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ABSTRACT

The presence of disease results in the production of odors different from the
healthy state, which can be detected by mice. Each odorant generates a unique
glomeruli activation pattern in the murine olfactory system. However, these
signals differ spatially and temporally across mice and capturing them is labor-
intensive. To optimize the process, glomeruli activation patterns for many odor-
ants could be mapped from a reference animal imaged on all available odorants to
target animals imaged on a subset of odorants. In our initial approach to develop
this method, we align the glomeruli activation patterns for 11 odorants between 2
mice using the optimal transport Sinkhorn algorithm.

1 INTRODUCTION

The presence of disease alters host cell metabolism, resulting in the production of abnormal bio-
chemical profiles and the generation of odors atypical of healthy cells (Piqueret et al., 2023).
Changes in odor are often subtle and undetected by human olfaction, but can be detected by an-
imals with a keen sense of smell (Bijland et al., 2013). Several examples include dogs detecting
lung cancer in breath samples (Bijland et al., 2013), rats detecting Mycobacterium tuberculosis in
sputum (Bijland et al., 2013), and mice detecting bladder cancer (Sato et al., 2017) and prostate
cancer (Sato et al., 2022) in urine. If sensitive enough, this approach could have significant impact
on noninvasive diagnostics and disease classification, with applications that range from malignancy
screening to discrimination between bacterial and viral infections, enabling optimal antibiotic use.

Biospecimens from patients with disease produce odors comprising complex mixtures of one or
more odorants (chemical stimuli capable of evoking a smell) (Gottfried, 2010). In mice, each odorant
produces a unique neuronal signal by activating a pattern of glomeruli (structures in the olfactory
bulb that initially process olfactory stimuli) (Soucy et al., 2009; Burton et al., 2022). These glomeruli
activation patterns, in turn, can be used as biomarkers for the presence of disease. However, the
same odorant can exhibit spatial and temporal variation in glomeruli activation patterns across mice.
Furthermore, capturing glomeruli activation patterns is costly, resource-heavy, and time consuming,
requiring the generation of a cranial window to capture neuronal activation signals and specialized
training (Agarwal et al., 2024; Yeon, 2022). To optimize this process, we envision a likely solution in
imaging a small number of reference mice across the complete set of odorants and a larger cohort of
target mice on a subset of odorants. The remaining odorants can then be mapped from the reference
mice to the target mice. As a foundational step, we aligned the glomeruli activation patterns of
odorants between two mice and evaluated the success of this alignment.

∗For queries on paper/data/code, please reach out via email: vka244@nyu.edu.
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2 DATA

2.1 DATASET

We used the publicly available oMNIST dataset, which comprises videos of glomeruli activation
patterns from 2 mice exposed to 65 odorants (Agarwal et al., 2024). To explore the feasibility of
olfactory representational alignment, we focused on a subset of 2 mice exposed to 11 odorants with
10 trials for each odorant (Agarwal et al., 2024). Each mouse was exposed to odorants at specific
concentrations through an olfactometer and the florescence in the olfactory bulb was recorded via
a cranial window. In total, 220 video files (2 mice x 11 odorants x 10 trials) were utilized for the
analysis.

2.2 PREPROCESSING

Videos were converted into tiff stacks of 320 image frames at 256 x 256 resolution. Glomeruli acti-
vation patterns in the raw videos were initially masked by the vasculature, which required extensive
preprocessing (Fig 1). Background subtraction (Gibson & Bovik, 2000) followed by denoising with
Anisotropic diffusion (Weickert, 1996) with a convolutional kernel were performed to extract neu-
ronal signals from the noisy images. These techniques were applied to each of the 320 image frames
in the 220 video files. The 320 image frames were subsequently compressed into 1 frame to create a
single maximum pixel intensity (MPI) image. Although the temporal component was lost with this
approach, it allowed for a more feasible method of aligning and analyzing the spatial components
of glomeruli activation patterns.

Figure 1: Data preprocessing. A) Image preprocessing to uncover glomeruli activation patterns
masked by vasculature. B) Image frames from each trial were compressed into a single MPI frame.

3 METHODS

Optimal transport was used to spatially align odorant glomeruli activation patterns between two
mice; representations learned from the reference mouse (1952) were aligned to that of the target
mouse (1953). Prior to alignment, non-negative matrix factorization (NNMF), Segment Anything
Model 2 (SAM2), and Autoencoder were used to extract representations from the MPI images.

3.1 NON-NEGATIVE MATRIX FACTORIZATION (NNMF)

NNMF is an unsupervised learning algorithm that factorizes a non-negative target matrix V into the
product of two lower rank non-negative matrices W and H that approximate the original matrix
such that:

V ≈ W ·H,where (W,H) ≥ 0.

This reduces the dimensionality of the original matrix (Lee & Seung, 1999). We relied on NNMF
as a simple base case for extracting MPI image representations.
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3.2 SEGMENT ANYTHING MODEL 2 (SAM2)

SAM2 is a robust tool used for image segmentation (Ravi et al., 2024). SAM2’s Hiera vision encoder
(Ryali et al., 2023) has demonstrated strong capabilities in learning hierarchical visual features, mak-
ing it particularly suitable for capturing the complex spatial patterns present in glomeruli activation
pattern images. The Hiera encoder follows a hierarchical design with four stages of progressively de-
creasing spatial resolution but increasing channel capacity. This multi-scale architecture allows the
model to efficiently capture both fine-grained local features in early stages and more abstract global
patterns in later stages. The encoder processes each MPI image xt to produce feature embeddings
Ft = E img(xt), where E img represents the Hiera encoder.

We leveraged a medical-domain-adapted version of SAM2 (Zhu et al., 2024) that was pre-trained
on a large corpus of medical imaging data, providing better feature initializations for our specific
biological imaging context. For each MPI image, we extracted the features from the Hiera encoder,
resulting in a feature tensor of dimension 256 × 64 × 64. In order to analyze higher level features,
we applied a 4 × 4 maxpool operation on these features, yielding reduced 256 × 16 × 16 tensors.
These were then flattened into 65536 dimension vectors. The feature vectors served as learned
representations of the glomeruli activation patterns and were subsequently used in our alignment
process. The extracted representations can formally be expressed as: zt = Flatten(Maxpool(Ft)) ∈
Rd, where d = 65536 is the dimension of our final feature representation.

3.3 AUTOENCODER

An autoencoder is a neural network that learns a compressed representation of input data by mapping
it into a low-dimensional latent space and reconstructing the input from this space (Heaton, 2017).
The architecture consists of two primary components: the encoder E and the decoder D.

The encoder maps the input image x ∈ RH×W×C to a latent representation z ∈ Rd, where d ≪
H ·W · C. This process is defined as z = E(x; θE), where θE represents the trainable parameters
of the encoder. The decoder reconstructs the input from the latent representation: x̂ = D(z; θD),
where x̂ is the reconstructed image, and θD denotes the decoder parameters. The autoencoder is
trained to minimize the reconstruction loss, measured using the Mean Squared Error (MSE):

Lrecon =
1

N

N∑
i=1

∥xi − x̂i∥22,

where N is the number of samples. By encoding information through latent space z, the network
learns a compact representation of input data.

3.4 OPTIMAL TRANSPORT

To align glomeruli activation patterns across two mice, we utilized the optimal transport (OT) frame-
work with the Sinkhorn algorithm, which is a computationally efficient method for solving OT prob-
lems (Pham et al., 2020). The goal was to find the optimal mapping between two distributions while
minimizing the transport cost. Fig. 3 (Appendix) depicts the joint pixel intensity distribution of
corresponding glomeruli images for 33 dimethyl butyric acid in the reference and target mice. The
distribution highlights regions of high correlation (dark blue areas), suggesting consistent glomeruli
activation patterns across the two mice. The concentration of the pixel intensities along the diag-
onal axis further indicates a strong alignment between the two sets of activation images. Outliers
and lower-density regions (lighter areas) reveal minor mismatches, likely attributable to biological
variability or noise in the data.

The OT approach can formally be expressed in the following manner. Given two sets of latent
vectors, {z(1)i } for mouse 1 and {z(2)j } for mouse 2, and their corresponding probability distributions
p and q, the transport plan T is computed by solving:

min
T

∑
i,j

Tijc(z
(1)
i , z

(2)
j ) + ϵ

∑
i,j

Tij log(Tij),

subject to the constraints T1 = p, T⊤1 = q, where c(z
(1)
i , z

(2)
j ) is the cost function (e.g.,

Euclidean distance) between latent vectors, and ϵ > 0 is the entropy regularization parameter. The
entropy regularization term, ϵ

∑
i,j Tij log(Tij), ensures numerical stability and faster convergence.
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Figure 2: Mean MPI images reconstructed for the target mouse from aligned latent features of
glomeruli activation patterns between reference and target mice.

By iteratively refining the transport plan T, the Sinkhorn algorithm efficiently aligns the distribu-
tions of latent representations extracted from glomeruli activation images, revealing biologically
meaningful correspondences. Its computational efficiency and robustness made it a key component
of our alignment pipeline.

3.5 APPROACH AND EVALUATION METRICS

To quantitatively assess the success of our alignment process, we reconstructed the MPI images
for the target mouse using aligned latent vectors obtained from the OT Sinkhorn framework. OT
alignment was performed in the latent space of the autoencoder, where the Sinkhorn algorithm
computed a transport plan that aligns the latent features of glomeruli activation patterns between
the reference and target mice. Quantitative assessment of the alignment process was not performed
for NNMF because we did not perceive any substantial changes between pre- and post-alignment
(seen in Figure 4 [Appendix]), or for SAM2 because it lacked an out-of-box method to reconstruct
encoded images.

Our approach can be summarized as follows. Let Zref ∈ Rnref×d represent the latent vectors
extracted from the reference mouse, where nref is the number of samples, and d is the dimen-
sionality of the latent space. The OT Sinkhorn algorithm computes a regularized transport plan
T ∈ Rntarget×nref that minimizes the transport cost while satisfying marginal constraints. The aligned
latent vectors Zaligned for the target mouse are given as: Zaligned = T · Zref, where T acts as the
mapping between the reference and target latent spaces.

Once the aligned latent vectors Zaligned are computed, they are passed through the decoder D of
the autoencoder to reconstruct the corresponding MPI images. The decoder maps the aligned latent
representations back to the pixel space: X̂recon = D(Zaligned; θD), where X̂recon ∈ RH×W is the
reconstructed MPI image, and θD are the decoder parameters.

For each odorant, we reconstructed the images across T = 10 trials to account for variability. The
final reconstructed MPI image is computed as the average over all trials for each odorant and mouse:

X̄recon =
1

T

T∑
t=1

X̂recon,t,

where X̂recon,t is the mean reconstructed image (mean MPI) for each odorant, as shown by the
example in Fig. 2.

Subsequently, to compare the reconstructed mean MPI images X̄recon to the original mean MPI
images of the reference X̄ref and target X̄target mice , we used the following metrics:

1) Structural Similarity Index Measure (SSIM): SSIM evaluates the perceptual similarity be-
tween two images X1 and X2 as: SSIM(X1,X2) = (2µ1µ2+C1)(2σ12+C2)

(µ2
1+µ2

2+C1)(σ2
1+σ2

2+C2)
, where µ1, µ2 are

means, σ2
1 , σ

2
2 are variances, σ12 is the covariance, and C1, C2 are small constants (Sara et al., 2019).

The higher the value, the better the alignment between glomeruli activation pattern representations.

2) Root Mean Squared Error (RMSE): RMSE quantifies the pixel-wise differences between two

images as: RMSE(X1,X2) =
√

1
N

∑N
i=1 (X1[i]−X2[i])

2, where N is the total number of pixels
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(Sara et al., 2019). The lower the value, the better the alignment between glomeruli activation pattern
representations.

3) Dice Coefficient: The Dice coefficient measures the spatial overlap between two binary images A
and B as: Dice(A,B) = 2|A∩B|

|A|+|B| , where |A| and |B| are the number of pixels in the binary images,
and |A ∩ B| is the intersection of the two (Setiawan, 2020). The higher the value, the better the
alignment between glomeruli activation pattern representations.

4 EXPERIMENTS AND RESULTS

To evaluate the efficacy of our OT-based alignment method, we used t-SNE plots to visualize rep-
resentations of glomeruli activation patterns from reference and target mice. We compared t-SNE
plots before and after applying the Sinkhorn algorithm.

For NNMF, MPI images were decomposed into their constituent features (basis components), which
were aligned between the reference and target mice. The results are shown in Fig. 4 (Appendix).
As demonstrated by the pre-alignment t-SNE plot, representations of the glomeruli activation pat-
terns from different odorants and mice are scattered without any evident order. Following OT-based
alignment using the Sinkhorn algorithm, the post-alignment t-SNE plot shows representations of
glomeruli activation signals organized into tighter linear groups, but the improvement is not sub-
stantial. This is likely due to the fact that representations extracted by NNMF lacked the complexity
required to capture subtle variations in the activation patterns for the two mice.

The autoencoder alleviated NNMF challenges, using LeakyReLU, Batch Normalization, and
Dropout to minimize reconstruction loss and improve representation robustness. Image represen-
tations were extracted from the latent space. The pre-alignment t-SNE plot in Fig. 5 (Appendix)
shows same-odorant glomeruli activations in separate clusters, with a separation between refer-
ence and target mouse signals, highlighting biological and experimental variability. After OT-based
Sinkhorn alignment, the post-alignment t-SNE plot shows well-aligned same-odorant glomeruli ac-
tivations forming tight clusters. The aligned data maintain their structure while reducing inter-mouse
variability, with each odorant’s activations mapped closer together. This demonstrates our alignment
pipeline’s effectiveness in managing biological variability and identifying consistent cross-subject
activation patterns. The aligned images along with the original images for the reference and target
mice are shown in Fig. 7 (Appendix) and Fig. 8 (Appendix). Quantitative assessment in Table 1
(Appendix) supports these findings, showing SSIM, RMSE, and DICE coefficient metrics for the
aligned representations of 11 odorants. These were calculated using the images reconstructed from
the aligned representation in relation to the average image for these odorants in the target mouse.
All of the metrics showed improved alignment between reference and target mouse mean MPIs for
all odorants.

SAM2 with its Hiera encoder offered an alternative approach for MPI image representation. The
encoder’s hierarchical structure effectively captured multi-scale glomeruli activation features. Qual-
itatively, the Hiera encoder demonstrated an ability to extract representations with a richer and more
pronounced symmetric structure, as visualized in the t-SNE plot, compared to the NNMF and au-
toencoder approaches. This can be seen in Fig. 6 (Appendix). Similar to the autoencoder results in
Fig. 5 (Appendix), the representations display an imaginary line dividing the mice, creating a sym-
metry axis for odorant clusters. Post-alignment results parallel the autoencoder’s, indicating both
methods facilitate effective OT.

5 DISCUSSION AND CONCLUSIONS

In this pilot, we aligned odorant glomeruli activation patterns between a reference and a target
mouse. We extracted MPI image representations with NNMF, autoencoder, and SAM2. We spa-
tially aligned them using the Sinkhorn OT algorithm. Both the t-SNE plots and quantitative metrics
demonstrated successful alignment between reference and target animals, particularly with appli-
cation of the autoencoder and SAM2. NNMF was a base case and was too simple to capture the
complexity of the signal.
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There are several limitations to our approach. In this paper we have considered only two animals,
focused on a subset of odorants, and did not consider the temporal component in the alignment. A
future extension of this study would involve expanding the number of animals and odorants, per-
forming alignment with more complex odors composed of several odorants, spatially aligning only
the regions of interest (ROIs) between animals rather than the entire image (useful for determining
ligand protein interaction for olfactory receptors), and adding the temporal component in the align-
ment. Once alignment has been optimized, we would map odoroant glomeruli activation patterns
from a reference mouse to multiple target mice and evaluate the accuracy of the mapping.
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A APPENDIX

Figure 3: Joint pixel intensity distribution of glomeruli activation patterns for 33 dimethyl butyric
acid.
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Figure 4: t-SNE visualization of NNMF representations before and after alignment. Each point
represents the neural response pattern for a single odorant trial, color-coded by odorant identity.
Top panel (pre-alignment): Activation patterns corresponding to identical odorants across the two
mice are scattered without forming distinct or coherent clusters, demonstrating that NNMF does not
clearly separate odorant-specific neural responses across subjects. Bottom panel (post-alignment):
Even after alignment, activation patterns remain scattered and do not form clear clusters or overlap-
ping structures. The NNMF-based alignment fails to effectively reduce inter-subject variability or
clarify odorant-specific neuronal patterns.
The limited effectiveness of the NNMF-based alignment is due to its linear and shallow structure,
restricting its ability to capture complex nonlinear relationships present in neural data. It does not
leverage hierarchical or nonlinear transformations, making it less capable of extracting robust, gen-
eralizable latent representations for alignment across mice.

9



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Figure 5: t-SNE visualization of autoencoder representations before and after alignment. Each point
represents the neural activation pattern from a single odorant trial, color-coded by odorant identity.
Top panel (pre-alignment): Activation patterns corresponding to identical odorants from the two
mice form separate, distinct clusters, reflecting significant inter-subject variability. Bottom panel
(post-alignment): After alignment, activation patterns from identical odorants across the two mice
clearly overlap and form cohesive, well-defined clusters. The autoencoder-based alignment suc-
cessfully reduces inter-subject variability, resulting in consistent, shared neuronal representations of
odorants across animals.
The effectiveness of the autoencoder method arises from its deep, nonlinear architecture, enabling it
to capture the complex hierarchical structures and nonlinear relationships present in neuronal acti-
vation data. Consequently, it generates robust and generalizable latent representations that facilitate
successful alignment across individuals.

10



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Figure 6: t-SNE visualization of SAM2 Hiera encoder representations before and after alignment.
Each point corresponds to the neuronal activation pattern for a single odorant trial, color-coded by
odorant identity.
The SAM-based alignment yields better clustering of odorant-specific neuronal representations.
However, since it does not support reconstruction of the original neuronal activation images, we
did not use it for further metrics based evaluation.
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Figure 7: Aligned and original images for reference (1952) and target (1953) mice, continued.
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Figure 8: Aligned and original images for reference (1952) and target (1953) mice.
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Odorant Metric Reference vs Target Target vs Aligned
Autoencoder

2 3 pentanedione
SSIM 0.2726 0.5089
RMSE 0.1513 0.0568
Dice 0.3366 0.3558

2 4 dimethyl acetophenone
SSIM 0.3864 0.6749
RMSE 0.1391 0.0499
Dice 0.3046 0.3459

2 ethyl butyric acid
SSIM 0.3529 0.6079
RMSE 0.1326 0.0436
Dice 0.3501 0.3713

2 methyl butyraldehyde
SSIM 0.3525 0.6338
RMSE 0.1473 0.0465
Dice 0.3724 0.3908

33 dimethyl butyric acid
SSIM 0.3891 0.6607
RMSE 0.1428 0.0648
Dice 0.3208 0.3442

3 methylvaleric acid
SSIM 0.4447 0.6659
RMSE 0.1371 0.0793
Dice 0.3169 0.3493

4 heptanone
SSIM 0.3857 0.7077
RMSE 0.1807 0.0523
Dice 0.3388 0.4058

acetic acid
SSIM 0.2679 0.5802
RMSE 0.1279 0.0497
Dice 0.3792 0.3849

gerinol
SSIM 0.2118 0.4526
RMSE 0.1403 0.0821
Dice 0.3645 0.3674

m anisaldehyde
SSIM 0.2731 0.5871
RMSE 0.1392 0.0471
Dice 0.3363 0.3600

n methyl piperdine
SSIM 0.3795 0.6481
RMSE 0.1694 0.0823
Dice 0.3116 0.3178

Table 1: Metrics for autoencoder outputs of aligned representations in various odorants. The above
table shows a comparison of metrics between the Reference vs Target mice and Target vs Aligned
Glomeruli patterns of the reference mice. It shows an increase in values of SSIM, DICE scores and
decrease in values of RMSE scores which indicates better aligned glomeruli patterns. (This analysis
was done with the autoencoder because of its capability to reconstruct images given a latent space
representation, and its latent space representation properties.)
For calculation of Structural Similarity Index Measure (SSIM), the terms µ and σ represent local
statistical measures automatically computed within small windows across the image. µ refers to the
local mean intensity within each window. It captures the local brightness similarity between the two
images. σ refers to the local standard deviation and covariance within each window. It quantifies
local contrast (variability in pixel intensity) and structural correlation between the corresponding
regions of the two images.
The binarization threshold for DICE coefficient calculation was determined empirically by analyz-
ing pixel intensity distributions and systematically evaluating thresholds from 0.1 to 0.9, both for
background (vasculature) and the foreground (Glomerular activation).
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