenges, most approaches either fail to
strictly satisfy safety constraints or experience performance degradation due to insufficient critical
information and low sample efficiency.

Model-based reinforcement learning (MBRL)Hatner et al.|(2019)); Deisenroth & Rasmussen| (201 1))
has shown promise in overcoming these challenges by utilizing a world model that captures environ-
mental dynamics and generates task-specific predictions from past observations and actions. This
allows agents to learn from imaginary rollouts, rather than relying solely on sampled real-world
trajectories LeCun & Courant| (2022)), which enhances both sample efficiency and safety. However,
while the world model retains historical information, it does not fully resolve the issue of missing
critical information. MBRL typically combines the world model with actor-critic methods for policy
optimization. Unfortunately, the critic’s slow or inaccurate learning of value functions can create a
performance bottleneck for the policy.

Since training is often conducted in simulators, there is potential to leverage privileged informa-
tion during training to reduce uncertainty from partial observations |Pinto et al.| (2017); Salter et al.
(2021)); Baisero & Amato|(2021). Actor-critic methods, in particular, can handle asymmetric inputs,
where the actor receives historical information and the critic accesses privileged information such
as true states. This asymmetry is possible because the critic is used only during training and is not
required during the agent’s deployment. However, since the actor and critic share the same world
model, encoding privileged information into the model may cause the actor to become dependent
on it, conflicting with the requirement that the actor operates purely based on historical information
during deployment.



In this work, we address the challenge of exploiting asymmetric inputs in MBRL under the
CPOMDPs framework. We propose AsymDreamer, a novel algorithm that uses privileged informa-
tion to construct a world model specifically for the critic. Additionally, we formulate our approach
as the Asymmetric Constrained Partially Observable Markov Decision Processes (ACPOMDPs)
framework and demonstrate its theoretical advantages. Our key contributions are summarized as
follows:

e We introduce the ACPOMDPs framework, an extension of the CPOMDPs that allows the
actor and critic to receive asymmetric inputs. We theoretically prove that asymmetric inputs
reduce the number of critic updates and lead to a more optimal policy compared to standard
CPOMDPs framework.

e We propose AsymDreamer, a novel MBRL approach that constructs two world models:
one for the actor based on historical information, and another for the critic, which leverages
privileged information.

o We integrate AsymDreamer with the Lagrangian method |[Nocedal & Wright (20006); (L1
et al.| (2021), achieving competitive performance on the Safety-Gymnasium benchmark |Ji
et al. (2023) and demonstrating strong adaptability to complex scenarios.

2 RELATED WORK

2.1 SAFE MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning (RL) approaches | Moerland et al.| (2022); Polydoros & Nalpan-
tidis| (2017) present significant advantages for solving safe RL problems by facilitating the model-
ing of environmental dynamics. These approaches can be classified into two primary categories:
planning-based methods Hafner et al.|(2019) and learning-based methods Berkenkamp et al.|(2017).
Planning-based methods do not directly incorporate costs into the policy update process; instead,
they implement an explicit planning step prior to action execution. In contrast, learning-based meth-
ods integrate costs directly into policy updates, utilizing the world model to enhance sample effi-
ciency.

Planning-based methods Among planning-based methods, [Koller et al.| (2019); Wabersich &
Zeilinger|(2021); Zwane et al.|(2023)) enable safe action sampling through a combination of Gaussian
Processes and model predictive control (MPC). Additionally, Liu et al.|(2020) employ ensembles of
neural networks (NN), the Cross Entropy Method (CEM) [Kroese et al.| (2006)), and rejection sam-
pling to optimize the expected returns of safe action sequences. Recent work by (Huang et al., 2024)
has achieved zero-cost performance by integrating the constrained Cross-Entropy Method (CCEM)
Wen & Topcu| (2018)) while considering long-term rewards and costs. Nonetheless, planning-based
methods encounter challenges with myopic decisions due to the limited scope of planning and the
absence of critics.

Learning-based methods|Jayant & Bhatnagar|(2022);|Thomas et al.|(2022) facilitate the integration
of model-free algorithms with safety constraints by employing ensemble Gaussian models. Alter-
natively, [Zanger et al.|(2021)) use NNs and constrained model-based policy optimization. but do not
leverage model uncertainty within an optimistic-pessimistic framework. Recently, LAMBDA |As
et al.| (2022) integrate the Bayesian methods with the Dreamer |Hafner et al.| (2020) framework to
quantify uncertainty in the estimated model, employing the Lagrangian method to incorporate safety
constraints. Similarly, Safe-SLAC |[Hogewind et al|(2022)) integrates the Lagrangian mechanism
into the SLAC framework established [Lee et al.|(2020) to address the problem of safe reinforcement
learning from pixel observations. However, from the perspective of partially observable Markov de-
cision processes (POMDPs) Kaelbling et al.| (1998), constructing world models solely from partial
observations does not fully exploit the potential of these models.

2.2 LEVERAGING PRIVILEGED INFORMATION

The use of asymmetric inputs is not uncommon in the single-agent domain. |Pinto et al.[{(2017);|Salter,
et al.| (2021); Baisero & Amato| (2021)) utilize asymmetric actor-critic methods to accelerate the
training of the critic by granting access to privileged information while providing only images to the
actor. |Baisero et al.[(2022) introduce Asymmetric DQN, an asymmetric variant of DQN designed to



address partially observable Markov decision processes (POMDPs)/Yamada et al.| (2023) represent
the first attempt to utilize privileged information in the training of world models. However, this
method employs privileged information by distilling the learned latent dynamics model from the
teacher to the student world model. Since this process of model distillation inevitably leads to a
loss of information, the current exploration of world models using privileged information remains
inadequate.

3 PRELIMINARIES

In this section, we provide a brief overview of the Constrained Partially Observable Markov Decision
Processes (CPOMDPs), which is used to formulate safety constraints in sequential decision making
problems under partial observations.

3.1 CONSTRAINED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES (CPOMDPS)

Sequential decision making problems under partial observations are typically formulated as a Par-
tially Observable Markov Decision Processes (POMDPs) |[Egorov et al.| (2017), represented as the
tuple (S, A, P, R, Z, O, ). The state space is denoted as S and the action space as A. The transition
probability function P (s’|s, a) captures the likelihood of the agent moving from state s to state s’
upon taking action a. Z is the observation space, O (z|s’, a) stands for the observation probability.
The reward function R : S x A — R specifies the reward obtained when transitioning from state
s to s’ via action a. The discount factor is represented by . In a Partially Observable Markov Deci-
sion Processes (POMDPs) framework, the agent has access only to the observations z; and actions
a; at each time step ¢, without direct knowledge of the underlying state of the environment. As a
result, the agent must maintain a belief state b;, where b; (s) = Pr(s; = s|h, bo) represents the
probability distribution over possible states s, given the history hy = {29, ag, 21,01, ... ,0t—1, 2t }
of past actions and observations, and the initial belief state by. With the belief state b, the POMDP
can be understood as the belief-state MDP (B, A, 7, Rp,~) We denote the set consisting of all pos-
sible belief states as B, the belief reward function as Rp (b, a) = . b(s)R(s, a), the transition
function as 7(b, a, z). For simplicity, we write 7(b, a, z) as b%*. Crucially, the agent’s policy is de-
noted as 7y, which defines the probability distribution over actions a given the current belief state b,
i.e., mg (a | b), where 0 is a learnable network parameter. The objective in a POMDP is to maximize
the long-term belief expected reward Vg (bg):

max Vg (bo) = Ea,~x[>peoV R (bt ar) |bo] (1)

Constrained POMDPs (CPOMDPs) is a generalization of POMDPs. It is formally defined by tu-
ple (S, A,P,R,Z,0,C,d,~) The cost function set C = {(C;,b;)}."; comprises individual cost
functions C; and their corresponding cost thresholds b;. The goal is to compute an optimal policy
that maximizes the long-term belief expected reward Vg (bg) while bounding the long-term belief
expected costs Vi, (bg):

max Vg (bo) = Ea,~x 327207 B (b, ar) |bo]

% 2)
StVCz (bo) = EatNW[Zt:O’YtCiB (btv at) |b0] S b“VZ S [m]
In practical implementations, the Vi (bg) are updated by the Bellman optimal equation:
Vii(b) = max | Rp(b,a) + 7> Pr(zlb,a)Vi(b7) 3)

a€A
L z€EZ |

and the Vg, (bg) is updated equivalently. Consequently, the optimal policy of CPOMDPs is:

7. = argmax R (b,a) +»yZ€ZZPr(z|b, a)Vi (b%%)

s.t.Ve, (b) < b, Vi € [m]




4 ASYMMETRIC CONSTRAINED PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES (ACPOMDPS)

In this section, we introduce our formulation of the Asymmetric Constrained Partially Observable
Markov Decision Processes (ACPOMDPs) and compare it with the standard CPOMDPs. This com-
parison highlights the advantages of utilizing an asymmetric architecture, particularly in terms of
improving sample efficiency and achieving better policy performance under safety constraints.

4.1 FRAMEWORK SETUP

We propose Asymmetric Constrained Partially Observable Markov Decision Processes
(ACPOMDPs), a relaxed variant of CPOMDPs. The key distinction is that ACPOMDPs assumes the
availability of the underlying states when computing the long-term expected values. Our framework
is grounded in the actor-critic algorithm, where the actor optimizes the policy 7 , while the critic es-
timates the long-term expected values Vy and V. In contrast to the standard actor-critic algorithm,
where both the actor and the critic only have access to the history hy = {20, ag, 21,01, ...,a1-1, 2t}
ACPOMDPs grant the critic privileged access to all information, including the underlying states.
Thus, similar to CPOMDPs, ACPOMDPs are formulated by a tuple (S, B, A, 7, Rg,C,d,~), and
aims to maximize the long-term belief expected reward V5 (b) while bounding the long-term belief
expected costs Vi, (b):

T, = argmax Vr(b) @

s.t.Ve, (b) < b, Vi € [m)]
Benefiting from the availability of the underlying states, at each time step, the critic receives and the
action ¢ and the underlying state s, and updates the V};(s) using the following equation:

Vi(s) = max | R(5,0) 4 3 P ls, a)Vi(s) )

Consequently, the V() and V¢, (b) in the optimization problem equation d]are estimated using this
updated V};(s):

Vi) = " b(s)Vii(s) ©)

seS
Notice that the update of the Vi, (b) is not presented, which is equivalent to equation @

4.2 COMPARISON WITH CPOMDPs

We compare the different estimations of the Vz(b) and Vi (b) to demonstrate the superiority of
ACPOMDPs. Since the Vi (b) and V(D) are equivalent in their estimations, we Collectively refer
to them as V' (b). For clarity, we rewrite the V'(b) in CPOMDPs as V,,,, (b) and V' (b) in ACPOMDPs
as Vasym (D).

Lemma 4.1 |Kaelbling et al.|(1996) showed that the value function at time step t can be expressed
by a set of vectors: T'y = {ag, a1, ...,am}. Each a-vector represents an |S|-dimensional hyper-
plane, and defines the value function over a bounded region of the belief:

Vi) = max a(s)b(s) 7
ses

Lemma 4.2 Assume the state space S, action space A, and observation space Z are finite. Let
|S|, |Al, and | Z| represent the number of states, actions, and observations, respectively. Let |T's_1|
denote the size of the solution set for the value function V;_1(b) at time step t — 1. The minimal
number of elements required to express the value function V;(b) at time step t, denoted as ||, grows
as |T¢| = O(JA||Ty_1|1Z!) (Pineau et al.,|2006).

We conclude that, at each time step ¢, the belief state space can be represented as a discrete represen-
tation space that exactly captures the value function V;(b). The size of this space is given by |T';| =



O(|A||Ts—1||Z|). Furthermore, as derived from equation [6] in the ACPOMDPs framework, the
required size of the representation space is reduced to |S|. Clearly, | S| < |T;| = O(JA[|T:—_4|'%]).

Thus, ACPOMDPs significantly reduce the size of the representation space required to express the
value function V'(b), eliminating observation-related uncertainties to the greatest extent possible.
This, in turn, reduces the number of updates required for the critic to estimate the value function
V(b).

Theorem 4.3 Let V', . (b) and V,, (b) represent the optimal long-term expected values under
the ACPOMDPs and CPOMDPs frameworks, respectively. Then, for all belief states b € B, the
inequality holds: V¥, .. (b) > Vg . (b). (The proof is provided in Appendix@)

The conclusion indicates that the ACPOMDPs framework, by leveraging asymmetric information,
yields superior policies compared to the CPOMDPs framework. This is because, for any belief state
b € B, the optimal long-term expected reward under ACPOMDPs is always greater than or equal
to that under CPOMDPs. Regarding safety, ACPOMDPs provide more accurate estimations due
to additional information, while long-term expected costs under CPOMDPs are consistently lower
or equal to those of ACPOMDPs. This implies that CPOMDPs tend to underestimate future safety
risks.

5 METHODS

In this section, we introduce AsymDreamer, an algorithm grounded in the ACPOMDP framework
that leverages privileged information to enhance both the agent’s performance and safety. As Asym-
Dreamer incorporates an observation world model, a privileged world model, and an actor-critic
model, we emphasize the collaborative interaction between these components.

5.1 ASYMMETRIC WORLD MODEL LEARNING

The world models are parameterized with the learn- Frivleand ton Hoce!
able network parameter ¢, and ¢, respectively. At
each time step ¢, the world models receive an obser-
vation o4, an action a;, and privileged information
p¢ as inputs. Encoders map o; and p, to stochas-
tic representations z¢ and 2%, respectively. The se-
quence models then use these representations, along
with the action, to predict the next states z{,; and
z],,, during which the recurrent states h{ and hy
are updated within the sequence models. We de-
fine the concatenation of h; and z; as the model
state s; = {hy, 2 }. Finally, reward and cost de-
coders take the concatenation of s¢ and s? to predict Figure 1: Asym World Model Learning
rewards and costs, while observation and state de-

coders use s? and s? to predict the corresponding observations and states. In summary, the key
model components are:

Toz
e

Observation World Model

Observation World Model Privileged World Model
State encoder: z; ~ Ey (2 | hi,pt)
Observation encoder: 29 ~ Ey_ (27 | h{, 01) State decoder: py ~ Ey (py | s7)
Observation decoder: 6, ~ Ey_ (64 | s7) Reward decoder: 7, ~ Ey (7 | s, s7)
Sequence model: hy, 20 = Eg, (27 | s¢_1,a1-1) Cost decoder: ¢, ~ Ey (¢4 | s}, 79)

Sequence model: hf,z{ = Eg (z{ | hY,ps)

Trade-off Avoidance As illustrated in Figure[I] the observation world model focuses exclusively on
observation modeling, while the privileged world model emphasizes task-centric predictive capabil-
ities. By separating observation modeling from task-centric prediction modeling, we can avoid the
potential trade-off between these two tasks Ma et al.| (2024). The specialization of the observation
and privileged world models allows each component to excel in its respective domain without com-
promising the other. This synergistic approach ultimately results in improved overall performance.



Information Sharing Mechanism This asymmetric training structure provides the privileged world
model with access to all the information from the observation world model. As shown in Figure|]
the privileged world model enhances its reward decoder and cost decoder by utilizing the union
model state s; = {s9,s7}. Experimental results indicate that while the privileged information
contains all the information necessary for predicting costs and rewards, the incorporation of local
observations continues to offer significant advantages.

Information Maximization This asymmetric training structure enables both the observation and
privileged world models to capture the maximum amount of information. The observation world
model, which focuses exclusively on observation modeling, is designed to capture more detailed
observation information. Meanwhile, the privileged world model not only utilizes privileged in-
formation but also leverages the information from the observation world model. In addition, the
privileged world model can converge more rapidly due to the low dimensionality of the privileged
information, thereby accelerating the training of the critic model.

Generalizability Importantly, since most world models adhere to a common structural framework,
the asymmetric training structure depicted in Figure [T can be readily transferred to Bayesian world
models |(Chua et al.| (2018); [Depeweg et al.| (2018]), latent variable world models |Lee et al.| (2020),
RSSM-based world models [Hafner et al.| (2019), and Transformer-based world models (Chen et al.
(2022); ivan den Oord et al.| (2018)).

5.2 ASYMMETRIC ACTOR-CRITIC MODEL LEARNING

The actor and critic models learn purely from the imaginary rollouts predicted by world models.
Specifically, at time step ¢, the actor model, parameterized with the learnable network parameter 6,
operates on the model state s? to predict the policy distribution mg(a; | s?). The critic models, on
the other hand, operate on union model state s, to estimate the long-term expected returns vy, (s;)
and vy, (s;). In summary, the key components of the actor-critic model are:

Actor: ay ~ mp(as | s7)

Reward Critic: vy, (s¢) ~ Er, [R}] )
Cost Critic: vy, (s1) = Er, [C}]

Synchronous Imagination Due to the fact that the ac- Observation WM Privileged WM
tor and the critic operate on two separate world mod-
els, a method must be developed to generate two imag-
inary rollouts that represent the same trajectory across
both models. As shown in Figure 2] starting from rep-
resentations of replayed inputs s¢ and sY, for each time
step t, the actor sample an action a; from the policy dis-
tribution g (a; | s9) utilizing the s? form the observation
world model, then each world model predict its next rep-
resentations s7, ; and s}, ,, along with predicted cost ¢;
and predicted reward 7, untill the time step ¢ reaches the
imagination horizon H = 15. This synchronization of
the imagination process across the two world models en-
ables the actor and critic to learn from coherent simulated
trajectories.

Actor-Critic Model Learning An imaginary trajectory
{8, s, as, 7, ¢}y, is provided to the actor and the crit-
ics after the synchronous imagination process. Based on
this trajectory, the critics can estimate the long-term ex-
pected returns vy, (s¢) and vy, (s¢) while the actor opti-
mizes its policy according to a specified objective. No-
tably, there are no constraints on how long term expected
returns are estimated and the optimization objective of the
policy.

Figure 2: Synchronous Imagination



6 PRACTICAL IMPLEMENTATION

World Model Implementation The world model are implemented as a Recurrent State-Space
Model (RSSM) Hafner et al.| (2019), where the encoder and decoder that trained via variational
auto-encoding |Doersch| (2021) method transforms the observation o; and privileged information p;
into stochastic representations z¢, z7, respectively. These stochastic representations z;, together
with action a; and recurrent state h; within the corresponding sequence model are used to predict
next representation z;y1, which are supervised by the dynamics loss. Meanwhile, the representa-
tions 2y, , and z{, , are supervised by the regularization loss to ensure the representations zy, ; and
2y, are predictable. The decoders are trained via the prediction loss. Specifically, the observation
decoder is trained using Mean Squared Error (MSE) loss, while the reward and cost decoders are
trained using the symlog loss.

T

L(o)ors = Y ag KLz || sg(27)] + ap KL [sg(=f) || 7] — 5o 0y, (01 | 57) ©)
=t regularization loss dynamics loss observation loss

T
L(¢p)priv = Za’; KL (27 || sg(27)] + oy KL [sg(27) || 2] = B In Oy, (01 | 57)
regularization loss dynamics loss observation loss

— B2 Ry, (ry | se(s9) || sF) — B2 Gy, (cr | se(s9) || s7) (10)

reward loss cost loss

In the above expressions, sg(-) represents the stop-gradient operator, and KL [-] denotes the
Kullback-Leibler (KL) divergence. Notably, It is worth noting that the reward and cost decoders
use the union model state s; as an input to exploit observation and privileged information, and use
sg(-) on s? to prevent reward loss and cost loss from affecting the loss optimization of the observa-
tion world model.

Actor-Critic Model Implementation From given imaginary trajectory {s?,s?, a;, 7, ¢}, the
bootstrapped TD()) value R*(s;) for the reward critic is calculated as follows:

RA(s1) = Fr+7 (1= A)Vi, (s141) + AR (51)) (11)

R)(s7) = Vy, (s7) (12)
These values are used to assess the long term expected reward, where Vy, (s;) is approximated by
the reward critic to consider the returns that beyond the imagination horizon H. Note that, We show
here only the calculation of R*(s;), the calculation of C*(s,) is equivalent to equation With
the calculated TD()) values R*(s;) and C*(s;), we follow the equation 23| to define the policy
optimization objective:

T
LO) == sg(RMs7)) +nH[mg (ar | 57)] — W (C(s0), AL, pux) (13)

penalty term

This policy optimization objective encourages the actor to maximize the expected reward while
simultaneously satisfying the specified safety constraints. The penalty term is formulated using
the Augmented Lagrangian method [Dai & Zhang| (2021), which penalizes behaviors that violate
safety constraints. Additionally, an entropy term is included in the objective to promote exploration.
Further details regarding the policy optimization objective and the Augmented Lagrangian method
can be found in Appendix [F

7 EXPERIMENTS

We conduct our experiments on Safety-Gymnasium, aiming to answer the following questions:

e Can the utilization of privileged information improve performance and safety?
e Are partial observations still necessary for critics when privileged information is available?

e How does our approach compare to existing approaches in terms of performance, sample
efficiency and safety?



7.1 SAFETY-GYMNASIUM BENCHMARK

SafetyQuadrotorGoall We find that all the tasks in
Safety-Gymnasium are limited to a 2D plane, which hin-
ders Safety-Gymnasium from evaluating a agent’s ability

to execute complex tasks in high-dimensional space. To B
fill this gap, we offer a new task, SafetyQuadrotorGoall,

to evaluate the model’s capability to navigate in 3D space.

As depicted in Figure[3] the blue cylinders represent haz-

ards that the quadrotor must avoid, and the green sphere )

in the air denotes the navigation target for the quadrotor. Figure 3: SafetyQuadrotorGoall
The quadrotor has a four-dimensional action space, where each dimension corresponds to the force
generated by each rotor. Further details are available in the Appendix

Experimental Setup In all our experiments, the agent observes a 64x64 pixel RGB image from
the onboard camera. The task in our experiments is to navigate to the predetermined goal while
avoiding collisions with other objects. The cost limit across all tasks is 2. We assess the task
objective performance and safety using the following metrics proposed in:

E Top
Zi:l t=0Tt-

e Average undiscounted episodic return for E episode: J (m) = %

e Average undiscounted episodic cost return for E episode: .J, () = + Zil ;Ff(') ct.
We compute J(7) and .J.(7) by averaging the sum of costs and rewards across E = 10 evaluation
episodes of length T¢,, = 1000, without updating the agent’s networks and discarding the interac-
tions made during evaluation. The results for all methods are recorded once the agent reached 2\
environment steps. Detailed designs of privileged information for different tasks are available in
Appendix [B] Descriptions of all baselines can be found in Appendix [C.}

CarGoall ) PointButton] PointGoal2 PointPushl QuadrotorGoall RacecarGoall
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AsymDreamer — LAMBDA — Safe-SLAC

— BSRP Lag — OSRP Lag — OSRP
Figure 4: The experimental results for the Safety-Gymnasium Benchmark. The upper figures show
the learning curves of AsymDreamer and the baseline algorithms. Meanwhile, the lower figures
depict the learning curve of AsymDreamer and the final average cost return of the baseline algo-
rithm marked with a dotted line for a clear comparison. The red solid line represents the cost limit
for this task.

Results The findings of our experiments are summarized in Figure [d] As depicted in Figure @ our
algorithm demonstrates state-of-the-art performance across all tasks. Safe-SLAC is the sole algo-
rithm that outperforms our approach regarding reward attainment on the SafetyPointButtonl1 task,
it does so at the cost of incurring a high number of safety violations. Conversely, the BSRP_Lag al-
gorithm is the sole algorithm that surpasses our approach in safety performance; however, it exhibits
an excessively conservative behavior, resulting in consistently suboptimal task objective results. In
contrast, our proposed algorithm consistently achieves very high rewards and excellent safety per-
formance concurrently, enabling effective trade-offs between safety and task objective performance.

Adaptability to Complex Scenarios In particular, AsymDreamer significantly outperforms alter-
native algorithms in both task performance and safety on the SafetyQuadrotorGoall task. This task,
which requires navigating a 3D space, presents a larger state space and increased partial observ-
ability due to the agent needing to exert more effort in observing its environment. However, by



leveraging privileged information, our approach minimizes partial observability, giving the agent
a significant advantage in terms of available information. This superior performance is consistent
with our conclusion in Section[4.2] where we highlighted the agent’s ability to learn more effective
policies by leveraging privileged information.

7.2 ABLATION STUDY
QuadrotorGoall RacecarGoall

Our ablation study includes the following settings: R
(1) AsymDreamer: The full version of AsymDreamer, £ Z’M‘J\W

= 20

where the critic leverages the model states from both the

Observation World Model and Privileged World Model. | "

(2) AsymDreamer(S): In this variant, the critic takes

only the model state of the Privileged World Model as | S —— e
input.  (3) AsymDreamer(O): Here, the critic takes R o
solely the model state of the Observation World Model =~ 1 -
as input. This variant corresponds to the BSRP Lagin ¢ |[\4 N
SafeDreamer. (4) DreamerV3: The default DreamerV3
setup, where we remove the last term of equation on  :

the basis of AsymDreamer(O). F——————————— | T

AsymDreamer

Partial Observations Remain Valuable. As depicted in 1, bt 0 breamertsin
Figure[5| AsymDreamer(S), which utilizes privileged in-

formation, does not demonstrate a significant improve-

ment in task objectives compared to AsymDreamer(0O) and may even perform worse. This is pri-
marily because relying solely on privileged information for value estimation causes the model to
overlook the information gained from observing the environment. Consequently, this results in a
one-sided pursuit of reward maximization, ultimately leading to lower performance. Additionally,
AsymDreamer(S) exhibits inadequate safety in the SafetyQuadrotorGoall task. We identify two
reasons for this: (1) The cost distribution in this task is highly unbalanced. (2) The cost decoder,
which relies on privileged information as input, must learn additional information to effectively
estimate the cost function.

Figure 5: Results in ablation study

Privileged Information Leads to Significant Improvements. As depicted in Figure |5 Asym-
Dreamer, which leverages both partial observations and privileged information, achieves signif-
icantly superior performance compared to the other settings. This suggests that partial observa-
tions, even in the presence of comprehensive privileged information, continue to provide valuable
complementary information that enhances the overall system capabilities. Finally, we compare our
AsymDreamer, which incorporates safety constraints, with DreamerV3, which neglects such con-
straints. Remarkably, on the SafetyQuadrotorGoall task, our model outperforms DreamerV3 in
terms of task objective performance while simultaneously achieving the lowest safety violation. To
the best of our knowledge, we are the first method to achieve this feat.

8 CONCLUSION

We present AsymDreamer, a model-based reinforcement learning approach specifically designed
for partially observable environments with safety constraints. AsymDreamer employs an asymmet-
ric architecture, where the actor constructs a world model based on the agent’s partial observations,
while the critic leverages a privileged world model that incorporates additional privileged informa-
tion. This approach is formalized within the Asymmetric Constrained Partially Observable Markov
Decision Processes (ACPOMDP) framework, offering theoretical advantages in addressing the chal-
lenges of partial observability and safety. To ensure compliance with safety constraints, Asym-
Dreamer integrates the Lagrangian method to handle constrained optimization problems. Asym-
Dreamer demonstrates competitive performance across benchmarks and exhibits strong adaptability
in complex scenarios. However, we have identified certain limitations in the current design. Specifi-
cally, some forms of privileged information do not significantly enhance the performance of the cost
predictor, limiting their overall contribution to the model. Given the critical importance of world
models, future work could explore techniques to train more robust models capable of effectively
capturing sparse signals.
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A PROOF

In this section, we prove Theorem {.3] First, we donate the optimal long-term values in the belief
space under the ACPOMDPs framework as V., (b)

asym

asym Z b V*

ses

R(s,a) +~ Z P(s|s,a)V*(s")

(14)

A

where V*(s) represents the optimal long-term values in the state space. Similar to V%, (b), the

optimal long—term values in the belief space under the CPOMDPs framework are represented as
sym

Viym(b) = max | R(b, a +72Pr 2[b, a) sym<b“>] (15)
Since
(z]b, a) Z Pr(zla, s") ZPT (s'|s, a)b(s) (16)
s’eS ses

Vgym (b) can be rewritted as:

Vip0) = max | Rb.a) +7 3" Vi 07) 3 Pr(ela s’>ZP<s'|s,a>b<s>]
z2€Z s'eS s€S (17)
= max R(b,a +'yz oym (077) Z Z Pr(z|a,s")P(s']s, a)b(s)]
z2E€EZ se€Ss'eS
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Proof.  According to Lemma @.1, V*(s’) can be expressed by a set of vectors: I'y =
{ap,a1,...,am}. As aresult, V*(s") can be rewrite as the following equation:

* _ / ’
V*(s) = max R(s,a) + ’yZP(s s, a) (I)érg}foz(s ) (18)

Similarly, V37, (b) can be rewritten as:

* _ / /
Vaym(b) = max ;R(s,a)b(s) +’y;a1€nﬁ>f Ze;q %Pr zla, 8" )P(s'|s,a)b(s)a(s)| (19)

Then:

Viisym(®) = D b(s)V(s)

sES
— / !/
= Zb max R(s,a) + ’yZP(s s, a) glealgfa(s )
sES s’
>
2 max Z b(s)R(s,a) + 'yZb Z P(s'|s,a) maxa(s )

LseS ses s'eS (20)

= max | R(b,a) + 72 Z Z Pr(zla,s")P(s'|s,a)b(s) max a(s’)

acA ael
L seSs'eSzeZ ¢

max | R(b,a) + Z maxz Z Pr(z|a,s")P(s']s,a)b(s)a(s")
acd | z€2"" 'sess'es
= Viym(b)

sym

v

B PRIVILEGED INFORMATION DESIGN

In different tasks, it is necessary to customise the use of different privileged information, and differ-
ent privileged information will have different impacts, we show our privileged information settings
in our experiments.

Privileged Information Name | Di Description

hazards (n,2) Represents the relative positions of hazards in the environment, containing 2D coordinates [z, y[.

velocimeter 2) Provides the agent’s velocity information in three-dimensional space [v,, v,].

accelerometer (1,) Provides the agent’s acceleration information in three-dimensional space [a,].

2yro 1) Provides the agent’s angular velocity information [w.].

goal (2,) Represents the relative coordinates of the target position that the agent needs to reach [Igw, Uﬂm]

robot_m (2,) Represents the rotation matrix of the robot, describing the robot’s orientation and rotation in three-di ional space.
push_box (n,2) Represents the relative positions of push_box in the environment, containing 2D coordinates [I yl.

push_box_mat (2,) Represents the rotation matrix of the push_box, describing the robot’s orientation and rotation in three-dimensional space.
push_box_vel (2,) Provides the push_box’s velocity information in three-dimensional space [v,, v,].

Table 1: Privileged Information: SafetyPointPushl

Privileged Information Name | Dimension | Description

hazards (n,3) Represents the relative positions of hazards in the environment, containing 3D coordinates [z, y, z].
velocimeter (3,) Provides the agent’s velocity information in three-dimensional space [v,, vy, v.].

accelerometer (3,) Provides the agent’s acceleration information in three-dimensional space [a,, ay, a.].

gyro (3,) Provides the agent’s angular velocity information [w,, w,, w.].

goal (3,) Represents the relative coordinates of the target position that the agent needs to reach [zgml, Yeoals :g(m.],
robot-m (3.3) Represents the rotation matrix of the robot, describing the robot’s orientation and rotation in three-dimensional space.
past_I_action (4,) Represents the action information from the previous time step.

past_2_action (4,) Represents the action information from the second-to-last time step.

past_3_action (4,) Represents the action information from the third-to-last time step.

euler (2,) Represents the agent’s pose information given in Euler angles [roll, pitch].

Table 2: Privileged Information: SafetyQuadrotorGoall
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Privileged Information Name

=]

Description

hazards

Represents the relative positions of hazards in the environment, containing 2D coordinates [z, y].

vases

=

Represents the relative positions of vases in the environment, containing 2D coordinates [z, y].

(
(n,2
velocimeter (2,) Provides the agent’s velocity information in three-dimensional space [vg, vy, vz].
accelerometer (1,) Provides the agent’s acceleration information in three-dimensional space [a,].
gyro (1,) Provides the agent’s angular velocity information [w.].
goal (2,) Represents the relative coordinates of the target position that the agent needs to reach [Zgoal, Yeoal]-

Privileged Information: SafetyPointGoal2

Privileged Information Name

al=)

Description

hazards

Represents the relative positions of hazards in the environment, containing 2D coordinates [z, y].

velocimeter

Provides the agent’s velocity information in three-dimensional space [v,, v,].

accelerometer

Provides the agent’s acceleration information in three-dimensional space [a,].

gyro

Provides the agent’s angular velocity information [w.].

goal

Represents the relative coordinates of the target position that the agent needs to reach [Zgoal, Yeoal]-

gremlins

Represents the relative positions of gremlins in the environment, containing 2D coordinates [z, y].

buttons

Represents the relative positions of buttons in the environment, containing 2D coordinates [z, y].

C EXPERIMENTS

C.1 BASELINES

Table 4: Privileged Information: SafetyPointButtonl

We compared AsymDreamer to several competitive baselines to demonstrate the superior results of
using privileged information. The baselines include: 1. Dreamerv3: A general algorithm that could
master diverse domains with fixed hyperparameters. 2. BSRP_Lag: Integrates Dreamerv3 with
the Lagrangian methods. 3. OSRP: Integrates Dreamerv3 with the CCEM methods. 4. OSRP_Lag:
Integrates Dreamerv3 and the Lagrangian methods with the CCEM methods. 5. LAMBDA: A novel
model-based approach utilizes Bayesian world models and the Lagrangian methods. 6. Safe-SLAC:
Integrates SLAC with the Lagrangian methods. Notably, the OSRP, OSRP_Lag and BSRP_Lag are
three algorithms proposed by SafeDreamer.

C.2 MODEL-FREE

CPO

FOCOPS PPO_Lag TRPO_Lag AsymDreamer(Ours)

Tasks Reward

Reward Cost Reward Cost Reward Cost Reward Cost

CarGoall 232419 28.2+4.6
PointButton1 6.8+1.6 29.846.1
PointPushl 4.84£0.0 25.5+0.0
RacecarGoall 104412 29.4+7.0

Average 11.3

21.5+0.0 28.14+0.0 13.843.3 2344108 222439 262+6.1 14.5+£05 4.2£1.2
8.9+10.7 10.2+4.5 4.0+14 282+138 7.5+14 263+6.0 9.6+£3.5 125423
0.7£0.7  23.0+£21.1  0.6£0.3 26.2+25.1 0.6+0.1 21.7£11.2 15.6+0.8 0.41+0.2
45422 9374333 23421 283+127 9.5+43.0 251457 182412  6.8+1.2
8.9 38.8 52 26.6 9.9 24.9 14.5 6.0

Table 5

D SAFETYQUADROTORGOALI

In this section, we give detailed design of the SafetyQuadrotorGoall task.

D.1 SCENE GENERATION

Hazardous Areas (Hazard)

As shown in Figure 4, the hazardous area is presented as a cylinder with a radius of 0.1 and a height

of is 1.0.
Goal

the goal is presented as a sphere with a radius of 0.3.

Generation Algorithm
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A random generation algorithm is used to generate the target based on the (z,y) axis coordinates
of the hazardous area, the target’s Location. As shown in Figure 4, both the hazardous area and the
target are set with a keepout value of 0.4. Each object generates a position whenever the distance
between the generated position and the generated object is less than or equal to the keepout value.
Whenever the distance between the generated position and the generated object is less than or equal
to the keepout value, the position is regenerated.

After all object positions are generated, the target is randomly generated with z-axis coordinates
between 0.3 and 1.7.

S

Figure 6: Quadrotor

D.2 REWARD FUNCTION
Using dense rewards to guide learning and encode tasks to reach a goal through obstacle avoidance.
At each time step, the reward is computed as:

i l angular
1y = palive 4 pPTog g ppere 4 pgoal _pemd . aaned (21)

ngﬂive = A1(dg—1 — dy)

P = Ay exp (—02,,)
Tgmd = )‘3||at|| + )‘4Hat — Clt_1||2
r;ti]ive _ {0.01 if alive.
0 otherwise
e = =gl

goal 4.0 if goal
0 otherwise

where dc,p, is the angle between the optical axis of the camera and the vector pointing from the UAV

to the target. The hyperparameters \; = 0.5, Ao = 0.025, A3 = 0.0005, and A4, = 0.0002 are
chosen empirically and weighed against the speed and smoothness of the strategy.

The reward 7y encourages the survival of the UAV and prevents it from crashing to the ground
or becoming unable to take off. The progress bonus 7., encourages fast flight to maximize the
number of successful flights.

E HYPERPARAMETERS
E.1 ASYMDREAMER AND SAFEDREAMER

AsymDreamer is implemented based on SafeDreamer, so they follow the same setting.

E.2 SAFE-SLAC

Hyperparameters for Safe-SLAC. We maintain the original hyperparameters unchanged, with the
exception of the action repeat, which we adjust from its initial value of 2 to 4.
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Table 6: Hyperparameters

Name Symbol Value
World Model

Number of latent classes 48
Classes per latent 48
Batch size B 64
Batch length T 16
Learning rate 10~*
Coefficient of KL divergence in loss  a, oy 0.1, 0.5
Coefficient of decoder in loss Bo, Bry B 1.0,1.0, 1.0
Planner

Planning horizon H 15
Number of samples NN 500
Mixture coefficient M 0.05
Nyg =M - Nyn

Number of iterations J 6
Initial variance oo 1.0
PID Lagrangian

Proportional coefficient K, 0.01
Integral coefficient K; 0.1
Differential coefficient Ky 0.01
Initial Lagrangian multiplier Apo 0.0
Lagrangian upper bound 0.75
Maximum of A,

Augmented Lagrangian

Penalty term v 579
Initial penalty multiplier Lo 16
Initial Lagrangian multiplier Apo 0.01
Actor Critic

Sequence generation horizon 15
Discount horizon vy 0.997
Reward lambda A 0.95
Cost lambda Ae 0.95
Learning rate 3-107°
General

Number of other MLP layers 5
Number of other MLP layer units 512
Train ratio 512
Action repeat 4
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Table 7: Hyperparameters for Safe-SLAC

Name Value
Length of sequences sampled from replay buffer 15
Discount factor 0.99
Cost discount factor 0.995
Replay buffer size 2 x 10°
Latent model update batch size 32
Actor-critic update batch size 64
Latent model learning rate 1x1074
Actor-critic learning rate 2x107%
Safety Lagrange multiplier learning rate 2x 1074
Action repeat 4

Cost limit 2.0
Initial value for o 4x1073
Initial value for \ 2 x 1072
Warmup environment steps 60 x 103
Warmup latent model training steps 30 x 103
Gradient clipping max norm 40
Target network update exponential factor 5x 1073

E.3 LAMBDA

Hyperparameters for LAMBDA. We maintain the original hyperparameters unchanged, with the
exception of the action repeat, which we adjust from its initial value of 2 to 4.

Table 8: Hyperparameters for LAMBDA

Name Value
Sequence generation horizon 15
Sequence length 50
Learning rate 1x10*
Burn-in steps 500
Period steps 200
Models 20
Decay 0.8
Cyclic LR factor 5.0
Posterior samples 5

Safety critic learning rate 2x 1074
Initial penalty 5x107°
Initial Lagrangian 1x10°6
Penalty power factor 1x107°
Safety discount factor 0.995
Update steps 100
Critic learning rate 8 x 107
Policy learning rate 8 x 107°
Action repeat 4
Discount factor 0.99
TD(\) factor 0.95
Cost limit 2.0
Batch size 32
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F THE AUGMENTED LAGRANGIAN

The Augmented Lagrangian method incorporates the safety constraints into the optimization process
by adding a penalty term to the objective function. This allows the actor model to optimize the
expected reward while simultaneously satisfying the specified safety constraints. As a result, by
adopting the Augmented Lagrangian method, we transform the optimization problem in equation 4]
into an unconstrained optimization problem:

c c
. i 1 i i\2
max in R(rm) — ;:1 A (Ci(m) — b;) + o ;:1 (N =A%) (22)

where \? are the Lagrange multipliers, each corresponding to a safety constraint measured by C; (1),
and i, is a non-decreasing penalty term corresponding to gradient step k. We take gradient steps of
the following unconstrained objective:

c
R(m; My i) = R(w) = > W(Cy(m), Ay, pax) (23)

=1

We define A; = C;(m) — b;. The update rules for the penalty term W(C;(7), AL, ) and the
Lagrange multipliers \* are as follow:

) . )\;CAl + %A?, )‘L + upd; if )\}'f + urd; >0
Vi€ [m] : WU(Ci(m), Ny i)y N1 = { ()2 . (24)
T ,0 otherwise.
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