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Abstract

Self-supervised learning has seen great success recently in unsupervised represen-
tation learning, enabling breakthroughs in natural language and image processing.
However, these methods often rely on autoregressive and masked modeling, which
aim to reproduce masked information in the input, which can be vulnerable to
the presence of noise or confounding variables. To address this problem, Joint-
Embedding Predictive Architectures (JEPA) has been introduced with the aim to
perform self-supervised learning in the latent space. To leverage these advance-
ments in the domain of time series, we introduce Time Series JEPA (TS-JEPA),
an architecture specifically adapted for time series representation learning. We
validate TS-JEPA on both classification and forecasting, showing that it can match
or surpass current state-of-the-art baselines on different standard datasets. Notably,
our approach demonstrates a strong performance balance across diverse tasks,
indicating its potential as a robust foundation for learning general representations.
Thus, this work lays the groundwork for developing future time series foundation
models based on Joint Embedding.

1 Introduction

The paradigm of self-supervised learning (SSL) has emerged as a crucial technique for the devel-
opment of Foundation Models [3]. These models are built on large unlabeled datasets and then
fine-tuned for specific tasks with smaller labeled datasets. This approach has been very successful for
language and vision tasks, and has been recently applied also to time series [5, 9]. SSL methodologies
can be broadly categorized into two families. The first is based on contrastive approaches [21], such
as SimCLR [4] developed for computer vision, which learns representations by juxtaposing positive
and negative pairs of samples. Building upon these principles, researchers have also introduced
novel adaptations [20, 21, 22] that account for the specific properties of time series. The second
family encompasses predictive or generative-based methods. These techniques, such as the Masked
Auto-Encoder (MAE) [11], task the model to reconstruct or predict missing segments of the input.
This approach can be particularly effective for time series, given their inherent temporal ordering and
often cyclical structure, such as in seasonal retail sales [7]. A variation of MAE is the Autoregressive
Encoder, where the model’s objective becomes the prediction of the next time steps. This adaptation
aligns particularly well with the forward-looking nature of many time series applications, enhancing
the capacity to capture temporal dependencies specifically in the forecasting task.

However, since masked models are designed to reconstruct missing parts in the input space, they can
be susceptible to the presence of noise and other non-predictable confounding factors. Indeed, a good
reconstruction requires to model the entire input, and such elements may prevent the extraction of
meaningful and predictive features, because the model will focus on this noise rather than the underly-
ing patterns within the data [12]. Recently, the Joint-Embedding Predictive Architecture (JEPA) [12]
has been introduced as a way to only maintain the relevant information in the representation, leading
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Figure 1: Illustration of TS-JEPA: it consists of (1) a tokenizer, (2) an encoder that processes the
non-masked patches, (3) a Predictor that generates the target predictions from the encoder’s output
and (4) the EMA-Encoder, which encodes the target masked patches.

to competitive results in both the image [1] and video domains [2]. The JEPA approach first encodes
the input into a latent space and then performs masked reconstruction in this space. Latent space
reconstruction makes this technique robust to the presence of confounding variables and noise in the
input. Inspired by the success of JEPA in addressing confounding factors in images and videos, we
believe that this approach can similarly benefit time series data, which are often inherently noisy.

Here, we propose TS-JEPA, an adaptation of the JEPA architecture specifically tailored to the
unique characteristics of temporal sequences. We validate our model through experiments on various
standard datasets for time series classification and short and long-term forecasting. TS-JEPA exhibits
promising performance compared to other baselines with the induced representation performing
competitively in the forecasting task while outperforming significantly on classification. While a
few papers, have already appeared mentioning JEPA in the context of time series, they were either a
specific application to encoded frames [8], or in combination with other techniques for in-context
prediction [19]. Ours is the first systematic study of the JEPA architecture to time series, investigating
whether this method can compete against the more common autoregressive approach. Our results
positions TS-JEPA as a promising building block to be used for time series foundation models.

2 Joint Embedding Predictive Architecture for Time Series

We consider the task of representation learning for time series. We focus on the univariate case, but
our architecture is easily adaptable to multivariate time series. Formally, let X = {x1, x2, ..., xN}
represent a set of N time series, where each xj is of length T . We aim to find a function f : X → H
mapping the input time series to a representation h ∈ H ⊂ Rm, where m is the hidden representation’s
dimension. Once the self-supervised representation learning process has been completed, the learned
representations can be used for downstream tasks such as classification or forecasting.

The fundamental idea of JEPA is to use non-masked parts of the input to predict other masked parts,
but in an abstract latent space rather than in the original input space. This approach allows the model
to capture underlying patterns and relationships in the data that may not be immediately apparent in
the raw input. Our architecture is composed of four primary components (Fig. 1):

(i) Tokenizer: serves as the initial processing stage. It takes as input a time series x ∈ X and
transforms it into a sequence of non-overlapping patches pi ∈ P . To embed these patches, we use
a one-dimensional convolutional neural network (1D-CNN). The aim is to capture local patterns
and features along the temporal dimension within each patch. In addition, to preserve the temporal
information, we incorporate a positional encoding mechanism. While alternative positional encoding
schemes could easily be incorporated in our architecture, we have adopted an absolute sin-cos
positional embedding [18] for simplicity. The sequence of patches are split into a set of masked PM
and non-masked patches PN following a uniform masking strategy.

(ii) Encoder Eθ: is the cornerstone of our architecture, transforming the patches into a useful
representation that can be used afterwards for downstream tasks. We use a standard transformer
architecture incorporating self-attention mechanisms. The encoder takes as input the non-masked
patches PN = {pi ∈ P | i ∈ N}, where N represents the indices of non-masked elements. The
inputs are transformed into the latents zN = Eθ(PN ).

(iii) Predictor Pβ: takes the output of the encoder zN as input. The goal is to learn a mapping
from the encoded observed (i.e. non-masked) tokens to the encoded unobserved (masked) ones.
Similar to the Encoder, we use a transformer-based architecture with self-attention mechanisms.
Specifically, the output of the predictor can be formulated as z′M = Pβ(Eθ(PN )).
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(iv) EMA-Encoder Eθ̄: The Exponential Moving Average encoder is an instance of the encoder
with different weights. Instead of them being directly optimized through backpropagation like in the
main encoder, the weights of the EMA-encoder are updated as an exponential moving average of
the main encoder’s weights. This has been shown to prevent collapse during training [12, 10]. This
component takes as input the set of masked patches PM and produces representations tM = Eθ̄(PM),
which serve as the target for the predictor. Additional details are provided in Appendix.

The learning task consists of predicting the encoding of the masked tokens from those of the non-
masked tokens in a latent space, specifically by minimizing

L = 1
|M|

∑
i∈M || z′i − ti ||1= 1

|M|
∑

i∈M || Pβ(Eθ(PN ))i − Eθ̄(pi) ||1 .

3 Experimental Setup

We first pretrain TS-JEPA using all available training samples for each dataset. Subsequently, we
evaluate the learned representation using a frozen evaluation protocol. Specifically, we keep the
pre-trained encoder fixed and train a small classification/regression heads for the downstream tasks.
This allows us to assess the quality and transferability of the learned representations. For simplicity,
we maintain the same architecture for both our encoder and predictor, i.e. a transformer with 2
attention heads and an embedding dimension of 128. All the models have been trained using the
AdamW optimizer [15], and the learning rates have been tuned to maximize the performance of each
method. We report the specific details in the Appendix.

Baselines. We compare the performance of TS-JEPA against three alternative methods: (i)
TS2Vec [20], based on contrastive learning, (ii) MAE [11], which employs a mask-and-reconstruct
paradigm in the input space and (iii) an autoregressive approach, which predicts future values based
on past observations. We always use the same architecture as the one used in TS-JEPA’s encoder
(in terms of dimensions and number of attention heads) to ensure the fairness of the comparison.
To assess the effectiveness of the encoder’s pretraining, we also report results obtained by training
only the classification/regression head on a frozen, randomly initialized (non-pretrained) encoder.
This comparison helps determine whether the encoder has truly captured the underlying patterns of
the dataset or if the task is so simple that a linear layer alone can achieve good performance. We
additionally consider the fully supervised case, where a transformer and a CNN are trained end-to-end
on the downstream tasks. These supervised baselines provide an upper bound to gauge how close our
approach can get to fully supervised learning.

Datasets. For classification, we use FordA, FordB [6], FaultDetectionA and FaultDetectionB [13],
all of which comprise outputs from various sensors. Additionally, we include ECG500 [6], consist-
ing of single-sensor electrocardiogram recordings. For forecasting tasks, we employ the Weather
dataset [16], which contains recordings of diverse meteorological indicators. We also consider
ETT-Small [23], representing electricity transformer temperature data, and the Electricity dataset [17],
which measures electric power consumption in a single household.

Evaluation tasks. We focus on classification and forecasting. For classification, we consider
two settings. The first involves using the same dataset for both pre-training and evaluation, while
the second assesses the transferability of the pretrained model to similar datasets with similar
tasks. Specifically, we pretrain on FordA (resp. FaultDetectionA) and evaluate on FordB (resp.
FaultDetectionB). We evaluate the performance on the forecasting task in two ways. We first focus on
short-term forecasting, where, given the immediate context, we predict the next patch in the sequence.
We then consider longer-term forecasting, where we predict a horizon window by autoregressively
rolling out the input.

4 Experimental Results

Table 1 presents the average prediction accuracy and standard deviations (over 10 runs) for the
classification downstream task. Our experiments show that TS-JEPA outperforms both contrastive
and autoregressive approaches in the majority of classification tasks, while exhibiting compara-
ble performance to the Masked Auto-Encoder approach. Notably, the resulting accuracy closely
approximates that of a transformer trained in a fully supervised manner.
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Table 1: Downstream Classification accuracy (± standard deviation) using real-world datasets.

Method Fully Supervised Pre-trained

CNN Transformers Trained On Classification
Head

TS2Vec
(Contrastive) MAE Auto-Regressive TS-JEPA

FordA 86.8 ± 0.4 91.8 ± 0.5 ✓ 46.3 ± 0.2 86.4 ± 0.2 85.1 ± 0.6 69.6 ± 0.4 91.5 ± 0.1
FordB 70.5 ± 0.8 74.8 ± 1.1 × 51.2 ± 0.6 72.4 ± 0.7 59.6 ± 0.5 61.9 ± 0.3 73.8 ± 0.3
FaultDetectionA 98.4 ± 0.3 91.8 ± 0.8 ✓ 54.3 ± 2.1 83.9 ± 0.4 90.4 ± 0.3 81.6 ± 0.2 85.8 ± 0.1
FaultDetectionB 63.9 ± 1.2 54.3 ± 0.4 × 40.2 ± 3.7 53.9 ± 0.6 54.3 ± 0.4 51.4 ± 0.7 50.6 ± 1.3
ECG5000 87.3 ± 0.6 89.9 ± 1.8 ✓ 58.4 ± 0.1 86.9 ± 0.3 91.6 ± 0.7 87.5 ± 0.2 89.5 ± 0.1

To further validate the efficacy of our TS-JEPA approach, we conduct an additional evaluation in the
context of fine-tuning with limited labeled data. In this experiment, we mimic a realistic scenario
in which supervised labels are sparse. Specifically we only consider a fraction of labels from our
labeled data, with varying size from 5% to 20% of the total labels and treat the rest of the dataset as
unlabeled samples used for pretraining. Figure 2 illustrates the performance of TS-JEPA compared to
a fully-supervised transformer model across different amounts of available labeled data. TS-JEPA
shows superior sample efficiency, achieving higher performance with fewer labeled examples. As
expected, we observe that the performance gap between TS-JEPA and fully supervised method
narrows as the amount of labeled data increases, with the gap shrinking with more labels.
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Figure 2: Performance of TS-JEPA against
a full-supervised Transformer when subject
to less training labels on the FordA dataset
(a) and FaultDetectionA dataset (b).

Table 2 displays the average MSE and MAE for the short-
term forecasting strategy (confidence level provided in
the Appendix), while Figure 3 illustrates the cumulated
MSE for long-term forecasting. As anticipated, the au-
toregressive approach outperforms TS-JEPA in short-term
forecasting tasks, which is consistent with the training
paradigm of these models. In long-term forecasting, both
approaches exhibit the inherent uncertainty amplification
effect characteristic of the roll-out strategy. However, TS-
JEPA demonstrates superior performance to autoregressive
strategies in two out of three datasets (i.e. ETT and Elec-
tricity), suggesting an enhanced stability.

Table 2: MSE and MAE of short-term forecast-
ing.

Dataset ETT-Small Weather Electricity
MSE MAE MSE MAE MSE MAE

Auto-regressive 0.009 0.083 0.022 0.108 0.010 0.076
JEPA 0.017 0.110 0.015 0.109 0.014 0.086
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Figure 3: Comparison of the Cumulative Mean
Square Error on the long-term forecasting task.

Overall, these results show promising performance for TS-JEPA in both classification and forecasting
tasks. While the method does not consistently outperform all baselines on every dataset and task,
by maintaining competitive forecasting capabilities and outperforming on classification, it offers a
compelling trade-off between the two tasks for using a single architecture.

5 Conclusion

We introduce TS-JEPA, an adaptation of the JEPA Architecture tailored specifically for self-supervised
learning in time series analysis. The experimental results demonstrate that TS-JEPA achieves a great
balance between performance in classification and forecasting downstream tasks. This balanced
capability sets TS-JEPA apart from current state-of-the-art methods, particularly the widely-used
autoregressive approach, which often excels in one task (e.g. forecasting) at the expense of the other.
The versatility of TS-JEPA makes it a promising candidate for developing adaptable foundation
models for time series analysis. Next steps will include the exploration of scaling strategies for
TS-JEPA, with the ultimate goal of establishing a new paradigm for time series foundation models.
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Appendix: Joint Embedding go Temporal.

1 Pre-training Details

Architecture. Our encoder and decoder share an identical architecture: a transformer with 2 attention
heads and an embedding dimension of 128. While we have not conducted an ablation study on this
configuration, it has proven sufficient to yield satisfactory results in downstream tasks. We defer a
more thorough investigation of architectural choices to future work. To ensure a fair comparison, all
considered baselines utilize the same architecture as our TS-JEPA, allowing us to isolate the effects
of the self-supervised task. Across all datasets and tasks, we segment each time series into 10 patches
and employ a batch size of 32. For TS-JEPA, we apply a masking ratio of 70%, while for MAE, we
use 75%, consistent with the implementation in [14].

Optimization. We train all models using the AdamW optimizer [15], with learning rates fine-tuned
to maximize the performance of each method. Specifically, we explore learning rates within the range
[1e-03, 1e-04, 1e-05, 1e-06]. Table 3 and Figure 4 and 5 illustrate the impact of learning rate on
both long-term and short-term forecasting downstream tasks for both Autogressive approach and
TS-JEPA.

On the EMA-Encoder The use of two instances of the same encoder has been shown to lead to a
representation collapse, where the encoder learns the trivial solution of a constant output regardless
of the input. [12]. Typically, this solution minimizes the reconstruction loss but fails to capture any
meaningful information about the data. By using the EMA-encoder, we introduce a slowly moving
target for the predictor, helping to stabilize training and encourages the model to learn more robust
and meaningful representations. The use of an EMA-encoder has been validated in previous work,
including the Bootstrap Your Own Latent (BYOL) [10] method for self-supervised learning, and in
JEPA architectures applied to images [1] and videos [2]. For our implementation we have used set
the update parameter m = 0.998, which we have seen to emperically give good results while avoid
the collapse.

Table 3: Effect of Learning Rate on both JEPA and Autoregressive approach.

Dataset Learning Rate: 1e− 03 1e− 04 1e− 05 1e− 06

Metric: MSE MAE MSE MAE MSE MAE MSE MAE

ETT-Small
Auto-regressive 0.035 0.123 0.028 0.113 0.009 0.083 0.042 0.152
JEPA 0.031 0.133 0.031 0.114 0.017 0.110 0.019 0.114

Weather
Auto-regressive 0.054 0.153 0.039 0.160 0.022 0.108 0.030 0.124
JEPA 0.017 0.101 0.053 0.172 0.037 0.147 0.015 0.109

Electricity
Auto-regressive 0.013 0.089 0.022 0.114 0.010 0.076 0.048 0.145
JEPA 0.014 0.086 0.058 0.198 0.022 0.121 0.026 0.140

Figure 4: Effect of Learning Rate on the long-term forecasting for autoregressive models.
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Figure 5: Effect of Learning Rate on the long-term forecasting for JEPA.
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Figure 6: MSE distributions for each experiment.

2 Datasets and Implementation Details

Implementation details. The experimental implementation of TS-JEPA is available on github2. It is
built using the open-source PyTorch library. We use the official, publicly available implementation of
TS2Vec [20] and the MAE implementation provided by [14]. All experiments were conducted on an
NVIDIA V100 GPU.

Table 4: Statistics of the classification datasets used in our experiments.

DATASET #TRAINING POINT #TEST POINTS #LENGTH #CLASSES

FORDA 3601 1320 500 2
FORDB 3636 810 500 2
FAULTDETECTIONA 10912 2728 5120 3
FAULTDETECTIONB 10912 2728 5120 3
ECG500 500 4500 140 5

2https://github.com/Sennadir/TS_JEPA
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