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WAVEDIFFUSION: JOINT LATENT DIFFUSION FOR
PHYSICALLY CONSISTENT SEISMIC AND VELOCITY
GENERATION
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Figure 1: Overview of WAVEDIFFUSION. WAVEDIFFUSION generates paired samples that satisfy
the governing PDE via a joint latent diffusion framework. The diffusion guides the sampling process
toward physically valid solutions through denoising, progressively mapping non-solution points (gray
squares in valleys) to valid solutions (colored stars at peaks).

ABSTRACT

Full Waveform Inversion (FWI) is a critical technique in subsurface imaging, aim-
ing to reconstruct high-resolution subsurface properties from surface measurements.
Acoustic FWI involves two physical modalities, seismic waveforms and velocity
maps, which are governed by the acoustic wave equation. Prior works primarily
focus on the inverse problem, modeling the relationship between seismic and veloc-
ity as an image-to-image translation task. In this work, we study their relationship
from a generative perspective. Our aim is to explore and characterize the latent
space structure, and identify latent vectors that generate seismic–velocity pairs
consistent with the governing partial differential equation (PDE). Specifically, we
model seismic and velocity data jointly from a shared latent space via a diffusion
process. In experiments, we find that diffusion progressively refines arbitrary latent
vectors into ones that yield approximately physics-consistent seismic–velocity
pairs, even without explicit physics constraints. This provides empirical evidence
of PDE-consistency in latent diffusion, where sampling is biased toward PDE-valid
solutions. In latent space, satisfying the acoustic wave equation can be approxi-
mated through sampling and gradient descent. We formalize this physics-consistent
latent modeling task and quantify it through extensive experiments. On large-scale
OpenFWI benchmarks, our approach produces high-fidelity, diverse, and physi-
cally consistent seismic–velocity pairs, demonstrating the potential of a data-driven
latent diffusion for physically consistent generation in a complex scientific domain.

1 INTRODUCTION

Subsurface imaging is critical in scientific and industrial applications, including earthquake monitor-
ing Virieux et al. (2017); Tromp (2020), greenhouse gas storage Li et al. (2021); Wang et al. (2023b),
medical imaging Guasch et al. (2020); Lozenski et al. (2024), and oil and gas exploration Virieux
& Operto (2009); Wang & Alkhalifah (2018). At its core, Full Waveform Inversion (FWI) involves
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reconstructing velocity maps that describe the propagation speed of seismic waves, governed by the
acoustic wave equation:

∂2s(x, t)

∂t2
= v2(x)∇2s(x, t) + S(xs, t), (1)

where s(x, t) is the seismic data, v(x) is the velocity model, ∇2 is the Laplacian, and S(xs, t) is
the source term. Most recent machine learning (ML) approaches have focused on the FWI problem,
which formulates this task as an inverse problem. For example, supervised-based methods frame the
relationship between seismic and velocity as an image-to-image translation task Wu & Lin (2019);
Zhang et al. (2019); Sun & Demanet (2020); Feng et al. (2021).

In this work, we revisit the relationship between seismic and velocity from a generative perspective.
While seismic and velocity data are connected by the wave equation, their distribution in the original
seismic-velocity joint space is unknown. Rather than treating their relationship purely as an inversion
task, our goal is to explore and characterize the latent space structure shared by both modalities.
Our preliminary study reveals that randomly sampled latent vectors often decode into pairs that
violate the PDE 1, suggesting only a sparse subset of the latent space corresponds to physically valid
solutions. Naturally, this raises the question: Can we systematically identify physically valid latent
space representations that adhere to the governing PDE from those that do not?

Our key finding is that diffusion models naturally enforce physical consistency when applied in a
shared latent space. By jointly modeling seismic data and velocity map from a shared latent space via
a diffusion model, the denoising process progressively transforms arbitrary latent sampling points
into ones that decode into solutions more consistent with the governing PDE, as illustrated in Figure 1.
This indicates that, even without the need for explicit physical constraints, a purely data-driven latent
diffusion implicitly biases sampling toward physically valid regions. In other words, in the latent
space, approximate satisfaction of the acoustic wave equation can emerge through sampling and
gradient descent. Such behavior cannot be assumed a priori and highlights an emergent property
of latent diffusion. This data-driven approach is particularly attractive when the forward model is
unavailable, non-differentiable, or computationally prohibitive, offering a practical alternative.

Differing from recent diffusion-based approaches to inverse problems (Song et al., 2022; Chung et al.,
2023; Zhang et al., 2025), which recover one modality from the other (e.g., velocity from seismic),
our objective focuses on the physics-consistent latent modeling task. The goal is to identify latent
vectors that jointly generate both modalities in a manner consistent with the governing PDE. More
broadly, our work is an exploration into the intersection of generative modeling and scientific data
modeling, demonstrating both the potential and the limitations of current approaches.

On large-scale OpenFWI Deng et al. (2022) benchmarks, we evaluate our approach through ex-
tensive experiments, demonstrating it produces high-fidelity, diverse, and physically consistent
seismic–velocity pairs. Furthermore, we show that these jointly generated pairs can augment training
data for conventional supervised models such as InversionNet Wu & Lin (2019), thereby validating
both their quality and practical utility.

2 WAVEDIFFUSION: EXPLORING LATENT SPACE VIA JOINT GENERATION

In this section, we introduce WAVEDIFFUSION, a framework for jointly modeling seismic and velocity
data in a shared latent space. Specifically, we first formalize this physics-consistent latent modeling
task. Then, we investigate two fundamental questions: (1) Do all latent representations produced
by conventional image-to-image models satisfy the governing PDE? (2) If not, can we distinguish
latent samples {z} that yield physically consistent outputs from those that do not? To address these
questions, we adopt a two-stage latent diffusion framework that aligns naturally with our objective.
First, we construct a latent space using an encoder-decoder model. Then, we apply a latent diffusion
process to refine latent codes toward physically valid solutions progressively.

2.1 PHYSICS-CONSISTENT LATENT MODELING

We now formalize the notion of the physics-consistent latent modeling task.

Let f : V → S denote the forward modeling operator (e.g., a numerical wave simulator), mapping a
velocity field v ∈ V ⊂ RH×W to its corresponding seismic response s ∈ S ⊂ RT×W , i.e., s = f(v).
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Figure 2: Comparison of inversion performance. Mean Absolute Error (MAE) across various
OpenFWI datasets for encoder-decoder-based models and diffusion refinements. Our models perform
competitively against BigFWI-B, with diffusion providing slight refinements. Yellow stars indicate
datasets where our model outperforms the BigFWI-B baseline.

Let z ∈ Z ⊂ Rd denote a latent representation in a learned space. We assume the existence of two
deterministic decoders: Dv : Z → V, Ds : Z → S, where Dv maps latent vectors to velocity
fields and Ds maps latent vectors to seismic signals.

A latent vector z ∈ Z is defined to be physically valid if it satisfies the following condition:

∥Ds(z)− f(Dv(z))∥ < ϵ,

for some tolerance ϵ > 0. In words, the seismic signal decoded from z must be close to the one
obtained by applying the forward operator to the decoded velocity. The central challenge is thus to
characterize or sample from the subset of the latent space that satisfies this condition:

Zvalid := {z ∈ Z | ∥Ds(z)− f(Dv(z))∥ < ϵ}.

Two fundamental properties of this problem are of particular interest:

• Completeness. To what extent can the valid set Zvalid be captured? That is, what fraction of
physically valid solutions are representable under the learned distribution p(z)?

• PDE Satisfaction. How small can the residual error ϵ be made in practice, and what factors
(e.g., model capacity, dataset coverage, optimization dynamics) govern this error bound?

In practice, as we will discuss in the following, latent vectors sampled arbitrarily from Z typically
fail to meet this criterion, which motivates the need to learn a structured distribution p(z) over Zvalid.

2.2 STAGE 1: ENCODER-DECODER AND RECONSTRUCTION

Extending encoder-decoder by adding reconstruction branch: To enhance the interpretability
of the latent space, we extend conventional encoder-decoder FWI models by incorporating an
additional seismic decoder branch. This modification enables the simultaneous reconstruction of both
seismic and velocity maps from a shared latent representation, facilitating a deeper analysis of its
structure. This enables the analysis of whether all latent space points satisfy the PDE. To facilitate
the second-stage diffusion process, we incorporate vector quantizations in the latent space.

Achieving comparable performance in FWI: We evaluate the inversion performance of our vector-
quantized encoder-decoder model against BigFWI-B Jin et al. (2024), a state-of-the-art InversionNet
trained on the full OPENFWI dataset. This provides a fair comparison, as the training sample
volume and model parameter size of BigFWI-B (24M) approximately align with our Stage 1 model
(19M). Figure 2 shows that our encoder-decoder model achieves competitive performance relative
to BigFWI-B across all datasets, outperforming BigFWI-B in six out of ten datasets (marked with
yellow stars).

Definition of deviation from PDE: To quantitatively investigate whether randomly sampled z points
satisfy the PDE, we measure the deviation of the generated seismic-velocity pairs from the governing
PDE. Specifically, for a randomly sampled latent representation z, we decode the seismic data ŝ and
velocity map v̂. Using a finite difference solver, we compute the ground truth seismic sv̂ for the
generated v̂. The deviation from the PDE is quantified as the L2 distance ∥ŝ− sv̂∥2.
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Most latent points do not correspond to PDE solutions: The deviation of decoded modalities from
randomly sampled z points, which are usually far away from trained latent points, reaches an average
L2 distance of 0.013 (Figure 5 backward step 0), which is eight times higher than the deviation
(0.0016, Figure 5 forward step 0) of reconstructed modalities from the training set (trained latent
points). Figure 3 visually compares the generated samples from Stage 1 (row 1) and the original
OpenFWI dataset (row 3). The encoder-decoder provides coarse approximations of PDE solutions
but does not fully satisfy the wave equation.

Figure 3: Generated samples Comparison.

To address whether poor reconstructions result
merely from latent distribution mismatch, we
conduct additional experiments, detailed in Ap-
pendix A.3, and further confirm that the diffusion
model significantly improves reconstruction qual-
ity. Encoding and decoding through this latent
space alone do not inherently ensure physical
validity. Thus, most generated samples fail to sat-
isfy the governing PDE, meaning only a sparse
subset of z corresponds to valid solutions.

2.3 STAGE 2: JOINT DIFFUSION IN THE LATENT SPACE

Refining the latent space with diffusion: Since random sampling in the latent space does not
guarantee adherence to the PDE, we use a joint diffusion model to transform arbitrary latent points into
valid ones progressively. This process follows a standard forward-backward diffusion formulation:

Forward process: Gaussian noise is added to the latent vector z, creating a noisy representation:
zt = zt−1 + ϵt, t = 1, . . . , T , where ϵt is the noise applied at step t, with in total T steps.

Backward process: The noisy latent vector is progressively denoised through the reverse diffusion
process: zt−1 = zt − γt∇ztL(zt, t), where γt is a step size, and L is the denoising objective:

L = Ez0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (2)

This follows the standard formulation of denoising score matching for latent diffusion models Rom-
bach et al. (2022). Here, ϵθ(zt, t) is the predicted noise estimation. The loss function minimizes the
discrepancy between the true noise ϵ and the model’s predicted noise ϵθ(zt, t), guiding the model to
iteratively refine the noisy latent variable back to a valid solution in the latent space.

Once trained, the model can generate new seismic-velocity pairs that satisfy the wave equation by
sampling latent vectors from a Gaussian distribution and refining them via the learned backward
process: (1) Sample a latent vector zt from a standard Gaussian distribution: zt ∼ N (0, I). (2) Pass
zt through the backward denoising steps: zt−1 = L(zt), t = T, . . . , 1. (3) Decode z0 back into
seismic data and velocity maps: ŝ = Ds(z0), v̂ = Dv(z0).

2.4 INSPECTING DIFFUSION PROCESS

To analyze the role of diffusion, we measure the deviation of generated seismic-velocity pairs from
the governing PDE at each diffusion step using the L2 distance between ŝ and sv̂ . Figure 4 visualizes
this process, while Figure 5 presents the statistical evaluation on 13.2k samples at each diffusion step.

Deviation increases by adding noise: In the left half of Figure 4, during the forward diffusion
process, as noise is added, the seismic data ŝ generated by the model diverges more from the ground
truth sv̂. This divergence, shown as the channel-stacked difference in the last row, reflects the
increasing deviation from PDE as the noise level rises. Meanwhile, the decoded modalities show
distortion in structures. The statistical evaluation in Figure 5 illustrates how the deviation increases,
from the initial deviation 0.0016 (trained latent points) to 0.0121 (pure noise points).

Deviation decreases by denoising: In contrast, the right half of Figure 4 shows the backward process,
where noise is progressively removed, reducing the deviation and refining the seismic-velocity pairs
toward solutions with smaller stacked seismic difference and restored structures. Similarly, the
statistical evaluation in Figure 5, the deviation decreases as the generated pairs are refined into
physically valid solutions from an averaged L2 distance of 0.013 back to 0.002, confirming the
model’s ability to refine latent points toward physically consistent solutions.
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Figure 4: Visualization of deviation from PDE during diffusion. Seismic data of a CVB example at
different timesteps during the forward (left half) and backward diffusion processes (right half). Rows
1-3 show generated seismic channels ŝ by the joint diffusion model. Row 4 shows the generated
velocity map v̂. Rows 5-7 show the ground truth seismic data sv̂ calculated for the generated v̂. Row
8 shows the deviation, visualized as the channel-stacked difference between sv̂ and ŝ. Noise increases
the deviation during the forward diffusion, and the reverse process reduces discrepancies.

Figure 5: Deviation from the governing PDE. The L2 distance is calculated between generated
seismic data ŝ and ground truth sv̂ of the generated velocity map v̂ using a finite difference solver.

Our results reveal that only a small subset of latent points satisfies the PDE, while diffusion progres-
sively moves high-deviation points toward physically valid solutions. This suggests that diffusion
implicitly evaluates the latent space, guiding toward PDE-compliant solutions. Moreover, the dif-
fusion process can be viewed as transforming the deterministic PDE constraint into a stochastic
differential equation (SDE), thereby enabling exploration of the solution space and providing a new
perspective for bridging generative modeling with physical principles.

Building on this insight, we can empirically examine the performance of WAVEDIFFUSION with
respect to the two central properties of physics-consistent latent modeling. Completeness. Diffusion
models sample from the denoising distribution learned during training; thus, their coverage is
constrained by the support of the training distribution and the noise schedule. PDE Satisfaction. We
find that diffusion provides a close approximation to the underlying distribution p(z). The dominant
residual error arises from the VQGAN decoder rather than the diffusion model itself, as illustrated by
the alignment observed at the beginning and end of the diffusion process in Figure 5.

3 EXPERIMENTS

In this section, we present the experimental evaluation of the proposed WAVEDIFFUSION framework.
We conduct experiments on the full OPENFWI dataset to evaluate the model’s performance in
generating physically consistent seismic data and velocity maps. We assess the model’s FID scores
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and show its ability to improve FWI results. Then, we compare the results of training the state-of-the-
art models such as BIGFWI using the jointly generated dataset against the original benchmark Jin
et al. (2024). In the Appendix, we further introduce an experiment to demonstrate how the joint
diffusion model compares to separately trained diffusion models in generating both two modalities.

3.1 DATASET AND TRAINING SETUP

In the experiments, we evaluate two different configurations for the latent diffusion models: (1)
two separate VQ codebooks for the two modalities and (2) a single shared VQ codebook for both
modalities. We evaluate the performance of our WAVEDIFFUSION framework using the OPENFWI
dataset, a comprehensive benchmark collection comprising 10 subsets of realistic synthetic seismic
data paired with subsurface velocity maps, specifically designed for FWI tasks. These subsets
represent diverse geological structures, including curved velocity layers, flat velocity layers, and
flat layers intersected by faults, among others, allowing for an extensive evaluation of our model’s
robustness and generalization capability.

Our experiments utilized all 10 subsets (Fault, Vel, and Style Families) with over 400K training data
pairs to ensure a thorough assessment of WAVEDIFFUSION. We performed training on the combined
dataset comprising all subsets to assess the model’s ability to generalize across a variety of geological
configurations and scenarios. We trained our models on 16 NVIDIA H100 GPUs. Network details
and training hyperparameters used are provided in Appendix A.1.

3.2 EVALUATING GENERATED SAMPLES WITH FID

Table 1: FID scores. The FID scores of velocity
maps v and seismic data s for two model settings.

Metrics \ Model 2VQ 1VQ
Velocity FID 665.75 260.33
Seismic FID 20.94 5.67

The Stage 1 model of our WAVEDIFFUSION
framework produces coarse approximations of
seismic-velocity pairs. The Stage 1 model with-
out a diffusion process yielded an FID score
of 14,207.14 for the randomly sampled z vec-
tors and their corresponding decoded velocity
maps and 871.31 for the decoded seismic data using an Inception-v3 model pre-trained on Ima-
geNet Szegedy et al. (2016). A visualization example is shown in Figure 3 row 1. These high FID
scores suggest that the encoder-decoder architecture, while generating plausible shapes, does not
adhere closely to the true data distribution. The large disparity between seismic and velocity FID
scores indicates that the generated modalities deviate more from the physical relationships governed
by the wave equation as coarse approximations of the PDE solutions.

Two VQ

One VQ

Seismic Velocity

Figure 6: t-SNE visualization for both real
(blue) and generated (orange) data. Results
of seismic data (col 1) and velocity map (col 2)
for two joint diffusion models.

The joint diffusion model in Stage 2 is used to
refine the coarse generations into physically con-
sistent seismic-velocity pairs. We also evaluate
the FID scores of both modalities generated by
the joint diffusion models with different vector
quantization strategies. We generated 375,000
samples for each configuration, which matched
the scale of the OPENFWI training set. As shown
in Table 1, among the tested configurations, the
joint diffusion model with a single shared VQ
layer achieved the lowest FID scores, recording
260.33 for velocity and 5.67 for seismic data,
indicating a stronger latent space connection be-
tween the two modalities.

Figure 6 presents a t-SNE visualization of the
feature representations extracted from Inception
V3 for both real and generated data, which are
used to compute the FID score. The visualization
provides insight into the distributional alignment between real and synthesized samples in the feature
space. A closer overlap between the two distributions indicates better fidelity of the generated data.
This figure serves as a qualitative complement to the FID scores, illustrating how well the joint
diffusion model captures the underlying data distribution.
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Figure 7: Generated examples from the joint
diffusion model with two VQs.

Figure 7 visualizes results from the model with
two VQs, while samples from the model with one
VQ are shown in Appendix A.2. In the top row of
each figure, we select samples structurally similar
to FlatVel-B (FVB), where seismic exhibits per-
fect symmetry, and the velocity maps maintain this
symmetry, demonstrating the model’s ability to re-
spect geometric constraints. Beyond reproducing
individual OPENFWI subsets, we also observe
cases where features from multiple datasets are
fused, as seen in the ninth row, showcasing the
diversity of the generated results. These results
confirm that the joint diffusion model generalizes
well across different data distributions, effectively
capturing structural coherence and producing reli-
able outputs for seismic-velocity data generation.

To illustrate the potential of our approach beyond
acoustic FWI, we also conducted experiments on
the elastic FWI dataset, EFWI Feng et al. (2023).
The results are reported in Appendix A.4.

3.3 DIFFUSION IMPROVES FWI

This experiment evaluates the inversion perfor-
mance of our models of the two stages, specifically
the encoder-decoder with two individual VQ lay-
ers (Stage 1) and its corresponding latent diffusion
refinements (Stage 2). We compare these models
against the BigFWI-B model, which serves as a
fair baseline since its training sample volume and
model parameter size approximately align with
our encoder-decoder model.

For this experiment, the Stage 1 model functions
as an image-to-image translation network, anal-
ogous to BigFWI-B. In contrast, the diffusion
model in Stage 2 refines the Stage 1 model’s latent
representation using the last 10 backward denoising steps, aiming to improve reconstruction accuracy.
The refinement process is performed as follows: at each denoising step, we randomly sample 100
new latent vectors zt and decode them into seismic data ŝ. Each decoded ŝ is compared with the
corresponding input seismic data s by computing the L2 distance. The sample with the lowest L2
distance is selected as the current zt for the next backward denoising step. This iterative refinement
continues until reaching z0, at which point the final reconstructed seismic-velocity pair is obtained.

Figure 8: Inversion performance visualization.
Inverted examples from CVB (row 1), FFB (row
2), and FVB (row 3) subsets.

Improvement by diffusion: Our results, as
shown in Figure 2, demonstrate that the Stage
1 model achieves inversion performance com-
parable to BigFWI-B across all datasets. Addi-
tionally, applying the diffusion model to refine
the latent space leads to slight but consistent
improvements. Visualization of examples can
be found in Figure 8. These findings suggest
that the latent representations learned in Stage 1
already encode meaningful physical structures,
and the diffusion process further enhances them
by guiding reconstructions toward physically
valid solutions. For a more in-depth analysis
of numerical results, we refer readers to Ap-
pendix A.5 and A.6.
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Table 2: MAE of InversionNet training on pure generated data.
Dataset FVA FVB CVA CVB FFA FFB CFA CFB SA SB
2VQ-Generated Data 0.0560 0.1134 0.1001 0.2130 0.0636 0.1453 0.0706 0.2065 0.1103 0.1061
1VQ-Generated Data 0.0579 0.1257 0.0952 0.2030 0.0632 0.1395 0.0730 0.1997 0.1103 0.1064
BigFWI-B 0.0055 0.0233 0.0343 0.0933 0.0106 0.0710 0.0167 0.1245 0.0514 0.0553

Table 3: MAE of InversionNet for partial real data and partial real + generated data.
Dataset FVA FVB CVA CVB FFA FFB CFA CFB SA SB
Gen + 10%Real 0.0192 0.0687 0.0675 0.1652 0.0262 0.1140 0.0400 0.1817 0.0862 0.0808
Gen + 1%Real 0.0386 0.1107 0.0846 0.1987 0.0462 0.1320 0.0588 0.1957 0.0968 0.0908
10%Real 0.0328 0.0978 0.0934 0.2294 0.0453 0.1496 0.0616 0.2116 0.1121 0.0984
1%Real 0.0983 0.2445 0.1507 0.3402 0.1140 0.1997 0.1339 0.2550 0.1670 0.1317

3.4 EVALUATING THE UTILITY OF GENERATED DATA FOR FWI

To evaluate the effectiveness of generated samples, we conduct a series of downstream experiments us-
ing image-to-image FWI models. Specifically, we assess how well the generated data can supplement
the original OPENFWI dataset in low-data regimes and as an additional source for fine-tuning.

Real data vs. generated data: We first assess the standalone quality of the generated data by training
InversionNet Wu & Lin (2019) exclusively on samples generated by WAVEDIFFUSION, using a
training set that matches the scale of the original OPENFWI dataset. The model is then evaluated
on the OPENFWI test set, and the results are compared with the state-of-the-art BigFWI-B Jin et al.
(2024) baseline. As shown in Table 2, models trained purely on generated samples underperform
compared to those trained on real data, indicating a gap in fidelity despite structural consistency.

Improvement by combining limited real data with generated data: We further examine whether
generated data can improve performance when real training data is limited. Focusing on samples
generated by the one-VQ variant of our model, we compare two settings: where generated data is
combined with a small portion (10% or 1%) of real data, and n%Real, where models are trained
exclusively on the same small subset of real data. Results in Table 3 show that combining a small
fraction of real data with generated samples significantly boosts model performance compared to
using either source alone. Gen+10%Real substantially outperforms 10%Real alone, with performance
approaching the BigFWI-B. Similarly, Gen+1%Real consistently surpasses both 1%Real, especially
on more complex datasets, and the model trained purely on generated data (Table 2). These results
highlight two key findings: generated data is beneficial when used alongside even a small amount
of real data, and such combinations are markedly more effective than training on limited real or
synthetic data alone. This validates that the generated samples, while not perfectly matching, are
distributed closely enough to the real data to be a supplementary source.

Figure 9 illustrates prediction visualizations, while additional results are provided in Appendix A.7.
Overall, these results demonstrate that while generated samples can effectively supplement small
datasets, the inclusion of even a small portion of real data is crucial for achieving optimal results.

Ground Truth Bigfwi-B 2VQ-Generated 1VQ-Generated

Gen+10%Real 10%Real Gen+1%Real 1%Real

Figure 9: InversionNet performance visualiza-
tion. Examples from CVB subset.

Providing additional data with challenging
samples: In addition to low-data scenarios, we
evaluate the benefit of using generated sam-
ples as additional training data to fine-tune a
pretrained model. Specifically, we select the
65K most challenging generated samples, on
which BigFWI-B performs worst, and partition
them into 55K for training and 10K for testing.
We then fine-tune BigFWI-B for 20 additional
epochs on the combined dataset (original OPEN-
FWI + generated challenging samples). For a
fair comparison, we compare with a model fine-tuned only on the original OPENFWI training set for
the same number of epochs. As shown in Table 4, fine-tuning with generated challenging samples
yields consistent improvements across all ten datasets in OPENFWI, along with a significant boost in
performance on the generated test samples. This suggests that WAVEDIFFUSION not only produces
physically meaningful samples but also exposes hard modes that enhance model performance.
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Table 4: MAE of InversionNet for fine-tuning on the combined dataset versus OpenFWI-only. LDM
denotes performance on 1K generated challenging samples.
Dataset FVA FVB CVA CVB FFA FFB CFA CFB SA SB LDM
Combined data 0.0062 0.0220 0.0338 0.0927 0.0097 0.0716 0.0160 0.1256 0.0512 0.0548 0.1900
OpenFWI only 0.0064 0.0220 0.0339 0.0933 0.0102 0.0718 0.0163 0.1259 0.0513 0.0549 0.2120

4 RELATED WORKS

Data-driven approaches to FWI: Recent learning-based methods bypass iterative solvers by training
neural networks to map seismic data to velocity models directly. Encoder-decoder architectures such
as InversionNet Wu & Lin (2019) and VelocityGAN Zhang et al. (2019) reduce computational cost by
learning implicit mappings between the two modalities. With higher efficiency than physics-based
FWI, these methods treat FWI as an image-to-image translation task Richardson (2018); Zhu et al.
(2019). More recently, neural operators Li et al. (2020; 2023) provide a flexible alternative for
predicting seismic data from velocity models, with strong capacity for modality transformation. In
Appendix A.9, we review traditional physics-driven FWI methods.

Generative models in FWI: Generative models, particularly Generative Adversarial Networks
(GANs) and their variants, have emerged as alternatives to traditional CNN-based methods for FWI.
These models aim to learn the latent representations of seismic data and velocity models, enabling
the generation of synthetic training data or even direct inversion Goodfellow et al. (2020). Vector
Quantized GANs (VQGANs) Esser et al. (2021), in particular, have been explored for their ability to
generate high-quality modalities, such as images, audios, videos, etc. Such models can be tuned for
imaging one physical modality (e.g., velocity) given another (e.g., seismic) Zhang et al. (2019).

Diffusion models have also been applied to FWI Wang et al. (2023a), who used them to generate prior
distributions for plausible velocity models and incorporated with a regularization process through a
Plug-and-Play (PnP)-style framework. However, their approach treats seismic data and velocity maps
separately and relies on explicit forward modeling. Recent work on Latent Diffusion Models (LDMs)
Ho et al. (2020); Dhariwal & Nichol (2021); Rombach et al. (2022) refines latent representations
through a diffusion process. While effective for generating realistic single-modality data, these
models are difficult to produce multiple physical consistency modalities jointly.

5 LIMITATION

While this work introduces a novel generative perspective on seismic and velocity data modeling,
several limitations remain. First, we provide no formal guarantees or theoretical characterization of
PDE satisfaction. Our contribution is to highlight and empirically quantify the emergent property and
tendency of improved physical adherence in the generated seismic-velocity pairs from the joint latent
diffusion. Second, despite the diffusion process promoting physical consistency, the PDE satisfaction
is not perfect. This is a common limitation of data-driven methods that approximate complex physical
systems. Finally, although we conducted preliminary experiments on the elastic FWI setting, our
study remains primarily focused on the acoustic case. A more systematic investigation of more wave
physics or other inverse problems remains an important direction for future research.

6 CONCLUSION

In this work, we revisit the relationship of seismic and velocity data from a generative perspective and
propose WAVEDIFFUSION, a diffusion-based framework for physics-consistent latent modeling. We
demonstrate that standard image-to-image translation FWI models do not ensure physical consistency
in their learned latent representations. To address this, we employ a joint diffusion model in the shared
latent space that learns to evaluate deviations from the governing PDE, progressively transforming
arbitrary latent points into physically consistent solutions, ensuring that generated seismic-velocity
pairs naturally satisfy the governing PDE. Additionally, our experiments show that the diffusion
model can improve the performance of FWI tasks, and the generated data can serve as a supplement
to the training set for data-driven FWI models. Our findings provide a new perspective on bridging
generative modeling with physics-based problem-solving, paving the way for diffusion models to
enhance scientific discovery and computational physics applications.
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A APPENDIX

A.1 NETWORK DETAILS AND TRAINING HYPERPARAMETERS

In this appendix section, we provide details on the network architectures and training hyperparameters
used for the encoder-decoder FWI model and joint diffusion models in our experiments.

A.1.1 ENCODER-DECODER MODEL WITH SHARED LATENT SPACE AND VECTOR
QUANTIZATION

Shared Latent Space Construction: In the first stage of the WAVEDIFFUSION framework, we build
a shared latent space using a VQ-VAE architecture that comprises one encoder and two decoders.
The encoder E maps the input seismic data s into a continuous latent representation zcont, which is
then discretized by a vector quantization (VQ) layer into z. Two decoders, Ds and Dv, are jointly
trained to reconstruct the seismic data (ŝ) and the corresponding velocity maps (v̂) from the same
latent code z. This joint training ensures that the latent space captures the intrinsic dependencies
between the two modalities, thereby enabling paired generation.

To clarify the training procedure, Algorithm 1 outlines our approach.

Algorithm 1 Training the Shared Latent Space in WAVEDIFFUSION

Require: Training pairs {(s, v)}
1: Initialize: Encoder E, decoders Ds and Dv, vector quantizer (VQ), and discriminator (for

perceptual loss).
2: for each training iteration do
3: Compute continuous latent code: zcont = E(s).
4: Quantize latent code: z = VQ(zcont).
5: Reconstruct seismic data: ŝ = Ds(z).
6: Reconstruct velocity map: v̂ = Dv(z).
7: Compute reconstruction losses:

Ls = ∥s− ŝ∥1, Lv = ∥v − v̂∥1.

8: Compute perceptual loss Lperc (using a discriminator or LPIPS loss).
9: Form the total loss:

L = Ls + Lv + Lperc.

10: Backpropagate L and update E, Ds, Dv , and the VQ layer.
11: end for

Vector Quantization: The VQ layer discretizes the continuous latent vectors into a finite codebook
(with an embedding dimension of 32 and a codebook size of 8192). This discretization helps capture
structured patterns and long-range dependencies between seismic data and velocity maps.

Architectural Details: The encoder and decoders are implemented as convolutional encoder-
decoder networks using ResNet blocks He et al. (2016). For velocity maps, the channel multi-
pliers are set to [1, 2, 2, 4, 4] with an output resolution of 64. For seismic data, the multipliers are
[1, 2, 2, 4, 4, 4, 4, 8, 8] with resolutions [1024, 64]. The latent feature map z has dimensions [16, 16],
and 3 residual blocks are used. The model is trained with a base learning rate of 4.5 × 10−4 and
employs a perceptual loss combined with an adversarial loss. The discriminator begins training at
step 50001 with weights of 0.5 for both the discriminator and perceptual loss components.

A.1.2 JOINT DIFFUSION MODEL

The Joint Diffusion model is based on the LatentDiffusion architecture. The backbone network
in the Joint Diffusion model is a UNet-based architecture. The UNet takes 32 input and output chan-
nels, and the model channels are set to 128. The attention resolutions are [1, 2, 4, 4], corresponding
to spatial resolutions of 32, 16, 8, and 4. The model uses 2 residual blocks and channel multipliers of

12
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[1, 2, 2, 4, 4]. It also employs 8 attention heads with scale-shift normalization enabled and residual
blocks that support upsampling and downsampling. The model is trained with a base learning rate of
5.0× 10−5 and uses 1000 diffusion timesteps. The loss function applied is L1. The diffusion process
is configured with a linear noise schedule, starting from 0.0015 and ending at 0.0155.

A LambdaLinearScheduler is used to control the learning rate, with 10000 warmup steps. The initial
learning rate is set to 1.0× 10−6, which increases to a maximum of 1.0 over the course of training.

A.1.3 TRAINING HYPERPARAMETERS

Both the encoder-decoder model and joint diffusion models were trained using the Adam optimizer,
with β1 = 0.9 and β2 = 0.999. The models were trained with a batch size of 16 for 500 epochs. The
learning rate follows an exponential decay schedule with a decay rate of 0.98. Gradient clipping was
applied with a threshold of 1.0. Early stopping was implemented when the validation loss plateaued
for 10 consecutive epochs.

We trained our models on 128 NVIDIA GH200 GPUs. Training required approximately 8000 GPU
hours for the first-stage encoder-decoder model and 12000 GPU hours for the joint diffusion model.

Seismic data and velocity models were resized from [5,70,1000]/[1,70,70] to [3,64,1024]/[1,64,64]
(channel, height, depth) for consistency with our architecture. Log transform is performed for seismic
data. Both were normalized to [-1,1] to ensure compatibility and stability.

A.2 JOINT GENERATION EXAMPLES

We illustrate generated samples from the model with one VQ in Figure 10. In the top row, we present
samples structurally similar to FlatVel-B (FVB), where the seismic inputs exhibit perfect symmetry
along a central vertical plane. The corresponding generated velocity maps preserve this symmetry,
demonstrating the model’s ability to respect the geometric constraints of the input data.

The model also generates samples that fuse structures from multiple datasets, as observed in the
second row of Figure 10. These examples showcase that the model effectively handles a wide range
of input patterns while maintaining physical and structural coherence.

A.3 EVALUATING LATENT DISTRIBUTION SAMPLING: RANDOM SAMPLING AND
INTERPOLATION

We conducted two experiments to address the concern that poor reconstructions result merely from
latent distribution mismatch.

1. Random Sampling Experiment: We first normalized the training latent vectors (300K
samples) to a Gaussian (zero mean, std=1) and then sampled 5000 new points from this
distribution. The decoded velocity maps from these new points show merged features
from the training data. However, the corresponding reconstructed seismic data (ŝ) exhibit
significantly larger differences from the ground truth seismic data s (obtained via finite-
difference simulation on the decoded velocity maps). This confirms that poor reconstructions
are not merely due to sampling from a mismatched distribution. Visualizations can be found
at Figure 11.

2. Interpolation Experiment: We interpolated between two training latent points (A and B,
5000 pairs in total) using five different weights (i.e., 0.1A+0.9B, 0.3A+0.7B, 0.5A+0.5B,
0.7A+0.3B, and 0.9A+0.1B). While the decoded velocity maps smoothly merge features
of A and B, the resulting seismic data differences (ŝ− s) remain large. This indicates that
the auto-encoder’s latent space does not inherently support paired generation, underscoring
the necessity of the diffusion process to refine the shared latent space for PDE-consistent
outputs. Visualizations can be found at Figure 12.

To clarify, the two experiments above do not contain any diffusion process, and are only performed
using the first stage encoder-decoder network. The results are summarized in Table 5:

These results demonstrate that encoder-decoder sampling (both random and interpolation) yields
relatively high MSE values, which indicates most latent space points do not correspond to valid PDE
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Figure 10: Generated Examples from the joint diffusion model with one VQ.
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solutions. The diffusion process significantly reduces the MSE, confirming that the diffusion process
guides latent codes toward outputs that satisfy the PDE much more effectively.

Figure 11: Random Sampling Experiment.

Table 5: Evaluating latent distribution sampling, comparing diffusion with random Sampling and
interpolation.

Methods Seismic Averaged MSE
Random Sampling 0.0082
Interpolation Sampling 0.0065
Diffusion Denoising 0.0038

A.4 EXTENSION TO ELASTIC FWI

We further evaluated the generality of our framework by conducting experiments on one sub-dataset
(FFA) from the EFWI dataset Feng et al. (2023). To adapt our network to the elastic setting, we
stacked the two seismic components (x and z) along the channel dimension, and likewise stacked the
P - and S-wave velocity maps. Using the trained model, we generated 6K samples and report the FID
scores across all four modalities in Table 6.

FID (VP) FID (VS) FID (Data_x) FID (Data_z)

Value 195.91 301.77 3.40 1.15

Table 6: FID scores for elastic FWI across different modalities.

These results are comparable to those obtained in the acoustic FWI experiments, suggesting that
our framework extends naturally to the elastic case. In terms of PDE satisfaction, we observed a

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 12: Interpolation Experiment.

similar denoising trend: the average L2 deviation for the x-component of seismic data decreased
from 7.98 × 10−4 to 7.80 × 10−4 during denoising, while for the z-component it decreased from
1.8×10−5 to 0.8×10−5. Notably, these deviations are even lower than in the acoustic setting, which
we attribute to training on a single sub-dataset, where more consistent data patterns make learning
easier.

A.5 STATISTICAL COMPARISON OF OUR MODELS AND BIGFWI-B

We present the detailed statistical comparison in Table 9 of the BigFWI-B model and our first-stage
encoder-decoder models and the corresponding diffusion models on the inversion tasks for the velocity
maps across all the datasets of OPENFWI.

A.6 ABLATION OF LATENT REFINEMENT VIA DIFFUSION MODEL

In addition to our initial experiment, we conducted a further analysis as follows: We randomly
sampled 1,000 latent vectors from the Gaussian distribution centered around the latent position
corresponding to the target seismic data (from the Style-B dataset) with a slight oscillation (5%) from
the target seismic data encoded latent point. Next, for each sample, we decoded the seismic data (ŝ)
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and computed the MSE loss with respect to the target seismic data s. We then selected the latent
point with the lowest MSE loss and evaluated the paired velocity map using RMSE, MAE, and SSIM
metrics.

The results are summarized in Table 7. An example comparison can be found at Figure 13. These
results indicate that the encoder-decoder random sampling cannot improve over the baseline, and
the diffusion model FWI consistently achieves lower MAE and RMSE, as well as a higher SSIM,
demonstrating an improvement by the diffusion process. The random sampling around the baseline
latent point by the encoder-decoder network only even decreases the performance. This confirms that
the diffusion process effectively refines the latent representation, yielding samples that better satisfy
the governing PDE and thus improve FWI performance.

Table 7: Ablation of Latent Refinement via Diffusion model, comparing with ocillation sampling
around baseline on the SB dataset.

Methods MAE RMSE SSIM
Starting Baseline 0.0574 0.0882 0.9026
Oscillation Sampling around Baseline 0.1199 0.1582 0.7722
Diffusion Model FWI 0.0423 0.0873 0.9069

Figure 13: Visualization of Latent Refinement via Diffusion model.

A.7 INVERSIONNET RESULTS VISULIZATION

In Figure 15, we illustrate more visualizations of InversinNet Results trained on different training
data settings.

A.8 SEPARATE VS. JOINT DIFFUSION

We compare the joint diffusion model with separate diffusion models, where seismic data and velocity
maps are generated independently. In the separate models, the latent space constructed by the
single-branch encoder-decoder lacks a shared representation. Both approaches are trained on the
CVB subset, with results summarized in Table 8 and Figure 14.

The joint diffusion model consistently outperforms the separate models in FID scores. For the CVB
dataset, joint diffusion achieves FID scores of 30.66 (seismic) and 186.86 (velocity), compared to
131.48 and 411.40, respectively, for the separate models. This highlights the superior quality of the
joint diffusion outputs.

Beyond visual quality, the joint model enforces physical consistency with the wave equation, which
the separate models fail to achieve. As shown in Figure 14, separate models exhibit significant
deviations from the governing PDE, while the joint diffusion model generates seismic-velocity
pairs that are both visually realistic and physically valid. This underscores the effectiveness of the
WAVEDIFFUSION framework in maintaining fidelity and physical correctness.
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Table 8: FID score comparison between separate and joint generations. Evaluations on seismic
data s and velocity maps v on the CVB dataset.

Modality LDM Setup FID

Velocity Joint 186.86
Separate 411.40

Seismic Joint 30.66
Separate 131.48

Figure 14: Visualization of separate vs. joint diffusion. Row 1: Separate models; Row 2: Joint
model. Column 4 shows deviations from the governing PDE.

Figure 15: InversionNet performance visualization. The predictions on the FVB, CVB, FFB, CFA,
and SA subsets.

A.9 RELATED WORKS OF TRADITIONAL PHYSICS-BASED FWI

Traditional FWI methods aim to reconstruct subsurface velocity models by iteratively minimizing the
difference between observed and simulated seismic data, typically using gradient-based optimization
methods. The key challenge lies in solving the wave equation, which governs wave propagation
through the Earth. While effective, these methods are computationally expensive and sensitive
to factors such as the quality of the initial velocity model, noise in the data, and cycle-skipping
issues—where the inversion algorithm converges to incorrect solutions due to poor starting models
or insufficient low-frequency data Tarantola (1984); Virieux & Operto (2009). Techniques such
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Table 9: Performance Comparison of Stage 1 Encoder-Decoders and Stage 2 Diffusion Models
on OpenFWI Datasets. Metrics include Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Structural Similarity Index (SSIM). Lower values for MAE and RMSE indicate better
performance, while higher SSIM values indicate better structural similarity.

Dataset Metric Model
BigFWI-B 2VQ 1VQ 2VQ LDM 1VQ LDM

FlatVel_A
MAE 0.0055 0.0097 0.0197 0.0087 0.0198

RMSE 0.0130 0.0133 0.0254 0.0113 0.0222
SSIM 0.9943 0.9974 0.9943 0.9989 0.9958

FlatVel_B
MAE 0.0233 0.0203 0.0396 0.0195 0.0402

RMSE 0.0696 0.0273 0.0619 0.0285 0.0560
SSIM 0.9658 0.9952 0.9746 0.9936 0.9776

CurveVel_A
MAE 0.0343 0.0281 0.0383 0.0251 0.0315

RMSE 0.0798 0.0652 0.0603 0.0604 0.0585
SSIM 0.9027 0.9282 0.9401 0.9384 0.9451

CurveVel_B
MAE 0.0933 0.0658 0.0794 0.0640 0.0733

RMSE 0.2154 0.1610 0.1523 0.1598 0.1519
SSIM 0.7808 0.8541 0.8590 0.8556 0.8633

FlatFault_A
MAE 0.0106 0.0186 0.0197 0.0148 0.0186

RMSE 0.0286 0.0231 0.0279 0.0237 0.0262
SSIM 0.9871 0.9893 0.9871 0.9901 0.9893

FlatFault_B
MAE 0.0710 0.0574 0.0455 0.0423 0.0444

RMSE 0.1321 0.0882 0.0862 0.0873 0.0859
SSIM 0.8027 0.9026 0.9073 0.9069 0.9084

CurveFault_A
MAE 0.0167 0.0195 0.0236 0.0182 0.0244

RMSE 0.0474 0.0388 0.0435 0.0366 0.0402
SSIM 0.9712 0.9751 0.9603 0.9794 0.9671

CurveFault_B
MAE 0.1245 0.1088 0.1075 0.0905 0.0891

RMSE 0.2027 0.1653 0.1640 0.1620 0.1624
SSIM 0.6781 0.7490 0.7507 0.7548 0.7551

Style_A
MAE 0.0514 0.0553 0.0575 0.0462 0.0495

RMSE 0.0868 0.0730 0.0767 0.0694 0.0738
SSIM 0.9125 0.9334 0.9313 0.9384 0.9359

Style_B
MAE 0.0553 0.0626 0.0637 0.0637 0.0630

RMSE 0.0876 0.0969 0.0947 0.0960 0.0944
SSIM 0.7567 0.7289 0.7368 0.7320 0.7381

as adaptive waveform inversion Warner & Guasch (2016) and multiscale FWI Bunks et al. (1995)
have been developed to reduce the risk of cycle-skipping and improve convergence by progressively
introducing higher-frequency data. These techniques frame FWI as a conditional generation problem,
relying on physical equations as the computational foundation Virieux et al. (2017); Warner & Guasch
(2016).

A.10 USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used a large language model (LLM) to assist with
language polishing, structural refinement, and presentation clarity. The LLM provided feedback
on phrasing, grammar, and flow, suggested alternatives to reduce redundancy, and generated LATEX
formatting for tables and equations. All scientific ideas, experiments, analyses, and conclusions were
conceived, designed, and carried out entirely by the authors.
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