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Abstract

The unusual properties of in-context learning (ICL) have prompted investigations
into the internal mechanisms of large language models. Prior work typically focuses
on either special attention heads or task vectors at specific layers, but lacks a unified
framework linking these components to the evolution of hidden states across layers
that ultimately produce the model’s output. In this paper, we propose such a
framework for ICL primarily in classification tasks by analyzing two geometric
factors that govern performance: the separability and alignment of query hidden
states. A fine-grained analysis of layer-wise dynamics reveals a striking two-stage
mechanism—separability emerges in early layers, while alignment develops in later
layers. Ablation studies further show that Previous Token Heads drive separability,
while Induction Heads and task vectors enhance alignment. Our findings thus
bridge the gap between attention heads and task vectors, offering a unified account
of ICL’s underlying mechanisms.1

1 Introduction

One of the most remarkable features of Large Language Models (LLMs) is their ability to respond to
novel queries in user-desired mannerisms on-the-fly solely by learning from demonstrations provided
in the input (as shown in Figure 1 (A))—without any additional training. This capability is known as
In-context Learning (ICL) [Brown et al., 2020, Radford et al., 2019]. ICL has revolutionized natural
language processing by reducing dependence on burdensome data collection and costly finetuning,
enabling swift and seamless adaptation of LLMs to a variety of downstream tasks [Dong et al., 2024].

Due to its stark departure from traditional gradient-based learning paradigms, ICL has attracted
significant academic interest. One line of research aims to develop a mechanistic understanding of ICL
by analyzing the internal behavior of LLMs in ICL settings [Reddy, 2024]. Some studies highlight
the importance of key structural components in LLMs, such as Induction Heads (IH) [Elhage et al.,
2021, Olsson et al., 2022, Cho et al., 2025a], which retrieve information from demonstrations and
perform copy-like operations within Transformer-based architectures. Other studies adopt a hidden-
state-centric view, interpreting ICL as a process in which LLMs construct vector representations of
the task from demonstrations (so-called task vectors [Hendel et al., 2023, Liu et al., 2024]) using the
hidden states at an intermediate layer, and then use the vectors to steer hidden states and produce
better next-token predictions. Both lines of work support their claims primarily through ablation and
intervention experiments that assess the impact on model outputs.

However, treating model components and hidden states as separate entities in ICL analysis is
both unnecessary and misleading. The two are inherently intertwined—components like attention
heads transform hidden states layer by layer, and these intermediate updates ultimately determine the

1Code implementation: https://github.com/HLYang2001/ICL_Hidden_Geometry.
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Figure 1: (A) An example for ICL input. (B) In early layers, LLMs promote separability among the
last tokens’ hidden state (hhh) clusters w.r.t. the ground-truth labels of the queries through Previous
Token Heads (PTHs). (C) In early layers or zero-shot scenarios, the direction where the hiddens are
maximally separated is insufficiently aligned with the output direction (i.e., the difference vector of
the label-token unembedding vectors), increasing cluster overlap after mapping and inducing higher
classification errors, and (D) in later layers, Induction Heads (IHs) align these clusters towards the
output direction, with the same underlying mechanism of task vectors.

model’s output. As such, analyzing only the influence of attention heads or task vectors on the final
prediction reduces ICL to a black-box process. A true mechanistic understanding of ICL requires
tracing how these components progressively shape hidden states throughout the model, not just their
end effects. A unified framework that synthesizes both perspectives and assesses their importance in
the layer-wise evolution of hidden states is thus highly essential.

Therefore, in this work, we propose a framework, shown in Figure 1, based on a key geometric
insight into LLM classification: the success of LLMs in classification depends on whether the hidden
states of queries with different ground-truth labels are (1) sufficiently separable and (2) well aligned
with the unembedding vectors of labels. In other words, hidden states should be separated along a
direction that aligns with the difference between the unembedding vectors of different labels. To
investigate this, we collect hidden states in both ICL and zero-shot settings and analyze them using
a range of geometric measures to assess how ICL improves hidden states in terms of separability
and alignment. Our approach operates on three levels: (1) We examine the layer-wise trends in
these measures and compare zero-shot with ICL (and across different ICL settings) to quantify the
effect of ICL on the hidden state geometry. (2) We observe how changes in measure values reflect
the evolution of semantic information represented in the hidden states that ultimately inform model
outputs in ICL. (3) We probe specific layers to examine the role of different types of attention heads
and how they influence both the values and trajectories of these geometric measures.

Our experiments find that ICL improves classification performance primarily by enhancing alignment
between query hidden states and unembedding vectors, with less impact on separability. Results
further suggest that ICL proceeds as a two-stage process: early layers mainly increase hidden-state
separability, while in middle-to-late layers, separability plateaus and alignment improves. The
refinement of alignment arises through layer updates that filter out task-irrelevant semantics and
preserve label-relevant content, thereby semantically refining query hidden states. Such updates
qualify ICL query hidden states as task vectors. We also test this two-stage characterization on ICL
for a generation task and confirm its explanatory power across settings.

To build the bridge between the task vector and model components, we analyze the effect of attention
heads on these geometric measures and find that (as demonstrated by Figure 1): (1) The early increase
in separability is driven by a proliferation of Previous Token Heads (PTHs)—attention heads that
attend to the previous token at each position—in early layers. (2) In middle-to-late layers, Induction
Heads (IHs) enhance alignment by amplifying hidden state components along the unembedding
directions of the labels. Thus, our findings not only explain why attention heads like PTHs and IHs
are essential for ICL performance, but also clarify why induction head outputs empirically serve as
effective task vectors [Todd et al., 2024, Hendel et al., 2023].

2 Related works

IH and PTH Previous works on the mechanistic cause of ICL identify structural circuits in
Transformers comprising a Previous Token Head (PTH) and an Induction Head (IH), where the
PTH gathers information at demonstration label tokens, and the IH copies it to query positions for
prediction [Olsson et al., 2022, Singh et al., 2024, Song et al., 2025]. Their importance in classification
has been confirmed in large-scale models as well [Cho et al., 2025a]. However, existing analyses
focus on end-to-end effects, leaving open how these heads shape query hidden states.
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Task vectors An alternative theory proposes that LLMs summarize demonstrations into task vectors,
which can be used to steer zero-shot hidden states to increase prediction accuracy. These vectors may
be ICL query hidden states extracted at an intermediate layer [Hendel et al., 2023, Liu et al., 2024],
attention head outputs [Todd et al., 2024, Li et al., 2024], or MLP outputs [Merullo et al., 2024].
Decoding task vectors through the unembedding matrix reveals that they encode task-related tokens
and support semantic manipulations akin to “word2vec”-style algebra [Mikolov et al., 2013]. Despite
intriguing empirical findings, explanations for their mechanism remain preliminary. Kahardipraja
et al. [2025] show that heads expressing contextual information or model’s parametric knowledge
produce task vectors with distinct function. Jiang et al. [2025b] and Han et al. [2025] study how
the geometry of model’s task representation impacts the effects of injecting task vectors. Jiang et al.
[2025a] reveal the correlation between model’s catastrophic forgetting and the change in task vectors.
However, none of these studies answer the question of how task vectors influence the concrete
internal computation process of models which directly and ultimately determine the outputs.

Geometry of hidden states LLMs encode inputs in geometrically structured ways [Park et al.,
2024]. For instance, they encode cities and countries by geographic relations [Gurnee and Tegmark,
2024] and numbers in rings under modular arithmetic [Liu et al., 2023]. For classification tasks, they
can separate hidden states into clusters by attributes such as truth value [Marks and Tegmark, 2024]
or toxicity [Lee et al., 2024]. However, the alignment of such clusters with the unembedding vectors
of their labels—an equally crucial geometric factor—has received limited attention, with only a few
studies noting suboptimal alignment at the output layer [Cho et al., 2025b, Kirsanov et al., 2025].

3 Theoretical framework

We begin our framework with an analysis of classification tasks, where an LLM is prompted with a
query x and its ground-truth label y, e.g., x = “I like this movie. Sentiment:” and y = “positive”. The
LLM with L layers encodes x into a vector hhhx ∈ Rd , taken from the hidden state at the final token
(“:”). Given a vocabulary V= {v1, ...,v|V|} and an output embedding matrix EEE ∈ R|V|×d , the model

predicts p(v j|x) = exp(EEEv j hhhx)/∑
|V|
j′=1 exp(EEEv j′ hhhx), where EEEv j is the unembedding vector of v j. The

model outputs the token v j with the highest probability as the predicted label for x.

In the ICL scenario, as shown in Figure 1 (A), k demonstration-label pairs (x1,y1), ...,(xk,yk) are
prepended to form the prompt [x1,y1, ...,xk,yk,x], which modifies the hidden state of x and results in
a different distribution p(v j|x1,y1, ...,xk,yk,x), potentially improving prediction accuracy.

Rather than a single query, we more often evaluate classification accuracy over a dataset of n
queries {x1, ...,xn}, with hidden states {hhh1, ...,hhhn} and ground-truth labels {y1, ...,yn}. We will show
that the classification accuracy depends on two geometric properties of the hidden state collection
HHH = [hhhi]

n
i=1 ∈ Rn×d : (1) its separability, and (2) its alignment with the unembedding vectors.

As mentioned before, an LLM performs classification using the unembedding matrix EEE, which is a
multiclass classifier on the hidden states. We define its accuracy on the dataset as:

Acc =
1
n

n

∑
i=1

1(yi = argmax
v j

exp(EEEv j hhhi)

|V|
∑

j′=1
exp(EEEv′j

hhhi)

) =
1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

|V|
∑

j′=1
EEEv′j

hhhi

), (1)

where the first equality states that classification accuracy equals the proportion of the labels being
predicted as the most probable token, and the second equality uses the monotonicity of softmax.

We first consider the simple case where {x1, ...,xn} only has 2 different labels, yA and yB, i.e.
yi ∈ {yA,yB},∀i, and leave the generalization to the case of more labels to Appendix B. For a unit
vector uuu ∈ Rd , we define the separability of HHH along direction uuu with labels yA,yB to be:

S(uuu) =
1
n
( ∑

i∈NA

1(uuu⊤hhhi ≥ 0)+ ∑
i∈NB

1(uuu⊤hhhi < 0)), (2)

where NA = {i : yi = yA} and NB = {i : yi = yB}. S(uuu) measures the fraction of hidden states that can
be correctly classified by a linear decision boundary orthogonal to uuu. By considering all possible
directions, we obtain the maximum separability of HHH, i.e. S∗ = supuuu∈Rd ,∥uuu∥2=1 S(uuu). Though S(uuu)
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is not a continuous function, S∗ as a supremum can be attained on Sd−1 = {uuu : uuu ∈ Rd ,∥uuu∥2 = 1}
(See Appendix A). Denote uuu∗ as the uuu where S attains the supremum, then:

Theorem 1 Acc ≤ S∗. The equality is achieved when maxv∈V,v/∈{yA,yB} EEEvhhhi < max(EEEyA hhhi,EEEyB hhhi),∀i

and
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
= cuuu∗ for some positive constant c.

This theorem shows that accuracy is upper-bounded by the maximum separability of HHH and that the
bound is achieved when: (1) each hhhi is maximally aligned with either EEEyA or EEEyB —the unembedding
vectors of yA and yB—while excluding interference from other tokens, a condition we call output
alignment; and (2) the direction of maximum separation uuu∗ aligns with EEEyA −EEEyB , which we refer
to as directional alignment. Thus, separability and alignment of hidden states critically determine
accuracy. Since query hidden states in ICL differ from those in the zero-shot setting due to the
presence of demonstrations, we conclude that ICL can improve classification accuracy by enhancing
both their separability and alignment.

Attention heads influence query hidden states as well by their outputs to the residual stream. At
layer l, the hth attention head adds aaah

i,l to the hidden state hhhi,l of the ith query, affecting the transition
to hhhi,l+1. Ablating a head (i.e., setting aaah

i,l = 0) alters all downstream hidden states and can degrade
accuracy if the final-layer hidden states HHHL lose separability or alignment.

Task-vector-based experiments operate similarly by steering hidden states at intermediate layers. In
those experiments, a task vector ttt i is added to2 hhhi,l and the influence likewise propagates through
subsequent layers. This intervention is effective if the final HHHL has better separability and is better
aligned with the labels of the task encoded in ttt i.

4 Method: Measuring separability and alignment of hidden states

Given the aforementioned influence of ICL, attention heads, and task vectors on the separability and
alignment of hidden states across layers, we introduce several measures3 to quantify their influence.
The formal definitions and mathematical details of all measures are provided in Appendix C.

A. Separability measure: Separability score
Theorem 1 shows that the classification is affected by the maximum separability of hidden states.
However, finding maximum separability requires evaluating separability along infinitely many direc-
tions in Sd−1 and is intractable. As a practical proxy, we train a logistic classifier on a subset of HHH
and evaluate its accuracy on held-out data. We call the accuracy separability score as it reflects the
empirical maximum separability of hidden states achieved by the classifier.

B. Alignment measures
In Theorem 1 we show that both output alignment and directional alignment affect accuracy.
Below, we introduce measures for both.

B.1 Output alignment
Output alignment is defined as the classification accuracy obtained by applying the unembedding
matrix EEE directly to hidden states HHH, skipping subsequent layers. It measures how well HHH aligns with
the label unembedding vectors EEEyA and EEEyB , and is also known as logit lens accuracy [nostalgebraist,
2020]. When HHH comes from the final layer, it equals standard classification accuracy.

B.2–B.5 Directional alignment
Directional alignment is the alignment between uuu∗ and the label unembedding difference direction

EEEyA−EEEyB
∥EEEyA−EEEyB∥2

. Since finding uuu∗ is intractable, we introduce the following proxies based on approximat-
ing uuu∗ or measuring separability along the label-difference direction.

2Activation patching which directly replaces the zero-shot hidden states with ICL hidden states can also be
subsumed under this form, with ttt i being the difference between the hidden states in the two settings.

3For binary classification datasets, each measure is computed over the entire HHH. For multiclass datasets
with labels y1, ...,ym, we enumerate all label pairs (y j,yk), compute the measure using the corresponding two
label clusters, i.e. hidden states of queries with labels y j,yk, before averaging across all pairs to obtain a scalar
summary for HHH. As shown in Appendix B, this is justified by the fact that separability and alignment influence
the accuracy of multiclass classification through the binary classification between each label pair.
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• Singular alignment (B.2). To approximate uuu∗, we apply Singular Value Decomposition (SVD) to
the mean-centered HHH and extract the top-r right singular vectors. These are the directions where
HHH has the greatest spread and can approximate uuu∗. We compute the maximum absolute cosine
similarities between each of these vectors and

EEEyA−EEEyB
∥EEEyA−EEEyB∥2

as a proxy for directional alignment.

• Variance-based alignment (B.3). To measure separability along
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
, we first measure the

proportion of total variance in HHH that lies along this direction. A higher value indicates that this
direction is a principal axis of variation—suggesting stronger directional alignment.

• Mean-based alignment (B.4). We project the difference in means of label clusters—hidden states
with labels yA and yB—onto

EEEyA−EEEyB
∥EEEyA−EEEyB∥2

and divide it by the pooled projected variance. A higher

value implies better separation margin along
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
and better directional alignment.

• Composite alignment (B.5). To unify the mean- and variance-based alignment, we define
composite alignment as their product. It captures both the magnitude and the relative significance of
separation along the label-difference direction, serving as a robust proxy for directional alignment.

C. Indirect measure: Effective dimension
As an indirect indicator of separability and alignment, we compute the effective dimension of HHH—the
number of directions along which the hidden states exhibit significant variance. A low effective
dimension suggests that hidden states concentrate along a small number of directions, potentially
those associated with the label unembedding vectors, and are thus easier to separate.

5 Experiments and Results

Models We experiment on the following 7 models: Llama2-7B, Llama2-13B, Llama2-70B [Touvron
et al., 2023], Llama3-8B, Llama3-70B [Grattafiori et al., 2024], Gemma-2B, and Gemma-7B [Gemini
Team et al., 2024]. Unless otherwise stated, we report the results on Llama2-70B.

Datasets We conduct experiments on two major types of classification datasets: text classification
(SUBJ [Wang and Manning, 2012], SST-2 [Socher et al., 2013], TREC [Li and Roth, 2002]) and
natural language inference (SNLI [MacCartney and Manning, 2008], RTE [Dagan et al., 2005],
and CB [De Marneffe et al., 2019]). We further include a generation dataset (detailed in Subsec-
tion 5.1) to test the generalizability of our results in settings other than classification. We also use a
generated dataset to explore the scenario where ground-truth labels of queries are not presented in the
demonstrations (discussed in Appendix I.5).

ICL setting We set the number of in-context demonstrations to be 8 unless otherwise stated. The
demonstration samples are chosen randomly, except for one experiment that investigates the effect of
using demonstrations procured by kNN retrieval [Liu et al., 2022]. For a detailed exposition of the
implementation of models, datasets, prompt templates, etc., refer to Appendix D.

5.1 Layer-wise trends of separability and alignment

ICL as a two-stage process Figure 2 shows the values of six geometric measures at all layers
of Llama2-70B in both zero-shot and ICL settings averaged across datasets (output alignment is
deferred to Subsection 5.2 due to its strong link to the semantic information of hidden states; results
for other models are in Appendix F). A key observation is that Figure 2 reveals a striking phase
transition in the evolution along the layers of ICL hidden states. Phase 1 (Figure 1 (B)): In the
early layers, directional alignment measures take low values, whereas separability increases rapidly.
Phase 2 (Figure 1 (D)): In the subsequent layers, this trend reverses: separability plateaus, while all
directional alignment measures spike simultaneously, which suggests that the label unembedding
difference direction starts to capture more variance and separate label clusters more effectively. It
causes the semantic information of query labels to be predominant in HHH, which ultimately leads to
final output alignment. These findings are consistent with prior work showing that task information
emerges only after the initial layers [Sia et al., 2024]. The alternation between two phases is also
captured by the effective dimension of HHH, which first rises and then declines as alignment starts to
improve, reflecting a gradual concentration of hidden states along label unembedding directions.
In contrast, this transition is much weaker in the zero-shot setting, where effective dimension rises
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Figure 2: Comparison of trends in separability and alignment measures: ICL vs. zero-shot.
Under ICL, a clear phase transition emerges: separability increases first and then alignment surges.
The effective dimension first rises and then declines. This pattern is missing in the zero-shot setting.
Accuracy gains from ICL over zero-shot are reflected in alignment, not separability measures.

monotonously and the rise in alignment measures is not nearly as pronounced. Hence, this phase
transition pattern characterizes ICL as a two-stage process: an initial phase enhancing separability,
followed by a refinement phase that improves alignment.

ICL improves accuracy primarily through alignment A key observation is that ICL and zero-shot
settings show only a small gap in separability scores—despite an 80% (Figure 2, upper middle)
difference in classification accuracy. This implies that the semantic separation of query hidden states
is intrinsic to LLM inference rather than a main effect of ICL (see Appendix E.1 for the practical
implication of this), making alignment the primary bottleneck in zero-shot performance. As shown
in Figure 1 (C), the high-separability direction in zero-shot hidden states is misaligned with the label-
difference vector, as reflected in low singular and composite alignment scores. Along this direction,
label clusters remain poorly separated (low mean-based alignment) and explain little variance (low
variance-based alignment). These findings align with prior work indicating that unembedding vectors
often fail to capture the dominant separation axes in hidden state space [Cho et al., 2025b].

Given the volatility of ICL accuracy across settings with different demonstration numbers and input
formats, we investigate whether the phase transition persists across settings, and whether accuracy
differences can similarly be attributed to alignment properties of hidden states. We consider three
settings: (1) Varying the number of demonstrations from 0 to 24 in increments of 4; (2) Changing the
demonstration selection strategy to kNN retrieval where demonstrations with the closest zero-shot
embeddings to each query are chosen; (3) Replacing original demonstration labels with semantically
uninformative symbols like “@” and “#”. Figure 3 reports the results averaged across datasets.

Phase transition is a robust hallmark of ICL Figure 3 shows that the phase transition pattern
persists across all three settings. In Figure 3 (A), it is evident at all demonstration counts except
0. Figure 3 (B) confirms that principled demonstration selection (via kNN) preserves instead of
interfering with the transition. Even in Figure 3 (C), where labels are replaced by symbols, the
two-stage pattern in effective dimension remains—distinguishing it from zero-shot, where effective
dimension rises monotonically—though the post-transition alignment surge is dampened.

Phase transition holds in open-ended settings To test whether the phase transition pattern occurs
in tasks beyond classification, i.e., open-ended generative tasks, where ICL is also frequently applied,
we consider the following task: the queries assume the format “Praise/Critique {subject}”, where
{subject} is the name of a food (e.g., tapas). The labels are reviews for the subject satisfying the
sentiment requirement, generated using GPT-4o [OpenAI et al., 2024], for instance, “Praise tapas →
The tapas assortment at this restaurant is absolutely delightful!”. We track the layer-wise dynamics of
the separability score and composite alignment4 as representatives of the metrics evaluated on the
8-shot and 0-shot hidden states of this task. The results in Figure 4 mirror those in Figure 2, where

4Since a generation task has an indefinite and infinite label space, we let the label unembedding difference
direction needed to calculate composite alignment be that between “positive” and “negative”.
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Figure 3: Layer-wise trends of separability and alignment measures in different ICL settings.
(A) Phase transition is evident under demonstration numbers from 4 to 24. Accuracy improvements of
increasing demonstrations are reflected by consistently improving alignment measures. (B) Changing
the demonstration selection method to kNN retrieval preserves phase transition and improves accuracy
through enhancing alignment. (C) Using uninformative demonstration labels hurts accuracy due to
decreased alignment of hidden states, yet a similar phase transition is evident.

the few-shot and zero-shot hidden states exhibit similar separability properties across layers, but the
surge in composite alignment beginning from mid-layers is specific to few-shot hidden states.
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Figure 4: (A) In the generation setting, the separability score exhibits
almost identical trends in the 0-shot and 8-shot cases. (B) In the 8-shot
case, the phase-transition of composite alignment is pronounced.

Alignment explains accu-
racy differences across
ICL settings We find that:
accuracy differences be-
tween ICL settings are con-
sistently reflected in align-
ment measures. Specif-
ically, in Figure 3 (A),
increasing the number of
demonstrations from 4 to 24
produces minimal changes

in separability, while alignment measures improve in a consistent manner as the trend curves are
shifted versions of one another. Effective dimension also decreases steadily, suggesting a higher
concentration of hidden states along label-unembedding directions. Figure 3 (B) similarly shows that
the accuracy gains from kNN-selected demonstrations correspond to stronger alignment and lower
effective dimension. In Figure 3 (C), the accuracy drop from symbolic label replacement aligns with
a flattened post-transition rise in alignment measures, resembling the case of zero-shot.

5.2 Semantic interpretation of alignment dynamics

To understand how the surge in directional alignment after the phase transition leads to high output
alignment and successful decoding of task-related labels at the final layer, we conduct a case study
on the SST-2 dataset to interpret hidden-state alignment dynamics.

Surge in alignment concurs with the encoding of label-relevant semantics First, we compute
output alignment (logit lens accuracy) across all layers and compare its trajectory to directional
alignment measures. As shown in Figure 5, their strong correlation indicates that output alignment
rises in sync with directional alignment. This suggests that as alignment improves, label-relevant
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semantics are injected into hidden states via consecutive layer updates, enabling correct label decoding
even at intermediate layers. To support this, we decode the top right singular vectors of hidden
states near the transition point. Figure 5 (B) reveals a sharp semantic shift: while layer 20 produces
irrelevant tokens, the SST-2 label token negative emerges as the second most probable token in layer
21—immediately post-transition. This confirms that post-transition layers elevate label-relevant
directions in both the semantic and variance structure of the hidden states.
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Figure 5: Dynamics of alignment measures and semantics of
post-transition hidden states. (A) Strong correlation between
output and directional alignment; (B) Surge in alignment
measures concur with encoding of label-related semantics;
(C) Post-transition layers, except for the last ones, filter out
unrelated semantics and retain the related ones. Refer to
Appendix G for more semantics decoding cases.

Layer-wise pattern of semantic re-
tention and filtering To better un-
derstand how exactly layer updates
after the phase transition encode rel-
evant semantics into hidden states,
we analyze the semantic informa-
tion retained or removed by each
layer. Given the SVDs of the cen-
tered hidden states at two consecu-
tive layers H̄HH l−1 =UUU l−1ΣΣΣl−1VVV⊤

l−1 and
H̄HH l = UUU lΣΣΣlVVV⊤

l , we compute the pro-
jection of the previous layer’s singu-
lar directions onto the next layer’s as
VVV⊤

l−1VVV lVVV⊤
l ∈ Rn×d . The rows of this

matrix with larger norms are the prin-
cipal directions of HHH l−1 that are re-
tained in HHH l , while those with smaller
norms indicate filtered directions. By
decoding these directions, we identify
the semantic information retained or
removed by each layer. The results
are reported in Figure 5 (C). In most
layers after the phase transition, label-
related semantic directions are consis-
tently retained, and unrelated direc-

tions are filtered, leading to a progressive amplification of label-relevant information in the hidden
states and a suppression of the irrelevant semantics. However, in the final layers, this pattern reverses:
label-related directions are filtered, and label-irrelevant semantics are reintroduced. This shift cor-
responds to the slight drop in output alignment in the final layers in Figure 5 (A), and aligns with
prior findings that late layers in LLMs tend to encode high-frequency, semantically uninformative
tokens [Sharma et al., 2023], which may interfere with the expression of task-relevant content. The
same phenomenon also occurs in other datasets as presented in Appendix G.4.
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Figure 6: Accuracy gains of rank-10 denoising.
See Appendix G.5 for results in other settings.

Low-rank denoising enhances label-relevant
semantics To better understand the retention-
and-filtering process, we test whether filtering
can be accelerated—and label-relevant seman-
tics enhanced—by denoising the hidden states.
Specifically, we apply a rank-10 SVD approxi-
mation to the centered hidden states H̄, retain-
ing only the top 10 directions of variation and
adding the mean back. This denoising should

theoretically remove less informative components and amplify label-relevant semantics. We then feed
the denoised hidden states into the unembedding layer and measure output accuracy. As shown in
Figure 6, low-rank denoising yields accuracy gains exceeding 10%, especially in early post-transition
layers where irrelevant semantics are just beginning to be filtered. These results validate low-rank
denoising and support semantic retention and filtering as a core mechanism of post-transition layers.
We explore the practical implication of this in Appendix E.2.

Task vector properties of post-transition hidden states As visualized by Figure 1 (D), the
simultaneous enhancement of both alignment properties and label-relevant semantics after the phase
transition qualifies ICL query hidden states in middle-to-late layers as task vectors [Hendel et al.,
2023]. Due to their improved alignment properties, steering or replacing zero-shot hidden states
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Figure 7: Effects of attention heads ablation on the layer-wise separability and alignment measures.
Ablating PTH significantly reduces separability, and ablating IH significantly reduces alignment.

with ICL hidden states can align zero-shot hidden states better with the label unembedding vectors.
Similarly, modifying zero-shot hidden states with ICL hidden states, which are label-informative,
makes them more suited for the prediction of the correct labels.

5.3 Significance of critical attention heads

PTHs and IHs are attention heads with distinctive attention patterns. Given a token sequence like
[A][B1][A][B2]...[A][Bn][A], a PTH at the final [A] attends to the immediately preceding [Bn], while
an IH attends to tokens such as [B1]–[Bn] following earlier [A] positions. For example, in the ICL
prompt “I don’t like it. Answer: negative. I like it. Answer:”, at the final “:”, a PTH attends to
the preceding “Answer”, while an IH attends to “negative” after the earlier “:”, effectively copying
semantics of the demonstration label into the query’s hidden state. By analyzing their effects on
separability and alignment across layers, we gain a more fine-grained understanding of their role in
ICL—beyond simply measuring their impact on final predictions.

For each dataset and model, we rank all attention heads by their PTH and IH scores, which quantify
how strongly they exhibit corresponding attention patterns on test prompts. We then ablate (zero
out) the outputs of the top 10% identified IHs and PTHs and measure the resulting effects on hidden
state separability and alignment across layers as well as the output accuracy. As a control, we repeat
the procedure with an equal number of randomly selected heads (excluding the top PTH/IH heads).
Details on identifying PTHs and IHs are provided in Appendix H.

PTHs induce separability, IHs induce alignment The results in Figure 7 confirm that PTHs and
IHs are crucial not only for verbalizing ICL outputs [Cho et al., 2025a] but also for structuring hidden
states both separability-wise and alignment-wise. Ablating random attention heads has a negligible
effect (as shown by overlapping black and gray curves). In contrast, ablating PTHs or IHs significantly
alters the measures, but with distinct effects. Ablating PTHs substantially reduces separability and
also influences mean-based alignment (and thus composite alignment) which concerns the separation
margin of the label clusters, but has a minimal impact on other alignment measures. Conversely,
ablating IHs leaves separability largely intact but severely disrupts all alignment measures, and has a
far greater impact on output alignment as measured by the accuracy.

Table 1: Dataset-mean layer positions of
top IH and PTH heads by percentage levels
with statistically significant differences.

% IH mean PTH mean p-value

1% 40.203 33.379 1.01×10−7

2% 40.884 36.459 1.30×10−6

5% 42.238 36.422 2.06×10−17

10% 41.535 35.850 9.72×10−29

These results not only confirm a two-stage ICL
process—first driven by separability, then by align-
ment—but also clarify its mechanism. PTHs, concen-
trated in early layers [Cho et al., 2025a], enhance sep-
arability by attending to query tokens and encoding
distinct semantics into hidden states. IHs, emerging
after a critical depth (30–40% of total layers [Halawi
et al., 2024]), copy demonstration label embeddings
into query hidden states via the residual stream, im-
proving alignment with label unembedding directions. Furthermore, in Appendix I.5, we show that
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PTHs and IHs contribute to ICL through the same mechanism even when the query’s ground-truth
label—previously considered essential for IHs [Cho et al., 2025a]—is absent from demonstrations.

PTHs in early layers, IHs in late layers To test whether PTHs and IHs align with our two-stage
ICL characterization—inducing separability and alignment respectively—we examine their layer
distributions. Specifically, we locate the top 1%, 2%, 5%, and 10% identified PTHs and IHs and
perform Mann-Whitney U tests to assess differences across layers. As shown in Table 1, PTHs mainly
occur in earlier layers, consistent with their role in inducing separability, while IHs appear later, with
the differences being highly significant under the Mann-Whitney test.
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Figure 8: (A) PTH task vector increases separability after injection;
(B) Injecting IH task vector recreates the phase-transition in alignment.

Geometric effects of IH
and PTH outputs as task
vectors The ablation in
Figure 7, though revealing
how removing PTHs and
IHs affects separability and
alignment, does not show
how they actively drive the
geometric evolution of hid-
den states during inference.

To address this, we follow Todd et al. [2024] and inject their outputs as task vectors into zero-shot
hidden states at selected layers to observe induced metric changes. We construct task vectors using
outputs of the top 10% IHs and PTHs as in Appendix J. We inject the PTH-derived vector at layer
l = 2 to track separability, and the IH-derived vector at 3

8 L to track composite alignment. These
layers correspond to where separability and alignment begin to shift markedly in Figure 2. Figure 8a
shows that injecting PTH outputs as task vectors boosts separability (the green line surpassing the
magenta line before convergence; see Appendix I.2 for similar trends across models), while injecting
IH task vectors restores the ICL-specific spike in alignment metrics in zero-shot hidden states.
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Figure 9: Average effect
across datasets of steering
zero-shot hidden states using
IH outputs as task vectors.

IH outputs as task vectors Since we have shown that IH outputs
with ICL demonstrations can compensate for alignment deficits in
hidden states, we have clarified how IH outputs as task vectors
influence the forward computation of models: they steer hidden
states to align with label-token unembeddings so these tokens can
be decoded. This also explains why IH outputs themselves decode
label-related tokens [Todd et al., 2024], as they must align with
label unembedding directions to perform such steering. To validate
this conclusion on our classification datasets (not considered in the
original study), we extract task vectors from identified IH outputs
and add them to layer-30 zero-shot hidden states of Llama2-70B.
The substantial accuracy gains in Figure 9 support this conclusion.

6 Conclusions and Limitations

Conclusions This work unifies two major perspectives on in-context learning (ICL)—the roles of
special attention heads and task vectors—within a geometric framework centered on separability
and alignment of hidden states. We theoretically show that these two properties fully determine ICL
classification accuracy and empirically demonstrate that ICL across classification and generation
tasks improves accuracy over zero-shot mainly by enhancing alignment, explaining why ICL query
hidden states serve effectively as task vectors. Our analysis reveals a phase transition: early layers
boost separability, while later layers refine alignment with label unembedding vectors by filtering out
label-irrelevant semantics and preserving task-relevant directions, coinciding with the emergence of
label semantics in hidden states. Zooming into layers, we identify complementary roles of PTHs
and IHs: PTHs in early layers enhance separability, while IHs emerging post-transition promote
alignment—clarifying both the phase transition and the effectiveness of IH outputs as task vectors.

Limitations Our analysis of the ICL hidden states of generation tasks is preliminary. In addition,
our analysis focuses on inference-time behavior in pretrained models. Future work should investigate
how the phase transition pattern of ICL hidden states emerges during training, which could shed light
on the emergence of ICL capability.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the paper accurately summarizes the paper’s contri-
butions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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and how they scale with dataset size.
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limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For our theoretical claims put forward in Section 3, we provide the complete
proofs in Appendix A. In Appendix B we consider a generalization of the theory we
proposed, the proof of which is also in Appendix B.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the details of the implementations we used for the models, datasets,
as well our procedures of conducting in-context learning in Appendix D.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the data and code as the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment settings and presented in Section 5 Appendix D.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Most of the experiment results presented in this work are obtained using fully
deterministic procedures with no randomness involved. The only randomness is in the
random selection of demonstrations in ICL, but its impact on the results is minimal, so we
do not construct error bars over random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide such information in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conduct the research according to the NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts of our findings in Appendix K.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks in any circumstances.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide full reference to the assets we used, primarily in Section 5

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide extensive details to the dataset we generated in Appendix I and
Appendix D.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects and no IRB approvals are required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is used to generate one of the datasets used in the experiments. We
introduce this dataset in detail in Appendix D and Appendix I. Apart from that, LLM is not
related to any aspects of the core methodology in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Appendices
A Proofs related to Theorem 1

We first show that S∗ is attained at some point v∗ in the hypersphere Sd−1 = {uuu : uuu ∈ Rd ,∥uuu∥2 = 1}
though Sd−1 is an infinite set and S(uuu) is not continuous. Observe that each hhhi in HHH partitions
Sd−1 into two hyperhemispheres. One is {uuu : uuu ∈ Rd ,∥uuu∥2 = 1,uuuT hhhi ≥ 0} and the other is {uuu : uuu ∈
Rd ,∥uuu∥2 = 1,uuuT hhhi < 0}. Hence, as long as the number of queries in the dataset n is finite, hhh1, ...,hhhn
will partition Sd−1 into a finite number of “cells”. Each cell corresponds to the elements in Sd−1 that
satisfy a certain sign sequence

[
sgn(uuuT hhh1), ...,sgn(uuuT hhhn)

]
∈ {1,0,−1}n. Hence, S(uuu) is constant on

each of the cells, and the supremum (or the maximum) value S∗ is attained on one of the cells.

We then show the proof of Theorem 1:

Proof First, consider the case where V only consists of yA and yB. Then EEE ∈ R2×d and the two rows
are EEEyA and EEEyB . Then we have

Acc =
1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑
v′j∈{yA,yB}

EEEv′j
hhhi
) (3)

=
1
n
( ∑

i∈N1

1(EEEyA hhhi ≥ EEEyB hhhi)+ ∑
i∈N2

1(EEEyA hhhi < EEEyB hhhi) definition of argmax (4)

=
1
n
( ∑

i∈N1

1[(EEEyA −EEEyB)hhhi ≥ 0]+ ∑
i∈N2

1[(EEEyA −EEEyB)hhhi < 0] reorganizing terms (5)

=
1
n
( ∑

i∈N1

1[(
EEEyA −EEEyB

∥EEEyA −EEEyB∥2
)hhhi ≥ 0]+ ∑

i∈N2

1[(
EEEyA −EEEyB

∥EEEyA −EEEyB∥2
)hhhi < 0] linearity (6)

≤ sup
uuu∈Rd ,||uuu||2=1

1
n
( ∑

i∈N1

1(uuuT hhhi ≥ 0)+ ∑
i∈N2

1(uuuT hhhi < 0)) supremum (7)

= S∗. (8)
Here, when EEEyA hhhi = EEEyB hhhi, without loss of generality, we break the tie by letting the predicted label
to be yA for xi.

When there are more tokens in V, it holds true that 1(yi = argmax
v j

EEEv j hhhi

∑v′j∈{yA ,yB} EEEv′j
hhhi
) ≤ 1(yi =

argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
). Hence, we have Acc = 1

n ∑
n
i=11(yi = argmax

v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
)≤ S∗.

By the definition of uuu∗, we have
1
n
( ∑

i∈N1

1(uuu∗,T hhhi ≥ 0)+ ∑
i∈N2

1(uuu∗,T hhhi < 0)) = S∗. (9)

If EEEyA−EEEyB
|EEEyA−EEEyB|2

= cuuu∗ for some positive constant c, then

1
n
( ∑

i∈N1

1[(EEEyA −EEEyB)
T hhhi ≥ 0]+ ∑

i∈N2

1[(EEEyA −EEEyB)
T hhhi < 0)]) (10)

=
1
n
( ∑

i∈N1

1(uuu∗,T hhhi ≥ 0)+ ∑
i∈N2

1(uuu∗,T hhhi < 0)). (11)

We already showed that

1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑v′j∈{yA,yB} EEEv′j
hhhi
) (12)

=
1
n
( ∑

i∈N1

1[(EEEyA −EEEyB)
T hhhi ≥ 0]+ ∑

i∈N2

1[(EEEyA −EEEyB)
T hhhi < 0)]. (13)
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When maxv∈V,v/∈yA,yB EEEvhhhi < max(EEEyA hhhi,EEEyB hhhi),∀i, we have

1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑
v′j∈{yA,yB}

EEEv′j
hhhi
) (14)

=
1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
) (15)

= Acc. (16)

Hence, we have Acc = S∗ when maxv∈V,v/∈yA,yB EEEvhhhi < max(EEEyA hhhi,EEEyB hhhi),∀i and EEEyA−EEEyB
∥EEEyA−EEEyB∥2

= cuuu∗.
□

B Generalization of Theorem 1

In this section5, we consider a generalization of Theorem 1 where x1, ...,xn are allowed to have
m < n labels, i.e. yi ∈ {y1, ...,ym},∀i. Same as before, let N j = {i : yi = y j}, j = 1, ..,m. N j, j =
1, ...,m are pairwise disjoint and

⋃m
j=1 |N j| = {1, ...,n}. Let S j,k(uuu) = 1

|N j |+|Nk|
(∑i∈N j 1(uuu

T hhhi ≥
0)+∑i∈Nk

1(uuuT hhhi < 0)) and let uuu∗j,k = argmaxuuu∈Sd−1 S j,k(uuu) for j,k ∈ 1, ...,m, and S j,k(uuu∗j,k) = S∗j,k.
For each j and k, uuu∗j,k is guaranteed to be in Sd−1 because only |N j|+ |Nk| < n hyperplanes are
involved in separating separating Sd−1, resulting in a smaller number of cells (guaranteed to be finite)
compared to the case of x1, ...,xn having only y1,y2 as labels. Then, we have the following result.

Theorem 2 Acc ≤ 1
n(m−1) (∑

m
k=1 ∑

m
j=k+1(|Nk|+ |N j|)S∗j,k). The equality is achieved when for all

unordered pairs ( j,k), j,k ∈ 1, ...,m, maxv∈V,v/∈{y j ,yk} EEEvhhhi < max(EEEy j hhhi,EEEyk hhhi),∀i ∈ N j ∪Nk and
EEEy j −EEEyk = c j,kuuu∗j,k for some positive constant c j,k.

The theorem states that in the case of the queries having more than two labels, the dataset classification
accuracy is controlled by the pairwise separability and alignment properties of the hidden states.
After calculating the separability of the hidden states of queries with labels y j and yk for each ( j,k),
the dataset classification accuracy is then upper-bounded by these separability values weighted by the
number of queries with different labels.

Similarly, the accuracy can match this upper bound if each pairwise hidden states collection is
maximally separated along a direction parallel to the difference of the unembedding vectors of the
corresponding labels. This theorem shows that the otherwise difficult multiclass classification problem
is geometrically equivalent to the combination of a series of binary classification subproblems. And
the geometric properties of the multiclass classification problem can be understood by studying the
much more tractable geometry of the constituent binary subproblems.

5Here, we focus on the multiway classification, thus we change our notation to label categories from yA and
yB into ym, where m ∈ Z+.
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Proof First, note the following relations

Acc =
1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑
j′∈1,...,|V|

EEEv′j
hhhi
)

≤ 1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑
v′j∈{y1,...,yk}

EEEv′j
hhhi
)

=
1
n
(

m

∑
k=1

∑
xi∈Nk

1(EEEyk hhhi ≥ EEEy j hhhi,∀ j ̸= k, j ∈ 1, ...,m))

=
1
n
(

m

∑
k=1

∑
xi∈Nk

min
j ̸=k, j∈1,...,m

1(EEEyk hhhi ≥ EEEy j hhhi)) indicator function is either 1 or 0

≤ 1
n
(

m

∑
k=1

∑
xi∈Nk

1
m−1 ∑

j, j ̸=k, j∈1,...,m
1(EEEyk hhhi ≥ EEEy j hhhi))

=
1

n(m−1)
(

m

∑
k=1

∑
j, j ̸=k, j∈1,...,m

∑
xi∈Nk

1(EEEyk hhhi ≥ EEEy j hhhi))

=
1

n(m−1)
(

m

∑
k=1

∑
j, j ̸=k, j∈1,...,m

∑
xi∈Nk

1(
EEEyk −EEEy j

∥EEEyk −EEEy j∥2
hhhi ≥ 0)).

Note that the sum is over all ordered pairs ( j,k) s.t. j,k ∈ 1, ...,m, j ̸= k. Consider the case of
(k = 1, j = 2) and (k = 2, j = 1), then both 1(EEEyk hhhi ≥ EEEy j hhhi) and 1(EEEy j hhhi ≥ EEEyk hhhi)) appear in the
sum. Hence, the sum can be taken over all unordered pairs ( j,k) and rewritten as:

1
n(m−1)

(
m−1

∑
k=1

m

∑
j=k+1

∑
xi∈Nk∪N j

(1(
EEEyk −EEEy j

∥EEEyk −EEEy j∥2
hhhi ≥ 0)+1(

EEEyk −EEEy j

∥EEEyk −EEEy j∥2
hhhi < 0))) (17)

≤ 1
n(m−1)

(
m−1

∑
k=1

m

∑
j=k+1

(|Nk|+ |N j|)S∗j,k). (18)

Hence, we have

Acc ≤ 1
n(m−1)

(
m−1

∑
k=1

m

∑
j=k+1

(|Nk|+ |N j|)S∗j,k). (19)

As a proof of concept, plug-in m = 2, then the bound becomes 1
n (|N1|+ |N2|)S∗ = S∗ since |N1|+

|N2|= n, which matches the result in Theorem 1.

To establish the equality conditions, as in the proof of Theorem 1, if EEEy j −EEEyk = c j,kuuu∗j,k for some
positive constant c j,k, then

∑
i∈Nk

1[(EEEyk −EEEy j)
T hhhi ≥ 0]+ ∑

i∈N j

1[(EEEyk −EEEy j)
T hhhi < 0)] (20)

= ∑
i∈Nk

1(uuu∗,Tj,k hhhi ≥ 0)+ ∑
i∈N j

1(uuu∗,Tj,k hhhi < 0) = (|N j|+ |Nk|)S∗j,k. (21)

We also know that if maxv∈V,v/∈y j ,yk
EEEvhhhi < max(EEEy j hhhi,EEEyk hhhi),∀i ∈ N j ∪Nk, then

∑
i∈Nk

1[(EEEyk −EEEy j)
T hhhi ≥ 0]+ ∑

i∈N j

1[(EEEyk −EEEy j)
T hhhi < 0)] (22)

= ∑
i∈Nk∪N j

1(yi = argmax
v j

EEEv j hhhi

∑v′j∈{y j ,yk} EEEv′j
hhhi
) (23)

= ∑
i∈Nk∪N j

1(yi = argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
). (24)

24



Finally, note that

Acc =
1
n

n

∑
i=1

1(yi = argmax
v j

EEEv j hhhi

∑v′j∈{y1,y2} EEEv′j
hhhi
) (25)

=
1
n

1
m−1

m−1

∑
k=1

m

∑
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∑
i∈N j∪Nk

1(yi = argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
). (26)

because for each N j, the term 1(yi = argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
) appears (m−1) times in the summation

for each i ∈ N j. Hence, combining everything, we have

Acc =
1
n

1
m−1

m−1

∑
k=1

m

∑
j=k+1

∑
i∈N j∪Nk

1(yi = argmax
v j

EEEv j hhhi

∑
v j∈1,...,|V|

EEEv′j
hhhi
) (27)

=
1

n(m−1)

m−1

∑
k=1

m

∑
j=k+1

(|N j|+ |Nk|)S∗j,k. (28)

The proof is thus complete. □

C Calculation of geometric measures

1. Separability score We train the logistic classifier on half of the points in HHH and take its prediction
accuracy on the other half as the estimated maximum separability of HHH. We use the scikit-learn
[Pedregosa et al., 2011] default implementation of the logistic classifier, and set the number of
iterations to be 100.

2. Output alignment We feed HHH into the output unembedding layer of the model to get the model’s
predictions of the query labels based on HHH and calculate the percentage of correct predictions.

3. Singular alignment First obtain the centered version of HHH, denoted as H̄HH. Then calculate its
singular value decomposition, namely H̄HH =UUUΣΣΣVVV T , and compute the absolute values of cosine
similarities between the top-r singular vectors and the difference of label unembedding vectors
EEEyA −EEEyB . The absolute value is taken since the sign of the singular vectors is arbitrary. In
practice, we calculate the values using the top-2 singular vectors and report the maximum of the
two.

4. Variance-based alignment First normalize EEEyA −EEEyB as
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
. Then the ratio of variance

(w.r.t. its mean) of HHH explained along
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
is

EEEyA−EEEyB
∥EEEyA−EEEyB∥2

T
H̄HHT H̄HH

n
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
, which we

take to be the variance-based alignment of HHH.

5. Mean-based alignment First compute the means of label clusters (subsets of HHH with each of
the two different labels), i.e. 1

|NA| ∑
i∈NA

hhhi and 1
|NB| ∑

i∈NB

hhhi. Then take the difference and compute

the value of its projection onto
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
, i.e. (

EEEyA−EEEyB
∥EEEyA−EEEyB∥2

)T ( 1
NA

∑
i∈|NA|

hhhi − 1
|NB| ∑

i∈NB

hhhi). Then,

calculate the weighted average of the variances of the two label clusters along
EEEyA−EEEyB

∥EEEyA−EEEyB∥2
, i.e.

|NA|Var({hhhT
i

EEEyA−EEEyB
∥EEEyA−EEEyB ∥2

:i∈NA})+|NB|Var({hhhT
i

EEEyA−EEEyB
∥EEEyA−EEEyB ∥2

:i∈NB})
|NA|+|NB| . Finally, divide the projected difference

between means by the square root of the weighted average of the projected variance.

6. Composite alignment Multiply the variance-based alignment by the mean-based alignment.

7. Effective dimension Given the SVD H̄HH =UUUΣΣΣVVV T and the singular values σ1, ...,σn, the effective

dimension of HHH is (∑n
i=1 σ2

i )
2

∑
n
i=1 σ4

i
.
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Table 2: Prompt templates and labels for different datasets.
Dataset Template Label

SST-2 {Sentence} Sentiment: {Label} positive / negative
SUBJ {Sentence} Type: {Label} subjective / objective
TREC Question: {Sentence} Type: {Label} abbreviation / entity / description / human / location / number
SNLI The question is: {Premise}? The answer is:

{Hypothesis} {Label}
true / maybe / false

RTE The question is: {Premise}? The answer is:
{Hypothesis} {Label}

true / false

CB The question is: {Premise}? The answer is:
{Hypothesis} {Label}

true / maybe / false

Famous People {Person Name} is a: {Label} actor / politician / singer / scientist / writer / athlete

Table 3: Mappings used to replace ground-truth labels of different datasets to symbols
Dataset Label Mapping
SST-2 negative/positive → @/#
SUBJ objective/subjective → @/#
TREC abbreviation / entity / description / person / number / location / → @/#/!/$/&/*
SNLI true/maybe/false → @/#/!
RTE true/false → @/#
CB true/maybe/false → @/#/!

D Implementation details

Models We use the official huggingface implementation of all models. All models with more than
10B parameters are quantized to 4bit.

Datasets We use the official huggingface implementation of all datasets except for the Famous
People dataset crafted by ourselves. The Famous People dataset is generated using ChatGPT-4o
[OpenAI et al., 2024]. The dataset has 180 datapoints, each is the name of a famous person with a
profession label from one of six categories: actor, politician, singer, scientist, writer, athlete. The
dataset is balanced as there are 30 data points for each label.

ICL setting For each dataset except for the Famous People dataset, we select demonstrations from
the train set and queries from the test set, or the validation set if the ground-truth labels for the test set
are not provided. We keep only the first 10000 datapoints in the train set for demonstration selection if
the train set has more than 10000 entries, and the first 1000 data points in the test set/validation set for
accuracy evaluation. For the famous people dataset, we use the first 90 data points for demonstration
selection and the remaining 90 data points for testing. For experiments involving kNN demonstration
selection, we first use the respective LLMs to encode the demonstrations and queries, and select the
demonstrations with embeddings closer to that of the query in l2 distance for each query. We use the
prompt formats detailed in Table 2.

Devices All experiments with Llama2-7B, Llama2-13B, Gemma-2B, and Gemma-7B are conducted
with an A800 GPU. All experiments with Llama3-8B, Llama2-70B, and Llama3-70B are conducted
with an H200 GPU.

For the label mapping experiment in Subsection 5.1. We use the mappings listed in Table 3 to map
the ground-truth labels of each dataset to symbols.

E Practical implications of the mechanistic findings

We discuss in this section how our geometric characterization of the model’s inference process in
the zero-shot or ICL setting can be converted to actionable and efficient methods to improve model
performance.

E.1 Improving classification by capitalizing on hidden states separability

In Figure 2 we see the high separability of hidden states of prompts from classification tasks which
surpasses the accuracy of the actual label prediction by far, irrespective of whether demonstrations are
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prepended to the labels. This implies that rather than direct decoding we can instead use the model as
a feature extractor with which to train classifiers to perform the classification task, which is exactly
how we evaluate the separability score. To demonstrate this, we train a logistic classifier on 50% of
the last layer hidden states and evaluate the classification accuracy on the rest half. The results in
Table 22 demonstrate that such a practice improves the classification accuracy with zero-shot prompts
by over 70% across models, while only incurring the minimal cost of training an extra logistic
classifier. Moreover, in Table 23 we see that training the classifier over 8-shot ICL hidden states also
brings a solid ∼10% increase over the original ICL accuracy, which shows the generalizability of this
lightweight method that leverages hidden states separability.

E.2 Unsupervised enhancement of classification performance through low-rank denoising

In Figure 6 we see that low-rank denoising of the ICL hidden states matrix reveals the task-related
directions as its dominant directions and enhances its alignment properties. We can thus apply this
technique to the final layer hidden states instead of the intermediate layer ones (which is the focus of
Figure 6) to directly improve classification performance. In Table 24 we apply rank-5 denoising to
final layer hidden states before feeding them into the unembedding layer. This method is different
from the classifier-based method in that it assumes no knowledge of the ground-truth label of each
hidden state. The dataset-average results demonstrate that the rank-5 denoising can indeed improve
the classification performance of all models with the only exception of Gemma-7B.

F Supplementary materials for Subsection 5.1

F.1 Replication of Figure 2 for other models

In Figure 10-15, we provide the visualizations of the experiments presented in Figure 2 for other
models, from which similar conclusions to those in Subsection 5.1 can be drawn. Alignment measures
explain the accuracy difference between ICL and zero-shot across models, and the layer-wise trends
of the measures explain the phase transition pattern for all models.

F.2 Replication of Figure 3 for other models

In Figure 16-21 we provide the visualizations of the experiments presented in Figure 3 for other
models to establish the generality of our conclusions. It is clear that the phase transition pattern is
evident in different ICL settings across models, and alignment measures capture accuracy differences
across ICL settings for all models.

F.3 Replication of Figure 4 for other models

In Figure 53-58 we repeat the visualizations in Figure 4 for other models to examine where the
generation task fits well into our framework. The results demonstrate that for other models, the
phase-transition pattern in the composite alignment metric is specific to the 8-shot ICL hidden states,
while ICL and zero-shot hidden states do not differ much in terms of the dynamics of the separability
score.

G Supplementary materials for Subsection 5.2

G.1 Replication of subplot (A) of Figure 5 for other datasets and models

In Figure 22- 28 we provide the visualizations of the experiments presented in subplot (A) of Figure 5,
to establish the generalizability of our conclusion that the directional alignment and the encoding of
label-related semantics into the hidden states happen almost simultaneously after the phase transition.
The layer-wise trends of the directional alignment measures and output alignment exhibit high
correlation across all datasets and models.
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G.2 Replication of subplot (B) of Figure 5 for other datasets

In Table 4-8, we present the tokens decoded from top singular directions near the phase transition
breakpoint for other datasets. The results demonstrate that the sudden .semantic shift toward label-
related tokens in the hidden states (as demonstrated by subplot (B) of Figure 5) is present in other
datasets as well. Note that the phase transition happens at different layers for different datasets.

G.3 Replication of subplot (B) of Figure 5 with replaced demonstration labels

To further examine the relationship between alignment and the encoding of task-related semantics,
we design a scenario in which the ground-truth demonstration labels are consistently mapped to
symbols, and the expected predictions for the query label becomes the mapped symbols as well.
This forces a separation between semantic encoding and alignment, as the task-related semantics
remain unchanged, but alignment must now occur with respect to the unembedding vectors of the
symbols. Specifically, we conduct experiments on SST-2 and SNLI where we map the SST-2 labels
(negative/positive) to @ and #, and the SNLI labels (true/maybe/false) to @, #, and ! within the
demonstrations. We then inspect the tokens decoded from the top singular directions of the hidden
states at each layer.

As shown in Table 9, the results reveal an interesting pattern. The first major shift in the layer-wise
semantic content occurs at layer 24, where the ground-truth label tokens suddenly become dominant.
This closely mirrors the pattern observed with normal demonstration labels in Table 6, and aligns
with the point where output alignment begins to rise in Figure 22 (C). However, another drastic shift
is observed at layer 45, where the decoded top tokens begin to include the symbol tokens. These
symbols suddenly appear and start to compete with semantically relevant task tokens, marking the
onset of alignment between the hidden states and the unembedding vectors of the symbols. This
delayed alignment corresponds with the pattern seen in subplot (C) of Figure 3, where the phase
transition under demonstrations with symbolized labels is postponed to later layers.

The competition between the true labels and the injected symbol labels persists through to the final
layers. This likely contributes to the reduced accuracy in this setting, as the semantic influence of the
substituted labels fails to fully override that of the ground-truth labels. Similar results for SST-2 are
presented in Table 10, showing similar trends.

G.4 Replication of subplot (C) of Figure 5 for other datasets

Subplot (C) of Figure 5 reveals a two-stage pattern in the layer-wise retainment and filtering of
semantic information, where most post-transition layers retain label-related semantics and filter out
irrelevant ones, and the final layers do the opposite. We show in Table 11-15 that it exists in other
datasets besides SST-2 as well.

G.5 Replication of Figure 6 for other datasets and models

We first provide the results of rank-10 approximations on all 6 datasets for Llama2-70B in Figure 42.
The conclusion is that low-rank denoising significantly increase the output alignment significantly
acorss all datasets, particularly in the innitial layers after the phase transition. This confirms the
generality of our findings in Subsection 5.2. Additionally, in the final layers, the output alignment
also increases on on SST-2, SUBJ, TREC, and SNLI, though not on RTE and CB.

In Figure 43-48, we present results for other models. These are consistent with the findings from
Llama2-70B. Specifically, the pattern that low-rank denoising improves output alignment more in text
classification datasets than in natural language inference datasets holds across models. This suggests
a higher level of linguistic complexity in natural language inference tasks—likely because such tasks
require reasoning over both a premise and a hypothesis, whose combined semantics are more difficult
to compress and more prone to information loss during low-rank projection.

G.6 Ablation experiments for the rank hyperparameter in low-rank approximations

In this section, we explore the effect of varying the number of retained ranks in rank-r SVD approxi-
mations of Llama2-70B hidden states across all datasets. Specifically, we investigate how increasingly
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aggressive rank reductions—setting r = 1, 2, and 5—impact performance. The results, shown in
Figure 49, Figure 50, and Figure 51, yield several notable findings.

For binary classification tasks such as SST-2, SUBJ, and RTE, more aggressive rank reduction some-
times leads to better output alignment, particularly in layers after the phase transition where alignment
with label unembedding vectors begins to emerge. In some cases, even a rank-1 approximation
preserves or enhances alignment-related performance. However, for three-way classification tasks
like SNLI and RTE, aggressive reductions (especially at r = 1 or 2) can cause accuracy drops in
later layers. For TREC, which involves six label classes, rank-2 or rank-1 approximations degrade
accuracy across all layers.

These results align with the intuition that datasets with more labels require higher-dimensional hidden
state representations to preserve the necessary separability and alignment structures among label
clusters.

H Experiment details concerning the identification of PTHs and IHs

For each dataset, we use the first 50 queries to identify the set of IHs and PTHs. Denote the queries
as x1, ...,x50 each with token length s(x1), ...,s(x50).

Identification of PTHs For each xi, the LLM will generate an attention tensor AAAttttttnnni ∈
RL×Nh×s(xi)×s(xi), where L is the total number of layers, Nh is the number of attention heads per
layer. Hence, for the nth

h attention head at layer l, there is a corresponding attention matrix
AAAttttttnnn(l,nh)i ∈Rs(xi)×s(xi), where AAAttttttnnn(l,nh)i, j,k is the attention of this attention head at the kth token to
the jth token in xi. The PTH score of this attention head on xi is thus defined as ∑

s(xi)
k=2 AAAttttttnnn(l,nh)i,k−1,k,

which measures the total attention the attention head assigns at each token position to the previ-
ous token. Consequently, the PTH score of the nth

h attention head at layer l on all the queries is

∑
50
i=1 ∑

s(xi)
k=2 AAAttttttnnn(l,nh)i,k−1,k. We calculate the PTH scores for all (l,nh) pairs and choose the top 10%

attention heads as the identified PTHs.

Identification of IHs For each xi, randomly select 8 demonstrations and prepare them to xi. The
resultant ICL prompt (denoted as Xi with length s(Xi)), with a slight abuse of notation, takes the format
of ⟨xi,1⟩ : ⟨yi,1⟩, ...,⟨xi,8⟩ : ⟨yi,8⟩,⟨xi⟩ :, where ⟨xi,k⟩ represents the sentence part of demonstration k
(“I like this movie. Sentiment”) and ⟨yi,k⟩ the label (“positive”) separated from the sentence part
by a colon (:), and ⟨xi⟩ is the sentence part for the query. At the position of the final “:”, an IH will
attend to tokens after the previous “:”s, i.e. the label tokens ⟨yi,1⟩, ...,⟨yi,8⟩. Let Ii denote the indices
of the label tokens in Xi. The IH score of the nth

h attention head at layer l over the 50 queries is thus
∑

50
i=1 ∑k∈Ii ∈ AAAttttttnnn(l,nh)i,k,s(Xi), i.e. we are measuring the total attention a head assigns at the final

“:” position to the positions of all the label tokens summed over all 50 queries. We calculate the IH
scores for all (l,nh) pairs and choose the top 10% attention heads as the identified IHs.

I Supplementary materials for Subsection 5.3

I.1 Replication of Figure 7 for other models

In Figure 29-34, we present the results of attention heads ablations across models. The results support
our conclusions regarding the significance of PTHs in enhancing the separability of the ICL hidden
states and the significance of IHs in aligning them with the label unembedding vectors.

I.2 Replication of Figure 8 for other models

In Figure 59-64, we present the results of analyzing the geometric contribution of PTHs and IHs
in other models to the evolution of hidden states by injecting their outputs as task vectors. The
results clearly demonstrate their respective significance in fostering the separability and alignment of
hidden states. In particular, the PTH task vectors of other models exhibit greater potential to increase
hidden-state separability than the result shown in Figure 8.
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I.3 Replication of Table 1 for other models

In Table 16-21, we compare the layer distributions of the top 1%, 2%, 5%, and 10% identified IHs and
PTHs in other models and conduct Mann–Whitney U tests to assess the significance of the differences.
The results demonstrate a consistent difference in the layer positions of PTHs and IHs across models,
with PTHs significantly preceding IHs on average—the difference being most prominent in the two
Gemma-family models, Gemma-2B and Gemma-7B.

I.4 Replication of Figure 9 for other models

In Figure 65-70, we show the results of injecting task vectors derived from IH outputs for other
models. The task vectors are similarly injected at layer 3

8 L, where L is the total number of layers of
the respective models. The results demonstrate that IH outputs qualify as effective task vectors across
models, with the exception of Gemma-2B, as they considerably improve prediction accuracy in the
zero-shot setting after being injected into the zero-shot hidden states.

I.5 Results of attention heads ablation in the ICL setting where query label is not in context

The results for other models, reported in Figure 29-34, confirm the generality of our conclusions across
model sizes and architectures. To test whether these findings hold under different ICL settings as well,
we replicate the attention head ablation experiments in a special ICL scenario (“In-weight Learning”)
studied by Reddy [2024] and Chan et al. [2022], where none of the in-context demonstrations share
the query’s label. This setting is useful for analyzing attention heads—especially IHs, which are
known for copy-like behavior—when direct label copying is not possible.

To this end, we construct a Famous People dataset following the procedures in Appendix D. Each
data point is a sentence in the format “{Famous Person Name} is a:", and the label is the profession
of the famous person. Once combined, they form an input sequence like, e.g., “Taylor Swift is a:
Singer." that can be used as either a query or a demonstration. For each query, we sample k = 4
demonstrations, ensuring that none share the query’s profession label. We then ablate PTHs and IHs
to examine their influence on model performance. As a control, we also evaluate the measures in the
setting where at least one demonstration does share the query’s label, allowing us to assess how the
availability of directly copyable labels affects the impact of head ablation.

The results in Figure 35 resemble those in standard ICL settings in that ablating PTHs significantly im-
pairs separability, while ablating IHs affects alignment. However, there are notable differences. Most
importantly, the accuracy drop from ablating PTHs is greater than that from ablating IHs—opposite
to the standard case, where IH ablation has a larger impact. This highlights the critical role of having
the query label present in the context for IHs to function effectively. The importance of label presence
is further confirmed by the substantial accuracy gain observed when the query label is forced into the
context.

We provide results analogous to Figure 35 for other models in Figure 36–41, which demonstrate
similar results.

I.6 Results of attention heads ablation in the zero-shot setting

In this section, we investigate the effect of attention head ablation on the separability and alignment
measures of zero-shot hidden states. The results averaged across datasets, as provided in Figure 52,
reveal that the zero-shot setting is fundamentally different from ICL. In the zero-shot setting, ablating
IHs has practically no effect on either separability or alignment measures, similar to ablating random
heads, because there are no demonstrations from which to copy. On the contrary, ablating PTHs sub-
stantially compromises all separability and alignment measures. This illustrates that the contribution
of PTHs to the separability of hidden states is by no means restricted to the ICL setting and highlights
the significance of PTHs as key structural components of LLMs.

J Experiment details of using IH outputs to construct task vectors

For each dataset, we first construct 8-shot ICL prompts using the first 50 queries. The demonstrations
used are exactly the same as the ones used to evaluate the 8-shot ICL accuracy for each dataset. Then,
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following the procedures described in Todd et al. [2024], we obtain the average output (across the 50
prompts) of each identified top 10% IHs and PTHs at the final token positions, and sum the average
outputs of all IHs to obtain the task vector.

In terms of the steering experiment, we add the task vector to the hidden state of the final token of
each query at Layer-30 of Llama2-70B, and let the modified hidden state flow through subsequent
layers. While calculating the accuracy, we exclude the first 50 queries and only evaluate accuracy
on the remaining queries in the test set to ensure an independence between the task vector and the
queries involved.

K Broader impacts

Understanding the internal mechanisms of large language models is increasingly critical as these
models are deployed in high-stakes applications ranging from education and healthcare to legal and
governmental decision-making. This work contributes to that understanding by providing a geometric
framework that explains in-context learning through the lens of hidden state dynamics, specifically
separability and alignment. By identifying the role of specific architectural components—such as Pre-
vious Token Heads and Induction Heads—in shaping model behavior, our study brings interpretability
to a domain often criticized for opacity.

The primary positive societal impact of this research lies in its potential to improve the transparency,
controllability, and safety of LLMs. Better mechanistic understanding can inform the development
of more robust models that are less reliant on spurious correlations and more capable of structured
generalization. For example, insights into how semantic information is injected and refined layer
by layer may support diagnostic tools that detect when a model is failing to align its internal
representations with task-relevant signals. Additionally, the SVD-based techniques we propose for
identifying and amplifying task-relevant components could be used to improve the efficiency or
reliability of model outputs, particularly in low-resource or privacy-sensitive settings where retraining
is infeasible.

However, a deeper understanding of model internals also introduces risks. The ability to precisely
manipulate hidden states or attention mechanisms may enable adversarial behaviors, such as con-
structing prompts that selectively suppress or amplify certain outputs for political or financial gain.
Moreover, techniques for filtering and steering semantic content could be misused to hide bias or
simulate alignment without genuine safety improvements. As such, we encourage future work to pair
interpretability research with rigorous safety and ethics evaluations, and to involve interdisciplinary
expertise when applying these findings to real-world systems.

Overall, we view our contributions as a step toward more interpretable and accountable AI, but we
emphasize that interpretability alone is not a guarantee of ethical deployment. Responsible application
of these insights requires careful consideration of both technical and societal factors.
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Figure 10: Comparison of trends in separability and alignment measures of Llama3-8B hidden states
between ICL and zero-shot
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Figure 11: Comparison of trends in separability and alignment measures of Llama3-70B hidden
states between ICL and zero-shot

0 10 20 30
Layer Number

0

20

40

Effective dimension

0 10 20 30
Layer Number

0.6

0.8

Separability score

0 10 20 30
Layer Number

0.1

0.2

Singular alignment

0 10 20 30
Layer Number

0.00

0.02

Composite alignment

0 10 20 30
Layer Number

0

1

2

Mean-based alignment

0 10 20 30
Layer Number

0.00

0.01

Var.-based alignment

8-shot
0-shot

Llama2-7B: 8-shot Acc.: 75.13%; 0-shot Acc.: 0.31%

Figure 12: Comparison of trends in separability and alignment measures of Llama2-7B hidden states
between ICL and zero-shot
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Figure 13: Comparison of trends in separability and alignment measures of Llama2-13B hidden
states between ICL and zero-shot
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Figure 14: Comparison of trends in separability and alignment measures of Gemma-2B hidden states
between ICL and zero-shot
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Figure 15: Comparison of trends in separability and alignment measures of Gemma-7B hidden states
between ICL and zero-shot

33



0 10 20
# Demo.

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0 10 20 30
Layer Number

0

10

20

30

40

E
ff

ec
tiv

e 
di

m
en

si
on

0 10 20 30
Layer Number

0.5

0.6

0.7

0.8

0.9

Se
pa

ra
bi

lit
y 

sc
or

e

0 10 20 30
Layer Number

0.00

0.05

0.10

0.15

0.20

Si
ng

ul
ar

 a
lig

nm
en

t

0 10 20 30
Layer Number

0.00

0.01

0.02

0.03

0.04

0.05

C
om

po
si

te
 a

lig
nm

en
t

# Demo.
0
4
8
12
16
20
24

Llama3-8B: Average across datasets

(a) Varying number of demonstrations
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(b) kNN Demonstration selection
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(c) Random symbols as demonstration labels

Figure 16: Layer-wise trends of separability and alignment measures of Llama3-8B hidden states in
different ICL settings
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Llama3-70B: Average across datasets

(a) Varying number of demonstrations
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(b) KNN Demonstration selection
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Figure 17: Layer-wise trends of separability and alignment measures of Llama3-70B hidden states in
different ICL settings
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Llama2-7B: Average across datasets

(a) Varying number of demonstrations
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(b) KNN Demonstration selection
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(c) Random symbols as demonstration labels

Figure 18: Layer-wise trends of separability and alignment measures of Llama2-7B hidden states in
different ICL settings
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Llama2-13B: Average across datasets

(a) Varying number of demonstrations
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(b) KNN Demonstration selection
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(c) Random symbols as demonstration labels

Figure 19: Layer-wise trends of separability and alignment measures of Llama2-13B hidden states in
different ICL settings
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Gemma-2B: Average across datasets

(a) Varying number of demonstrations
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(b) KNN Demonstration selection
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(c) Random symbols as demonstration labels

Figure 20: Layer-wise trends of separability and alignment measures of Gemma-2B hidden states in
different ICL settings
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Gemma-7B: Average across datasets

(a) Varying number of demonstrations

0 20
Layer Number

0

20

Effective dimension

0 20
Layer Number

0.6

0.8

Separability score

0 20
Layer Number

0.0

0.2

Singular alignment

0 20
Layer Number

0.00

0.05

Composite alignment

0 20
Layer Number

0

2

Mean-based alignment

0 20
Layer Number

0.00

0.01

0.02

Var.-based alignment

Gemma-7B: Random Selection Acc.: 79.06%; KNN Selection Acc.: 86.23%

Random Selection KNN Selection

(b) KNN Demonstration selection
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(c) Random symbols as demonstration labels

Figure 21: Layer-wise trends of separability and alignment measures of Gemma-7B hidden states in
different ICL settings
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(a) SUBJ
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(b) TREC
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(c) SNLI
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(d) RTE
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(e) CB

Figure 22: Output and directional alignment of Llama2-70B ICL hidden states with label unembed-
ding vectors on various datasets.

Table 4: Tokens decoded from top 10 singular directions from layers near the phase transition on
SUBJ

Layer Tokens

Layer 51 opinion, humor, genre, adm, facts, plot, description, explanation, pont, humor
Layer 52 objective, humor, ., adm, dram, plot, enthus, categor, pont, subject
Layer 53 objective, humor, ., plot, fact, humor, enthus, explanation, character, humor

Table 5: Tokens decoded from top 10 singular directions from layers near the phase transition on
TREC

Layer Tokens

Layer 18 Ras, Float, Physics, Heimat, Zob, rela, ijd, lbl, alphabet, uther
Layer 19 Geography, name, Physics, map, >, Ele, location, Vall, alphabet, Tests
Layer 20 definitions, histor, maps, Geography, amos, inn, map, babel, etr, letters

Table 6: Tokens decoded from top 10 singular directions of layers near the phase transition on SNLI
Layer Tokens

Layer 24 imagination, inen, exceptions, hner, igin, amerikanischer, Fich, float, opposite, orf
Layer 25 dup, unknown, similarity, Dy, Sci, ete, nost, Fich, endorf, Correct
Layer 26 erde, unknown, similarity, context, apper, architecture, unity, ambigu, alg, py

Table 7: Tokens decoded from top 10 singular directions from layers near the phase transition on RTE
Layer Tokens

Layer 21 Eva, pul, ikel, orp, Mol, enk, Dal, adrat, hor, üng
Layer 22 correct, nor, urch, Boh, VP, aqu, Dal, subscribe, currency, sign
Layer 23 correction, zero, tempo, Boh, VP, lak, FA, iva, currency, trag
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(a) SUBJ
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(b) TREC
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(c) SNLI
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(d) RTE
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(f) SST-2

Figure 23: Output and directional alignment of Llama3-8B ICL hidden states with label unembedding
vectors on various datasets.

Table 8: Tokens decoded from top 10 singular directions from layers near the phase transition on CB
Layer Tokens

Layer 22 TR, eign, >, qual, Joan, Icon, ebol, рит, ąż, Kontrola
Layer 23 deg, Cet, Bou, SV, ando, Simon, True, lav, iből, opposition
Layer 24 negative, schap, ftrag, court, ando, iada, rib, Martí, counter, answer

Table 9: Tokens decoded from top 10 singular directions with labels replaced on SNLI
Layer Tokens

Layer 23 Tier, aro, cum, Vector, FB, Eur, Fon, pending, Dre, Fant
Layer 24 False, aten, beck, ardo, 1/3, Sci, attan, Kaiser, tant, Fant
Layer 25 False, Cop, cgi, Dou, 1/3, Ra, hur, TF, Dre, nehm

Layer 44 false, combination, inois, multiply, scenario, group, action, group, prec, Solo
Layer 45 False, #, xspace, @, #, neutral, @, large, sentiment, False
Layer 46 False, @, contr, #, @, neutral, cheer, group, ppo, monot

Layer 78 false, False, $., @@, @, false, $., false, False, #
Layer 79 false, !, ., #, True, <s>, !., Hash, Street,群
Layer 80 twe, ., X, !, :#, ##, action, !, #, Street
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(f) SST-2

Figure 24: Output and directional alignment of Llama3-70B ICL hidden states with label unembed-
ding vectors on various datasets.

Table 10: Tokens decoded from top 10 singular directions with labels replaced on SST-2
Layer Tokens

Layer 24 poste, Cant, Jug, Lars, >, zak, zig, geh, eg, alus
Layer 25 rott, igi, endi, noreferrer, positive, zak, Aur, Mans, ŭ, humor
Layer 26 rott, Armen, Lau, noreferrer, negative, mee, cot, tu, ƒ, cita

Layer 40 ipage, pra, Kle, estaven, Maj, CURLOPT, extreme, humor, ⊙, anel
Layer 41 ViewById, pra, meno, Einzelnach, ziel, @, disappoint, Meyer, L, humor
Layer 42 negative, pra, nar, Einzelnach, #, humor, extreme, humor, embargo, #

Layer 78 negative, пози, elt, neutral, hyper, $., <s>, positive, inea, intros
Layer 79 positive, ( {, *., neutral, Tru, ???, <s>, ?, humor, Sent
Layer 80 :(, positive, ·, !, disappoint, positive, about, positive, wod, intros

Table 11: Tokens decoded from top retained and filtered directions in layer updates on SUBJ
Retained Tokens

Stage Layer Tokens

Stage 1 Layer 54 humor, description, explanation, objective, humor, shock, subject, character, comparison, humor
Layer 59 humor, plot, pra, facts, objective, hypoth, subject, met, explanation, subject
Layer 66 ., objective, Plot, explan, prom, subject, character, fact, objective, sci

Stage 2 Layer 80 plot, observation, IM, Thom, verb, hyper, quar, Em, ps, Guillaume

Filtered Tokens

Stage Layer Tokens

Stage 1 Layer 54 oro, Kant, Harr, Werner, Bast, desert, Kent, Uns, ola, Fall
Layer 59 iter, Arg, halten, enser, Lok, Kontrola, tring, atif, ias, Sof
Layer 66 conj, dens, shal, amo, Lisa, lish, Sob, narrow, UMN, co

Stage 2 Layer 80 subject, Met, chron, intros, mix, emot, humor, Type, jective, subject
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(f) SST-2

Figure 25: Output and directional alignment of Llama2-7B ICL hidden states with label unembedding
vectors on various datasets.

Table 12: Tokens decoded from top retained and filtered directions in layer updates on TREC
Retained Tokens

Stage Layer Tokens

Stage 1 Layer 30 pione, taste, definition, temporal, precision, science, amen, lich, irectory, enta
Layer 50 description, subst, person, numbers, interpret, location, wars, location, answer, date
Layer 70 нау, date, number, location, abbre, currency, location, number, description, Creative

Stage 2 Layer 80 hol, Heidel, Desp, eth, olis, description, origin, Type, description, arto

Filtered Tokens

Stage Layer Tokens

Stage 1 Layer 30 ako, dn, amen, ainer, overlay, aar, CHAP, storm, synchron, tober
Layer 50 Gordon, Chinese, acci, Grace, penas, zak, gas, Kü, ps, prototype
Layer 70 mas, fit, ioni, Salt, ru, oci, âtre, quet, thro, Sever

Stage 2 Layer 80 , number, list, discipline, organ, entertain, weather, bum, poll, coff

Table 13: Tokens decoded from top retained and filtered directions in layer updates on SNLI
Retained Tokens

Stage Layer Tokens

Stage 1 Layer 25 pac, ício, charm, beck, hist, rap, iella, fact, contradiction, engol
Layer 50 ., probable, false, uncertain, solo, neutral, tender, unknown, gender, unlikely
Layer 70 ., reverse, false, scenario, maybe, reverse, identity, gender, conce, Gram

Stage 2 Layer 80 rola, Dic, Kra, Column, Common, motor, ..., ge, Salt, kern

Filtered Tokens

Stage Layer Tokens

Stage 1 Layer 25 brief, uclide, Ath, bul, références, EC, asta, Rot, nia, Taml
Layer 50 aho, oba, zu, umble, prepared, Mey, jer, Bras, irre, Maj
Layer 70 Yu, Mare, iner, artificial, overlap, ilder, aret, elev, constru, Storm

Stage 2 Layer 80 im, <s>, fl, maybe , similarity, sem, habit, Ta, gender, action
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(f) SST-2

Figure 26: Output and directional alignment of Llama2-13B ICL hidden states with label unembed-
ding vectors on various datasets.

Table 14: Tokens decoded from top retained and filtered directions in layer updates on RTE
Retained Tokens

Stage Layer Tokens

Stage 1 Layer 33 Wikipedia, disput, yes, Jakob, alias, Ven, essel, indirect, False, isu
Layer 50 false, alarm, irrelevant, opposite, nost, naming, duplicates, misunder, Geography, location
Layer 68 :(, Geography, lament, sto, impossible, opinion, ken, numer, negative, true

Stage 2 Layer 80 Ale, Ad, Hub, Ke, lub, Terra, Haz, Ta, part, Andre

Filtered Tokens

Stage Layer Tokens

Stage 1 Layer 33 cust, ▼, Mün, Lucas, itel, Barb, inha, Hed, FI, nica
Layer 50 ловi, CA, Um, wob, prot, jär,望, ang,孝, Roman
Layer 68 fert, CA, bach, Word, RL, gon, Charlie, MS, nen, Feld

Stage 2 Layer 80 SR, techni, gr, unclear, trag, opposite, Susan, estimate, rare, murder

Table 15: Tokens decoded from top retained and filtered directions in layer updates on CB
Retained Tokens

Stage Layer Tokens

Stage 1 Layer 25 Bou, True, <s>, Cet, ando, elin, лом, Pear, stabil, lav
Layer 49 true, unlikely, uncertain, absence, False, predictions, avoided, myth, predictions, asym
Layer 70 true, false, agreement, maybe, predictions, silent, negative, disapp, áv, predictions

Stage 2 Layer 80 Giov, future, often, Frank, tend, imet, Sid, fran, Intent, maybe

Filtered Tokens

Stage Layer Tokens

Stage 1 Layer 25 slant, acci, Laurent, cht, brie, chamber, olare, gart, una, vie
Layer 49 Dra, cito, nick, Verm, moz, neglect, abel, WR, anger, uchar
Layer 70 ottom, nation, Cooper, exhaust, reign, hem, Um, diag, Ri, wa

Stage 2 Layer 80 false, esi, , False, Yes, often, aer, “, Mod, George
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(f) SST-2

Figure 27: Output and directional alignment of Gemma-2B ICL hidden states with label unembedding
vectors on various datasets.
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(f) SST-2

Figure 28: Output and directional alignment of Gemma-7B ICL hidden states with label unembedding
vectors on various datasets.
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Figure 29: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama3-8B hidden states averaged across all datasets
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Figure 30: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama3-70B hidden states averaged across all datasets
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Figure 31: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama2-7B hidden states averaged across all datasets
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Figure 32: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama2-13B hidden states averaged across all datasets
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Figure 33: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Gemma-2B hidden states averaged across all datasets
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Figure 34: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Gemma-7B hidden states averaged across all datasets
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Figure 35: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama2-70B hidden states on Famous People dataset.
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Figure 36: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama3-8B hidden states on Famous People dataset.
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Figure 37: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama3-70B hidden states on Famous People dataset.
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Figure 38: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama2-7B hidden states on Famous People dataset.
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Figure 39: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Llama2-13B hidden states on Famous People dataset.
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Figure 40: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Gemma-2B hidden states on Famous People dataset.
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Figure 41: Effects of attention heads ablation on the layer-wise separability and alignment measures
of Gemma-7B hidden states on Famous People dataset.
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Figure 42: Accuracy gains of rank-10 denoising over layers on all datasets with Llama2-70B
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Figure 43: Accuracy gains of rank-10 denoising over layers on all datasets with Llama3-8B
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Figure 44: Accuracy gains of rank-10 denoising over layers on all datasets with Llama3-70B
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Figure 45: Accuracy gains of rank-10 denoising over layers on all datasets with Llama2-7B
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Figure 46: Accuracy gains of rank-10 denoising over layers on all datasets with Llama2-13B
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Figure 47: Accuracy gains of rank-10 denoising over layers on all datasets with Gemma-2B
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Figure 48: Accuracy gains of rank-10 denoising over layers on all datasets with Gemma-7B
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Figure 49: Accuracy gains of rank-5 denoising over layers on all datasets with Llama2-70B

0 10 20 30 40 50 60 70 80
layer

0.0

0.1

0.2

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(a) SST-2

0 10 20 30 40 50 60 70 80
layer

0.0

0.1

0.2

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(b) SUBJ

0 10 20 30 40 50 60 70 80
layer

0.2

0.1

0.0

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(c) TREC

0 10 20 30 40 50 60 70 80
layer

0.0

0.1

0.2

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(d) SNLI

0 10 20 30 40 50 60 70 80
layer

0.00

0.05

0.10

0.15

0.20

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(e) RTE

0 10 20 30 40 50 60 70 80
layer

0.0

0.1

0.2

A
cc

. I
m

pr
ov

em
en

t Rank 2 Denoising

(f) CB

Figure 50: Accuracy gains of rank-2 denoising over layers on all datasets with Llama2-70B
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Figure 51: Accuracy gains of rank-1 denoising over layers on all datasets with Llama2-70B

52



0 20 40 60 80
Layer Number

0

50

100
Effective dimension

0 20 40 60 80
Layer Number

0.6

0.8

Separability score

0 20 40 60 80
Layer Number

0.025

0.050

0.075
Singular alignment

0 20 40 60 80
Layer Number

0.000

0.002

0.004

Composite alignment

0 20 40 60 80
Layer Number

0

1

Mean-based alignment

0 20 40 60 80
Layer Number

0.000

0.001

Var.-based alignment

Llama2-70B, average across datasets
Normal Acc.: 0.24% | w/o PTH Acc.: 0.00% | w/o IH Acc.: 0.05% | Random Heads Ablated Acc.: 0.08%

Normal w/o PTH w/o IH Random Heads Ablated

Figure 52: Average effects across datasets of attention heads ablation on the layer-wise separability
and alignment measures of Llama2-70B hidden states in the zero-shot setting.

Table 16: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Llama3-
8B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 15.883 9.5667 5.06×10−7

2% 16.392 12.658 3.99×10−5

5% 16.493 13.833 2.29×10−5

10% 16.435 14.364 4.46×10−6

Table 17: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Llama3-
70B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 47.624 45.755 0.5573
2% 46.273 46.977 0.1347
5% 44.354 47.277 1.18×10−7

10% 43.278 44.257 8.38×10−4
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 53: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Llama3-8B.
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 54: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Llama3-70B.
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 55: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Llama2-7B.
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 56: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Llama2-13B.
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 57: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Gemma-2B.
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(a) Layer-wise separability score: 0-shot vs. 8-shot
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(b) Layer-wise composite alignment: 0-shot vs. 8-shot
Figure 58: Layer-wise trends of separability score and composite alignment of 0-shot and 8-shot
hidden states of Gemma-7B.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 59: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Llama3-8B zero-shot hidden states.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 60: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Llama3-70B zero-shot hidden states.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 61: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Llama2-7B zero-shot hidden states.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 62: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Llama2-13B zero-shot hidden states.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 63: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Gemma-2B zero-shot hidden states.
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(a) Layer-wise separability score: PTH task vector
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(b) Layer-wise composite alignment: IH task vector

Figure 64: Effects of injecting PTH and IH outputs as task vectors on the geometric properties of
Gemma-7B zero-shot hidden states.
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Table 18: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Llama2-
7B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 15.883 8.5833 5.62×10−7

2% 16.133 10.108 9.78×10−9

5% 16.301 12.092 4.12×10−8

10% 16.405 12.559 7.27×10−13

Table 19: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Llama2-
13B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 21.312 17.094 1.75×10−2

2% 20.135 18.026 9.44×10−2

5% 19.960 16.927 6.08×10−6

10% 19.888 16.343 3.08×10−13

Table 20: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Gemma-
2B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 9.0000 1.6667 8.58×10−3

2% 10.917 5.0000 7.91×10−4

5% 11.571 4.4286 2.22×10−10

10% 12.214 6.1667 2.48×10−12

Table 21: Mean layer values of IH and PTH along with p-values of Mann-Whitney U test on Gemma-
7B.

% Level IH mean layer PTH mean layer p-value of Mann-Whitney U test

1% 18.708 9.0833 2.01×10−5

2% 19.062 9.1250 1.96×10−6

5% 18.742 7.6212 6.31×10−21

10% 18.523 9.0530 4.44×10−32
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Figure 65: Average effect across
datasets of steering Llama3-8B
zero-shot hidden states using
task vectors created from IH out-
puts.
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Figure 66: Average effect across
datasets of steering Llama3-70B
zero-shot hidden states using
task vectors created from IH out-
puts.
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Figure 67: Average effect across
datasets of steering Llama2-7B
zero-shot hidden states using
task vectors created from IH out-
puts.
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Figure 68: Average effect across
datasets of steering Llama2-13B
zero-shot hidden states using
task vectors created from IH out-
puts.
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Figure 69: Average effect across
datasets of steering Gemma-2B
zero-shot hidden states using
task vectors created from IH out-
puts.
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Figure 70: Average effect across
datasets of steering Gemma-7B
zero-shot hidden states using
task vectors created from IH out-
puts.

Table 22: Comparison of classification accuracy: training classifier v.s. direct decoding with zero-shot
prompts.

Model 0-shot (%) 0-shot+classifier (%) Improvement

Llama3-8B 0.30% 73.71% +73.41%
Llama3-70B 0.00% 78.97% +78.97%
Llama2-7B 0.31% 75.63% +75.32%
Llama2-13B 0.36% 79.71% +79.35%
Llama2-70B 0.24% 79.02% +78.78%
Gemma-2B 0.00% 75.56% +75.56%
Gemma-7B 0.02% 75.43% +75.41%
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Table 23: Comparison of classification accuracy: training classifier v.s. direct decoding with zero-shot
prompts.

Model 8-shot (%) 8-shot+classifier (%) Improvement

Llama3-8B 76.20% 85.47% +9.27%
Llama3-70B 81.01% 84.46% +3.45%
Llama2-7B 74.83% 85.59% +10.76%
Llama2-13B 74.82% 85.44% +10.62%
Llama2-70B 80.52% 87.76% +7.24%
Gemma-2B 67.03% 77.87% +10.84%
Gemma-7B 79.19% 84.94% +5.75%

Table 24: Comparison of classification accuracy: regular ICL v.s. low-rank denoising of hidden states
Model 8-shot (%) 8-shot+denoising (%) Improvement

Llama3-8B 76.20% 78.58% +2.38%
Llama3-70B 81.01% 82.40% +1.39%
Llama2-7B 74.83% 77.68% +2.85%
Llama2-13B 74.82% 79.52% +4.70%
Llama2-70B 80.52% 80.72% +0.20%
Gemma-2B 67.03% 67.25% +0.22%
Gemma-7B 79.19% 66.11% -13.08%
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