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ABSTRACT

Unified multimodal Large Language Models (LLMs) that can both understand and
generate visual content hold immense potential. However, existing open-source
models often suffer from a performance trade-off between these capabilities. We
present Manzano, a simple and scalable unified framework that substantially re-
duces this tension by coupling a hybrid image tokenizer with a well-curated training
recipe. A single shared vision encoder feeds two lightweight adapters that produce
continuous embeddings for image-to-text understanding and discrete tokens for
text-to-image generation within a common semantic space. A unified autoregres-
sive LLM predicts high-level semantics in the form of text and image tokens, with
an auxiliary diffusion decoder subsequently translating the image tokens into pixels.
The architecture, together with a unified training recipe over understanding and
generation data, enables scalable joint learning of both capabilities. Manzano
achieves state-of-the-art results among unified models, and is competitive with
specialist models, particularly on text-rich evaluation. Our studies show minimal
task conflicts and consistent gains from scaling model size, validating our design
choice of a hybrid tokenizer.

1 INTRODUCTION

Unified multimodal models (OpenAI, 2025; Deng et al., 2025; Chen et al., 2025d; Wu et al., 2025a;
Zhou et al., 2024), which integrate both understanding and generation capabilities, have become
increasingly prominent within the research community. The appeal of this paradigm stems from the
discovery that integrating these domains unlocks emergent capabilities (OpenAI, 2025; Deng et al.,
2025) in generation, such as complex world reasoning, multimodal instruction following, and iterative
visual editing. Yet, in practice, adding generation often degrades understanding. Existing unified
models (Deng et al., 2025; Fan et al., 2025; Liang et al., 2024; Chen et al., 2025d) consistently lag
far behind their understanding-only counterparts (Seed, 2025; Bai et al., 2025; Zhang et al., 2024a),
especially on text-rich benchmarks (Mathew et al., 2021; Masry et al., 2022).

A key reason for this gap is the conflicting nature of visual tokenization. Auto-regressive generation
usually prefers discrete image tokens (Chameleon, 2024; Wu et al., 2024; Ma et al., 2025) while
understanding typically benefits from continuous embeddings. Many models adopt a dual-tokenizer
strategy (Wu et al., 2025b; Chen et al., 2025d; Fan et al., 2025; Tong et al., 2024b), using a semantic
encoder for rich, continuous features while a separate quantized tokenizer like VQ-VAE (Van
Den Oord et al., 2017) handles generation. However, this forces the language model to process
two different image token types, one from high-level semantic space versus one from low-level
spatial space, creating a significant task conflict. While some solutions like Mixture-of-Transformers
(MoT) (Liang et al., 2024; Deng et al., 2025) can mitigate this by dedicating separate pathways for
each task, they are parameter-inefficient and are often incompatible with modern Mixture-of-Experts
(MoE) (Fedus et al., 2022; Lepikhin et al., 2021) architectures. An alternative line of work bypasses
this conflict by freezing a pre-trained multimodal LLM and connecting it to a diffusion decoder (Pan
et al., 2025; Wu et al., 2025a;c). While this preserves the understanding capability, it decouples
generation, losing potential mutual benefits and limiting potential gains for generation from scaling
the multimodal LLM.

To overcome the above challenges, we propose Manzano, a simple unified model that harmonizes the
representations for understanding and generation. Manzanoemploys a unified shared visual encoder
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Manzano Bagel Janus Pro Nano Banana

A photo of a corgi with a sign that says 'I am not a real corgi'.

The bird is flying below the elephant.

A hand-drawn blueprint for a time machine, with the caption 'Time Traveling Device'.

GPT-4o

(a) Qualitative text-to-image generation on chal-
lenging prompts. Manzano handles counterintuitive,
physics-defying prompts (e.g., ‘The bird is flying be-
low the elephant’) comparably to GPT-4o (Islam &
Moushi, 2024) and Nano Banana (DeepMind, 2025).

Mathvista

MMMU

MMBench

DPG

WISE
GenEval

InfoVQA

ChartQA

TextVQA

DocVQA

(b) Quantitative comparisons on popular understand-
ing and generation benchmarks. Manzano 3B and 30B
models achieve superior or competitive performance
compared to other SOTA unified multimodal LLMs.

Figure 1: Comparison of qualitative and quantitative results for Manzano model.

with two lightweight and specialized adapters: a continuous adapter for understanding tasks and a
discrete adapter for generation. Because two adaptors originate from the same encoder, it yields
hybrid representations from a homogeneous source, significantly mitigating task conflict in the LLM.
We first pre-train the hybrid tokenizer with a small LLM decoder to pre-align the image features with
the LLM feature space. Then the autoregressive multimodal LLMs are jointly trained on a mixture of
pure text, image understanding, and image generation data. Finally, we leverage a diffusion image
decoder (Peebles & Xie, 2023; Chen et al., 2025a) to render pixels by taking the generated image
tokens as conditioning.

We train the unified multimodal LLM with a joint recipe to learn image understanding and generation
simultaneously. This training consists of three stages: a pre-training stage on a large-scale corpus
of text-only, interleaved image-text, image-to-text (IT), and text-to-image (TI) data; a continued
pre-training stage on higher-quality IT and TI data; and a supervised fine-tuning (SFT) stage on
curated text, IT, and TI instruction data to enhance instruction following capability and improve both
understanding and generation tasks.

We demonstrate that Manzano achieves state-of-the-art performance on both understanding and
generation tasks. As shown in Fig. 1a and 1b, our 3B model, despite its smaller LLM size, achieves
competitive generation performance compared to other unified multimodal LLMs. Simultaneously,
it delivers significantly better understanding performance, especially on text-rich benchmarks that
demand precise perceptual capabilities. Our ablations on the training recipes also indicate minimal
cross-task conflict under joint training (Fig. 3). These findings suggest that the architecture and the
training recipe effectively mitigate the conflict between understanding and generation, even in a
compact model.

Facilitated by the simplicity of the architecture and the joint training recipe, we further investigate
the scaling behavior of Manzano. Our scaling studies in Sec. 4.3 show substantial improvements
across both understanding and generation benchmarks when scaling the LLM decoder (from 300M
to 30B). In addition, enlarging the diffusion decoder also leads to significant gains in image structural
integrity, as validated by large-scale human evaluations.

2 RELATED WORK

2.1 MLLMS FOR IMAGE UNDERSTANDING

Recent advances in Multimodal Large Language Models (MLLMs) have led to a widely adopted
architectural pattern that links a vision encoder with a language model through a trainable interface.
Typical vision encoders include CLIP (Radford et al., 2021a), SigLIP (Zhai et al., 2023), and
the recent InternViT (Chen et al., 2024c). Early works experimented with elaborate connector
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designs—for example, Flamingo (Alayrac et al., 2022) incorporates gated cross-attention layers to
inject image features into the LLM, while BLIP-2 (Li et al., 2023b) introduces the Q-Former to
better align visual and textual representations. A notable departure from these complex strategies
is LLaVA (Liu et al., 2023; 2024a), which demonstrates that a lightweight Multi-Layer Perceptron
(MLP) projection can effectively serve as the connector. This simplicity has since become the
blueprint for many follow-up systems, such as the MM1 series (McKinzie et al., 2024; Zhang et al.,
2024a), the InternVL family (Chen et al., 2024c; Zhu et al., 2025; Wang et al., 2025a), and the
Qwen-VL models (team, 2024; Bai et al., 2025), which further improve performance by scaling up
both data and backbone models. However, these MLLMs are primarily designed for understanding
tasks and lack the capability to generate high-quality images, which limits their applicability in tasks
that require bidirectional visual–text reasoning and creation. Despite being limited to understanding
tasks, MLLMs still provide valuable strengths—their training recipes and scaling strategies are much
more mature than those of current unified multimodal models, which we discuss next.

2.2 UNIFIED MULTIMODAL MODELS

The integration of image understanding and generation within a single, unified multimodal LLM is
becoming prominent. GPT-4o (OpenAI, 2025) demonstrates embedding image generation capabilities
directly into an autoregressive LLM, which unlocks emergent abilities, such as stronger instruction
following, improved text rendering, multi-turn visual editing, and sophisticated world knowledge
reasoning. Existing unified models can be broadly categorized into three architectural paradigms.
First, the unified autoregressive (AR) approach (OpenAI, 2025; Chen et al., 2025d;c;b; Han et al.,
2025b; Tian et al., 2024; Chameleon, 2024; Tong et al., 2024b; Fan et al., 2025; Ma et al., 2025; Han
et al., 2025a; Geng et al., 2025; Wu et al., 2025d; 2024) converts images into sequences of discrete or
continuous tokens, enabling LLM to jointly model both image and text sequences in an autoregressive
manner. Second, the decoupled LLM-diffusion approach (Pan et al., 2025; Wu et al., 2025a;c)
employs a largely frozen LLM for semantic understanding and contextual reasoning, while delegating
image synthesis to a separate diffusion decoder. In this design, the LLM itself does not possess native
image generation capability. Third, the hybrid AR-diffusion approach (Deng et al., 2025; Zhou et al.,
2024; Liang et al., 2024) integrates both paradigms within a single transformer, using autoregressive
decoding for text and an embedded diffusion process for images. Our model is most closely aligned
with the first, autoregressive paradigm. However, instead of employing separate tokenizers (Deng
et al., 2025; Chen et al., 2025d; Fan et al., 2025; Wu et al., 2025c) for understanding and generation,
we introduce a unified semantic tokenizer to produce both continuous features for understanding tasks
and quantized features for generation tasks. This hybrid tokenizer strategy substantially mitigates the
task conflict that commonly arises. Moreover, while our LLM backbone follows the autoregressive
design, we augment it with a diffusion decoder for image synthesis, enabling high-fidelity generation
guided by the semantic representations generated by the LLM.

2.3 DIFFUSION MODELS FOR IMAGE GENERATION

Diffusion-based generative models (Song et al., 2020; Ho et al., 2020; Dhariwal & Nichol, 2021)
have become one of the most prominent approaches for high-fidelity image synthesis. These models
gradually refine Gaussian noise into realistic images through a learned denoising process. Latent
diffusion methods (Rombach et al., 2022; Podell et al., 2023) enhance computational efficiency by
conducting generation in the latent space of a pre-trained variational autoencoder (VAE) (Kingma &
Welling, 2022), reducing memory and compute requirements while preserving visual quality. More
recently, flow matching approaches (Liu et al., 2022; Ma et al., 2024; Tong et al., 2023) have been
introduced to connect source and target distributions via simplified continuous trajectories, leading to
further gains in synthesis performance (Esser et al., 2024). In parallel, architectural advances such as
Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Chen et al., 2024a; Esser et al., 2024; Labs,
2024; Chen et al., 2025a) have demonstrated strong scalability and quality improvements, echoing
the success of transformer-based designs in natural language processing.

Building on these developments, our diffusion decoder integrates the strengths of the field by
employing a DiT in the latent domain with a conditional flow matching objective. Unlike conventional
text-to-image diffusion models (Ramesh et al., 2022; Saharia et al., 2022) conditioned on semantic
embeddings from pre-trained text encoders such as CLIP (Radford et al., 2021a), our method leverages
visual token embeddings generated by LLM as conditioning signals.
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Hybrid Image 
Tokenizer "A friendly cartoon tree with a 

smiling face on its trunk, 
bearing two red apples. Please 
generate an image.”

Unified LLM Decoder

“EL MANZANO” Image Decoder

Generation task

Understanding task

"What does the sign 
on the tree say!"

Text token Continuous image token Discrete image token

Hybrid Image Tokenizer Training

"<img_start>  <img_end> A vibrant 
apple tree laden with red apples."

Vision Encoder

Continuous 
Adapter

Discrete 
Adapter

300M LLM Decoder

text loss

Inference and Architecture

random sample

Figure 2: Our hybrid tokenizer workflow. (Left): The tokenizer produces two distinct but
homogeneous feature streams through separate adapters. During training, one adapter output is
randomly sampled and passed to a small LLM decoder for alignment. (Right): Once the tokenizer
is trained, the right panel illustrates how these two feature types are applied to understanding and
generation tasks.

3 MODEL

Manzano is a multimodal large language model (MLLM) that unifies understanding and generation
tasks using the auto-regressive (AR) approach. The architecture comprises three components: (i)
a hybrid vision tokenizer that produces both continuous and discrete visual representations; (ii) an
LLM decoder that accepts text tokens and/or continuous image embeddings and auto-regressively
predicts the next discrete image or text tokens from a joint vocabulary; and (iii) an image decoder
that renders image pixels from predicted image tokens (see Figure 2 for the framework).

3.1 DESIGN CHOICES

Unified hybrid representation. The hybrid image tokenizer encodes images into continuous
tokens for understanding (I2T), and discrete tokens for generation (T2I), while sharing the same
visual encoder: (i) Continuous for I2T: Manzano utilizes continuous embeddings for I2T tasks, a
strategy widely adopted in popular visual understanding models (team, 2024; Seed, 2025), which
has proven superior performance, especially on text-rich tasks that require more visual details (e.g.,
DocVQA, ChartQA, and InfoVQA). Our ablation (Table 1) also shows discrete tokens underperform
on understanding tasks, which reflects the weak understanding results reported for some pure-discrete
unified models (Chameleon, 2024; Wang et al., 2024). (ii) Discrete for T2I: Representing images as
discrete code indices lets the LLM use the same AR next-token learning strategy as text, simplifying
the generation pipeline and scaling behavior. (iii) Shared unified semantic space: Both branches
originate from the same encoder backbone; thus, continuous and discrete tokens inhabit a common
semantic space, which reduces potential task conflict. The LLM decoder focuses on regressing
high-level semantics (text and image tokens), while the diffusion decoder is responsible for rendering
high-fidelity details in pixel space. Many existing unified models rely on separate tokenizers for
understanding and generation (Chen et al., 2025d; Deng et al., 2025) — for instance, using a
CLIP tokenizer for understanding tasks and a VAE tokenizer for generation. Although this strategy
preserves more image spatial details, it exacerbates the task conflict within the subsequent LLM.
Some studies (Chen et al., 2025b;c) find that a dedicated generation tokenizer is not as compatible
with LLM as the semantic tokenizer. Thus, our hybrid unified image tokenizer employs a single
image encoder for both understanding and generation tasks.

Simplicity and scalability. Our design keeps the training losses standard and components cleanly
decoupled, which simplifies unification and scaling for the unified MLLM in these aspects: (i) Unified
AR objective: Our unified LLM decoder uses a single AR objective for text-only, I2T, and T2I
tasks without additional auxiliary losses or per-task heads. (ii) Decoupled components: The clear
split between semantic prediction (LLM decoder) and detail generation (image decoder) supports
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independent scaling of the base LLM and the image decoder. (iii) Practical scaling: Our approach
readily leverages mature, scalable training pipelines from LLM/MLLM and diffusion decoders. By
contrast, prior works (e.g., Transfusion (Zhou et al., 2024) and Bagel (Deng et al., 2025)) explored
incorporating auto-regressive text prediction and a diffusion image generation process for image
generation in one LLM, but leave large-scale scaling under-explored. Our decoupled design facilitates
scaling the LLM decoder to 30B and diffusion decoder to 3B, yielding promising scaling behavior
(Sec. 4.3).

3.2 ARCHITECTURE

Hybrid Image Tokenizer. Our tokenizer comprises three components: (i) a standard vision
transformer (ViT) (Dosovitskiy et al., 2020) as the vision backbone; (ii) a continuous adapter, which
first applies a 3× 3 Spatial-to-Channel (STC) layer to reduce the number of spatial tokens by a factor
of 9 (e.g., from 42× 42× 1024 to 14× 14× 9216) and then uses an MLP to project each feature into
the LLM feature dimension (e.g., 2048); and (iii) a discrete adapter, which also starts with the STC
compression step but further quantizes the features using finite scalar quantization (FSQ) (Mentzer
et al., 2023) — chosen for its simplicity and scalability to large codebooks (64K in our experiments)
— before applying an MLP projection into the LLM feature dimension.

Unified LLM. We connect our hybrid image tokenizer to a standard text LLM decoder for unified
training on a mixture of datasets containing text, understanding, and generation data. For the language
backbone, we leverage internal pre-trained LLMs.

Image Decoder. We train an image decoder on top of a pre-trained hybrid image tokenizer to
reconstruct images in pixel space from discrete image tokens. Given an input image, the hybrid
tokenizer first encodes it into a latent representation, which serves as the conditioning input for a
flow-matching pipeline (Lipman et al., 2022) that transports Gaussian noise into realistic images.
For the decoder backbone, we adopt the DiT-Air architecture (Chen et al., 2025a), which employs
a layer-wise parameter-sharing strategy that reduces the size of the standard MMDiT model (Esser
et al., 2024) by approximately 66% while maintaining comparable performance. We provide three
decoder configurations with the parameter size of 0.9B, 1.75B, and 3.52B, supporting a range of
output canvas resolutions from 256 to 2048 pixels.

Inference Pipeline. The inference pipeline for both understanding and generation tasks is shown
in Fig. 2 (right). For understanding tasks, Manzano uses the hybrid image tokenizer to extract
continuous features. These features, along with text features, are then fed into the unified LLM
decoder to predict the final answer. For generation tasks, Manzano takes a text input and predicts a
sequence of image tokens. The image decoder then renders these tokens into image pixels.

4 EXPERIMENTS

In this section, we first introduce the evaluation setup for understanding and generation capabilities
(Sec. 4.1). We then study the cross-token interplay in our model (Sec. 4.2). After that, we analyze
the scaling behavior by varying model sizes (Sec. 4.3). Finally, we compare our model against
state-of-the-art models, including both specialist and unified models. The training details, including
the data mixture for understanding and generation and the unified training recipe, can be found in
Sec. A.

4.1 EVALUATION

We evaluate our models on image understanding and generation capabilities on popular benchmarks.

Understanding. We adopt the three categories of benchmarks for multimodal understanding: (i)
General VQA: SeedBench (Li et al., 2023a), RealWorldQA (Zhang et al., 2024b), and MMBench (Liu
et al., 2024b). (ii) Knowledge & Reasoning: AI2D (Kembhavi et al., 2016), ScienceQA (Lu et al.,
2022), MMMU (Yue et al., 2023), and MathVista (Lu et al., 2023). (iii) Text-rich Document & Chart
Understanding: ChartQA (Masry et al., 2022), TextVQA (Singh et al., 2019), DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022), and OCRBench (Liu et al., 2024c).
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Tokenizer
Paradigm

Understanding Tasks Generation Tasks

General Knowledge Text-Rich GenEval DPG WISE

Pure-Discrete 63.3 62.2 62.3 77 80.9 35
Dual-Encoder 63.8 63.6 72.0 65 66.3 17

Hybrid Tokenizer 64.9 66.5 73.3 77 79.9 35

Table 1: Tokenizer strategy ablation. Tokenizers are evaluated with a 1B unified LLM model. The
full list of evaluation tasks for understanding can be referred to Sec. 4.4.1. The hybrid tokenizer
outperforms the other two tokenizer paradigms.

Generation. We use both automated and human evaluations: (i) Automated Evaluation: The
automated benchmarks include GenEval (Ghosh et al., 2023) and DPGBench (Hu et al., 2024) for
prompt following generation, and WISE (Niu et al., 2025) for World Knowledge-Informed generation.
(ii) Human Evaluation: We curate a comprehensive evaluation set comprising 800 challenging
prompts, subsampled from established academic benchmarks (Wiles et al., 2025; Yu et al., 2022) and
from widely used community evaluation platforms. The generated outputs are assessed by in-house
human raters on three dimensions: structural integrity, instruction following, and aesthetic quality.
For each dimension, raters assign one of three grades: major issues, minor issues, or no issues, and
are quantized to scores afterwards. To mitigate bias, entity information is masked, and the sample
order is randomized. Each sample is independently rated by three raters, and the final scores are
obtained by averaging across raters to reduce variability.

4.2 UNDERSTANDING-GENERATION INTERPLAY

In this section, we study the task conflict along two axes: (i) tokenizer strategy (pure-discrete vs.
dual-encoder vs. our hybrid); (ii) task mixing (unified vs. single-task). For simplicity, we skip the
continued pre-training stage in the unified LLM training for these ablations.

Tokenizer Strategy. We construct two baselines to compare our unified hybrid tokenizer strategy: (i)
Pure-discrete. Prior works (Chameleon, 2024; Wang et al., 2024; Wu et al., 2024) train a quantized
semantic vision tokenizer using various quantization techniques (Mentzer et al., 2023; Van Den Oord
et al., 2017) and then use an LLM to predict the next text and image tokens. To mimic these methods
in our setting, we replace the understanding inputs for LLM with discrete features from our hybrid
tokenizer, so the LLM uses the same discrete tokens for both understanding and generation. To isolate
the effect of quantization on understanding, we use the same weights for the vision encoder and
the discrete adapter from our hybrid tokenizer. (ii) Dual-encoder. Another popular models (Chen
et al., 2025d; Deng et al., 2025) uses a dual-encoder strategy to preserve detailed features by a
semantic encoder for understanding and a VAE-style encoder for generation, effectively mitigating
the degradation of understanding. We reproduce this baseline by replacing the discrete tokens from
our hybrid tokenizer with those generated by an internal reproduction of MagViT-2 (Yu et al., 2023),
an autoencoder-style tokenizer. This MagViT-2 tokenizer uses FSQ (Mentzer et al., 2023) with a 64K
codebook and a spatial compression ratio of 8. For generation tasks, we resize images to 128x128
pixels instead of the original 256x256. This reduced the number of tokens per image to 256, which
we found improved the model’s instruction-following capabilities on benchmarks.

Table 1 shows the results on both image understanding and generation tasks. Our hybrid tokenizer
paradigm shows the least task conflict and outperforms both pure-discrete and dual-encoder baselines
on all tasks. Specifically, the pure-discrete baseline leads to a significant drop in understanding
performance–especially on text-rich benchmarks, due to information loss from quantization. While
the dual-encoder baseline mitigates some of this degradation, it still consistently underperforms our
hybrid tokenizer on all understanding tasks–especially on knowledge benchmarks, which rely heavily
on the LLM’s reasoning abilities. This suggests that the conflict between heterogeneous visual tokens
resides within the LLM.

Unified vs. Single-task. To quantify the task conflict in our hybrid tokenizer paradigm, we compare
our unified model with baselines trained exclusively for understanding or generation. For the
understanding-only baseline, we remove all text-to-image data from both the pre-training and SFT
stages. We reduce the training steps to ensure it is exposed to the same number of text and image
understanding tokens as our unified model. Similarly, for the generation-only baseline, we remove
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(a) 300M Model
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(b) 3B Model

Figure 3: Unified vs. Single-task study. Our unified model exhibits a slight regression compared
with the understanding-only model on understanding task; however, this effect becomes negligible at
the 3B scale, where the gap is less than 1.0. For generation, the unified model shows a decline on
only one benchmark compared with the generation-only model.

(a) LLM Decoder Scaling (b) Image Decoder Scaling

Figure 4: Model scaling behavior of Manzano. (a) Scaling the LLM decoder yields monotonic
improvements across both understanding and generation benchmarks. (b) Scaling the image decoder
enhances structural integrity while maintaining stable quantitative benchmarks. A drop in aesthetic
quality is observed, which we leave for more in-depth study in future work.

the understanding data and keep only the text-only and text-to-image data, while also reducing the
training steps. We conduct this ablation study with a 300M and a 3B LLM decoder. The results,
plotted in Fig. 3a and 3b, show that the unified LLM trained with our hybrid tokenizer performs on
par with the dedicated, single-task models on nearly all tasks, even at a compact size like 300M. This
demonstrates that our unified hybrid tokenizer paradigm successfully unifies visual perception and
generation without a performance trade-off.

4.3 MODEL SCALING BEHAVIOR

Facilitated by the decoupled design of LLM Decoder and Image Decoder, we explore the model
scaling behavior along two dimensions: LLM Decoder and Image Decoder. Similar to Sec. 4.2, we
skip the continued pre-train stage in the unified LLM training for the scaling experiments.

Scaling LLM Decoder. We vary only the LLM Decoder size (300M, 1B, 3B, and 30B) while
keeping the image decoder (0.9B), data mixtures, and training hyperparameters fixed1. Fig. 4a shows
monotonic gains across all understanding (General / Knowledge / Text-Rich) and generation (GenEval
/ DPG / WISE) metrics as the LLM decoder scales. Compared to 300M, our 3B Manzano model
improves significantly by +14.2 (General), +18.8 (Knowledge), +10.9 (Text-rich), +11.0 (GenEval),
+1.48 (DPG), +12.0 (WISE). Further scaling to 30B yields smaller but consistent gains over 3B. Fig. 7
shows the qualitative examples for image generation. We can see that the generation capabilities,
including instruction-following, text-rendering, and overall image quality, are improved consistently
across different LLM scales. The results support the simple yet effective design for Manzano: LLM
decoder captures high-level semantics, and scaling it benefits both understanding and generation.

Scaling Image Decoder. We evaluate the performance of image decoders of varying sizes built on
top of a 3B LLM decoder. Figure 4b shows that, in human evaluations, structural integrity improves

1We pre-train 30B LLM Decoder on roughly half the tokens compared to other model sizes.
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General Benchmarks Knowledge Benchmarks Text-rich Benchmarks

SEEDI RealWorldQA MMBench
(dev-en)

AI2D
(test)

SQA
(test)

MMMU
(val)

MathV
(testmini)

ChartQA
(test)

TextVQA
(val)

DocVQA
(test)

InfoVQA
(test)

OCRBench
(test)

3B Specialist Model

BLIP-3-4B (Xue et al., 2024) 72.2 60.5 – – 88.3 41.1 39.6 – 71.0 – – –
Phi-3-Vision-4B (Abdin et al., 2024) 71.8 59.4 78.6 76.7 90.8 40.4 44.5 81.4 70.1 83.3 49.0 63.7
MM1.5-3B (Zhang et al., 2024a) 72.4 56.9 72.4 65.7 85.8 37.1 44.4 74.2 76.5 87.7 58.5 65.7
InternVL2.5-2B (Chen et al., 2024b) – 60.1 77.2 74.9 – 43.6 51.3 79.2 74.3 88.7 60.9 80.4
InternVL2.5-4B (Chen et al., 2024b) – 64.3 78.7 81.4 – 52.3 60.5 84.0 76.8 91.6 72.1 82.8
InternVL3.5-4B (Wang et al., 2025b) – 66.3 – 82.6 – 66.6 77.1 86.0 77.9 92.4 78.0 82.2
Qwen2.5VL-3B (Bai et al., 2025) – 65.4 76.4 81.6 – 53.1 62.3 84.0 79.3 93.9 77.1 79.7

30B Specialist Model

LLaVA-NeXT-34B (Liu et al., 2024a) 75.9 – – – 81.8 51.1 46.5 – 69.5 – – –
Cambrian-34B (Tong et al., 2024a) 75.3 67.8 – 79.7 85.6 49.7 53.2 75.6 76.7 75.5 – 60.0
MM1.5-30B (Zhang et al., 2024a) 75.0 69.0 – 77.2 91.9 47.4 55.6 83.6 79.2 91.4 67.3 65.8
InternVL2.5-26B (Chen et al., 2024b) – 74.5 – 86.4 – 51.8 67.7 87.2 82.4 94.0 79.8 85.2

Unified Model

Blip-3o-4B (Chen et al., 2025b) 73.8 60.4 78.6 – – 46.6 – – 78.0 – – –
Emu3-8B (Wang et al., 2024) 68.2 57.4 58.5 70.0 – 31.6 47.6 – 64.7 76.3 – 68.7
Janus-Pro-7B (Chen et al., 2025d) 72.1 – 79.2 68.1† – 41.0 42.5 25.8† 45.6† 40.8† 21.3† 59.0†

X-Omni-7B (Geng et al., 2025) 74.1 62.6† 74.8 76.8† – 47.2† 54.1† 81.5† 77.4† 88.6 46.9† 70.4†

Bagel-14B (Deng et al., 2025) 78.5† 72.8† 85.0† 89.2† – 55.3 73.1 78.5† 80.0† 88.1† 51.0† 73.3†
Manzano-3B 74.3 65.1 78.1 82.2 92.9 51.4 69.8 88.2 80.1 93.5 75.0 85.7
Manzano-30B 76.0 70.1 83.4 86.0 96.2 57.8 73.3 89.0 84.4 94.3 81.9 86.3

GPT-4o (Islam & Moushi, 2024) 77.1 75.4 – 84.6 90.7 69.2 61.3 85.7 – 92.8 – 73.6
Gemini-2.5-Pro (Comanici et al., 2025) – 78 86.3 89.5 88.4 81.7 82.7 83.3 76.8 94.0 84.3 86.2

Table 2: Comparison on general, knowledge, and text-rich benchmarks. GPT-4o, Gemini-1.5-Pro,
and Gemini-2.5-Pro numbers are from OpenVLM Leaderboard. † represents that the results were
reproduced independently in our experiments and might differ from those reported in previous studies.
Manzano demonstrate competitive understanding capabilities, especially on text-rich benchmarks.

substantially (+9.9), while instruction following performance remains unchanged. A slight decrease
is observed in aesthetic quality. For automatic generation benchmarks, performance on GenEval and
DPGEval remains nearly identical, whereas WISE exhibits a modest improvement (+2.0).

Takeaways. Scaling the unified LLM backbone consistently improves both understanding and
generation, with substantial gains on text-rich understanding tasks and on WISE for generation.
Scaling the image decoder also enhances image quality, without negatively affecting understanding.
We observed that performance on the GenEval and DPG benchmarks becomes saturated when the
model becomes larger. This saturation motivates a re-examination of how emergent capabilities of
unified models could be assessed, as existing benchmarks may capture only a limited portion of
overall capability and can be boosted through targeted data tuning (Liu et al., 2025). Meanwhile, we
observe substantial improvements on world-knowledge generation tasks, and we hope these findings
pave the way for new directions in future community research.

4.4 COMPARISONS WITH UNIFIED AND SPECIALIST MODELS

To comprehensively assess our Manzano model’s capabilities, we compare its performance against
SOTA unified and specialist models (i.e., understanding-only and standalone generation models).

4.4.1 IMAGE UNDERSTANDING

As mentioned in Sec. 4.1, we evaluate our model’s understanding capabilities from three perspectives:
Knowledge & Reasoning, General Visual Question Answering, and Text-rich Document & Chart
Understanding. The results, shown in Table 2, compare our model against other understanding-
only models of a similar size. Despite being a unified model, our model achieves state-of-the-art
performance on many understanding benchmarks: (i) Knowledge & Reasoning: At the 3B scale,
our model outperforms all unified models within the 7B scale and achieves performance on par
with or better than the best specialist models at the 3B size. At the 30B scale, our model ranks
first on the ScienceQA, MMMU, and MathVista benchmarks and third on the AI2D benchmark,
outperforming all other unified and specialist models in these categories. Notably, our model surpasses
the proprietary models listed in the final three rows on ScienceQA and is competitive with the current
state-of-the-art model on the AI2D benchmark. (ii) General Visual Question Answering: For general
visual question answering, our model generally outperforms other unified models, despite its smaller
size. It also achieves competitive results with state-of-the-art specialist models at both scales. (iii)
Text-rich Document and Chart Understanding: On text-rich and chart understanding tasks, our model
achieves the best performance on four out of five benchmarks (ChartQA, TextVQA, DocVQA, and
OCRBench) when compared to all other unified, specialist, and proprietary models. For the InfoVQA
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Model
GenEval Benchmark WISE Benchmark

Single Two Counting Colors Position Color Attr. Overall Cultural Time Space Biology Physics Chemistry Overall

Dedicated T2I Model

SDXL-3.5B (Podell et al., 2023) 0.98 0.74 0.39 0.85 0.15 0.23 0.55 0.43 0.48 0.47 0.44 0.45 0.27 0.43
DALL-E 3 (OpenAI, 2024) 0.96 0.87 0.47 0.83 0.43 0.45 0.67 – – – – – – –
SD3-Medium-2B (Esser et al., 2024) 0.99 0.94 0.72 0.89 0.33 0.60 0.74 0.43 0.50 0.52 0.41 0.53 0.33 0.45
PixArt-Alpha-0.6B (Chen et al., 2023) – – – – – – – 0.45 0.50 0.48 0.49 0.56 0.34 0.47
FLUX.1-dev-12B (Labs, 2024) 0.98 0.93 0.75 0.93 0.68 0.65 0.82 0.48 0.58 0.62 0.42 0.51 0.35 0.50

LLM & Diffusion Conjunction

MetaQuery-XL-7B (Pan et al., 2025) – – – – – – 0.80† 0.56 0.55 0.62 0.49 0.63 0.41 0.55
OmniGen2-7B (Wu et al., 2025c) 1.00 0.95 0.64 0.88 0.55 0.76 0.80 – – – – – – –
Qwen-Image-27B (Wu et al., 2025a) 0.99 0.92 0.89 0.88 0.76 0.77 0.87 0.67 0.67 0.80 0.62 0.79 0.41 0.67

Unified Multimodal LLM

Janus-Pro-7B (Chen et al., 2025d) 0.99 0.89 0.59 0.90 0.79 0.66 0.80† 0.30 0.37 0.49 0.36 0.42 0.26 0.35
Bagel-14B-A7B (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82 0.44 0.55 0.68 0.44 0.60 0.39 0.52
X-Omni-7B (Geng et al., 2025) 0.98 0.95 0.75 0.91 0.71 0.68 0.83† – – – – – – –
Manzano-3B 0.98 0.91 0.82 0.71 0.78 0.71 0.85 0.42 0.51 0.59 0.45 0.51 0.32 0.46
Manzano-30B 1.00 0.91 0.83 0.87 0.84 0.65 0.85 0.58 0.50 0.65 0.50 0.55 0.32 0.54

GPT-4o (Islam & Moushi, 2024) 0.99 0.92 0.85 0.92 0.75 0.61 0.84 0.81 0.71 0.89 0.83 0.79 0.74 0.80

Table 3: Comparison on GenEval and WISE benchmarks. † represents the evaluation that involves
LLM rewriting. Manzano achieves competitive performance compared with other unified models.

task, our model significantly outperforms its unified counterparts and achieves the best results among
specialist models.

4.4.2 IMAGE GENERATION

We present the quantitative results for our model’s image generation capabilities, evaluating them on
two benchmarks: GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025). While both benchmarks
assess how well models follow text instructions, WISE additionally evaluates semantic grounding
through world-knowledge-informed attributes. As shown in Table 3, our model achieves SOTA results
among unified MLLMs on both GenEval and WISE. The 3B model can already perform competitively
with or better than much larger unified models, and scaling to 30B further improves generation quality
– most notably yielding a large gain on WISE, while maintaining strong GenEval performance.
This confirms that our unified architecture and training recipe support strong instruction-following
generation. Furthermore, we show the editing capabilities of our model in Sec. B.

4.4.3 COMPARISON WITH UNIFIED MODELS

In addition to specialist models, we also compare against recent unified models such as Janus-
Pro (Chen et al., 2025d), X-Omni (Geng et al., 2025), and Bagel (Deng et al., 2025), which aim
to handle both understanding and generation within a single framework. Our Manzano model
substantially outperforms these unified baselines across almost all understanding benchmarks. At a
similar scale, our 3B model exceeds X-Omni and BAGEL on DocVQA, OCRBench, and SEEDBench
while maintaining competitive performance on MathVista and ChartQA. Our 30B model further
extends this lead, consistently surpassing all existing unified models across knowledge, general
VQA, and text-rich domains. This demonstrates that unification does not have to come at the cost
of understanding capability. With careful architectural and training design, our model matches or
surpasses the best specialist models while providing strong generative capability. We provide more
qualitative comparison to the state-of-the-art unified models in Fig. 8.

5 CONCLUSION

We introduced Manzano, an MLLM that combines visual understanding and image generation
through a hybrid image tokenizer and a unified autoregressive backbone. The LLM predicts high-
level semantics in the form of text and image tokens, while a lightweight diffusion-based image
decoder renders final pixels from the generated image tokens. Coupled with a streamlined three-stage
training recipe, this architecture delivers: (i) state-of-the-art on understanding tasks, (ii) substantial
gains on generation among unified models, and (iii) minimal task interference as validated by
interplay and scaling ablations. Beyond generation, Manzano naturally supports image editing by
conditioning both the LLM and image decoder on a reference image, enabling instruction-following
with pixel-level control.
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Image Decoder Training

Image Decoder

diffusion 
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Unified LLM Training
"A friendly cartoon tree with a smiling 
face on its trunk, bearing two red apples. 

<img_start> <img_end> "

"<img_start>  <img_end> 
A vibrant apple tree laden with 
red apples."

Vision Encoder

Continuous Adapter

Unified LLM Decoder

text 
tokenization Discrete Adapter
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Figure 5: Training overview. (Left): Unified LLM training with hybrid tokens, the continuous
adapter produces embeddings used for the text loss, while the discrete adapter generates hard tokens
serving as targets for the image loss. (Right): With vision encoder and adapters fixed, an image
decoder is trained to reconstruct images using a diffusion loss.

A TRAINING

A.1 DATA

Our training data mixture includes text-only, image understanding, and generation data, divided
into pre-training, continued pre-training, and supervised fine-tuning (SFT) stages. We leverage
high-quality text-only data (Zhou et al., 2025) for both pre-training and SFT to maintain the language
modeling capability of Manzano model.

A.1.1 PRE-TRAINING & CONTINUED PRE-TRAINING

Understanding. We use two types of image understanding data: captioning (paired images and
text descriptions), and interleaved image-text data. For captioning, we use a combination of sources
with 2.3B image-text pairs, including CC3M (Sharma et al., 2018), CC12M (Changpinyo et al.,
2021), COYO (Byeon et al., 2022), VeCap (Lai et al., 2024), and in-house licensed data. This data
undergoes a filtering and re-captioning process to ensure high quality. For interleaved data, we
use 1.7B documents from (Laurençon et al., 2024) and web-crawled interleaved data, similar to
MM1 (McKinzie et al., 2024) and MM1.5 (Zhang et al., 2024a).

In the continued pre-training stage, we further train on 24M high-quality capability-oriented data,
including documentation, charts, multilingual OCR, knowledge & reasoning, high-quality synthetic
captions data, all with image splitting (Lin et al., 2023; Gao et al., 2024; Zhang et al., 2024a) enabled.

Generation. The image generation pre-training data consists of 1B in-house text-to-image pairs.
Following (Chen et al., 2025a), we generate synthetic captions using different captioner models. For
the continued pre-training stage, we select a high-quality subset of licensed images and re-caption
them with a more powerful MLLM, generating descriptions of lengths varying from 20 to 128 tokens.

A.1.2 SUPERVISED FINE-TUNING

Understanding. Following MM1.5 (Zhang et al., 2024a), our final understanding SFT recipe
comprises 75% image–text data and 25% text-only data. The image–text portion is further composed
of approximately 30% general knowledge data, 20% document and chart understanding data, and
25% vision chain-of-thought (CoT) and in-house generated reasoning data.

Generation. Our text-to-image SFT data includes a curated blend of real and synthetic data. We
begin with real-world text-image pairs from the DreamO dataset (Mou et al., 2025). However, we

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

observed that training solely on this dataset, while sufficient for standard diffusion-based generators,
caused our unified auto-regressive model to overfit. To mitigate this, we expand our training data with
synthetic examples. First, we incorporated 90K text-image pairs from established datasets, including
DALLE3-1M (Egan et al., 2024), BLIP-3o (Chen et al., 2025b), and ShareGPT-4o (Cui et al., 2024).
Second, to achieve a larger scale, we generated an additional 4M pairs by feeding prompts from
JourneyDB (Sun et al., 2023) into an open-source standalone diffusion model, Flux.1-schnell (Labs,
2024).

A.2 TRAINING RECIPES

A.2.1 HYBRID TOKENIZER TRAINING

The hybrid image tokenizer aims to produce two types of tokens: continuous for understanding and
discrete for generation, which are pre-aligned with the multimodal LLM semantic space.

We first pre-train the vision encoder (ViT) using CLIP Radford et al. (2021b). Then we attach a
pretrained small LLM decoder (300M) to the shared vision encoder through two parallel continuous
and discrete adapters (See Fig. 2-Left). For each training sample, we randomly select one adapter and
feed the corresponding embeddings to the LLM decoder, which is trained with next-token prediction.
We unfreeze all parameters and train the model on a variety of understanding data domains, including
general knowledge, reasoning, and text-rich tasks.

This process enhances the tokenizer’s understanding capability, encompassing both high-level seman-
tic understanding and fine-grained spatial details. Meanwhile, the branches are also being aligned
to the same space. We follow the pre-training, continued pre-training and SFT stages using the
understanding and text-only data described in Sec. A.1.

After training, we discard the small LLM decoder and retain the resulting hybrid image tokenizer,
which is then used as a vision input module for the unified LLM and image decoder.

A.2.2 UNIFIED LLM TRAINING

As shown in Fig. 5-Left, we freeze the parameters of both the vision encoder and the discrete adapter
to maintain a fixed vocabulary of image tokens during training. We extend the LLM embedding table
with 64K Image tokens following the same codebook size of FSQ layer in the tokenizer.

For image understanding, the image tokenizer extracts the continuous features from the input image
and feeds them directly into the LLM with standard next-token loss on text targets. For image
generation, the tokenizer uses its discrete adapter to convert input images into a sequence of discrete
image token IDs that are mapped to image tokens via the extended LLM embedding table. The
LLM then computes a cross-entropy loss on these image tokens only. To balance the training of
understanding and generation tasks, we set the weight ratio of text loss to image loss at 1:0.5.

We train the unified LLM in three stages. Pre-training and continued pre-training use a 40/40/20 mix
of image understanding, image generation and text-only data as described in Sec. A.1.1. We train our
model with 1.6T tokens (0.8T tokens for the 30B model) during the pre-training and an additional
83B tokens during the continued pre-training. Similarly, SFT stage uses curated instruction data with
a 41/45/14 mix ratio for understanding, generation, and text using datasets in Sec. A.1.2.

A.2.3 IMAGE DECODER TRAINING

Our image decoder is trained following a progressive resolution growing paradigm (Esser et al.,
2024; Chen et al., 2025a). We first pre-train the decoder at a resolution of 256x256 for 400K steps.
Subsequently, the model is fine-tuned progressively on higher resolutions of 512, 1024, and 2048,
with each stage trained for a shorter schedule of 100K steps. For each stage, only images with short
sides larger than the target resolution were used for training.

B CAPABILITY EXTENSION TO IMAGE EDITING

Image editing represents both a crucial application and a natural extension of text-to-image generation.
Despite Manzano demonstrating strong multimodal modeling capabilities, particularly on text-rich
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Figure 6: Editing capabilities of Manzano. (a) instruction-guided editing, (b) style transfer across
diverse visual domains, and (c) extended editing tasks including inpainting, outpainting, and depth-
estimation. Manzano achieves pixel-level controls across these five editing tasks.

understanding benchmarks, achieving pixel-level precision in fine-grained image editing remains
challenging. Similarly, recent work within the decoupled LLM–diffusion paradigm (Wu et al., 2025c)
reports difficulties when relying solely on the LLM for precise editing, since the LLM lacks native
mechanisms for direct pixel-level control.

We adopt an approach similar to (Wu et al., 2025c) by providing the reference image simultaneously
to both the LLM and the diffusion decoder. In this formulation, the LLM is responsible for diverse
instruction following and maintaining semantic coherence, while the diffusion decoder enforces
precise pixel-level control. By jointly conditioning on the reference image, Manzano enables
accurate semantic instruction following while preserving fine-grained visual consistency. In Fig. 6,
Manzano demonstrates versatile editing capabilities, including instruction-guided editing, style
transfer, inpainting, outpainting, and depth estimation.
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Scholarly elephant reading a 
newspaper with the headline 
'elephants take over the world'.

This image is in black and 
white. There is a rusty looking 
brick building on the right of 
the image. There is a sign with 
two circles on it in front of a 
rail. The rail seems to be 
leaning to the side. In the 
distance there is a church.

Bananas arranged on a picnic 
table to form the message 
'That s bananas!'

300M 1B 3B 30BPrompt

An artist in a lost city painting 
surreal, floating landscapes, 
surrounded by cool-toned 
mists.

A vintage postage stamp 
showing a painting of the 
Golden Gate Bridge and the 
text 'California'.

Figure 7: Qualitative generation results when scaling LLM decoder size. The generated image
quality improves as the LLM decoder size increases. For example, in rows 1, 3, and 5, there is a
clear trend toward better text rendering and creativity. In row 2, the scene configuration improves
significantly with each increase in the LLM decoder’s scale. The 300M model generates an image
with only the brick building and the church that are mentioned in the prompt, but as the model grows
to 1B and 3B, it begins to include the sign with two circles. Furthermore, the 30B model generates an
image that accurately depicts and integrates all the concepts mentioned in the prompt.
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The snake wears a striped top and wears a dress.

Lunar base under a starry sky.

An oil painting of a poppy field in the impressionist style.

A dog is to the right of the cat.

Painting of a mammoth in black and white, in the style of ancient cave paintings.

A gothic painting of a mountain landscape in acrylic on canvas.

Manzano Nano BananaBagelJanus Pro GPT-4o
Figure 8: Qualitative comparison with SOTA unified models. We compare our Manzano-30B
model to the SOTA models through side-by-side comparison. The images generated by our model
demonstrate strong capabilities in instruction following, aesthetics, and creativity, often with a photo-
realistic quality.
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