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Abstract

On-policy Reinforcement Learning (RL) offers desirable features such as stable
learning, fewer policy updates, and the ability to evaluate a policy’s return dur-
ing training. While recent efforts have focused on off-policy methods, achieving
significant advancements, PPO remains the go-to algorithm for on-policy RL due
to its apparent simplicity and effectiveness. Nonetheless, PPO is highly sensitive
to hyperparameters and relies on subtle, often poorly documented adjustments
that can critically affect its performance, thereby limiting its utility in complex
scenarios. In this paper, we revisit the PPO algorithm by introducing principled
enhancements that improve performance while eliminating the need for extensive
hyperparameter tuning and implementation-specific optimizations. Our proposed
approach, PPO+, is a principled adaptation of the PPO algorithm that strengthens
its adherence to the on-policy objective, enhancing stability and efficiency. PPO+
demonstrates significantly improved asymptotic performance over PPO, and a
substantially reduced performance gap with off-policy algorithms in several chal-
lenging continuous control tasks. Beyond just performance, our findings offer a
fresh perspective on on-policy RL.

1 Introduction

A fundamental distinction in Reinforcement Learning (RL) lies between on-policy and off-policy
methods (Sutton & Barto, 2018). On-policy methods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017b) and Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015a),
directly optimize the expected reward under the current policy’s state-action distribution, improving
the policy while actively interacting with the environment. This leads to stable learning and safer
exploration since the policy stays close to the data distribution it learns from, though at the cost of
potentially reduced sample-efficiency. In contrast, off-policy methods optimize the expected reward
under a different distribution—often using an exploration or behavior policy. By leveraging data
generated from different policies, off-policy methods can reuse past experiences, boosting sample-
efficiency. This flexibility supports more aggressive exploration, making off-policy methods more
suitable when data collection is expensive or restricted.

Recent advancements in off-policy approaches, such as Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) and Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al., 2018), have
significantly improved continuous control on complex tasks. However, on-policy algorithms have not
kept pace in terms of asymptotic performance and sample-efficiency. While PPO remains a dominant
choice in on-policy RL, delivering impressive results across a range of applications (Berner et al.,
2019; Andrychowicz et al., 2020b; Mirhoseini et al., 2021; Rudin et al., 2022), it is hindered by the
complexity of its inherent mechanisms, including trust-region optimization, multiple loss functions,
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and various implementation-specific optimizations, making it highly sensitive to hyperparameter
tuning (Andrychowicz et al., 2020a; Huang et al., 2022a).

Moreover, common practices in the use of PPO have crucial shortcomings. For example, despite the
empirically demonstrated success of maximum entropy RL (Haarnoja et al., 2018; Bhatt et al., 2024)
and theoretical works suggesting it can enhance the convergence of policy gradient methods (Mei
et al., 2020; Cen et al., 2024), its application for on-policy deep RL remains underexplored.

Additionally, many widely adopted PPO implementations neglect the usage of explicit action bounds
by defaulting to standard Gaussian policies rather than their bounded counterparts. This technical
oversight not only deviates from theoretical rigor but, as we will demonstrate, can also result in
degenerate learning behaviors in certain environments. These challenges, combined with the inherent
complexity of current on-policy deep RL methods, motivate us to pursue simpler and more sample-
efficient alternatives.

In this paper, we introduce PPO+, a principled enhancement of the PPO algorithm that introduce
targeted solutions to tackle PPO’s drawbacks while eliminating the need of extensive hyperparameter
tuning and subtle implementation-level optimizations. Our primary objective is to significantly
advance PPO’s capabilities adhering to the on-policy paradigm, focusing on improving its stability,
performance, and simplicity, rather than to directly compete with the sample efficiency of fundamen-
tally different off-policy algorithms.

More concretely, our contribution is threefold. (i.) We propose and demonstrate that leveraging
off-policy data can significantly improve critic learning while preserving the on-policy formulation
of the policy gradient. (ii.) We develop a numerical scheme to integrate action bounds in continuous
control with PPO. (iii.) We reformulate the PPO optimization problem under the maximum entropy
RL perspective for enhanced exploration. We demonstrate that PPO+ achieves state-of-the-art
performance on MuJoCo Todorov et al. (2012) control problems among on-policy methods for
continuous control while maintaining a simple and straightforward implementation and being closely
aligned with the theoretical foundations of on-policy RL. A discussion of related literature is provided
in Appendix A.

2 Background

2.1 On-policy reinforcement learning

Reinforcement Learning (RL) (Sutton & Barto, 2018) deals with the problem of an agent inter-
acting with an environment to learn a policy that maximizes its return. Mathematically, an RL
problem can be formulated as a Markov Decision Process (MDP) (Puterman, 1990), which is a tuple
⟨S,A, P,R, µ0, γ⟩, where S ∈ Rm is a continuous set of states and A ∈ Rd is a continuous set
of actions. P : S × A → ∆S is the transition probability function2, where P (s′|s, a) denotes the
probability of transitioning to state s′ after taking action a in state s. R : S ×A→ R is the reward
function, where r(s, a) is the immediate reward received by the agent for taking action a in state
s. µ0 ∈ ∆S is the initial state distribution. γ ∈ [0, 1) is the discount factor, which determines the
importance of future rewards compared to immediate rewards.

In on-policy RL, the agent’s goal is to learn a stochastic policy π : S → ∆A, that maximizes
its expected discounted return J(π) = 1

1−γEs∼dπ
γ ,a∼π [r(s, a)], where we denote dπγ (s) ≜ (1 −

γ)
∑∞

t=0 γ
tP (st = s) the discounted state visitation density of the state s under the policy π. This

is in contrast to off-policy RL where the objective of the agent is to maximize the policy return
under a different behaviour policy β(a|s) ̸= π(a|s) making the objective to maximize Jβ(π) =
1

1−γEs∼ρβ
γ ,a∼π [r(s, a)].

2.2 Maximum entropy reinforcement learning

Traditional RL algorithms focus solely on maximizing the expected reward, which can yield overly
deterministic policies vulnerable to unexpected environmental changes. Maximum entropy RL
(Ziebart, 2010; Haarnoja et al., 2018) counters this by adding an entropy bonus to the objective.
The policy entropy, a measure of randomness, is defined as H(π(.|s)) = −

∑
a π(a|s) log π(a|s)

2∆X denotes the set of probability measures over a set X .
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Incorporating this bonus encourages exploration without sacrificing return, achieved by introducing a
temperature parameter α and reformulating the objective as

J(π) = Eπ

[ ∞∑
t=0

γt (r(st, at) + αH(π(.|st)))

]
. (1)

The temperature α controls the trade-off between maximizing reward and entropy. A larger α leads
to a greater emphasis on exploration and mode diversity in the policy. In practice, we observe that it
considerably improves exploration and hence learning speed over state-of-art methods that optimize
the conventional RL objective function (Schulman et al., 2017a).

2.3 Trust-region methods

Initially introduced by Schulman et al. (2015a), trust region deep RL methods are on-policy al-
gorithms that optimize a surrogate objective by maximizing a lower bound on the policy return.
Trust Region Policy Optimization (TRPO) constrains the policy update by limiting the KL divergence
between the new policy π′ and the old policy π, ensuring updates remain within a "trusted region" for
stable learning. However, TRPO’s approach originally relied on a heuristic to enforce this constraint.
In Achiam et al. (2017), the authors formalized this heuristic by bounding the difference between the
returns of two policies, π′ and π, as follows

J(π′)− J(π) ≥ 1

1− γ
Es∼dπ,a∼π′ [Aπ(s, a)]− 2γϵπ

′

1− γ

√
1

2
Es∼dπ [DKL(π′∥π)[s]], (2)

where ϵπ
′ .
= maxs |Ea∼π′ [Aπ(s, a)]|.

By squaring the penalty term and applying the importance sampling trick to replace the expectation
over a ∼ π′ with a ∼ π, this optimization problem can be rewritten as

maximizeπ′Es∼dπ,a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
(3)

subject to Es∼dπ [DKL(π
′∥π)[s]] ≤ δ. (4)

TRPO solves this optimization problem by approximating the KL divergence constraint using a
second-order method involving the Fisher information matrix, which requires a conjugate gradient
method for optimization. While this guarantees updates stay within a trusted region, making the
learning process stable, it also makes the algorithm computationally expensive due to the need for
calculating the Fisher information matrix and solving the constrained optimization.

To address this complexity, Schulman et al. (2017b) propose Proximal Policy Optimization (PPO),
which simplifies the enforcement of the trust region by introducing a clipping mechanism. Instead of
explicitly constraining the KL divergence, PPO limits the probability ratio between the new and old
policies, ensuring updates remain moderate. This approach is simpler to implement and significantly
reduces computational overhead while retaining stable learning performance.

2.4 Actor-critic methods

Actor-critic methods are a class of RL algorithms comprising an actor and a critic. The
critic estimates policy performance using either the action-value function Qπ(s, a) ≜
E [r(s, a) + γQπ(s′, a′) | s0 = s, a0 = a] or the value function V π(s) ≜ Ea∼π(s) [Q

π(s, a)]. The
actor updates its parameters to maximize the policy return as evaluated by the critic, yielding more
efficient learning than methods relying solely on Monte-Carlo estimates.

These algorithms typically employ neural networks and optimize via gradient ascent Sutton et al.
(1999). Temporal Difference (TD) learning (Sutton, 1988; Sutton & Barto, 2018) provides an iterative
method to estimate Qπ using the TD error δt = rt+1 + γQπ(st+1, at+1)−Qπ(st, at), where rt+1

is the reward, γ the discount factor, and (st, at) and (st+1, at+1) denote successive state-action pairs.
Traditionally, the critic is trained on-policy (e.g., via SARSA (Sutton & Barto, 2018)); alternatively,
it can be updated off-policy using previously collected data as in DDPG, TD3, or SAC (Haarnoja
et al., 2018; Fujimoto et al., 2018).
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3 On the limitations of proximal policy optimization

3.1 Critic sensitivity
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Figure 1: Sensitivity of PPO to re-
ward normalization (- Reward norm),
Observation normalization (-Obs norm)
and GAE-λ (LAMBDA={0.,0.7}).

Despite its widespread use (Berner et al., 2019;
Andrychowicz et al., 2020b; Mirhoseini et al., 2021; Rudin
et al., 2022), PPO’s sensitivity to certain parameters and
implementation details highlights serious shortcomings
in the algorithm, many of which can be traced back to
reliance on inaccurate value function estimators.

Figure 1 shows empirical evidence of these limitations.
For starters, normalization of rewards or advantage func-
tions plays a critical role in stabilizing PPO’s learning
process. Without it, PPO often fails to learn effective poli-
cies, especially in environments where rewards differ in
magnitude, such as Hopper or Walker2d. Also, the algo-
rithm is very sensitive to observation normalization. As a
reminder, most off-policy methods can function effectively
without such techniques (Haarnoja et al., 2018).

Furthermore, PPO exhibits performance degradation when
the λ parameters for the Generalized Advantage Estima-
tor (GAE) Schulman et al. (2015b) is set to values lower
than its standard 0.95. The later essentially reducing the
advantage estimate towards Monte-Carlo and hence re-
ducing the influence of the critic. As we decrease the λ
value, the reliance on bootstrapping from the value func-
tion increases, and the algorithm’s performance suffers
significantly. This sensitivity indicates that PPO works op-
timally only in regimes of high λ, which directly points to
a strong dependence on, and potential limitations arising
from, the quality of the value estimates produced by the
critic. Indeed, when relying solely on the critic’s instanta-
neous estimates (i.e., λ = 0), the algorithm demonstrably
fails to learn.

These limitations suggest that further improvements are possible, potentially enhancing the perfor-
mance of deep on-policy methods.

3.2 Consequences of unbounded actions

One notable inconsistency in PPO for continuous control is that the actor samples from an unbounded
distribution, even when the environment requires bounded actions. In Figure 2a, we compare the
probability density functions of a standard Gaussian x ∼ N (0, 0.5), its bounded variant, and the
tanh-bounded version. The bounded Gaussian shows a notably higher density near the boundaries,
whereas the tanh-bounded version yields a smoother distribution. In Figure 2b, we generate a pair
of Gaussian distributions with identical standard deviations and a slight difference in means such
that their KL divergence remains constant. We empirically demonstrate that as the means approach
the action bounds to the right, the KL divergence between the clipped versions increases rapidly,
potentially leading to learning instability. Figure 2c reports both the average out-of-bound error
and the proportion of actions exceeding the prescribed limits. Notably, during PPO training, the
frequency and magnitude of out-of-bound actions increase over time. This divergence—where the
effective clipping ratio deviates from the intended ratio—can negatively impact learning by causing
the critic to receive inaccurate action feedback (e.g., the critic may interpret an action as a = 2 when
the environment sees it as a = 1).
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Figure 2: 2a Probability density functions of a Gaussian with x ∼ N (µ = 0, σ = 0.5). 2b Average
out of bound error for the actions, and percentage of out of bound actions. 2c Logarithm of the
effective clipping ratio for two bounded Gaussians N1,N2 s.t. KL(N2|N1) = 0.2.

4 Enhancing proximal policy optimization

From previous remarks, many practices in PPO raise questions about its adherence to its on-policy
objective. To address this, we investigate several improvements aimed at aligning PPO more closely
with its theoretical foundations, leading to the development of our novel algorithm PPO+, whose
pseudocode is provided in Algorithm 1.

4.1 Bounding the action space

Building upon our prior findings, a naive attempt to address the out of bounds actions issue is to
directly applying a squashing function, such as the hyperbolic tangent. However, this approach leads
to frequent training collapses and numerical instability in the computation of log π′(a | s), i.e., the
log-probability of an action under the squashed Gaussian policy.

More formally, note that in a tanh-Gaussian policy, actions are generated as a = tanh(u),
where u ∼ N (µ,Σ). By the change-of-variables formula, the density of a is given by
π(a | s) = µ(u | s)

∣∣det du
da

∣∣ , which expands to

log π(a | s) = logµ(u | s)−
D∑
i=1

log(1− tanh2(ui)).

If u is unavailable, one must recover it via u = atanh(a), but this introduces numerical instability
when a is near ±1, as atanh(a) diverges. Additionally, the naive correction term log(1− tanh2(u))
becomes unstable for large |u|, since tanh(u) saturates and 1− tanh2(u) approaches zero.

In contrast, Soft Actor-Critic (SAC)-style implementations avoid these issues by computing the
sample and log-probability simultaneously, caching the pre-tanh sample u for direct use. Since this
joint computation is not directly feasible in our framework, we instead store the unsquashed Gaussian
samples u and apply a numerically stable transformation, replacing the log(1− tanh2(u)) term with
2
(
log 2− u− softplus(−2u)

)
.3

This formulation avoids both the instability of direct logarithm computation on small values and the
need for atanh(a), ensuring robust log-probability estimates and improving gradient quality, leading
to more stable training in continuous control tasks.

4.2 Off-policy critic learning

Inspired by successful off-policy critic training in algorithms like SAC and TD3 (Haarnoja et al., 2018;
Fujimoto et al., 2018), we explore a novel on-policy RL strategy. We train the critic of algorithms
like PPO using off-policy data from a replay buffer, while crucially maintaining the on-policy actor
update—a combination not previously explored to our knowledge in standard on-policy methods.

3This expression is mathematically equivalent to 2
(
log 2 + u− softplus(2u)

)
.
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We hypothesize that incorporating off-policy data to enhance critic approximation can lead to more
accurate on-policy gradient estimates, potentially improving performance. To enable the desired use
of off-policy data for the critic, we need to replace the value function V π typically used in on-policy
methods with action-value functions Qπ usually restricted to off-policy methods. Indeed, recall that
standard temporal-difference (TD) learning with state-value functions (V-functions) is inherently
on-policy. The update target for V (s) relies on V (s′), implicitly assuming the action leading to s′ was
from the current policy π. In contrast, Q-functions allow the action ’a’ in the transition (s, a, r, s′)
to originate from any policy, enabling the use of replay buffers. When needed, one can recover the
value function as V π(s) = Ea∼π(s) [Q

π(s, a)].

In Figure 3, we experimentally validate our central hypothesis: training critics with off-policy data
enhances the estimation of the on-policy Q-function (Qπ) and its gradient. We utilize Linear Quadratic
Regulator (LQR) environments, chosen for their analytical tractability, allowing direct comparison
against the true Q-function and gradient. To isolate the impact of different critic training strategies,
agents were equipped with multiple critics (defaulting to two trained with off-policy data) measured
on the same data distribution. We systematically varied configurations to include On-Policy critic
training, Minimum Target bootstrapping, and training with No LayerNorm(details in Appendix
D). For each configuration, 5000 on-policy interactions were collected and used for 5000 critic TD
updates, with metrics evaluated every 20, 000 interactions.

Our results reveal several key insights. First, training critics using off-policy data (off-policy)
significantly improves the quality of gradient estimates compared to using only on-policy data
(on-policy). Second, contrary to the minimum target heuristic often employed in actor-critic
methods, using the minimum prediction from twin critics (min-target) actually reduces the quality
of the policy gradient estimate in our setting. This is evidenced by the lower cosine similarity of
gradients from minimum-target critics compared to independently trained off-policy critics. Third,
removing LayerNorm (no layernorm vs. Default) seems to degrade the quality of the gradient
estimate Xu et al. (2019). These experimental findings strongly support our hypothesis that off-policy
data enhances critic training, leading to improved Q-function and hence policy gradient estimation.
Furthermore, our ablation study highlights that while off-policy data is beneficial, techniques like
minimum-target critics may not universally improve gradient quality and can even be detrimental in
certain contexts, emphasizing the importance of careful critic design.

4.3 Maximum entropy for on-policy reinforcement learning

Maximum entropy RL augments the standard objective with an entropy term to encourage exploration,
a strategy proven effective in off-policy settings (Haarnoja et al., 2018). While its application to
on-policy RL is less explored, no inherent limitations prevent its use. We incorporate the maximum
entropy objective into PPO+ by modifying the advantage function, drawing inspiration from SAC’s
critic update (Haarnoja et al., 2018).
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Figure 4: Undiscounted policy return on classic MuJoCo-v5 tasks.We use 10 random seeds for every
algorithm and show the standard deviation.

Specifically, the critic learns an entropy-augmented Q-function. The advantage function A(s, a)
is then derived from this Q-function by including an instantaneous entropy term α log π(a|s) and
adjusting the baseline value estimate accordingly, as shown in Equation (5):

A(s, a) = Q(s, a)− α log π(a|s)− Ea′∼π(.|s)[Q(s, a′)− α log π(a′|s)]. (5)

The actor is subsequently updated using the standard PPO objective, but with this entropy-regularized
advantage Âπ. Thus, the entropy bonus is incorporated into the value estimation component of the
policy gradient, rather than as an explicit, separate entropy term in the PPO objective function itself.
This implicitly encourages entropy maximization through the critic’s evaluation of actions.

4.4 Benchmarks

We conduct a comprehensive empirical evaluation of PPO+ against related on-policy baselines PPO
and TRPO. We also include Soft Actor-Critic (SAC), a leading off-policy algorithm, as a strong
benchmark to contextualize the performance of PPO+ within the broader RL landscape. For all the
algorithms using the maximum entropy we use automatic temperature tuning simlar to (Haarnoja
et al., 2018). The evaluation is performed on the MuJoCo benchmark suite for continuous control
(Todorov et al., 2012) and on high-dimensional control problems such as the Dog (stand, walk,
trot, and run) tasks from DM-Control (Tunyasuvunakool et al., 2020). Futhermore, our baseline
implementations are based on (Huang et al., 2022b). To ensure fairness of comparaison, we introduce
PPO(ours) as a variant of PPO that uses a similar configuration to PPO+.

Consistent with the findings of our ablation study, we use two critic networks trained independently,
without employing a minimum target approach. Key implementation differences between PPO+ and
PPO are summarized in Table 1 and detailed hyperparameter settings for all baselines are provided in
Table 2 in the Appendix.

The benchmark results, illustrated in Figure 4 illustrates that PPO+attains performance comparable
to PPO on simpler tasks such as Hopper and Walker. Notably, PPO+significantly outperforms
PPO on more complex, high-dimensional tasks like Ant and Humanoid, demonstrating a clear
performance advantage. We attribute this widening gap to the limitations of PPO’s advantage
estimation; specifically, with a high λ = 0.95, its advantage estimates increasingly resemble those of
REINFORCE with a baseline—a method known to be less effective in high-dimensional environments.
Although PPO+lags slightly behind SAC on the Mujoco tasks, particularly for Humanoid, Figure 5
reveals that our algorithm performs significantly better on the high-dimensional DOG tasks.

7



0 2 4
Million Steps

0

200

400

600

800

Po
lic

y 
Re

tu
rn

stand

0 2 4
Million Steps

0

100

200

300

400

500

Po
lic

y 
Re

tu
rn

walk

0 2 4
Million Steps

0

100

200

300

400

Po
lic

y 
Re

tu
rn

trot

0 2 4
Million Steps

0

50

100

150

Po
lic

y 
Re

tu
rn

run
PPO+ PPO PPO(OURS) SAC TRPO

Figure 5: Undiscounted policy return on different tasks of the Dog environment of Deepmind Control
Suite. We use 10 random seeds for every algorithm and show the standard deviation.

In summary, PPO+ consistently outperforms on-policy algorithms like PPO and TRPO. Moreover, it
significantly closes the performance gap to leading off-policy methods such as SAC, especially in com-
plex, high-dimensional control tasks. PPO+ achieves this performance advantage over PPO without
relying on any implementation-level optimizations, showcasing the robustness of our approach.

4.5 On the impact of PPO+ enhancements

In Figure 6, we present an ablation study for PPO+ examining our three key design choices: (1)
Using bounded policies; (2) the use of off-policy data for training the critic; and (3) the use of the
maximum entropy objective.

First, the use of bounded action policies, a key PPO+ modification, demonstrated varied impact in
ablation studies. While bounded actions clearly improved performance on tasks like Walker2d-v5
and HalfCheetah-v5, the effect was less pronounced on Hopper-v5 and Ant-v5. Notably, unbounded
actions yielded better results on Humanoid-v5. This suggests that while bounded actions are the-
oretically important for policy coherence and preventing critic inaccuracies, their benefits can be
task-dependent, potentially interacting with exploration dynamics. The benefit for the other tasks and
the fundamental need for coherence lead us to consider this modification as overall beneficial.

Second, results demonstrate that restricting the critic’s training to on-policy data significantly degrades
performance across most tasks, particularly impeding learning on Humanoid. This is contrary to the
common practice of restricting training the critic to on-policy data for on-policy gradient methods.
We further explore how much off-policy data is beneficial in Figure 8 in the appendix. Interestingly,
while the use of off-policy data is already well explored in deep off-policy actor-critic methods
like Lillicrap (2015); Haarnoja et al. (2018); Fujimoto et al. (2018), it was previously unclear to
what extent this choice would benefit on-policy algorithms, especially in terms of actor and critic
performance individually. This work strongly suggests that at least the critic derives a substantial
benefit from the use of off-policy data, indicating that deep neural networks can effectively overcome
the state aliasing inherent to off-policy TD learning Sutton et al. (2016).

Finally, regarding the maximum entropy objective, we find that it consistently enhances our perfor-
mance consistently across all tasks. While PPO can achieve reasonable performance even without an
entropy bonus, we believe that the poor quality of its critic may unintentionally provide some implicit

Table 1: Key implementation differences between PPO and PPO+.
Attribute PPO PPO+

Observation normalization ✓ -
Reward normalization ✓ -

Advantage normalization ✓ -
Learning rate scheduler ✓ -

Clip critic target ✓ -
GAE-λ critic ✓ ✓

Bounded actor policy - ✓
Uses off-policy data - ✓

Maximum entropy objective - ✓
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Figure 6: Evolution of the policy return on the MuJoCo-v5 tasks for various design choices. We use 5
random seeds for every algorithm. (ON-POLICY CRITIC) restricts the critics to using only on-policy
data. (UNBOUNDED ACTIONS) uses an unbounded Gaussian distribution for the actor. (NO ENTROPY)
removes the entropy bonus from the critics. PPO+ (NO LAYERNORM) discards using LayerNorm for
the actor and critic. Further ablations are provided in Figure 7 in the Appendix.

exploration. Adding an explicit entropy bonus, as in PPO+, provides a more principled exploration
strategy. Furthermore, LayerNorm is confirmed to be crucial to stabilize learning, particularly and
dramatically for the Humanoid task, where its absence leads to significant performance drops.

Overall these results are in perfect agreement with our previous results on the impact of these design
choices on the quality of the policy gradient demonstrated in Figure 3. In conclusion, our results
strongly suggest that (1) off-policy TD learning definitively allows for better on-policy gradient
estimation and consistently enhances performance across various tasks; (2) bounding the distribution
of the policy is indeed necessary to ensure PPO’s coherence and further boosts performance, especially
in more complex environments ; (3) the entropy bonus demonstrably provides a clear and consistent
benefit to PPO+ as opposed to PPO which is indifferent to the entropy bonus (albeit a slightly different
one), as reported in Andrychowicz et al. (2020a). We also demonstrate that PPO+ exhibits improved
robustness to the GAE-λ parameter compared to standard PPO, indicating a more reliable critic (see
Appendix D).

5 Discussion and conclusion

We introduced PPO+ , a methodical enhancement of the Proximal Policy Optimization (PPO)
algorithm that adheres to on-policy reinforcement learning (RL) principles with a simple, trick-free
implementation. PPO+ introduces three key improvements over PPO: training the critic with off-
policy data while preserving the on-policy policy gradient, bounding the policy distribution, and
employing maximum entropy exploration. By focusing on the quality of the critic approximation,
PPO+ avoids complex critic learning schemes and achieves state-of-the-art performance in MuJoCo
locomotion tasks. Thanks to its simplicity and rigorous formulation, we believe that PPO+ offers an
accessible and solid ground for future research in on-policy deep RL.

Limitations. Despite its strengths, PPO+ does not match the sample efficiency of off-policy competi-
tors (e.g., SAC (Haarnoja et al., 2018)). Nevertheless, we hope its simplicity and the insights provided
will inspire further interest in on-policy methods. Future work could explore better strategies for
correcting the off-policy distribution during critic learning—potentially integrating such corrections
into actor updates—or focus on enhancing critic learning through improved validation criteria (Kallel
et al., 2024) or increased neuroplasticity (Nikishin et al., 2022).
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A Related works

Numerous studies underscore the sensitivity of current deep on-policy methods to hyperparameters
and implementation details (Huang et al., 2022a; Andrychowicz et al., 2020a), urging the community
to simplify and close the gap between theory and practical implementation. Several works have
explored training critics using off-policy data (Degris et al., 2012; Haarnoja et al., 2018; Fujimoto
et al., 2018), with Bhatt et al. (2024) being one of the first to simplify the critic learning process by
eliminating the need for target networks, which were initially popularized by Mnih (2013). In Gallici
et al. (2024) the authors study how introducing LayerNorm Ba et al. (2016) stabilizes TD-learning.

Entropy regularization plays a pivotal role in numerous deep RL algorithms (Haarnoja et al., 2018;
Bhatt et al., 2024). In fact, the entropy of the policy acts as a regularizer shaping the objective
landscape (Ahmed et al., 2019). The prevalent strategy regularizes the policy evaluation phase by
supplementing the standard RL task objective with an entropy term. This method guides policies
towards regions of higher expected trajectory entropy, a scheme often referred to as maximum
entropy RL (Ziebart, 2010; Haarnoja et al., 2018), which is recognized for enhancing the exploration
capabilities and robustness of policies by fostering stochasticity. Recent studies on policy gradient
methods have highlighted the effectiveness of maximum entropy RL in speeding up convergence
(Mei et al., 2020; Ahmed et al., 2019; Cen et al., 2024). In Choe & Kim (2024) the authors integrate
the maximum entropy principle to PPO in the context of discrete control.

Temporal-Difference (TD) learning, as described by Sutton & Barto (2018), is a fundamental
algorithm for learning value functions. While TD learning with tabular representations and on-
policy linear function approximation has established convergence properties (Dayan, 1992; Jaakkola
et al., 1993; Tsitsiklis & Van Roy, 1996), standard TD learning is known to potentially diverge
with off-policy samples and linear function approximation (Baird, 1995). This divergence concern
has motivated the development of convergent off-policy TD methods (Kolter, 2011; Diddigi et al.,
2019) and, in part, the on-policy data collection strategy prevalent in algorithms like TRPO and
PPO (Schulman et al., 2015a, 2017b), which typically learn a critic Qπ using only on-policy data
and often avoid replay buffers. Despite these challenges in basic off-policy TD learning, off-policy
algorithms (e.g., DDPG, TD3, SAC) (Lillicrap, 2015; Haarnoja et al., 2018; Fujimoto et al., 2018)
and offline RL methods (Wu et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021) have successfully
leveraged off-policy data for critic training. A persistent challenge in off-policy TD learning with
function approximation is non-convergence, frequently attributed to state aliasing and the potential
for increased variance with larger function approximators (Sutton et al., 2016).

B Supplementary ablation studies

To further analyze the behavior of PPO+, we conducted other ablation studies. First, we evaluated
the algorithm using a single critic network to isolate the impact of our dual-critic architecture. This
experiment aimed to verify that the performance gains observed compared to PPO are not solely
attributable to the presence of two critics. Next, we examined the performance of PPO+ when trained
without the Generalized Advantage Estimation (GAE). Our findings indicate that while removing
GAE estimation leads to a performance degradation, PPO+ retains its ability to learn effectively. This
contrasts with standard PPO implementations, suggesting that our modifications and simplifications
have resulted in a more robust critic. However, the observed sensitivity to the absence of GAE
highlights that further enhancements to the critic’s estimation quality remain a valuable area for
future research. Finally, using the minimum of two critics seems to be detrimental for performance,
we believe this is because it inhibits exploration in most tasks, thus proving that this design choice is
not universal.

C How much off-policy can we go

A pertinent question is to investigate the sensitivity of PPO+ to the proportion of off-policy data
utilized for critic training. To this end, the provided plot illustrates the algorithm’s performance
across a range of critic replay buffer sizes, specifically from 5, 000 to 200, 000. As a reminder,
policy rollouts were performed for 5, 000 steps before each update epoch. The results indicate
that PPO+ generally maintains its performance across a wide spectrum of buffer sizes for most
tasks. Generally, larger buffer sizes tend to yield improved performance. This trend is particularly
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Figure 7: Evolution of the policy return on the MuJoCo-v5 tasks for various design choices. We use
5 random seeds for every algorithm. (Single critic) uses a single critic instead of the usual pair.
(NO GAE) foregoes using GAE-λ. (MIN TARGET) uses the minimum prediction of the two critics for
bootsrapping.
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Figure 8: Evolution of the policy return on the MuJoCo-v5 tasks for various replay buffer sizes. We
use 5 random seeds for every algorithm.

pronounced in the Humanoid task, where a larger buffer size appears to exert a more significant
impact. Employing a replay buffer size of 50, 000 appears to strike a reasonable performance to
compute balance.

D Sensitivity to the GAE-λ Parameter

We investigated the sensitivity of PPO+ to the GAE-λ parameter, comparing it against standard PPO’s
behavior (Figure 9). Standard PPO (bottom row) exhibits strong sensitivity to λ; its performance
significantly degrades as λ decreases from the typical 0.95, and learning collapses entirely for λ = 0.0.
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Figure 9: Evolution of the policy return on the MuJoCo-v5 tasks for different values of the GAE-λ.
We use 5 random seeds for every configuration.

This suggests PPO heavily relies on near-Monte-Carlo estimates, potentially due to inaccuracies in
its critic when more bootstrapping is used.

In contrast, PPO+ (top row) demonstrates greater robustness across different λ values. While higher λ
values like 0.95 or 0.7 can yield the best asymptotic performance in some environments (e.g., Hopper-
v5, Walker2d-v5), PPO+ with λ = 0.5 (our default) still achieves effective learning. Crucially, even
with λ = 0.0 (relying entirely on the critic’s one-step TD estimate), PPO+ is capable of learning,
albeit to a lesser extent, unlike standard PPO which fails completely. This improved resilience to
lower λ values points to a more reliable and accurate critic in PPO+, which is less dependent on
long-term Monte-Carlo returns and can effectively leverage bootstrapped estimates. The better critic
quality in PPO+ likely stems from its principled enhancements, such as off-policy training and
bounded actions, which are not present in standard PPO.

E LQR Experiment Configurations

In Section 4.2, we described experiments using Linear Quadratic Regulator (LQR) environments to
evaluate the impact of different critic training strategies on the quality of on-policy policy gradient
estimation. Figure 3 in the main text presents these results. The core setup involved equipping an
agent with multiple critics, with a default configuration of two critics trained using off-policy data
from a replay buffer. We then systematically varied one element at a time from this default to analyze
the following configurations:

1. Off-Policy: This is the default configuration, where two critic networks are trained using
off-policy data stored in a replay buffer.

2. On-Policy: In this configuration, critics are trained exclusively using data generated by
the current policy, with data from previous policies discarded.

3. Minimum Target: The critics are trained using the minimum Q-value prediction from the
two (twin) critics for bootstrapping the target values. This follows a common heuristic in
some off-policy actor-critic methods.

4. No LayerNorm: Critics are trained without Layer Normalization in their network architec-
ture.

The experimental protocol for each configuration was as follows:
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• For each update step, 5, 000 environment interactions were collected by rolling out the
current policy. This data approximates the on-policy state-action visitation distribution dπ

and is used for actor updates and, in the On-Policy critic setting, for critic updates.

• For critic training (especially in Off-Policy, Minimum Target, and No LayerNorm set-
tings utilizing a replay buffer), 5, 000 Temporal Difference (TD) updates were performed
using batches sampled from the replay buffer (which includes data from current and past
policies).

• Performance metrics, including the cosine similarity between estimated and true policy
gradients, were evaluated over intervals of 20, 000 environment interactions.

This setup was designed to ensure that the quality of the critics under different configurations was
measured using the same underlying data distribution at each evaluation point, allowing for a precise
isolation of the impact of each specific design choice.

F Pseudocode

Algorithm 1 One Step of PPO+

Require: Current actor parameters ϕ, critic parameters θ1, θ2, critic replay buffer B
1:
2: D ← ∅ ▷ Reset the actor replay buffer
3: for Ne environment steps do
4: at ∼ πϕ(at|st) ▷ Sample action from the policy
5: st+1 ∼ p(st+1|st, at) ▷ Sample transition from the environment
6: D ← D ∪ {st, at} ▷ Update the actor replay buffer
7: B ← B ∪ {st, at, rt, st+1} ▷ Update the critic replay buffer
8: st = st+1

9: end for
10: for Ne epochs do
11: for Nc critic steps do
12: B ← {s, a, r, s′} ∼ U(B) ▷ Sample a batch of off-policy transitions
13: yi(s, a) = r + γ(Qθi(s

′, a′)− log πϕ(a
′|s′)), a′ ∼ πϕ(.|s′) ▷ Compute critic targets

14: ∇θi
1

|B|
∑

(s,a,r,s′)∈B (Qθi(s, a)− yi(s, a))
2 for i = 1, 2 ▷ Update the critic networks

15: end for
16: for Na actor steps do
17: B ← {s, a, r, s′} ∼ U(D) ▷ Sample a batch of on-policy transitions
18: V̂i(s) = Ea∼π

[
Q̂π

θi
(s, a)

]
,∀s ∈ D, for i = 1, 2 ▷ Compute value function estimates

19: Âπ(s, a) = 1
2

∑
i∈1,2 Q̂

π
θi
(s, a)− V̂i(s),∀s, a ∈ D ▷ Compute advantage function

estimates (Can also use GAE-λ)
20: ϕ = argmaxϕ′

∑
(st,at,γt)∈D γt min

(
πϕ′ (at|st)
πϕ(at|st) Â

π(st, at), clip
(
ϵ, Âπ(st, at)

))
21: end for
22: end for
23: return ϕ, θ1, θ2 ▷ Optimized parameters
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G Hyperparameters

Table 2: Hyperparameters for on-policy baselines. For PPO, TRPO and SAC we use the standard
implementations provided in CleanRL (for TRPO we used a code that is awaiting approval to be
integrated into CleanRL) Huang et al. (2022b)

Parameter PPO+ PPO (ours)

optimizer Adam Adam
learning rate 3 · 10−4 3 · 10−4

discount (γ) 0.99 0.99
replay buffer size 5 · 104 ∅
number of critics 2 1
LayerNorm True True
number of hidden layers 2 2
number of hidden units per layer 256 256
number of samples per minibatch 250 250
activation function TanH TanH
actor update interval Ne 5000 steps 5000 steps
GAE Lamda 0.5 0.95
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