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ABSTRACT

Words that are more surprising given context take longer to process. However, no incremental
parsing algorithm has been shown to directly predict this phenomenon. In this work, we focus
on a class of algorithms whose runtime does naturally scale in surprisal—those that involve
repeatedly sampling from the prior. Our first contribution is to show that simple examples of
such algorithms predict runtime to increase superlinearly with surprisal, and also predict
variance in runtime to increase. These two predictions stand in contrast with literature on
surprisal theory (Hale, 2001; Levy, 2008a) which assumes that the expected processing cost
increases linearly with surprisal, and makes no prediction about variance. In the second part of
this paper, we conduct an empirical study of the relationship between surprisal and reading
time, using a collection of modern language models to estimate surprisal. We find that with
better language models, reading time increases superlinearly in surprisal, and also that variance
increases. These results are consistent with the predictions of sampling-based algorithms.

INTRODUCTION

One of the fundamental problems of computational psycholinguistics, going back to the ear-
liest days of the field, is to provide an algorithmic theory of human sentence processing (see
e.g., Collins & Roark, 2004; Dotlacil, 2021; Frazier & Fodor, 1978; Lewis & Vasishth, 2005;
Marcus, 1978; Miller & Chomsky, 1963; Rasmussen & Schuler, 2018; Roark, 20071; Stolcke,
1995; Vasishth & Engelmann, 2027; Yngve, 1960). Such an algorithmic theory must satisfy a
number of important empirical constraints. Amongst these are that the human processor is
incremental and predictive—people process sentences eagerly, assigning as much meaning
as possible as early as possible, and predicting likely continuations based on the current con-
text (Eberhard et al., 1995; Frazier, 1987; Marslen-Wilson, 1973, 1975; Tanenhaus et al.,
1995). Moreover, the effort needed to integrate each subsequent word (or smaller unit)
depends on how predictable it is, in context, often quantified as surprisal (negative log prob-
ability given context; Hale, 2007; Levy, 2008a). The more surprising a word is, the more time it
takes to integrate (e.g., Balota et al., 1985; Brothers & Kuperberg, 2021; Ehrlich & Rayner,
1981; McDonald & Shillcock, 2003a, 2003b; Meister et al., 2021; Wilcox et al., 2020).

However, despite the widespread recognition of these empirical facts, and the large number
of studies looking at surprisal as an empirical predictor of incremental processing time (e.g.,
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Demberg & Keller, ; Goodkind & Bicknell, , ; Hofmann et al., ; Meister
et al., ; Smith & Levy, , : Wilcox et al., ), to our knowledge no sentence
processing algorithm has been proposed for which incremental runtime intrinsically increases
as a function of surprisal.

In , we review the kinds of algorithms that
could possibly possess the desired properties, identifying and focusing on a class of
approaches for which the desired relationship with surprisal is very natural—sampling based
algorithms. The first contribution of this paper is to show that under some reasonable assumptions,
sampling-based algorithms predict processing time to be a monotonic increasing function of
surprisal. In particular, these algorithms predict runtime to increase as a superlinear function of
surprisal. We also show that these algorithms make a novel prediction about processing
times—under sampling based algorithms, we also expect variance to increase with surprisal.

However, as we discuss in Surprisal Theory, these two predictions are inconsistent with the
assumptions made by the majority of published work in surprisal theory. In particular, empir-
ical studies in this area have often assumed that the relationship between surprisal and pro-

cessing time is linear (Demberg & Keller, ; Fernandez Monsalve et al., ; Frank et al.,
), or at least that variance is constant (Goodkind & Bicknell, ; Meister et al., ;
Smith & Levy, , ; Wilcox et al., ). We review the status of the widespread

assumptions of linearity and constant variance, identifying both theoretical and empirical rea-
sons to question these properties.

We then present a new targeted study of the empirical relationship between surprisal and
reading time (in Empirical Study). We obtain surprisal estimates from a variety of pre-trained
language models (LMs), including GPT-3 (Brown et al., ) and then use generalized addi-
tive models (Wood et al., ) to examine the shape of the linking function between surprisal
and reading time. We control for possibly nonlinear by-subject random effects, and also fit the
relationship between surprisal and variance in reading time. We find evidence that the overall
shape of the linking function is in fact superlinear, especially for surprisals estimated by the
most accurate LMs. We additionally find that variance in reading time increases with surprisal.
Both these results are at odds with the assumptions typically made in surprisal theory, but they
are consistent with the predictions of sampling-based algorithms for processing.

We situate our results in the context of earlier literature, speculating that our ability to detect
this superlinear relationship rests on several ways our empirical study improves upon previous
work. Namely, we use higher quality LMs to estimate surprisal, and fit statistical models
designed to assess the possibly nonlinear relationship, controlling for individual differences.
In the discussion, we also revisit previous proposals which are related to the analyses we give
of sampling algorithms. Based on our theoretical and empirical results, we propose that
sampling-based mechanisms form a promising yet under-explored family of algorithms for
the modelling of human sentence processing.

SAMPLING ALGORITHMS FOR SENTENCE PROCESSING

It is well documented that for humans, words that are less expected are harder to process—for
example, during reading, people spend more time looking at words which are less predictable

given context (e.g., Balota et al., ; Brothers & Kuperberg, ; Ehrlich & Rayner, ;
Goodkind & Bicknell, ; Hofmann etal., ; McDonald & Shillcock, , ; Meister
etal, ; Smith & Levy, ; Wilcox et al., ). We may write this general relationship as:

Time(w,) = f(I(w,)) D
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where the linking function fis some monotonically increasing function, and
I(wy) =—log p(Wn | Win1) @)

is the surprisal of word w,,. Thus, we seek an algorithmic model of sentence processing where
the computational cost to perform each incremental update depends on the surprisal of the
input at that step.

To clarify what is at stake, it is useful to consider the incremental sentence processing prob-
lem in more detail. Sentence processing can be viewed as a sequence of posterior inference
problems: The comprehender updates their beliefs about the intended meaning, parse, or other
latent structure as they successively observe linguistic input items (e.g., words, morphemes, or
smaller units). Formally, we can define a probabilistic incremental parser as a map which, at
each step, takes the sequence of linguistic inputs seen so far to a posterior distribution:
wy., — p(zlwy.,), where z ranges over meanings (or parses, etc.). Consider one step of this
process, assuming that the comprehender has a representation of the exact posterior distribu-
tion given wy.,_¢, then encounters the next word w,,. The job of this comprehender is to update
their beliefs about meanings in light of the evidence, to obtain a new posterior:

p(Wn | 2)p(z| wi:n-1)

p(Z| W]:n) = Zz p(wn | z)p(z| Wl;nfl) 3

Note that the denominator here is X, p(w, | 2p(z | wy.,—1) = p(w,, | wy.,—1), the marginal prob-
ability of the word given the preceding context—the negative logarithm of this quantity is the
surprisal. This denominator represents the proportion of the prior meaning space that remains
after posterior update. When it is small (and thus surprisal is high), this means that very little of
the prior meaning space p(z | w;.,—1) was consistent with the new word, when it is large (and
thus surprisal is low), this means that much of the prior meaning space was consistent with the
new word.

Algorithms That Do Not Scale in Surprisal

In the literature studying surprisal and processing cost, it has been common to use enumerative
algorithms, such as Stolcke’s probabilistic variant of Earley’s chart-based algorithm (Earley,

; Stolcke, ) to estimate surprisal values (e.g., Boston et al., ; Levy, ).
Without further assumptions such as probability-based pruning (see below), such enumerative
algorithms do not use the probability of chart items in deciding how much work to do, and
thus do not scale in surprisal. The number of steps such an algorithm takes to integrate the next
word into the chart can depend on the size and specification of a probabilistic grammar, but
cannot depend on the probability of the word. This is also true of the many probabilistic or
non-probabilistic bottom-up, top-down, or left corner parsing algorithms which have been

studied over the years as models of sentence processing (Abney & Johnson, ; Berwick &
Weinberg, ; Earley, ; Graf et al., ; Marcus, ; Nivre, ; Roark, ;
Rosenkrantz & Lewis, ; Stabler, ), and likewise for RNN- or Transformer-based pars-
ing models (e.g., Costa, ;Huetal,, , ; Jin & Schuler, ; Yang & Deng, ).

Other parsing algorithms have properties which result in some correlation between sur-
prisal and processing cost, without predicting the relationship directly. For instance, amortized
parsing techniques that make use of chunked (Newell & Paul, ) parser moves or grammar
fragments (as examined in, e.g., Hale, ; Luong et al., ), can predict broadly that com-
mon sequences of actions lead to lower surprisal. However, these accounts do not predict any
direct link between individual word probability and the amount of computational work done
by the processor. A similar argument can be made for theories which describe processing
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difficulty primarily in terms of distance-based measures such as dependency locality theory
(DLT; Gibson, , ), where certain common words may tend to have shorter depen-
dencies, but the surprisal of a word is not intrinsically related to its integration cost.

A final class of models to consider includes causal language models, which do not produce
any observable representations of the meaning of their input, but rather simply predict the next
word given some prefix (Brown et al., ; Dai et al., ; Hochreiter & Schmidhuber,

; Radford et al., , ). The amount of work required by these algorithms may scale
in quantities such as the length of the input or the size of the vocabulary, or other functions of
the architecture of the model, but never directly as a function of the probability of the next
word.

Algorithms That Do Scale in Surprisal

As outlined above, highly probable words will necessarily tend to be associated with more
likely meanings (parses) given the preceding words, while the least likely words will tend to
be less compatible with these meanings. This suggests a natural way to relate processing algo-
rithms’ computational cost to the surprisal of the next word: When doing the posterior update,
give priority to those meanings which are highly likely in the prior p(z 1 w;.,—1). Since a word
w,, with low surprisal will tend to be associated with highly probable prior meanings, privileg-
ing meanings in such a way will lead to algorithms with the desired dependence on surprisal.

In this work we focus on a broad class of algorithms that privilege high prior probability
meanings: those that sample candidate meanings from the prior distribution p(z |wq.,-).
Another closely related class of algorithms with this property are those which perform a deter-
ministic search over the space of meanings, in order of decreasing prior probability. Such an
algorithm will naturally tend to take longer when confronted with an input word that has
higher surprisal (see discussion in ).

In what follows, we will consider two simple procedures for sampling from the prior and
discuss their consequences for theories of incremental sentence processing.

Two Simple Sampling Algorithms

In the analyses that follow, we consider the problem of integrating a single word w,, assuming
that the comprehender has an exact representation of the true prior: p(z | wy.,—1). Note that the
probability that a random sample from the true prior will be consistent with observed word w;,,
is given by X, p(w,, | 2p(z | wy.,—1) = p(w,, | wq.,,—1). Thus, without loss of generality, we simplify
the problem to analyzing the expected number of samples needed to exactly match w,,. Note,
assuming an exact prior representation is highly conservative, since, in general, sampling-
based algorithms for incremental processing will have to be approximate (e.g., using Markov
chain or sequential Monte Carlo techniques) and so will accumulate errors. A similar obser-
vation can be made about modified versions of these algorithms which sample until some
constant number of successes are achieved (rather than stopping at the first success). The run-
time analyses we do here will thus provide a lower bound on runtime for the more general
class of algorithms.

! The particle filter model proposed in Levy et al. ( ) is a specific example of such an algorithm applied to
parsing, but due to modelling choices, its runtime doesn’t scale in surprisal. We will discuss this model in
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Simple Guessing Algorithm. Define the simple guessing algorithm~ as follows: To get an exact
sample from posterior p(- | wy.,), given prior p(- | w;.,—1), and observed next word w,, repeat-
edly sample hypotheses (meanings) from the prior until getting one which explains the
observed next word.

The number of samples needed in this scheme, M, is geometrically distributed
M ~ Geom(p), where parameter p = p(w,, | w;.,_¢) is the probability of success. This random
variable has expected value 1/p and variance (1 — p)/p>. Expressed as a function of surprisal,
the expected value and variance are

1
EM| =—-= eI(Wn) 4
M) 5 @
1—
Var[M] = pzp _ 2w _ gllwn) -

So, the expected runtime of this sampling scheme (eq. 4) increases monotonically—in fact,
exponentially—in surprisal. Likewise, the variance in runtime (eq. 5) also increases
monotonically and superlinearly as a function of surprisal (to see this, note that all its
derivatives are everywhere positive).

Guessing Without Replacement Algorithm. In the simple guessing algorithm above, a meaning
may be repeatedly sampled from the prior, despite not explaining the observation. So, we will
also consider a more efficient version of the above scheme where sampling is carried out
without replacement to avoid re-sampling meanings that have already been eliminated.

Define the simple guessing algorithm without replacement as follows: Let the meanings
which do not explain the observation be indexed 1,..., K, with weights {u,'}f:l. Consider
one additional item, the target, assigned index 0, with weight, ug, proportional to the total
probability mass of the meanings which do explain the observation. At each step of the algo-
rithm an item is sampled from the set {0, ..., K} with probabilities proportional to the weights of
the items not yet drawn. The algorithm halts when the target item (0) is drawn.

Define binary random variables {X,-}f. where X; = 1if item kis drawn before the target, else
X; = 0. Let random variable N be the number of guesses without replacement up to and includ-
ing when the target is drawn. Then the runtime N =14 325, X;.

To derive runtime mean and variance for this algorithm, the following proposition will be useful.
Proposition 1. In a guessing algorithm (with or without replacement) the probability of

drawing item i before item j is Pr(i < j) = u'ifu,'

2 This simple sequential sampling algorithm, also mentioned in Freer et al. ( ), is sometimes informally
referred to as ‘rejection sampling.” We use the term ‘guessing’ to avoid confusion with the more general rejection
sampling algorithm (as defined in, e.g., Chopin & Papaspiliopoulos, , alg. 8.1), of which it is a special case.

3 This is intentionally the simplest possible version of such an algorithm. Among the many possible refinements
(which might be sensible in practice) would be to continue guessing until some reasonable number of successes,
rather than stopping at the first success. Note that such a modification does not change the asymptotic complex-
ity, simply adding a constant multiplier. As noted above, we do not analyze such particular modifications since
we are not proposing a specific algorithm. Our goal with these analyses is to understand the general asymptotic
complexity characteristics of the class of algorithms which involve iterative guessing from the prior.

4 Note the probability Pr(i < j) depends on the weights of items i and j, and no others. This means it is inde-
pendent of the order the other items are drawn in, what their probabilities are, and even whether drawing is
done with or without replacement.
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Proof. Consider a modification of the guessing-without-replacement scheme in which
items i and j have been removed from the set and a new item iV j. is inserted instead, with
weight u; + u;. If this item is drawn, then we say i is drawn with probability Pr(i|iV j) = u,iu,’
else j is drawn. The runtime of this scheme is identical to that of guessing without replace-
ment. Let Sx—1 be the set of permutations of ({0, ..., K}\ {i,j}) U {{i Vv j}}. First note that for any
permutation o € Sk—1, the conditional probability Pr(i <j | o) = Pr(i|iV j). So Pr(i<j) =
S Pr(i<j|o)Pr(o) = Pr(i]iVvj) =4

uitu;*

So, with E[Xj] = Pr(i < 0) = 4 we have that the expected runtime (number of draws), is

EN =E[1+ > X|=1+> E[X]
1 1 (6)
ui
Z u; + Uy
and the variance in number of draws is
var[N] =Y [B[X] - B[X))*] + > _[BIXX] - BIX]E[X]]

i %

s w_<¢h)2 . [ii+iﬂ_ii @
| Uio Ujo 7 Ujjo Ujjo  Uijo Ujp  Ujo Ujo

using notation ugp, := U, + Uy and U,pe == U, + Up + Uc. See appendix A for a derivation.

An important property to note here is that the individual weights of all items {u,»}fio appear
in the general expressions for mean runtime (eq. 6) and variance in runtime (eq. 7). This means
that both mean and variance in runtime depend on how the weights are distributed across all
the items—not just the probability of success, as was the case in the simple guessing (with
replacement) algorithm. Obtaining a concrete prediction for how the runtime scales as a func-
tion of surprisal requires making some assumption about the distribution from which we are
sampling.

We will assume the item probabilities are heavy-tailed—specifically, that they are
power-law distributed (a property ubiquitous in language, and word frequency distributions
in particular; see Piantadosi, ). shows the empirical mean and variance of
guessing-without-replacement runtime (number of samples until success) plotted against the
surprisal of the target, for K= 1000 weights sampled from the power-law distribution Pareto(1,
1), and normalized. Each of the discrete values on the horizontal axis corresponds to the neg-
ative log probability of one item in the set. The mean runtime to sample that item as the target
is plotted in the top panel, and variance in the bottom panel. Blue points mark the theoretical
values according to mean and variance derived in egs. 6 and 7, and grey crosses indicate
simulated values (estimated by simulating 500 runs of the algorithm for each item as the
target).

We observe that the runtime of guessing-without-replacement increases as a superlinear
function of surprisal, as is the case for the simple guessing algorithm with replacement. We
also see that variance increases over most of the range of surprisal values, plateauing at the
highest values of surprisal. Broadly, with respect to variance, we can say simply that it
increases with surprisal, for both the with- and without-replacement algorithms.
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Figure 1. Relationship between surprisal (negative log probability) and guessing-without-
replacement runtime for a set of 1000 weights sampled from a Pareto(1, 1) distribution. Blue points
show theoretical values for mean (top) and variance (bottom, transformed as log standard deviation).
Grey crosses give average values in simulating 500 runs of the algorithm for each surprisal value.

SURPRISAL THEORY

The relationship between surprisal and human processing time has received attention in a

large number of studies (Bicknell & Levy, , ; Boston et al., ; Brothers &
Kuperberg, ; Demberg & Keller, ; Fernandez Monsalve et al., ; Frank, ;
Frank et al., ; Futrell, ; Futrell et al., ; Goodkind & Bicknell, , ; Hale,
; Hofmann et al., , ; Jin & Schuler, ; Jurafsky, ; Levy, , ,

, , , ; Lowder et al., ; McDonald & Shillcock, , ;
Mitchell et al., ; Narayanan & Jurafsky, , : Rasmussen & Schuler, ; Reichle
et al., ; Roark et al., ; Smith & Levy, , , ; van Schijndel & Linzen,
; Wilcox et al., ). We will refer to literature focusing on this relationship as work

on surprisal theory. The question of the shape of the function linking surprisal and processing
time goes back to early work in the area (Hale, ; Levy, ; Narayanan & Jurafsky,

). The majority of work, however, has either assumed or explicitly argued for a linear
linking function, that is,

Time(w,) = a + BI(w,) 8

for some constants « and B. This stands in contrast with the superlinear linking function pre-
dicted by sampling-based mechanisms, described above. A linear relationship has been
motivated both empirically and on the basis of theoretical arguments. Nevertheless, as we
review below, there are reasons to question the assumption of linearity, including relatively
recent studies that provide evidence of a superlinear linking function as well as earlier
theoretical models that have assumed or argued for superlinearity (see

). Furthermore, as we note below, nearly all previous work has assumed
the relationship between surprisal and variance in processing time to be constant.

Empirical Studies in Surprisal Theory

Determining the correct functional relationship between surprisal and processing time is a
long-standing problem in the field. A large number of studies have simply assumed a linear
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relationship, explicitly—or implicitly, by the use of linear statistical models for their analysis

(e.g., Demberg & Keller, ; Frank, ; Fernandez Monsalve et al., ; Frank et al.,

; Hao et al., ; Kuribayashi et al., ; Lowder et al., ; Mitchell, ; Reichle
et al., ; van Schijndel & Linzen, ).” A smaller number of papers, beginning with
(Smith & Levy, , ), have investigated the shape of the linking function directly, using
generalized additive models (GAMs; Wood, , ), a family of statistical models which
allows the fitting of arbitrary nonlinear relationships (Goodkind & Bicknell, ; Hofmann
etal,, ; Smith & Levy, , ; Wilcox et al., ). For the most part, these studies

have found support for the assumption of linearity. However, there are a number of method-
ological reasons to revisit these results.

First, none of these previous studies has attempted a quantitative measure of superlinearity,
relying instead on visual impression of the fitted curves. For instance, Goodkind and Bicknell
( ) and Wilcox et al. ( ) used nonlinear models to qualitatively confirm that the rela-
tionship looked linear before using linear models for interpretation.

Second, there is considerable variability between individuals in reading times and other
psychometric measures of language processing (see Farmer et al., ). While GAMs allow
the fitting an overall effect while controlling for arbitrary nonlinear by-subject effects, previous
studies have either not controlled for such effects, (Hofmann et al., ; Smith & Levy, ;
Wilcox et al., ),” or assumed they were just constant offsets (Goodkind & Bicknell, ).

Third, all previous studies make strong assumptions about variance. Nearly all earlier stud-
ies have assumed that variance is constant, and normally distributed. A noteworthy exception
is (Hofmann et al., ), who used a Gamma-distributed response distribution, which instead
encodes the assumption that variance increases proportional to the square of the predicted
reading time value. Smith and Levy ( ) also mention that their results are robust to switch-
ing to an assumption of Gamma-distributed response, though they do not report results of this
modelling choice. As far as we are aware, no previous study has explored the form of the effect
surprisal has on variance in processing time.

Fourth and finally, many of the earlier studies that examined the shape of the linking
function directly using GAMs, notably including Smith and Levy ( , ), used surprisal
estimates from trigram language models, which are far from current state-of-the-art. Modern
pre-trained LMs allow unprecedentedly accurate prediction of words in context (see e.g.,
Brown et al., ; Floridi & Chiriatti, ). While questions remain about the similarity
between even the best modern LM’s predictions and those of humans, numerous studies in
this area have found that higher quality LMs (those better able to predict test data) make better
predictors of processing difficulty (Frank, ; Fossum & Levy, ; Goodkind & Bicknell,

; Wilcox et al., ).” Additionally, recent work comparing architectures has found
that surprisal estimates from Transformer-based LMs (Vaswani et al., ) tend to be the
best predictors of psychometric measures (Hao et al., ; Merkx & Frank, ;

5 Others have used linear models with a log-link, or log-transformed dependent variable (e.g., Aurnhammer &
Frank, ; Boston et al., ; Merkx & Frank, ; Mitchell et al., ; Oh et al.,, ; Oh & Schuler,
; ; Roark et al., ), implying an exponential relationship between surprisal and reading time (see
Superlinearity in Surprisal Theory).
© Smith and Levy ( ) did examine the nonlinear effect of surprisal on fixation time for eye-tracking data,
fitting nonlinear GAMs for each subject separately, but not as random effects in a common model, and not for
self-paced reading data, due to lack of a sufficient data to fit such models.
7 However, some very recent work has begun to argue the opposite—that higher perplexity LMs or those using
only limited context may be better psychometric models (e.g., Kuribayashi et al., ; Oh & Schuler, ;
). We will return to this topic in
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Laverghetta et al., ).” Only one recent published study—(Wilcox et al., )—has fit
nonlinear GAMs of the linking function using surprisals from a modern Transformer-based
LM (GPT-2 Radford et al., ).” While they found evidence broadly in favor of a ‘(near-)

linear’ linking function, they did not control for by-subject differences. Also, the surprisals
they use are from versions of GPT-2 trained on much smaller datasets than the standard
pretrained versions, and they do not provide the model with access to context outside of
the current sentence. We will compare their results with ours in

Theoretical Arguments for Linearity

A number of lines of work have given theoretical arguments in favor of a linear linking function
between processing time and surprisal. Hale ( ) gave the original suggestion that process-
ing effort was proportional to the log ratio of prefix probabilities, ” which is equal to surprisal:

Time(w,) o logM
p(len)
©)
= log——=I(w,
gp(Wn| Wl:n*l) ( n)
Levy ( ,§2.2.1), showed that the surprisal of a word is equal to the relative entropy between

distributions over structures (such as parses, or meanings) before and after observing the word,
I(wn) = D (p(- | win) || p(+ [ Wiin-1)) 10)

assuming (crucially) that the structures consist at least in part of the words themselves. This pro-
vides an additional justification for surprisal theory, linking the processing difficulty of a word to
a quantification of the amount by which the comprehender’s beliefs must be updated to account
for the observation. The relative entropy between such distributions appears in a number of
theoretical analyses of algorithm runtime in Bayesian statistics, notably in the analysis of rejec-
tion sampling (Freer et al., ) and importance sampling (Agapiou et al., ; Chatterjee
& Diaconis, ; Sanz-Alonso, ). However, in both cases the relationship between rel-
ative entropy and algorithm cost (number of samples needed) is exponential rather than linear.
We are not aware of the analysis of any algorithm that leads to a linear relationship.

Other arguments for the linear linking function come from work which models the compre-
hender as a rational agent managing the cost of perceptually discriminating between possible
alternatives, or preparing resources (Bicknell & Levy, , ; Smith & Levy, ,

, ). We will not review these arguments here; see Levy ( ) for more detail. In
the context of our discussion, the important thing about all such arguments is that they are
computational-level (in the sense of Marr, ). That is, they show that—subject to certain
constraints—an optimal information processor would have cost that is linear in surprisal. How-
ever, none of these arguments provides a concrete algorithm for achieving this optimal behav-
ior in practice.

8 Note, these studies mostly implicitly assume a linear relationship, using > or linear models’ difference in log
likelihood to assess psychometric predictive power.

% In recent unpublished work, Shain et al. ( ) conduct a new large-scale study of the linking function using
multiple LMs, including modern pretrained Transformer-based models, using nonlinear continuous-time decon-
volutional regressive neural networks (CDRNNs; Shain & Schuler, ), rather than GAMs. We discuss their
results and preliminarily compare with ours in appendix D.

0 Hale assumed prefix probabilities according to a probabilistic context-free grammar Earley parser, but this is
not crucial to the intuition.
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Superlinearity in Surprisal Theory

A number of earlier theoretical proposals have assumed a superlinear linking function
between surprisal and processing time. For instance, Narayanan and Jurafsky ( ) conjec-
tured that reading time is inversely proportional to incremental probability—that is, exponen-
tial in surprisal.

Time(w,) o L) an

p(Wn| W1:n—1)
Their justification for this linking function is based on a similar intuition to that of Hale ( ),
but without assuming the logarithmic relationship. We note this relationship is also the one
implicitly assumed by studies using linear models of log-transformed reading times (as in
Aurnhammer & Frank, ; Boston et al., ; Merkx & Frank, ; Mitchell et al.,
; Oh etal.,, ; Oh & Schuler, , ; Roark et al., ).

Although much subsequent work has assumed a linear linking function, some of the earliest
work in surprisal theory (Levy, , §2.8.8) provided an argument for a nonlinear function,
motivated by the uniform information density hypothesis (UID; see Jaeger, ; Levy &
Jaeger, ). While the argument itself does not suggest an algorithm, and thus is not relevant
to the present discussion, Meister et al. ( ) followed up on the suggestion, experimenting
with a linking function of the form

Time(w,) < (I(w))* (12)

where the parameter k was fit empirically. They report that their results are consistent with a
somewhat superlinear linking function (k slightly larger than 1), when using surprisal estimates
from high-quality pre-trained Transformer-based LMs.

Models of sentence processing within the ACT-R framework (adaptive control of thought—
rational; Anderson & Lebiere, ) also make claims about the relationship between the sta-
tistical properties of words and incremental processing times. In this framework, an item (such
as a word) is recalled in an amount of time that is a function of its activation, A, as Fe ™, where
F> 0, f> 1 are parameters. The activation, in turn, is assumed to model the log-odds of the
item being needed (Anderson, , simplifying slightly). In accounts of sentence processing
within this framework (such as Dotla¢il, ; Engelmann, ; Engelmann et al., ; Jager
et al,, ; Lewis & Vasishth, ; Nicenboim & Vasishth, ; Vasishth & Engelmann,

; Vasishth et al., ), the latency formula is taken as an assumption of the model, rather
than being explicitly motivated by the intrinsic properties of an algorithm. It is worth noting,
however, that the original work proposing this formula did in fact provide a way the formula
could be related to the runtime of a serial search algorithm, which we discuss below in Deter-
ministic Search Algorithms. Transforming the ACT-R latency formula from its usual form given
above into a statement about surprisal rather than log odds' gives the following superlinear
function of surprisal.

Time(w,) = F(eI(W"> - 1>f 13
"1 Cf. Brothers and Kuperberg ( ) who recently presented evidence for a sublinear linking function, using
cloze-probabilities (Taylor, ), not LMs, to estimate surprisal. Note however, cloze probabilities are in prac-
tice impossible to estimate for high-surprisal items (see Levy, ; Smith & Levy, ), and LM surprisals
generally give an empirically better fit to psychometric data (Hofmann et al., ).
12 Via the identity log odds(-) = —log (€7 P — 1). We believe we are the first to note this way of relating ACT-

R’s latency formula with surprisal theory.
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When f= 1, as is often assumed, the latency formula then becomes simply the statement that
retrieval time increases exponentially in surprisal.

Finally, other recent empirical work which may suggest superlinearity comes from van
Schijndel and Linzen ( ) and subsequently Arehalli et al. ( ) who look at reading times
in garden-path sentences. They fit linear models of the relationship between surprisal and
reading time, and find that these models consistently underpredict the amount to which
humans slow down in the critical region. This work is framed as challenging the assumption
that reading time can be predicted solely based on incremental surprisal, but an additional
interpretation of their results may be that the linking function is superlinear.’” Results such
as these also highlight the importance of using data with a broad range of surprisal values,
since the items with high surprisal will be the most useful in distinguishing whether the shape
of the linking function is linear or superlinear.

EMPIRICAL STUDY

In the preceding sections, we argued that no existing theory of sentence processing provides
an algorithmic explanation for processing scaling surprisal, and that a natural class of
algorithms that do scale in surprisal are those based on sampling. However, these algorithms
predict processing times that are superlinear in surprisal, in contrast to most of the existing
literature on surprisal theory, which proposes the relationship is linear and generally assumes
constant variance. Additionally, we identified a number of potential problems with earlier
empirical analyses which found evidence of a linear linking function. All together, this moti-
vates a re-examination of the empirical relationship, which we present in this section.

We use generalized additive models to predict reading times on the Natural Stories corpus
(Futrell et al., ), using surprisal estimates from a variety of pre-trained language models,
including modern Transformer-based models. In our modelling we control for nonlinear
by-subject differences, and allow the effect of surprisal on variance in reading time to be fit
empirically. We give a quantitative assessment of the superlinearity of the effect surprisal has
on reading time and on variance in reading time.

Language Models

To get estimates of incremental surprisal values, we use causal' * language models (LMs)—
statistical models of the probability of words given previous context. An LM M gives an esti-
mate of surprisal as Iy, := —log py(w,, | wy.,—1). We obtain surprisal estimates from a collection
of LMs, listed in . These include the following pre-trained Transformer-based LMs:
Transformer-XL (TXL; Dai et al., ), GPT-2 (Radford et al., ), GPT-Neo (Black et al.,
), GPT-J (Wang & Komatsuzaki, ), and GPT-3 (Brown et al., ). We also include
two older, non-Transformer-based LMs: an LSTM-based model (Gulordava et al., ) and a
Kneser-Essen-Ney smoothed 5-gram model (both from Boyce & Levy, ).

Context Amount. One of the main benefits of modern LMs is their ability to incorporate infor-
mation from large amounts of previous context when making predictions. Different models
allow differing amounts of preceding context ( , second column), and for the most

'3 Note this interpretation does not necessarily contradict their framing, provided the human slowdowns they
observe are larger than even the best-fit superlinear linking function could predict—see

' We only consider unidirectional or causal LMs: models which predict words given previous context, without
access to future context. Bidirectional or masked LMs are less appropriate for modelling incremental processing.
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Table 1.  Language Models used in this study, along with their max context size, number of trainable
parameters, amount of pretraining data, and log perplexity score on Natural Stories corpus. For OpenAl
GPT-3 models, estimates (marked *) are deduced from evaluations (Gao, ).

model context (tokens) parameters pretraining log PPL
5-gram 5 90Mtok 6.4
LSTM NA 90Mtok 4.9
Transformer-XL NA 88M 100Mtok 4.2
GPT-2 1024 124M 40GB 3.4
GPT-2 large 1024 774M 40GB 3.0
GPT-2 XL 1024 1.5G 40GB 2.9
GPT-Neo 2048 2.7G 800GB 2.8
GPTJ 2048 6G 800GB 2.6
GPT-3 Ada 2048 *350M 300Gtok 3.0
GPT-3 Curie 2048 *6.7G 300Gtok 2.6
GPT-3 Davinci 2048 *175G 300Gtok 2.3

accurate estimates of next-token probability, we provide each LM as many previous tokens as
it can use. Since all ten stories in the corpus are between 1024 and 2048 GPT tokens in length,
this means GPT-Neo, GPT-J and GPT-3 models will always have access to all preceding con-
text in the story when making their predictions. For comparison, we also compute surprisals for
each Transformer-based LM when provided only the tokens within the same sentence as the
current token. In discussing results below, when we need to distinguish between the surprisals
estimated from the same LM with differing amounts of context, we will refer to “within sen-
tence” versus “maximum”-context surprisals. Restricting the amount of context can have a
noticeable deleterious effect on language modelling accuracy.

Model Quality. To quantify language model accuracy we use perplexity—the standard mea-
sure of how well an LM predicts a test corpus. The logarithm of perplexity is the mean sur-
prisal, the average uncertainty per word.

1
N 1 N

PPLy(Win) = [H m

n=1

IM(W,,)

M=z

1
logPPLy(win) = N

n=1

A lower perplexity language is one which can more accurately predict tokens given previ-
ous context. Note, the perplexity of two models is not directly comparable unless they have
the same vocabulary. All eight GPT-type models we use are directly comparable.'” The
remaining three models (the LSTM, n-gram, and Transformer-XL) are not. For this reason, while

'S Note however that some recent work has suggested that restricting context can increase psychometric pre-
dictive power: See discussion in Language model perplexity and quality as psychometric models.
e All use the byte-level BPE tokenization scheme of GPT-2 (Radford et al., ).
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we will use perplexity values for all models in discussion and figures to follow, we will only
make direct comparisons of the GPT models.

Corpus

For our empirical analysis we use the Natural Stories corpus (Futrell et al., ), an English-
language corpus which was released with self-paced reading time (RT) psychometric data. The
corpus consists of 10 stories, of about 1000 words each. Each story is a modified version of
publicly available text, edited to contain “many rare or marked syntactic constructions,...
while maintaining a high degree of overall fluency and comprehensibility.” The relatively high
concentration of rare constructions makes this corpus particularly appropriate for our study,
since the difference between a linear and a superlinear linking function may only be appre-
ciable in the high end of the surprisal range. Reading times released with this corpus were
gathered from 181 native speakers, with each word in the corpus read by a median of 84
reading participants.

To allow inspection of the full text of the corpus, annotated with LM surprisals and reading
times, we provide an interactive utility, linked in appendix E.

Generalized Additive Models

We fit GAMs to model the effect of surprisal on reading time. In particular, we use Gaussian
location-scale mixed models (Righy & Stasinopoulos, ; Wood et al., ) which allow us
to model surprisal’s nonlinear effect on mean RT, while also modelling its nonlinear effect on
variance in RT, rather than assuming variance is constant or has a particular parametric rela-
tionship to the mean.

For each LM's set of surprisals, we fit a model we will call the nonlinear GAM, which pre-
dicts reading time, and variance in reading time (in the form of log standard deviation), each as
an overall nonlinear function of surprisal, controlling for nonlinear by-subject variation and
control predictors. It is these nonlinear GAM fits which we will use to interpret the relationship
between surprisal and reading time. We also fit a minimally-different control model for each
LM'’s surprisals, which we will call the linear control GAM, in which overall and by-subject
effects of surprisal (for predicting both reading time and variance in reading time) are forced to
be linear.

Model Specification. In specifying the nonlinear GAMs, we include the following terms for the
effect of surprisal and control predictors. To model the linking function we are interested in, we
include a smooth term for the overall nonlinear effect of surprisal. To control for possibly non-
linear individual deviations from the overall curve, we include a by-subject factor-smooth
interaction term. We also include a tensor product term for the nonlinear interaction between

log-frequency and word length (following Goodkind & Bicknell, ; Smith & Levy, ;
Wilcox et al., ). Finally we include versions of all three above terms but for the previous
word, to control for spillover effects (following Goodkind & Bicknell, , ; Meister
et al., ).

To predict variance (precisely, log standard deviation) in reading time, we include the same
terms as above, though only for the current word, since there is no a priori reason to expect
spillover in variance. So that the resulting overall curve fit by the model can be interpreted
simply, we choose a relatively low number (k = 6) for the basis dimension, effectively limiting
the maximum wiggliness of the fitted curve.
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GAM fits of the effect of surprisal on reading time
Partial effect of surprisal on mean RT
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Figure 2. The effect of surprisal on self-paced reading time. Colored lines are the fitted effects from the nonlinear GAMs, dotted black lines
beneath are from the corresponding linear control GAMs. Top two rows: effect of surprisal on mean RT, with density plots of surprisal underlaid
at the bottom. The top row (red) uses surprisals from LMs with full access previous context, the second row (blue) uses LMs with access only to
within-sentence context. Bottom two rows: as the first two, but for the effect of surprisal on variance in RT (as log standard deviation). Shaded
regions represent 95% Cls.

For the linear control GAMs, we use the same model specifications as for the nonlinear
GAMs above, but with the main surprisal smooth and factor-smooth interaction terms replaced
with a linear parametric term and linear by-subject random effects (likewise for the previous
word, and for the effect on variance). To differ only minimally from the nonlinear GAMs, we
allow the terms for the interactions between length and frequency to remain nonlinear similar
to the approach taken in Goodkind and Bicknell ( ).

We give further details and discussion of the specification of GAMs in appendix C.

RESULTS

displays our main results, showing the relationship between surprisal and human
reading time for each LM and context amount. Each curve represents the nonlinear GAM’s
fitted effect of surprisal on mean RT (top two rows, solid colored lines), or on log standard
deviation in RT (bottom two rows, dashed colored lines). In each small plot, the linear linking
function predicted by the corresponding linear control GAM is underlaid as a black dotted
line. Density plots at the bottom of each plot for the mean effect show the distribution of that
LM’s estimated surprisal values. The curves for LMs with maximum context are plotted in blue
(first and third rows); within-sentence context in red (second and fourth rows). LMs are ordered
left-to-right by decreasing perplexity, given maximum context.

We first examine the effect of surprisal on RT (top set of plots). For all language models,
reading time generally increases with surprisal. Impressionistically, better LMs (as measured
by perplexity) appear to exhibit a superlinear relationship between surprisal and reading time,
with higher quality LMs exhibiting more strongly superlinear curves (see below for quantification

7 Scripts for data preprocessing and reproducing all results and figures are available at
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of this claim). By contrast, lower quality LMs (including the n-gram, LSTM, Transformer-XL), and
models with only within-sentence context, tend to exhibit closer to linear relationships—or
even sublinear relationships at high surprisal values (see ). The slopes fit by the
linear control GAMs are positive for all models.

Examining the relationship between surprisal and variance (as log standard deviation; bot-
tom set of plots), we see a similar pattern. Variance in RT appears to generally increase with
surprisal, with a few exceptions among the models with only access to within-sentence con-
text. And for the linear controls, we generally see a positive slope for all fitted lines, similarly to
the slopes fit by these control models for the effect on RT.

Quantifying the Direction of the Effect

To establish the overall direction of the effect, as well as replicate earlier work which used
linear models for the effect on RT (though not variance), we will start by examining the slopes
fit by our linear control GAMs. We use these models to get a quantitative interpretation of the
overall direction of these effects, before introducing our superlinearity measure to examine the
shape of the curve in the next subsection. provides the coefficients for the effect of
surprisal. Each point describes the slope of the relationship between surprisal and RT (top) or
log standard deviation in RT (bottom), with bars indicating 95% confidence intervals.

We observe that surprisal has a positive effect on RT for all LMs, consistent with the findings
of the large number of previous studies of this relationship. This is also true for variance in RT:
As surprisal increases, variance in reading time also increases, for all LMs and context

Effect of surprisal on RT and variance in RT
from linear control GAMs
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Figure 3. Coefficient estimates (with 95% Cl) for the main effect of surprisal on RT and log stan-
dard deviation in RT, as fit by the linear control GAMs. For all LMs, both coefficients are positive,
and significant (p < 0.05)—with the exception of the variance effect for Transformer-XL constrained
to within-sentence context.
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amounts. ” This is noteworthy, given that previous work has nearly universally assumed that
variance is constant. Incidentally, we also note a general trend that the effect of surprisal on
mean RT is larger when using LMs with access to full previous context compared to restricting
to only within-sentence context, '’ though this is not true for the effect on variance in RT (with
the exception of Transformer-XL).

Quantifying Superlinearity

To quantify the observation that the relationship seems more superlinear for better quality LMs,
we define a simple descriptive value which we will call superlinearity. This value is computed
as follows: (i) split the surprisal range into two equal intervals, (ii) find the slope of the best
linear approximation to the curve in each interval, and (iii) take the difference between these
two slopes. A curve which bends upward will have positive superlinearity; one which bends
downward will have negative superlinearity. For a relationship which is overall increasing
positive superlinearity indicates that the curve is increasing superlinearly in a global sense,
though it may not be locally monotonic.

presents superlinearity plotted against LM quality (as negative log perplexity, so
that higher values represent better LMs). Points for GPT-based models—which share a com-
mon tokenization scheme and vocabulary and are thus directly comparable by
perplexity—are filled in grey, and a weighted linear regression fit on these points is displayed
as a dashed line, with correlation coefficient printed above, and 95% CI shaded.

We see a clear correlation between an LM’s quality and the superlinearity of the effect on
RT. This correlation is evident visually, and is attested by the correlation coefficient R? = 0.61.
This provides a quantitative confirmation of our claim that the better the LM, the more super-
linear the effect of surprisal on reading time.

Controls

In our modelling we chose to fit the effect of surprisal on variance, unlike previous work, which
has often assumed constant variance. To check whether the superlinearity we see in the relation-
ship with mean RT is dependent on this modelling choice, we fit models which assume constant
variance. For this control, we assume a normally-distributed dependent variable and identity link
(as is standard, following Goodkind & Bicknell, ; Smith & Levy, ; Wilcoxetal., ).
We found the relationships between surprisal and RT predicted by these models were similar to
the results reported above. They exhibited increasing nonlinearity with increasing LM quality
(plots from these models, and further details, are in appendix G).

In our models, we controlled for spillover effects by including predictors for one previous
word (following e.g., Goodkind & Bicknell, , ; Meister et al., ). However, other
studies (including Smith & Levy, ) have argued for using up to 3 previous words. To
understand whether this choice is likely to have influenced our general results, we include

'8 These coefficients are all significantly different from zero (at the 0.05 level), with the sole exception being
Transformer-XL when only given within-sentence context, for which the coefficient is positive but not
significant.

9 However, this difference is only significant for TXL, GPT-Neo and GPT-J (at the 0.05 level)—for all the other
models the difference is just barely beneath this threshold for significance.

20 Note that this definition of superlinear doesn’t imply increasing—a U-shaped curve would be superlinear.
This is a reason for the previous analysis showing all effects were increasing.

2T The assumption of constant variance could also be relaxed by only partially, by assuming a specific para-
metric relationship between mean and variance. See details in appendix C.
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Superlinearity vs. LM quality
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Figure 4. Superlinearity, measured as the amount by which the slope of the nonlinear GAMs’ predictions at high surprisal exceeds that at
lower surprisal, versus model quality (as negative log perplexity). The effect of surprisal on reading time is more superlinear for better LMs, as
demonstrated by a best-fit regression line (dashed line with 95% Cl shaded and correlation coefficient R* printed above). Note only GPT-based
models (filled grey) are directly comparable by perplexity, hence the line describing this trend is fit on only those points.

additional analyses in Section 12, examining autocorrelation in residuals and fitting models
with predictors for three previous words, rather than one. We find there is little evidence to
suggest that additional spillover predictors would have a large effect on our main qualitative
results.

In order to understand the degree to which our results are dependent on nonlinear by-
subject effects we include, we experimented with fitting models as above, but in which we
removed the terms controlling for by-subject effects. We found that this modification resulted
in predicted relationships that were similar in shape, but with much wider confidence inter-
vals. This suggests that controlling for by-subject variation in this data gives us higher power to
detect population-level nonlinear effects. This control is also useful for comparing our results
with previous literature which did not include by-subject random effects (e.g., Fernandez
Monsalve et al., ; Hofmann et al., ; Smith & Levy, ; Wilcox et al., ).
Not controlling for by-subject variation may be one reason why such studies did not find evi-
dence of a nonlinear effect.

As is readily evident in the density plots of surprisal values (plotted in , top two
rows), the overwhelming majority of words have relatively low surprisal. This is especially true
for the lowest-perplexity LMs. To check that the shape of the curves we see are not being
determined by a few high-surprisal outliers, we carried out two controls. First, we carried
out a cross-validation, refitting GAMs for each of the LMs on 6 folds of the data.”” We found
that the degree of superlinearity in the results was consistent across folds, confirming that the
results are not driven by a small number of outliers (see appendix G). Second, focusing on the
most superlinear GAM, which also has the most drastically skewed distribution of surprisals

22 We also note that the evaluation technique used to fit GAMs is designed to control against such sensitivity to
outliers (see discussion in Wood, ).
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(GPT-3 Davinci), we performed a hand-inspection of the highest-surprisal words, and found
that most occur within the kinds of rare syntactic examples that Natural Stories was designed
to contain, but otherwise seem plausible in context, and therefore do not seem to be outliers in
any way which should have required their removal from our data (see appendix F for a com-
plete list of these words in context and further discussion). We then re-fit GAMs with the
highest surprisal items removed. We found that superlinearity was somewhat reduced (due
to truncating the range of surprisals), but curve remained superlinear.

DISCUSSION

In the first part of this paper, we investigated the runtime characteristics of inference algorithms
that iteratively sample from the prior—a natural example of a broad class of algorithms whose
runtime scales with surprisal. As we showed, simple examples of such algorithms predict that
both runtime and variance in runtime increase with surprisal, the former superlinearly. In the
second part, we carried out an empirical study to test these predictions, finding that for one
widely-studied dataset the empirical relationship between surprisal and processing time is
broadly consistent with these predictions when using the best-available LMs to estimate
surprisal. In this section we discuss the implications of these results.

The correlation we observe between LM quality and superlinearity suggests that one reason
why a superlinear relationship has not been detected in earlier work may simply be due to the
use of surprisal estimates from earlier language models, which were less accurate. For exam-
ple, as discussed in Empirical Studies in Surprisal Theory, Smith and Levy ( , ) found
empirical support for the linear linking function, using a trigram model to estimate surprisal.
Our results confirm their finding for this type of LM, showing no evidence of superlinearity for
the n-gram model. Wilcox et al. ( ) also presented evidence of a linear linking function,
using some higher quality LMs and multiple datasets, including the Natural Stories corpus.
However, their highest-quality LM was a GPT-2 model trained on much smaller datasets than
the pretrained GPT-2 model we use,”” and they estimate surprisals using only within-sentence
context. Both choices likely mean less accurate predictions in general (higher perplexity),
although they do not report perplexity values. As our results demonstrate, using LMs restricting
to only within-sentence context, and using higher-perplexity LMs in general, tends to reduce
the superlinearity of the relationship.

This tendency is consistent with the following interpretation, illustrated schematically in

. The blue curve represents the best-fit curve for reading time as a function of hypothet-

ical ‘true’ surprisal, and the red curve represents the best-fit curve after raising the surprisal
values assigned to a subset of observations (while keeping their reading times the same). A
lower quality (higher perplexity) language model will tend to overestimate surprisal in general
(since log perplexity is simply average surprisal). If an LM consistently overestimates surprisals
compared to humans in such a way, we would expect the resulting best-fit linking function to
be lower than it should be at the higher end of surprisal range, due to these items with low
reading time being (wrongly) assigned high surprisal.”" As illustrated in the diagram, such
underestimation (moving these points rightward) results in changing the best-fit curve from

23 They use versions of GPT-2 trained on multiple different datasets, with the best model they use being trained
on 42 million tokens, compared to the ~40GB (roughly 10 billion tokens) of training data for the GPT-2 model
which we use.

24 One way this may occur for an LM with restricted access to context, for instance, is when it it consistently
assigns high surprisal to see some uncommon words in a text where, given the context, they are not surprising to
humans, who have a good model of the topic being discussed.
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Overestimating surprisal
schematic illustration
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Figure 5. Diagram illustrating schematically how a superlinear relationship may look linear if
some surprisal values are systematically overestimated: When a subset of points are moved higher
in the surprisal range (indicated by arrows), the best-fit curve becomes less superlinear (blue to red).

superlinear (blue), to linear (red). This is what we see in our results; the lower quality LMs display
less superlinear relationships (or even sublinear ones in some cases, especially those restricted to
only within-sentence context). Under this interpretation, the superlinearity we observe in our
results stems from our using more accurate surprisal estimators and, in particular, models
which can make best use of large amounts of previous context to accurately predict words.

An additional factor that may explain why superlinearity has not been observed in previous
studies that fit GAMs to describe this relationship is that most did not control for by-subject
variation (Hofmann et al., ; Smith & Levy, ; Wilcox et al.,, ), or assumed that
such variation could be modeled by a constant offset (Goodkind & Bicknell, ). As
described in the previous section, our experiments lesioning the by-subject random effects
from our GAMs resulted in models which were much less confident about the shape of the
curve, even for the more accurate LMs.

As mentioned in , a recent line of work introduced in van
Schijndel and Linzen ( ) has examined garden path effects, where humans show increased
processing difficulty at the point in a sentence where temporary structural ambiguities are
resolved in favor of the less expected alternative. Van Schijndel and Linzen ( ) and Arehalli
et al. ( ) argue that the degree of slowdown that occurs in humans exceeds that which
can be predicted by linear linking function. We propose that intuitively, a superlinear linking
function (such as those we see in our results) should be able to predict a larger slowdown the
than a linear one, and thereby at least partially explain the human slowdown observed in
their study. However, in the current study, our focus is on determining the best-fit form of the
linking function broadly. We don’t necessarily predict that the general superlinear trend we see
in our results (for GPT-3 Davinci, for instance) should be sufficient to entirely explain the
human reading times on particular sentences, where many other factors specific to that
particular sentence may influence human reading times. However, with proper controls,
examining the degree to which a superlinear linking function can explain human processing
on particular grammatical constructions (including garden path sentences) is a promising
direction for future work.
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Language Model Perplexity and Quality as Psychometric Models

In this work, we use pre-trained LMs as the best-available approximators of the true predict-
ability of individual words—the quantity which should describe the behavior of an optimally
rational comprehender. The interpretation of our results relies on the assumption that more
accurate LMs provide better estimators of human surprisal, at least for those words which
drive the superlinear fit of our GAMs. As discussed above, this assumption is supported by
recent literature (Goodkind & Bicknell, ; Hao et al., ; Laverghetta et al., ;
Merkx & Frank, ; Wilcox et al., ). Very recently, however, another line of work
has emerged arguing that, to the contrary, lower perplexity LMs sometimes provide poorer
fits to psychometric data. Building on a preliminary observation in Oh et al. ( ), Oh
and Schuler ( ) present a study of three different families of Transformer-based LMs
(GPT-2, GPT-Neo, and OPT; S. Zhang et al., ), finding that the lower-perplexity LMs in
each family tend to have poorer psychometric predictive power. In related work, Kuribayashi
etal. ( ) report that for GPT-2 and LSTM models, psychometric predictive power increases
as access to context is restricted, in English and Japanese. This improvement in psychometric
predictive power continues even for extremely severe restrictions such as limiting context to
just one previous word.

These studies raise two important problems to be explored in future work. First, it is impor-
tant to understand which subsets of words drive the two effects (psychometric power and
superlinearity) and how much they overlap. If the words driving the decrease in psychometric
power are not the same as those driving the superlinearity effect, then these studies and our
own may be complementary. For example, Oh and Schuler ( ) show that named entities
and predicative adjectives are among the classes of words most responsible for the decreasing
psychometric predictive power. Intuitively, better LMs may underestimate how surprising these
items are to people because the LMs are trained on superhuman quantities of data. It is pos-
sible for a model to find such words much less surprising than humans, while improving the
psychometric fit of other classes of words, such as function words. If the latter classes of words
are those most critical for superlinearity, then both effects could very well hold. Determining
whether this is or is not the case requires a detailed sensitivity analysis that carefully matches
datasets, LMs, and analytical models. We leave this to future work.

A second, and more important, question is whether these recent results are an artefact of
using linear models to study the relationship between surprisal and processing time. Our anal-
yses above show that the lower-perplexity a model is, the greater the advantage of a super-
linear linking function over a linear one. Studies such as Kuribayashi et al. ( ) and Oh and
Schuler ( ) make use of linear linking functions,”” showing that lower perplexity LMs
predict psychometric results more poorly. However, if the true relationship between surprisal
and processing time is nonlinear, then the seeming decrease in psychometric predictive power
that they report might even be related to the increasing superlinearity that we observe. A large-
scale examination of the relationship between LM perplexity and psychometric predictive
power using nonlinear regression models such as GAMs would provide a useful contribution
to more fully understand the potential three-way relationship between LM accuracy, psycho-
metric predictive power, and superlinearity.

2% Though this picture is complicated by differing choices on whether to log-transform the reading times before
fitting models (as discussed above): we do not transform, nor do Kuribayashi et al., while Oh and Schuler do.
Note, Shain et al. ( ) also observe that GPT-2 performs better than GPT-3 and GPT-J overall, though their
study is aimed at determining the shape of the linking function, not the relationship between perplexity and
psychometric power—see appendix D for further discussion.
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A Particle Filter Model

To our knowledge, the only explicit sampling-based model of incremental sentence processing

to date is the approach presented in Levy et al. ( ). Their model uses particle filtering, a
standard sequential Monte Carlo (SMC) technique based on importance sampling (Doucet
etal., ; Doucet & Johansen, ). The parsing algorithm estimates the posterior distri-

bution p(z, I w;.,) with a collection of K weighted particles (partial parses). Each of these
particles is first obtained by sampling from the prior p(z,—; | w;.,—1). Then each particle is
updated according to an incremental transition distribution p(z,1z,-1), and weighted propor-
tional to how likely it is to explain the next observation (word): p(w,, | z,).”” Because their
algorithm uses a fixed number of particles (the beam width, K), the number of samples drawn
is identical at every word. Thus, this algorithm’s runtime does not directly depend on surprisal
in the way that the algorithms that we examined above do.

However, Levy et al. offer an analysis of processing difficulty which can be related indi-
rectly to the present work. Rather than relating difficulty to runtime via expected number of
samples, they relate processing difficulty at a particular word to the probability of failure at that
word—that is, the probability that none of the particles in the beam can be extended to explain
that word. They estimate this quantity by running the particle filter multiple times and counting
the proportion of runs where the set of particles contains no successful parses.

This probability of failure is directly related to our analysis in ,
where runtime is inversely proportional to the probability of success (one minus the probability
of failure). In the particle filter, the probability of success at step n is the probability that at least
one particle contains a successful parse for w,,. If the particles are sampled from the exact
posterior Pr(- | wy.,—¢), the number of such samples required for an accurate approximation
of the posterior Pr( | wy.,) scales as €™ = 1/ Pr(w,, |w;.,-1).”” In the particle filtering setup,
which estimates the posterior distribution using importance sampling from an approximate
prior, the expected number of samples required to integrate w,, is at least e~.”" This suggests
that a modified version of the particle filtering model, where variable numbers of samples were
drawn until some desired number of successful parses were obtained, would have runtime that
scaled naturally in surprisal. Examples of this type of modified approach to particle filtering
include adaptive beam width algorithms (such as Buys, ; Elvira et al., ; Fox,

), which allow the number of particles (K) to vary at each step in order to maintain a
criterion such as a bound on probability of error, or uncertainty of the model. Such algorithms
could potentially be natural for use in models of sentence processing, and would have the
property that higher surprisal words would require (exponentially) more samples.

Deterministic Search Algorithms

Besides nondeterministic sampling algorithms, we identified a related class of determinis-
tic algorithms whose runtime scales in surprisal: those involving probability-ordered

26 The algorithm is recursive, so the representation of the prior p(zn-1 | Wip-1) is itself an estimate of the pos-

terior from the prior step, computed using samples from p(z,— | wi:n—2), etc.

27 This can be seen by first recalling that surprisal equals the relative entropy between prior and posterior (Levy,
)—again, assuming that the full parses consist at least in part of the words themselves. Then, note that in

importance sampling, the number of samples required for accurate estimation scales as the exponent of pre-

cisely this relative entropy (see Chatterjee & Diaconis, , Thm. 1.2, also discussed in Agapiou et al., ;

Sanz-Alonso, ).

28 Given the approximate prior makes predictions that are on average no better than the true prior, the expected

number of samples will be no smaller than the expected number from the true prior.
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search.”” In particular, probabilistic pruning (where only the high prior-probability parses are kept)
has the potential to predict a monotonic increasing relationship with surprisal. Such methods (like

beam search; Zhang & Clark, ), have seen extensive use in parsing literature (see e.g.,
Bouchard-Coté et al., ; Jurafsky, ; Meister, Cotterell, & Vieira, ; Meister, Vieira, &
Cotterell, ; Roark et al., ; Vieira & Eisner, ), yet as far as we are aware, there are no

results relating these specific algorithms’ time complexity to surprisal or incremental probability.

As noted above in , one simple and specific deterministic algo-
rithm which can predict runtime increasing as a function of surprisal is the serial search mechanism
assumed in the rational analysis of memory and ACT-R literature (Anderson, ; Anderson &
Lebiere, ). The formula for reaction time in this framework was originally derived under the
assumption that items in memory are considered in order of decreasing need probability. If each
item requires a fixed amount of time, the runtime is simply the ordinal position of the item in a
probability-ordered list.”” Using this argument, along with the assumption that item need-odds are
power-law distributed,” Anderson and Lebiere ( ) derived the latency formula linking (log) odds
to run time exponentially as Fe . We noted above this can be restated as Fe'"*” — 1)—a superlinear
function of surprisal (eq. 13).

The upshot of this analysis (independent of the specifics of the ACT-R framework) is that the run-
time of simple probability-ordered search makes a concrete prediction about the linking function
with surprisal. And, this prediction is similar to the predictions of sampling algorithms we have
discussed. However, unlike the sampling-based mechanisms we explored, a deterministic
ranked-search mechanism such as this cannot predict nonzero variance in any intrinsic way.

Conclusion

In this work, we have considered inference algorithms thatinvolve iteratively sampling from a prior,
and proposed that such mechanisms provide a plausible framework for formalizing theories of
incremental processing, since their complexity naturally depends on the predictability of their
input. Analyzing simple representative examples of this class of algorithms, we found that the num-
ber of samples required scales superlinearly as a function of surprisal, with variance also increasing.
In our empirical study of human reading times we found evidence of a linking function consistent
with these predictions, when using surprisal estimates of the most accurate modern LMs.
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APPENDIX A

Runtime Variance of Guessing Without Replacement

In in the main text we gave an expression for
Var[N], the variance in the number of draws needed in guessing without replacement (eq. 7).
Here we give the derivation of that expression. From general identities about covariance, we
have the following.

Var[N] = Var[N — 1] = Var [}, Xi] ZCOV Xi, Xj
= Z]E [X:X] - E[X]E[X]
In each element of this sum, the first expectation term E[X,-X,} is simply the probability that

items i and j both come before the target 0. There are two cases to consider. If j = j this sim-
plifies to E[X?| = E[X{] = Pr(i < 0) =

u+u Otherwise i # j, and we have

E[X,‘Xj] = Pr(i<0,j<0)

=Pr(i<j<0)+ Pr(j<i<0) A
where, by an argument similar to that given in the proof of proposition 1,
Pr(i<j<0)=Pr(i<jAj<0) =Pr(i<j|j<0)Pr(j<0)

=Pr(i< (jV0))Pr(j<0) (A2)

uj uj
uj + Uj + Up uj + Uo

and likewise for Pr(j <i<0).
So,
VarlN] = 5 B{XX] ~ B{X]E[X)]
— S B - (BIX)? + 5 B[] - B[X]EL)

i#

2
uj _ ( uj > :| (A3)
ui + Ug uj + Uy

i

uj uj uj Ui uj uj
+> + -
o Ui+ uj+Upuj+Up Ui+ Uj+ U Uj + Uy ui + Up Uj + U

This is the expression for variance given in eq. 7, and plotted in for Pareto-
distributed weights.

APPENDIX B

Language Model Surprisals

For our surprisal estimates, we used the pretrained models from Huggingface Transformers

(Wolf et al., ) identified by the following model IDs: transfo-x1-wt103, gpt2,
gpt2-large, gpt2-xl, EleutherAI/gpt-neo-2.7B, and EleutherAI/gpt-j-
6B. For the proprietary GPT-3 models, we used log probabilities provided via the OpenAl

API for the original GPT-3 base models with model IDs davinci, curie, and ada the
(accessed with free trial account, March, 2022). For the n-gram and LSTM models, as well
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GAM fits of the effect of surprisal on reading time

Partial effect of surprisal on mean RT

n-gram LST™M TXL GPT2 GPT3-ada  GPT2-large GPT2-xl GPT-Neo GPT-J GPT3-curie  GPT3-davinci
400
§ context amount 375
£
x maximum
£ f 350
— 80 words ) / £ g
within sent. 32590

R e e e Voad Vel aaal Ve

80 words

within sent.

Partial effect of surprisal on log standard deviation in RT
6.5
context amount

o
=3

maximum

maximum
o
)
|

o
--=- 80 words 5‘02
within sent. 2
; 53
g = ¥ e e = 4 50 1
3 e e I P | | &
) m
@ 50
g 45
0 10 0 10 0 10 200 10 0 10 0 10 0 10 0 10 200 10 0 10 0 10 20
surprisal (nats)
Figure B1. Plots of all GAM models repeated from , with the addition of select LM models with 80 previous words of context
(middle row, green) as a middle-ground between maximum context and within sentence context.
as unigram frequency predictors, we use data made available in Boyce ( , ). Code
we used for retrieving all surprisal estimates we use will be released with supplemental

material.

For each of the Transformer-based LMs, we obtain surprisal estimates with different
amounts of context: In addition to the maximum context and within-sentence context amounts
described in the main text, we also computed surprisals using 80 words of context for the
Huggingface models. These surprisals were estimated for each token using a sliding window
of at most 80 tokens immediately preceding it within the story.

is the full version of , giving the GAM fits for the overall effect of surprisal
on reading time, for surprisals estimated by each of language models we use and each of the
context amounts.

Tokenization

Because of tokenization differences between the reading time corpus and the language
models, some words seen by participants as single units correspond to multiple tokens accord-
ing to the tokenizers used by the language models. In order to avoid making unnecessary
assumptions, we discard words where the tokenization is different (excluding punctuation
and whitespace differences). Because the different language models use different tokenization
schemes, the set of corpus tokens we use differs across language models, though not
substantially.

33 After removing words with different tokenizations, 91% of tokens remain for the n-gram and LSTM, 80% for
Transformer-XL, and 78% for the GPT models.
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We do not estimate surprisal for the first word in each text (or sentence, for LMs using only
within-sentence context), and so these words are removed before fitting the models. Similarly,
words immediately following an excluded word are also excluded since their previous-word
surprisal predictor (included to control for spillover) is undefined.

Comparison of LM surprisals

Figure B2 gives comparison of selected language models’ surprisals against each other, by item
in the corpus. We can see that as the language models get lower mean surprisal, not all words’
surprisal is lowered proportionally. Also, as is clear from the density plots, at the higher end of
surprisal, there is very little data, especially for the better language models. Given that it is in
the high surprisal region that the predicted reading times according to the nonlinear GAMs we
fit differ most from the predictions of the linear control, it is crucial to have data with construc-
tions with high surprisal, something which is increasingly difficult with lower-perplexity lan-
guage models.

Comparison of surprisal values across LMs
Hexbin plots and correlation coefficient (Pearson's)
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Figure B2. Comparison of surprisal estimates from a selection of language models, by item in the
corpus, with density and rug plots for each LM on the diagonal. Pearson’s correlation coefficients
for each of the pairs are given in the upper right.
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APPENDIX C

Generalized Additive Models

Generalized additive models (GAMs; Wood, , ) are a family of statistical models
which allow nonlinear functions to be captured as linear combinations of basis functions.
GAMs are a nonlinear generalization of generalized linear models, and as such similarly allow
the use of different response distributions and linking functions. For our purposes, a GAM
allows us to fit a regression of the form

Time(w,) = fo(I(wy)) (CD)

where the function fy is the linking function (as in previous literature since Smith & Levy,
). GAMs are fit using penalized regression, of the form,

argmax {likelihood (fy) — 1 J(fs)} (C2)
0

where the ‘wiggliness’ penalty functional J is specified so that J(fy) = O if fy is linear, and,
crucially, wiggliness is controlled by a parameter 4, which controls the trade-off between
smoothness and fit to the data. This parameter itself may fit by cross validation, so the resulting
regression model will be only be as nonlinear as necessary.

For our GAMs, we use the implementation provided by gam in mgcv 1.8-40 using R 4.2.1
(R Core Team, ; Wood, ). All GAMs we report in the main text were fit using with the
default restricted maximum likelihood (REML) method for smoothing parameter estimation.
Additional models given in this appendix that have a constant-variance assumption were fit
using the more efficient mgcv: : bam routine, and fast REML (fREML) for smoothing parameter
estimation for computational efficiency.

Nonlinear GAM Details

gives the mgcv formulae we use for the GAM fits of the nonlinear effect of surprisal
on reading time. We fit Gaussian location-scale models (Righy & Stasinopoulos, ; Wood
etal.,, ), which lets us specify smooth predictors for the mean and standard deviation sep-
arately (with family=gaulss () ). The LHS of the first formula specifies the structure of the
linear predictor for mean RT, and the second that for standard deviation. In all our models, we
use the default links: identity link for the mean, and log link for the standard deviation (so the
relationship between the linear predictor and the standard deviation is = log (o + b), with
parameter b = 0.01).

For the predictors of mean, following Smith and Levy ( ), Goodkind and Bicknell
( ), and Wilcox et al. ( ), we include a nonlinear term for the main effect of surprisal,
and also include a tensor product term for the interaction between log-frequency and word

list (RT ~ s(surp, bs='tp', k=6) + s(subj, surp, bs='fs', m=1, k=6) + te(freq, len) +
s(prev_surp, bs='tp', k=6) + s(subj, prev_surp, bs='fs', m=1, k=6) + te(prev_freq, prev_len),

~ s(surp, bs='tp', k=6) + s(subj, surp, bs='fs', m=1, k=6) + te(freq, len))

Formula 1. The mgcv formulae used for the nonlinear GAM fits. RT is predicted as a nonlinear
function of surprisal, controlling for nonlinear by-subject effects, and interactions between fre-
quency and word length. The mean formula also includes similar predictors previous word as well
as current, to control for spillover effects.
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length (orthographic) of the current word. Also following this previous literature, we include
predictors likewise for the effect of the previous word on current reading time, to help control
for spillover effect (see discussion in, e.g., Smith & Levy, ). We additionally include
subject-specific terms (using bs="fs"' in mgcv to use the factor-smooth interaction basis)
to allow for by-subject nonlinear effects on reading time, to avoid the assumption of linearity,
rather than just random slopes and or intercepts as in Goodkind and Bicknell ( ). Unlike
by-subject random smooths, which fit potentially nonlinear effects independently for each
subject (or separate by-subject models, as used by Smith & Levy, , for their experiment
with eye-tracking data only), including the subject predictor as a factor-smooth interaction
allows us to control for potentially different nonlinear effects of each participant (and random
intercept) while sharing the same smoothing parameter, as is appropriate for by-subject ran-
dom smooths (Wood, , §7.7.4).

Basis and order of penalty term. Since we are particularly interested in the shape of this curve in
the high-surprisal region, where there is the least data, we choose not to use cubic regression
splines (unlike Goodkind & Bicknell, ; Wilcox et al., ), for which knot locations are
by default chosen by quantile. Instead we use thin-plate regression splines (TPRS; Wood,

), avoiding the problem of knot placement. Using TPRS results in evenly distributed knots.

We set the order of the penalty functional to 1 (m=1) in the factor smooth, which penalizes
towards a slope of zero (flat line). This results in penalizing deviation from the global effect,
limiting the wiggliness per speaker, suitable for these by-speaker nonlinear effects (cf. Wieling
etal.,, ). While this choice is principled, changing it does not affect our qualitative results.
Our choice to set the penalty term m=1 in the factor smooth interaction terms is motivated by
the fact that the default m=2 would allow more wiggliness per speaker smooths, and could

lower our power to detect the population-level positive effect. In preliminary testing with
m=2, the qualitative results were unchanged. We note however that the confidence intervals

on the resulting main smooths were somewhat wider than the results using m=1 which we
report, and to this extent, the choice may be somewhat anticonservative. Since we are inter-
ested in the overall effect, the choice to set a stronger penalty on the factor smooths is war-
ranted, and follows previous literature on using similar GAMs (e.g., Soskuthy, ; Wieling
etal., ), though we are the first to introduce it to this application.

Restricting maximum wiggliness. We must choose a value for basis dimension for the main
smooth term, k. This parameter effectively controls the maximum degrees of freedom of the
curve, with a higher values allowing a potentially very wiggly curve to be fit, while at the
lower value, the curve would be forced toward the null space (linear). The arbitrary default
in mgev is k= 10. Some previous work chooses a large number for the basis dimension (such
as k=20, in e.g., Smith & Levy, ; Wilcox et al., ) and allows the smoothing param-
eter to be fit according to the data, resulting in only as smooth a curve as is necessary. Instead,
we set k = 6, effectively allowing a maximum of 5 degrees of freedom (k — 1, because one
degree is lost to the identifiability constraint). The result is nonlinear effects which are
restricted to simpler curves. We limit the basis dimension since we are in particular interested
in the rather simple question: given a few degrees of freedom, whether the GAM will use them
to bend the curve, or not. In preliminary experimentation, increasing the basis dimension leads

34 The factor smooth interaction basis we use fits a nonlinear random effect for each subject (with a TPRS basis
and basis dimension k = 10, by default). The key point is that using factor smooth rather than random slopes, not
which exact factor smooths used, which matters less (as explored in Soskuthy, ).
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to local nonlinearities which obscure the global pattern somewhat, but don’t change the qual-
itative interpretation.

Linear Control GAM Details

As described in the main text (Generalized Additive Models), for each language model and
context amount, in addition to the GAM fit using (the nonlinear GAM), we also fit a
GAM using (the linear control GAM), where the effects of surprisal on reading time
mean and likewise on variance are assumed to be linear, but otherwise the model is the same.
For this linear control, the global nonlinear terms of surprisal and previous word surprisal are
replaced with linear parametric terms, and the factor-smooth subject terms are replaced with
linear random effects (via the basis bs="re"'). One caveat is that this model specification
includes the additional assumption that the random slopes and intercepts are independent,
which is not assumed in the case of the nonlinear model.”” We leave the tensor product terms
for the interactions between frequency and length the same for maximum similarity between

list (RT ~ surp + s(subj, bs='re') + s(surp, subj, bs='re') + te(freq, len) +
prev_surp + s(prev_surp, subj, bs='re') + te(prev_freq, prev_len),

~ surp + s(subj, bs='re') + s(surp, subj, bs='re') + te(freq, len))

Formula 2. The formulae used for linear control GAM fits. The interpretation is effectively the
same as that of , except that the fit effect of surprisal on mean/variance in reading time
is forced to be linear.

the two. The interpretation of the linear control models is as a baseline to which the nonlinear
models would converge if the true effect of surprisal on reading time were perfectly linear.

Significance of Superlinearity

We are interested in whether an assumption of linearity is justified to model the effect of sur-
prisal on processing difficulty, or if a nonlinear fit is necessary. One way to specifically test
whether a smooth term may be replaced with a linear parametric term in a GAM is to explicitly
separate the basis for the penalty range space from the basis for the null space when param-
etrizing the smooth, effectively allowing one to ask the question “is this curve significantly
nonlinear?” This technique can be accomplished in mgcv with thin-plate regression splines
by setting the smooth up without a null space basis, and including a parametric term (as
described in Wood, , §6.12.3).”" For our purposes, we are interested in the shape of
the nonlinear fit (namely, whether it is superlinear), not simply whether it is significant. None-
theless, we experimented with using this technique to get a p-value testing whether the non-
linear components were required. Unsurprisingly, we found across models that the nonlinear
components were significant, though not in an illuminating way: even for the worst LMs and
the most qualitatively linear fits, there are small but statistically significant nonlinearities. For
this reason this technique is not a useful way to quantify nonlinearity.

3% A smooth term s (x, g, bs="re") for the random effect of variable x with grouping factor g encode a
random effect of x for each level of g, but not by-group means. Adding random intercepts in separately, with an
additional term s (g, bs="'re"') will encode an assumption that all slopes and intercepts are independent
(see Wood, , §3.5.2).

36 However, as Wood notes, this technique is generally unnecessary when the smoothing parameter is efficient
to fit, as a smooth would be automatically shrunk to linear if the data merit it.
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Nonconstant Variance of Data

Most modelling of the relationship between surprisal and reading time, both using generalized
linear mixed models and GAMs, has used the default Gaussian distribution for the dependent
variable, with identity linking function. The primay exceptions are Hofmann et al. ( ), who
use a gamma family with the default logarithmic linking function, and Smith and Levy ( ),
who also mention that their results were robust to switching from Gaussian to a heavy-tailed
(gamma) family. The choice of dependent variable distribution and linking function for models

of reading time data in general is explored in detail in Lo and Andrews ( ), who point out
that RTs are better modelled by waiting time distributions such as the gamma or inverse-
Gaussian.

Looking at the reading time data we use empirically, before fitting any models, it is clear
that the variance in reading time is not constant across mean reading time values, as illustrated
in . This already suggests that the assumption of constant error variance implicit in
using least squares estimation (constant Gaussian distributed error) is not warranted. This lack
of constant variance is a known feature of reaction time data, and motivates the use of a
response distribution that is better matched to these data (see Lo & Andrews, , for detailed
discussion). In fitting Gaussian scale-location models (Wood et al., ) where variance is
allowed to vary as a smooth function of the predictors, we can effectively probe the correspon-
dance between mean and variance. In our results, the similarity between the fitted curves for
mean and variance ( and B1) suggest that use of a member of the exponential family
for which variance increases smoothly with the predictor value is indeed justified (for example,
gamma or inverse-Gaussian distributions). An expansion of the current study using such
models is material for future work.

Relationship between Mean and Variance

The GAMSs we fit did not assume any particular relationship between RT and variance in RT.
Yet, comparing the nonlinear GAM’s mean and variance fits for a given LM in ,itis
clear that these two curves are generally similar to each other in shape. The similarity between
these fitted curves may justify the use of statistical models where variance is a assumed to be a

Variance vs mean RT, per item
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Figure C1. Variance in self-paced reading time versus mean, by item in the Natural Stories corpus.
Variance increases with mean.
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fixed increasing function of the predicted mean.”” Making this assumption a priori, rather than
fitting that relationship simultaneously for mean and variance, as we did, would have the ben-
efit of making the models much less computationally costly to fit. We leave to future work the
exploration of models with variance that scales parametrically with the mean.

APPENDIX D
Comparison with Shain et al. ( )
Shain et al. ( ) present a meticulous and large-scale study of the relationship between sur-

prisal and processing difficulty, using multiple datasets (including Natural Stories) and reading
modalities (eye-tracking and Maze task data, in addition to self-paced reading) and using sur-
prisal estimates from multiple language models (including a 5-gram model, and GPT-2, GPT-,
and GPT-3 Davinci as well as a PCFG model and cloze probabilities). Unlike the current study
and much previous literature, Shain et al. ( ) do not use GAMs, but instead make use of
continuous-time deconvolutional regressive neural networks (CDRNNSs; Shain & Schuler,

, ), a new modelling technique which describes the influence of predictors in terms
of overlapping additive impulse response functions in continuous time. This technique also
allows modelling of the effect of predictors on all parameters of the response distribution
(not just the mean), with full nonlinear random effects.

While their study and the empirical component of our study both target the shape of the
linking function, and use surprisal estimates from some of the same pre-trained language
models, the differing analytical models make it difficult to compare results directly. Still, for
the Natural Stories dataset (which, of the datasets they include, has the largest number of
observations, and is also the dataset we use), they report qualitative confirmation of the super-
linear relationship we observe between surprisal and self-paced reading time. Namely, their
results for this data show curves that increase superlinearly with surprisal for the larger LMs,
with superlinear models tending also to show stronger performance (larger psychometric pre-
dictive power). However, they do not find such a trend in the other datasets and modalities,
and find that overall (when aggregating across all and datasets and modalities) the larger
models GPT-3 and GPT-] perform worse as psychometric models than GPT-2, especially if
the linking function is constrained to be linear’”. Their overall conclusion is that empirical
evidence favors a linear relationship.

As discussed in the main text, we believe our choice of the Natural Stories dataset is well-
motivated, given the design of the corpus, a well as the large number of participants, which
allows us to better control for a large amount of potential variation between individuals. How-
ever, the difference between the results on this dataset, which do show superlinearity (in both
our study and theirs), and those on the other datasets and modalities in their study, which do

not, complicates the picture. It is also worth noting (as Shain et al., do) that if the
37 A model with a gamma-distributed response (as used by, e.g., Hofmann et al., ) has this property. This is
likewise true for inverse Gaussian, or even log-normal models, though the specific assumption is different in
each case (see Lo & Andrews, for a discussion of these choices for modelling reading-time data with

generalized linear models). An assumption of a inverse Gaussian or gamma distribution would also potentially
be a principled choice for an underlying process involving sampling, given these distributions model waiting
time.

38 With an unconstrained (nonlinear) linking function this is less clear: GPT-J does not underperform GPT-2, but
GPT-3 does. However, we note this trend reverses in their results when considering just the self-paced reading
datasets in their study. In fact fully nonlinear GPT-3 and GPT-J perform better than GPT-2 for self-paced reading
data from both available corpora (Natural Stories and Brown).
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uncertainty interval covers an a superlinear function, it is not possible to falsify the hypothesis
of superlinearity in favor of a linear linking function. This observation leads back to our fun-
damental motivating question: What predictions do algorithmic theories of processing make
about the relationship between surprisal and processing difficulty? In this work we have argued
that the only algorithms we know of which naturally scale in surprisal predict a superlinear
linking function. The tension between this prediction and the results of Shain et al. ( )
motivate further study from both empirical and theoretical directions.

APPENDIX E

Surprisal Explorer

To facilitate exploration of the words of the corpus in full context, with language model sur-
prisal estimates and reading time annotations, we provide an interactive utility available at

APPENDIX F

Effect of Highest Surprisal Words

The difference between a linear and superlinear linking function is naturally most appreciable
in the high end of the surprisal range. However, for low-perplexity LMs, the vast majority of
words in the corpus are relatively low surprisal, as can be seen in the highly skewed density
plots of surprisal values (plotted above in and BT, and compared across LMs in

). This is to be expected for any corpus of fluent text, and remains true of the Natural
Stories corpus, despite its being designed to contain rare and marked constructions. Since this
skew is especially pronounced for the lowest-perplexity LMs, the models for which we see the
most superlinearity are also the models for which we have the smallest amount of data in the high
end of the surprisal range. To understand how the particular words in this region of the sur-
prisal range affect our results, in this appendix we take a detailed look at the highest-surprisal
words according to GPT-3 Davinci—the lowest-perplexity of the LMs we use, and the one for
which the relationship with reading time is the most superlinear. Then we assess their contri-
bution to this superlinearity, by re-fitting the GAM without these words.

Highest Surprisal Words

For GPT-3 Davinci, the top 40% of the surprisal range (surprisal > 12 nats) contains only about
0.3% of the words in the corpus. gives each of these words, in order of decreasing
surprisal, with part-of-speech tag and dependency label (provided with the Natural Stories
corpus; see Futrell et al., , §2.3).

Inspecting each of the words on this list in context, it is possible to identify intuitive reasons
why it is plausible that they would be high-surprisal for humans, yet it is not possible to put
them into one common category. Most are examples of unusual grammatical constructions.
The notable exceptions are items 1, 2, and 4: The highest surprisal word (item 1) seems to be
the result of a typo or at least unconventional usage (“US” rather than “the US”). Also high
on the list are two numbers which are dates written out longform (items 2 and 4 in the table),
where presumably numerals would be more expected. Of the remaining items on the list,
many are examples of the kinds of marked syntactic constructions that Natural Stories is
designed to contain. For example, four are words at critical regions in object-extracted relative
clauses (ORCs). Two are on the verb (item 13: “little girl [cp @ no one sheltered...]” and 9:
“Mom, [cp who Abby still strained to...]”), and the other two the onset of the subject NP
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Table F1.  All 19 words in the corpus with GPT-3 Davinci surprisal >12, with surrounding context, mean RT, part of speech tag, and dependency
label annotations from the parses provided with the corpus.

GPT-3 D. dependency story word mean
word in context surprisal  POS label # # RT
1 . in military programs US conducted in the. . . 20.51 NNP nsubj 8 836  413.83
2 . mania in February sixteen thirty-seven, tulip. . . 18.11 NN compound 9 38 862.11
3 . His brother had blatantly peeked and even. . . 15.50 RB advmod 2 748  391.25
4 . movie brought the nineteen forty-seven incident. . . 14.73 CD nummod 8 404  361.44
5 . names, such as even 'Admiral of Admirals’ and. . . 14.49 RB advmod 9 343  460.22
6 . classic that many publishing houses continue. . . 14.22 NN compound 9 884  317.26
7 . well which seems puzzling at first, but the reason. . . 13.84 JJ xcomp 1 137 375.21
8 . the little bird guarded by the owl peeped out, . . . 13.62 VBN acl 4 904  326.08
9 . who Abby still strained to remain upset with, . . . 13.23 VBN  dep 6 772 37457
10 . sight, and then folding his wings together, he. . . 13.12 VBG  dep 4 479  359.07
11 . was called and though they understood the birds. . . 13.10 IN mark 4 37 366.11
12 . were supposed to slowly wait to be called, I. . . 12.72 RB advmod 5 448  346.46
13 . little girl no one sheltered from the gelid air. . . 12.59 VBD acl:relcl 3 28  439.62
14 . markets, which merchants used to sell and buy. . . 12.38 NNS nsubj 9 544  330.08
15 . vocalizations, which metor tics typically precede, . . . 12.27 NN compound 10 315  389.39
16 . September, and thus actual purchases occurred. . . 12.13 JJ amod 9 488  388.97
17 . the boar? By the handsome reward many felt. . . 12.10 JJ amod 1 346 355.48
18 . who they knew looked dirt poor and helpless.. . . 12.04 RB advmod 3 978  368.29
19 . The Dutch Golden Age growers named their. . . 12.02 NNS  nsubj 9 297 387.70

(item 14: “markets, [cp which merchants used ...]”, and 15: “vocalizations [cp which motor

39

tics...]”).”” ltem 7 is at the critical region of a garden path sentence: “It shows a sinister
looking boar’s head sitting on top of a well [ which seems puzzling at first]” —the word
“puzzling” disambiguates attachment ambiguity for the relative clause, in favor of the matrix
CP as the subject, rather than the local NP “well”. ltem 19 is another where temporary ambiguity
is resolved in favor of the less-likely alternative “The Dutch Golden Age growers...”, a noun
following an NP modifier, where presumably a verb would be more expected. Item 8,
“Then the little bird guarded by the owl peeped out, ...” is in an example of main verb /
reduced-relative (MV/RR) garden-path, however the surprising word comes before the disam-
biguating word in the noun phrase (where surprisal-based processing difficulty is theoretically

39 Difficulty in ORCs has been explored in a number of previous studies focusing on predictions about where
the locus of difficulty is—the subject or the verb, with the former traditionally being the prediction of
surprisal-based theories (see e.g., Levy et al., 2013; Staub, 2010; Traxler et al., 2002; Vani et al., 2021). It is
perhaps interesting to note that words from both critical places in ORCs are represented in the list of
highest-surprisal items—not just at the subject, but also at the verb.
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predicted). Item 11 begins a CP subordinating conjunction “A meeting of all the birds was
called and[though they understood the birds ... would be unable to come], many birds came
from faraway meadows and woods.” Item 10 is a gerund modifier “... and then folding his
wings together, he sank to earth...”. The remaining handful of words are other somewhat rare
modifiers (items 3, 5, 6, 12, 17, 18), which are plausibly hard to predict especially given they
come before their heads. Note that for the purpose of understanding the empirical relationship
between surprisal and processing time, what matters about these words is simply that they are
surprising. It is reassuring to see that for the most part they seem like items which would be
intuitively hard for humans to predict.

Models without Highest Surprisal Words

To determine the extent to which our conclusions about superlinearity rely on the relatively
few highest-surprisal items, we re-fit nonlinear GAMs ( ) including only those items in
the corpus with surprisal below a cutoff value:

{w € Corpus : I(W) < Loyoff }-

We fit two versions of this control: one with I, = 12, and and one with I i = 6. Cutting
off above surprisal threshold I o = 12 removed the 19 words discussed above in
(which comprise 1557 RT observations, roughly 0.3% of total observations in the data). Cutting
off above I o = 6 removed an additional 470 words (489 words total, comprising 41261 RT
observations, roughly 7.6% of total observations in the data).

(left) shows the fitted effect of surprisal on mean RT from these GAMs (Ieyoff = 12

in red, Iuioff = 6 in blue), compared to the model fit on all words (grey, repeated from ).

(right) shows the superlinearity of these curves. We observe that the exclusion of

these high-surprisal items leaves the shape of the curve basically unchanged in the remaining

lower-surprisal region. Truncating the curve like this naturally reduces the amount of super-
linearity we see, but the curve remains superlinear, even with the more drastic cutoff.

GAMs refit without highest surprisal items
Effect of surprisal on RT Superlinearity

GPT3-davinci GPT3-davinci

cutoff

390 none
12

w

360

N

330

effect on mean RT +2*SE
D
superlinearity
of effect on mean RT
N

0 5 10 15 20 6 12 none
surprisal (nats) cutoff

Figure F1. GAM s fit on GPT-3 Davinci surprisals with highest surprisal items removed. Left: The
effect of surprisal on mean RT, fit on data subset with surprisal < 6 (blue) and < 12 (red). For com-
parison we also plot the fit on all data (grey; repeated from ). Right: Superlinearity of these
curves (grey point repeated from ).
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APPENDIX G

Additional Controls

Gaussian GAMs with constant variance assumption. For comparison with the GAMs discussed in
the main text, which fit the effect of surprisal on variance in reading time as well as mean, we
also fit versions of these models with a constant variance assumption ( and 4). In
addition to allowing a more direct comparison with previous work, which has largely used
Gaussian constant-variance GAMs (Goodkind & Bicknell, ; Hofmann et al., ; Smith
& Levy, , ; Wilcox et al., ), these models also function as a control for the
effect that fitting variance might have had on the shape of the relationship with mean RT. They
also have the benefit of being much less costly to compute than the models which must fit the
effect on variance as well as mean of the response.

shows the relationship between surprisal and RT according to these models
(compare with the mean effect in ). As with the results presented in the main text,
these results show increasing superlinearity with LM quality.

RT ~ s(surp, bs='tp', k=6) + s(subj, surp, bs='fs', m=1) + te(freq, len) +

s(prev_surp, bs='tp') + s(subj, prev_surp, bs='fs', m=1) + te(prev_freq, prev_len)

Formula 3. The mgcv formula for the nonlinear GAM with constant variance.

RT ~ surp + s(subj, bs='re') + s(surp, subj, bs='re') + te(freq, len) +

prev_surp + s(prev_surp, subj, bs='re') + te(prev_freq, prev_len)

Formula 4. The mgcv formula for the linear control GAM with constant variance. The interpreta-
tion of this formula is essentially the same as that of , except that the effect of surprisal on
reading time is assumed to be linear.

Spillover and Autocorrelation

When fitting a mixed-effects model or GAM to predict reaction time data, it is common prac-
tice to include additional predictors for the previous word—or, more generally all words
within a M-word window including the current word to control for spillover effects (D. C.

Mitchell, ; Vasishth, ). For our models, we follow previous literature in this area
(e.g., Goodkind & Bicknell, , ; Meister et al., ) in including predictors for
one previous word for spillover control (M = 2). However, some other studies (e.g., Wilcox
et al,, ) have used M = 4, following Smith and Levy ( ) who noted that a window

size of M = 4 was empirically best to capture the effect of surprisal on self-paced reading time
in their study. For our models, we found that including more than one previous word was
computationally intractable, since predictors for each additional spillover word adds a full
set of by-subject nonlinear effects for both location and scale.” In this section we investigate
the degree to which this choice could have affected our results.

Autocorrelation plots. One way to assess whether a larger M would have likely affected our
results is to look for residual autocorrelation in our models. Intuitively, spillover effects cause

40 We attempted fitting models with more previous words (M = 3 and M = 4), but found that this resulted in
models whose design matrices that were too big for mgcv : : gam. Unfortunately the more efficient procedure
bam is not currently implemented for location-scale GAMs.
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Effect of surprisal on mean RT
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Figure G1. The effect of surprisal on self-paced reading time from GAM models which assume constant variance ( and 4). Solid
lines are the fitted effects from the nonlinear GAMs, dashed lines beneath are from the corresponding linear control GAMs. Shaded regions
, top panel (effect on mean RT).

represent 95% Cls. Cf.

time-dependence in the response, since higher surprisal on a word will result not just in higher
reading time on the current word, but this effect will also “spill over” to the subsequent word
(or words). Intuitively, if such time-dependence is not fully captured by our models, this will
result in time-dependence in the residuals. We can look for evidence of such time-dependence
by looking for autocorrelation in the residuals.

shows the mean (complete) autocorrelation (left) and mean partial autocorrela-
tion (right) for the nonlinear GAM fit on GPT-3 Davinci surprisals, averaged across stories and
subjects.” 95% Cls are shaded red. Autocorrelation for GAMs fit on surprisals from other LMs
are similar.

These plots indicate that there amount of residual autocorrelation is small for any lag. In the
PACF plot, for all k> 3 partial autocorrelation is not significantly different from zero, and even
for k < 3, partial correlation values are small. This suggests that optimally we should include
predictors for three previous words (M = 4), but we may expect that doing so would not have a
large effect on results.

Additional predictors for spillover. We also experimented with fitting the simpler constant-
variance models (described above in the first subsection of this appendix), but with predictors
for the previous three words, to control for spillover.

These GAMs are plotted in (solid lines), together with GAMs with only one pre-
vious word (dashed lines; repeated from ), for comparison. Grey dotted lines are the
linear control models (also repeated from ). We observe that in most cases there is
little difference between the curves with three spillover words compared to those with only
one: Some fits become slightly more visually superlinear, and others slightly less. One large
change is in GPT-3 Davinci, which does become much less steeply superlinear in the high end

of the surprisal range, but remains superlinear overall.

*1 For lag k, the autocorrelation function ACF(k) gives the correlation between observations k words apart; par-
tial autocorrelation PACF(k) is the amount of correlation that is not accounted for by lags 1 through k — 1.
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Figure G2. Plots of mean autocorrelation function (ACF; left) and mean partial autocorrelation function (PACF; right) of residuals for the
nonlinear GAM for GPT-3 Davinci. For a given lag value, bar height represents the mean (P)ACF across stories and subjects, with 95% Cl in
red. Dashed blue lines indicate significance thresholds (against white noise null hypothesis).

Without by-subject Effects

Unlike our study, Wilcox et al. ( ) use GAMs to model mean item reading time as the
response, and do not control for by-subject random effects. For comparison with their results,
we also fit models of mean RT without the by-subject effects ( ). These models were fit
with a constant-variance assumption, for computational efficiency, given that the superlinear-
ity we observed was robust to this simplifying assumption, as discussed above.
(analogous to ) provides plots of GAMs fit with this formula. The results show much
larger confidence intervals, suggesting that properly modelling by-subject variation in this data
gives us higher power to detect population-level nonlinear effects.

GAM Plots from Folds of Data

To insure against potential high-leverage outliers, we carried out a cross-validation control. For
this control, we partitioned the data into 6 folds, and refit the GAMs 6 times leaving out one

Effect of surprisal on mean RT, GAMs with constant variance
comparing using 3 words for spillover (solid) words to just 1 (dashed)
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Figure G3. Comparing the relationship between surprisal and RT using GAMs with spillover control predictors for three previous words
(solid lines) to GAMs with only one word for spillover (dashed lines, repeated from ). Linear control models plotted as dotted lines
(also repeated from ). All GAMs for this plot were fit with an assumption of constant variance.

OPEN MIND: Discoveries in Cognitive Science 390



Sampling for Sentence Processing Hoover et al.

GAM fits of effect of surprisal on mean reading time
Fits for smooth and linear effects, on Natural Stories dataset, without controlling for by—subject variation
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Figure G4. Plots of effect of surprisal on mean RT for constant-variance GAMs which do not control for by-subject differences (formula 5).

fold each time. These models were fit with a constant-variance assumption, for computational
efficiency (as with the previous control).

RT ~ s(surp, bs="tp", k=6) + te(freq, length) + s(prev_surp, bs="tp") + te(prev_freq, prev_length)

Formula 5. The mgcv formula for nonlinear GAM fits without by-subject effects. Mean reading
time is predicted as a nonlinear global effect of surprisal, controlling for interactions between log
frequency and orthographic length, all for the current word as well as the previous. Compare to
formula 3, which also includes factor smooths by subject.

The fitted effect of surprisal on reading time for each of the 6 folds, with confidence inter-
vals, are plotted superimposed in Figure G5. Comparing these results with the plots for GAMs
fit on all of the data in Figure B1 we can visually confirm that the results are effectively iden-
tical, and conclude that the superlinearity we see is robust.

GAM fits of effect of surprisal on reading time
Fits for smooth and linear effects, on Natural Stories dataset, over 6 folds
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Figure G5. Plots as in Figure G1, except that here we plot fitted curves for each of 6 GAMs fit on randomized folds of 5/6ths of the dataset.
Similarity across folds to suggests the models are not overfitting.

OPEN MIND: Discoveries in Cognitive Science 391



	The Plausibility of Sampling as an Algorithmic Theory of Sentence�Processing

