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Abstract

The incremental sequence labeling task in-001
volves continuously learning new classes over002
time while retaining knowledge of the previous003
ones. Our investigation identifies two signif-004
icant semantic shifts: E2O (where the model005
mislabels an old entity as a non-entity) and O2E006
(where the model labels a non-entity or old en-007
tity as a new entity). Previous research has008
predominantly focused on addressing the E2O009
problem, neglecting the O2E issue. This negli-010
gence results in a model bias towards classify-011
ing new data samples as belonging to the new012
class during the learning process. To address013
these challenges, we propose a novel frame-014
work, Incremental Sequential Labeling without015
Semantic Shifts (IS3). Motivated by the identi-016
fied semantic shifts (E2O and O2E), IS3 aims017
to mitigate catastrophic forgetting in models.018
As for the E2O problem, we use knowledge019
distillation to maintain the model’s discrimi-020
native ability for old entities. Simultaneously,021
to tackle the O2E problem, we alleviate the022
model’s bias towards new entities through de-023
biased loss and optimization levels. Our exper-024
imental evaluation, conducted on three datasets025
with various incremental settings, demonstrates026
the superior performance of IS3 compared to027
the previous state-of-the-art method by a signif-028
icant margin. 1.029

1 Introduction030

The conventional sequence labeling task typically031

involves categorizing data into a predetermined set032

of fixed categories (Lample et al., 2016). However,033

this approach may need to be revised in natural034

language processing scenarios, such as the named035

entity recognition task, where new types of enti-036

ties continuously emerge. Adapting a fixed set of037

categories becomes challenging when faced with038

the dynamic nature of new entity classification re-039

1Anonymized URL: https://anonymous.4open.science/r/IS3-
7CCA/

Figure 1: A sample shows two shifts in incremental
sequence labeling. E2O denotes the semantic shift of
an old entity (such as [PER]) to a non-entity ([O]), and
O2E denotes the semantic shift of a non-entity ([O])
or an old entity(such as [GPE]) to a new entity (such
as [DATE]). Inputs means input sentence. CL means
current ground-truth label at step t. FL means the full
ground-truth label for all steps. Step t− 1 and Step t
means the predictions in step t− 1 and t.

quirements. Consequently, continuous model up- 040

dates are essential to accommodating evolving en- 041

tity types. Previous studies have advocated for 042

adopting continual learning (Parisi et al., 2019; 043

Monaikul et al., 2021), also known as lifelong 044

learning or incremental learning. Continual learn- 045

ing is a paradigm designed to train models capa- 046

ble of adapting to the continual addition of new 047

categories in real-world scenarios while ensuring 048

that knowledge of old categories is retained. For 049

instance, voice assistants like Siri frequently en- 050

counter new event types, such as pandemics, to 051

better understand users’ latest intentions and pro- 052

vide information on health protection (Monaikul 053

et al., 2021). 054

Due to constraints imposed by storage limita- 055

tions and privacy concerns, there exists a shortage 056

of training data about the older categories (He and 057

Zhu, 2022). Additionally, the manual relabeling 058

of all categories within the new training dataset 059

would incur substantial costs and time investment 060

(De Lange et al., 2021; Bang et al., 2021). Conse- 061

quently, the model undergoes continuous updates 062
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using a freshly acquired dataset comprising the new063

categories. As depicted in Fig.1, the model under-064

goes training based on the current ground-truth065

label and undergoes testing using the full ground-066

truth label.067

The incremental sequence labeling task faces a068

significant challenge known as the catastrophic for-069

getting problem, as extensively discussed in previ-070

ous studies (McCloskey and Cohen, 1989; Robins,071

1995; Goodfellow et al., 2013; Kirkpatrick et al.,072

2017). This issue manifests as semantic shifts,073

leading to a decrease in the discriminative power074

of entity classes (Zhang et al., 2023b; Ma et al.,075

2023). In this paper, we decompose the problem076

into two primary semantic shifts in the incremental077

sequence task: E2O and O2E. The first semantic078

shift, E2O, arises from the presence of non-entities,079

potential old entities (mislabelled as non-entities),080

and new entities in the new dataset. Progress has081

been made in addressing E2O through methods082

falling into three categories: (1) Methods based on083

knowledge distillation: For instance, RDP proposes084

a knowledge distillation loss incorporating inter-085

task relations (Zhang et al., 2023b). At the same086

time, CFPD introduces a pooled feature distilla-087

tion loss to alleviate catastrophic forgetting (Zhang088

et al., 2023a). (2) Methods based on pseudo-labels:089

OCILNER utilizes class prototypes to label new090

data (Ma et al., 2023), and CPFD employs old mod-091

els to label predictions of new data. (3) Methods092

based on freezing models: Examples include ICE093

(Liu and Huang, 2023), which freezes the backbone094

model and old classifiers to maintain the stability095

of the old classes at the expense of learning new096

classes.097

Existing methods primarily focus on address-098

ing the E2O shift, neglecting the bias towards the099

emergence of new classes and the consequential100

second semantic shift, O2E. To address both se-101

mantic shifts, we propose a novel framework called102

Incremental Sequential Labeling without Semantic103

Shifts (IS3). IS3 consists of two key components:104

First, we apply the knowledge distillation method105

to tackle the E2O shift. Second, we address the106

O2E shift on two fronts. At the loss function level,107

we introduce a debiased cross-entropy loss func-108

tion to mitigate the model’s impact on old class109

distributions, reducing its inclination towards new110

entities. At the optimization level, we introduce111

a prototype-based approach to balance the imbal-112

anced contributions of old and new entities during113

batch updates, which aims to increase the involve-114

ment of old entities in the optimization process. Im- 115

portantly, IS3 adopts a storage-efficient approach, 116

maintaining only one prototype per class with min- 117

imal storage costs. Class feature centers serve as 118

prototypes, ensuring no direct correspondence to 119

actual sample information and mitigating privacy 120

leakage concerns. 121

The contribution of our work can be summarized 122

as follows: 123

• We propose a novel perspective on the seman- 124

tic shift problem in incremental sequence la- 125

beling task by categorizing the catastrophic 126

forgetting problem into E2O and O2E. 127

• We propose a novel framework, Incremental 128

Sequential Labeling without Semantic Shifts 129

(IS3), to solve the two semantic shifts simul- 130

taneously. 131

• We conduct experiments under nine CIL set- 132

tings on three datasets, and our method outper- 133

forms the previous state-of-the-art methods. 134

2 Related Work 135

Incremental Learning The model continually 136

acquires new tasks intending to achieve optimal 137

performance on tasks previously learned (Gepperth 138

and Hammer, 2016; Wu et al., 2019; van de Ven 139

et al., 2022). There are three main categories of cur- 140

rent incremental learning methods: regularization- 141

based, rehearsal-based, and architecture-based. 142

Regularization-based methods place constraints on 143

model weights (Kirkpatrick et al., 2017; Zenke 144

et al., 2017), representations of intermediate layer 145

features (Hou et al., 2019; Douillard et al., 2020), 146

and output probabilities (Li and Hoiem, 2017). 147

Rehearsal-based methods overcome forgetting by 148

saving some of the data containing the old classes 149

for learning with the new classes (Lopez-Paz and 150

Ranzato, 2017; Shin et al., 2017). Alternatively, 151

architecture-based approaches involve dynamically 152

expanding the network structure to allow for more 153

data as new classes are added (Hou et al., 2018; 154

Yan et al., 2021). 155

Incremental Sequence Labeling The traditional 156

sequence labeling task is the task of labeling each 157

token of a one-dimensional linear input sequence, 158

which requires each token to be categorized ac- 159

cording to its contextual content(Rei et al., 2016; 160

Akbik et al., 2018). However, previous methods 161

can only recognize classes in a fixed set. There- 162

fore, continuous learning paradigms are introduced 163
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Figure 2: Confusion Matrix of the ExtendNER method
in Task 4. It indicates that the model predicts the old en-
tities as new entities with high probability and predicts
the old entity as non-entity, with severe O2E semantic
shift and E2O semantic shift.

in sequence labeling tasks, including incremental164

named entities (Monaikul et al., 2021; Zheng et al.,165

2022; Zhang et al., 2023a), incremental event de-166

tection (Cao et al., 2020; Yu et al., 2021), and so167

on.168

Methods for incremental sequence labeling tasks169

can be categorized into distillation-based, rehearsal-170

based, and other approaches. Distillation-based171

methods encompass ExtendNER (Monaikul et al.,172

2021), which is the pioneer in applying knowledge173

distillation to incremental sequence labeling task,174

RDP (Zhang et al., 2023b) with a relational distil-175

lation approach, and CPFD (Zhang et al., 2023a)176

utilizing pooled features distillation loss. CFNER177

(Zheng et al., 2022) introduces a causal framework178

for extracting new causal effects in entities and non-179

entities. Rehearsal-based approaches include KCN180

(Cao et al., 2020) and KD+R+K (Yu et al., 2021),181

both employing rehearsal samples to address class182

imbalance and catastrophic forgetting in incremen-183

tal event detection. L&R (Xia et al., 2022) proposes184

a learn-and-review framework by training a new185

backbone model and a generative model simulta-186

neously, generating synthetic samples of the old187

class to be trained with new samples. OCILNER188

(Ma et al., 2023) uses rehearsal samples to compute189

class feature centers as class prototypes, generates190

an entity-oriented feature space through compara-191

tive learning, and annotates new data with pseudo-192

labels using class prototypes. Other methods en-193

compass span-based and freezing model-based ap-194

proaches, among others. 195

The mentioned methodologies primarily focus 196

on preserving the existing knowledge of the model 197

and do not explicitly consider the implications of 198

transitioning from non-entity to entity semantics. 199

In contrast, our proposed method, IS3, provides a 200

fresh perspective on model forgetting by address- 201

ing the model’s inclination towards new classes 202

during task adaptation. IS3 not only addresses 203

issues related to model mislabeling, indirectly mit- 204

igating the problem of semantic migration from 205

entity to non-entity, but also handles the challenge 206

of semantic migration from non-entity to entity. 207

By recognizing and addressing the model’s bias to- 208

wards new classes during adaptation, our approach 209

offers a comprehensive solution to the dynamic 210

challenges associated with transitioning between 211

different semantic categories. 212

3 Problem Formulation 213

Formally, the objective of incremental sequence la- 214

beling is to acquire knowledge through a series of 215

tasks T = {T1, T2, . . . , TN}. Each task contains 216

its own dataset Dt = {(xi, yi)|yi ∈ Yt} where 217

(xi, yi) is a pair formed by the input token sentence 218

and the label corresponding to each token in the 219

sentence and Yt stands for the current label set. No- 220

tably, yi only labels the token corresponding to the 221

current task t, and the other tokens are labeled as 222

O class (potential old entities Y1:t, and unseen enti- 223

ties Yt+1:N ). At task t (t > 1), the new model Mt 224

learns only from the new dataset and is expected to 225

perform well on the learned classes
⋃t

i=1 Yi. 226

4 Method 227

In this section, we systematically address the catas- 228

trophic forgetting problem by decomposing it into 229

two distinct semantic shift challenges (Section 4.1). 230

Subsequently, we present a comprehensive frame- 231

work designed to address these semantic shifts indi- 232

vidually, focusing on E2O in Section 4.2 and O2E 233

in Section 4.3. The overarching goal is to effec- 234

tively mitigate the catastrophic forgetting problem, 235

as illustrated in Fig.4. 236

4.1 Two semantic shift problems 237

In the incremental sequence labeling task, semantic 238

shift can be decomposed into entity to non-entity 239

semantic shift and non-entity to entity semantic 240

shift, which are abbreviated as E2O and O2E. 241
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Figure 3: Illustration of E2O and O2E. When "Amy"
encounters E2O problem, the label is biased from [PER]
to [O]. "California" encounters O2E problem, the label
is shifted from [GPE] to [DATE].

E2O refers to the model incorrectly categorizing242

entities as non-entities during the learning process.243

This misclassification stems from the incremental244

sequence labeling task, where only new entities are245

labeled in the new dataset, potentially causing old246

entities to be erroneously labeled as non-entities.247

For instance, in Fig.3, the name "Amy" is mistak-248

enly labeled as a non-entity. This misclassifica-249

tion induces a gradual shift in the semantics of old250

entities towards non-entities, leading to a blurred251

boundary between the two classes. Several pre-252

vious approaches have addressed this bias issue.253

Methods like RDP focus on designing improved254

distillation techniques to maintain the stability of255

the model’s old entities. Similarly, OCILNER uti-256

lizes comparative learning to obtain a more dis-257

criminative feature space, clarifying the classifica-258

tion boundaries between entities and non-entities.259

These strategies aim to mitigate the impact of E2O,260

ensuring a more accurate preservation of entity261

semantics during incremental sequence labeling262

tasks.263

O2E signifies the model incorrectly labeling non-264

entities or old entities as new entities during the265

learning process. As seen in Fig.3, our observa-266

tions indicate that while the model maintains good267

discrimination between old entities. However, in268

Fig.2, there is a bias towards new entities in pre-269

dictions during incremental learning. Our research270

identifies two key contributing factors to this bias.271

The first factor is related to the classifier dimen-272

sion’s predisposition. When learning new entities,273

the ordinary cross-entropy function induces the274

model to fit and converge faster on the distribu-275

tion of new entities by excessively penalizing the 276

classifier dimension associated with old entities. 277

This over-penalization of old entities results in a 278

pronounced bias in significant classification scores 279

towards the new classes. 280

The second factor involves a tendency at the fea- 281

ture optimization level. The current dataset mainly 282

contains samples of new entities with minimal rep- 283

resentation from other entities, including potential 284

old and future new entities, to facilitate effective 285

learning of new entities. As a result, in the same 286

batch, the probability of old entities participating in 287

model optimization is much lower than the proba- 288

bility of new entities’ participation . Consequently, 289

there is a predisposition towards new categories at 290

the feature optimization level. Addressing these 291

aspects is crucial for mitigating the O2E semantic 292

shift and achieving more balanced and accurate 293

predictions during incremental sequence labeling 294

tasks. 295

Notably, the E2O and O2E problems are inter- 296

connected. If the O2E problem occurs in the model 297

during incremental sequence labeling, it can grad- 298

ually blur the boundaries between entities and en- 299

tities and among entities. It can also indirectly 300

contribute to the E2O problem, ultimately impact- 301

ing the model’s discriminative ability. We will 302

address these two semantic biases separately to 303

mitigate catastrophic forgetting during incremental 304

sequence labeling. 305

4.2 Solving E2O problem via knowledge 306

distillation 307

When learning the current task t, the model Mt is 308

trained on the training examples with the current en- 309

tities, which often leads to catastrophic forgetting 310

for the old entities. To alleviate the E2O problem, 311

we use knowledge distillation (Hinton et al., 2015). 312

This method preserves the prior knowledge by dis- 313

tilling the output probabilities from the old Mt−1 314

to the current model Mt. Therefore, the objec- 315

tive function for solving the E2O problem can be 316

expressed as: 317

Lkd =
1

|Dt|

|Dt|∑
i=1

ŷt−1
i log ŷti , (1) 318

where ŷt−1
i and ŷti represent the output probabilities 319

of the current model and the old model respectively. 320

Through Eq.1, "Amy" in Fig.4 corrects the cur- 321

rent model’s incorrect labeling via the output proba- 322
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Figure 4: Overview of our framework IS3 for incremental sequence labeling. We solve the O2E problem by
distillation loss Lkd. Besides, we use two modules: debiased cross-entropy loss LDebias

ce and prototype learning to
solve the E2O problem.

bilities provided by the old model, thus maintaining323

discriminative properties between old entities.324

4.3 Solving O2E problem325

In this section, we address the O2E problem at the326

debiased loss and feature optimization levels.327

4.3.1 Debiasing in Ordinary Cross Entropy328

The overall model parameters are defined as Θ =329

{θ, ω}. The model’s backbone fθ : X → Rd ex-330

tracts feature embeddings of dimension d from the331

inputs. Following the backbone, a linear classi-332

fier produces logits Φ(·) = ωT · fθ(·) : X → R|Yt|,333

where ω represents the classifier weights for the cor-334

responding dimensions. As the number of classes335

of recognizable entities increases as well, the di-336

mension of the classifier increases. The model is337

trained by a cross-entropy loss function, which is338

defined as:339

Lce = − 1

|Dt|

|Dt|∑
i=1

yi log

(
eΦyi (xi)∑
y′ ∈ Yt

eΦy′ (xi)

)

=
1

|Dt|

|Dt|∑
i=1

log[1 +
∑
y′̸=yi

eΦy′(xi)−Φyi (xi)],

(2)340

where yi denotes the label of the new entity for the341

current incremental step t. Fig.2 shows that confu-342

sion matrix of previous method at incremental step343

4. It clearly shows that most predictions are biased 344

towards the recent entity (class 4). We find that 345

such a bias can be found in the cross-entropy loss 346

function. When learning new entities, the model’s 347

gradient update for old entities is defined as: 348

∂Lce

∂ωy′
∝ eΦy′(xi)(y′ ̸= yi), (3) 349

where the gradient update for old entities is pro- 350

portional to the classification score for that entity. 351

During the incremental sequence labeling process, 352

this gradient update exhibits an overly penalizing 353

effect on the old entity probability distributions. It 354

shows up as an excessive reduction in the output 355

probability score of the old entity. We provide a 356

more detailed explanation and derivation in Ap- 357

pendix A. 358

We assume the old model has learned the opti- 359

mal representation of old entities. Therefore, the 360

new entities should have a smaller impact on the 361

knowledge of old entities. Otherwise, because of 362

the absence of rehearsal samples of the old entities, 363

the model will face catastrophic forgetting of the 364

old entities. In addition, the new entity was not in 365

the predefined set, and a change from a non-entity 366

to a new entity occurs during learning. Therefore, 367

it is reasonable to have a penalizing effect on non- 368

entities, and the debiased cross-entropy loss func- 369
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tion is defined as follows:370

LDebias
ce =

1

|Dt|

|Dt|∑
i=1

log[1+
∑
y′̸=yi

eδΦy′(xi)−Φyi (xi)],

(4)371

where δ is the correction factor for the gradient372

update of the old entity weights (excluding non-373

entity weights), δ ∈ [0, 1]. When δ → 0, the model374

will no longer penalize the learning of old entities.375

When δ → 1, Eq.4 degenerates to the traditional376

cross-entropy loss function.377

4.3.2 Learning with Prototypes378

In Section 4.1, we elucidate the reasons behind the379

emergence of O2E at the feature optimization level.380

In this section, we introduce the utilization of class381

centers of old entities as class prototypes during the382

learning process of new entities. Following each383

task training, we compute prototypes using feature384

representations from the training set and store them.385

These prototypes then participate in training the386

model classifier for the subsequent task alongside387

the feature representations of new entities.388

The class prototypes of old entities serve two389

essential purposes: firstly, they participate in op-390

timization alongside new entities in each batch,391

ensuring a balanced optimization process among392

entities. Secondly, these class prototypes act as393

anchors in the feature space, mitigating the issue394

of over-labeling new entities. As depicted in Fig.4,395

the introduction of old prototypes reduces the po-396

tential over-labeling of new entities, enhancing the397

precision of new entity learning.398

To this end, we defined the loss function of pro-399

totypes as follows:400

Lpro = −
t−1∑
i=1

ỹi log

(
eω

TPi∑|Yt|
j=0 e

ωTPj

)
, (5)401

where ỹi stands for the label of the old prototype402

and Pi, Pj stand for old prototypes, defined as403

follows:404

Pt =
1

|Dt|

|Dt|∑
i=1

fθ(xi). (6)405

Our approach differs from OCILNER’s ap-406

proach which uses prototypes in the following two407

ways:(1) OCILNER’s approach stores old samples408

for calculating prototypes. Yet in this paper, we409

only use the training data in each incremental step410

for calculating prototypes, and do not introduce411

replay samples. (2) OCILNER uses prototypes to412

label new datasets and adopts a cosine similarity 413

as the threshold for entity labeling. However, in 414

this paper, we found that some of the real non- 415

entities also have a high cosine similarity with enti- 416

ties, which can easily produce wrong labeling for 417

real non-entities and exacerbate semantic migration 418

from entities to non-entities. 419

In summary, the objective function of our 420

method is defined as follows: 421

L = LDebias
ce + αLpro︸ ︷︷ ︸

LO2E

+βLkd︸ ︷︷ ︸
LE2O

. (7) 422

5 Experiments 423

5.1 Experimental Setup 424

Datasets We conducted experiments on three 425

widely used datasets: i2b2 (Murphy et al., 2010), 426

OntoNotes5 (Hovy et al., 2006), and MAVEN 427

(Wang et al., 2020). We divide the dataset into dis- 428

joint slices according to categories. In each slice, 429

we keep only the category labels visible to the cur- 430

rent task, and the rest of the labels are labeled as 431

non-entities. 432

Settings We sort the above slices according to 433

initial letter and train them in a FG-a-PG-b manner. 434

FG means that the pre-trained model is trained with 435

a entity types as the initial model and PG means 436

that the initial model is trained with b entity types 437

at each following incremental step. 438

Baselines We consider the following state-of- 439

the-art methods for incremental sequence labeling: 440

Self-Training (Rosenberg et al., 2005; De Lange 441

et al., 2019), ExtendNER (Monaikul et al., 2021), 442

CFNER (Zheng et al., 2022), DLD (Zhang et al., 443

2023c), RDP (Zhang et al., 2023b), OCILNER (Ma 444

et al., 2023), ICE (Liu and Huang, 2023), CFPD 445

(Zhang et al., 2023a). Detailed descriptions of the 446

baselines and their experimental setup are provided 447

in Appendix C. 448

Implementation Details We use bert-base-cased 449

model from HuggingFace (Wolf et al., 2019) as 450

backbone, with a hidden dimension of d = 768. 451

We use the AdamW (Loshchilov and Hutter, 2018) 452

optimizer, with learning rate 1e−6 and 1e−3 for 453

backbone and classifier. We report the mean and 454

standard deviation results over five runs. 455

Metrics Considering that each of the categories 456

should have a comparable degree of contribution 457

in the test, we use Macro F1 to evaluate the perfor- 458

mance of the model. We use the last step Macro F1 459

result in AT , and the average Macro F1 result in Ā, 460
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Table 1: Comparisons with state-of-the-art methods on i2b2. The best results are highlighted in bold and the second
best results are underlined. The average of each incremental step is provided in Fig.10.

Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā

FT 2.16 ± 0.18 14.98 ± 0.47 7.38 ± 1.10 25.00 ± 0.74 2.41 ±0.17 16.14 ± 1.81 6.38 ± 1.23 25.82 ± 1.36

SelfTrain 17.76 ± 1.75 37.32 ± 2.28 36.63 ± 6.27 54.07 ± 3.12 7.01 ± 3.51 27.27 ± 3.47 24.05 ± 6.61 47.81 ± 2.81

ExtendNER 19.54 ± 1.59 39.10 ± 3.17 29.20 ± 5.86 48.26 ± 4.05 7.83 ± 1.42 29.03 ± 1.15 24.00 ± 6.40 42.53 ± 2.92

CFNER 34.15 ± 4.79 50.15 ± 2.18 47.21 ± 2.99 58.03 ± 2.28 21.50 ± 1.49 38.53 ± 1.01 23.91 ± 3.91 46.31 ± 3.39

DLD 23.03 ± 4.08 42.87 ± 4.35 41.05 ± 2.79 57.28 ± 1.37 13.10 ± 3.05 35.12 ± 2.24 32.01 ± 4.47 51.66 ± 1.71

RDP 28.05 ± 1.85 47.61 ± 2.03 44.53 ± 2.79 59.75 ± 1.25 26.83 ± 3.01 42.02 ± 1.57 41.43 ± 5.32 56.92 ± 4.07

OCILNER 9.30 ± 1.79 27.75 ± 2.82 18.45 ± 3.18 42.43 ± 1.90 19.76 ± 3.56 41.01 ± 2.77 24.86 ± 2.12 46.75 ± 2.14

ICE_PLO 35.45 ± 0.91 45.65 ± 1.32 40.32 ± 0.58 50.25 ± 0.93 44.79 ± 0.93 50.61 ± 0.72 44.23 ± 2.22 51.05 ± 1.83

ICE_O 36.96 ± 1.17 46.93 ± 1.07 43.29 ± 1.79 51.24 ± 1.70 46.24 ± 1.36 51.70 ± 0.85 49.10 ± 1.33 53.56 ± 1.22

CPFD 17.72 ± 3.95 46.11 ± 1.45 31.44 ± 5.19 53.84 ± 2.39 5.0 ± 3.97 32.86 ± 3.49 23.03 ± 7.47 50.26 ± 3.38

IS3 (Ours) 43.88 ± 2.05 56.87 ± 0.56 54.84 ± 1.35 61.83 ± 0.87 50.75 ± 1.28 58.38 ± 1.35 56.96 ± 0.68 63.03 ± 1.07
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Figure 5: The comparison between our method and
previous state-of-the-art methods on nine incremental
learning settings. We report the MacroF1 score after
learning the final task. The detailed results are provided
in Table 1, Table 7 and Table 5.

on all incremental steps as evaluation metrics. AT461

and Ā are defined in Appendix D.462

5.2 Results and Analysis463

Comparisons with State-Of-The-Art To val-464

idate the effectiveness of our approach, we465

conducted exhaustive experiments on the i2b2,466

OntoNotes5, and MAVEN datasets. We used the467

Finetune Only (FT) approach as a lower bound468

for comparison. Table 1 displays the results of469

the experiments conducted on i2b2. Due to space470

limitations, we provide the results on MAVEN in471

Table 5 and OntoNotes5 in Table 7. We show the472

experimental results under nine incremental learn-473

ing settings in detail through Fig 5. Our method474

consistently outperforms the previous state-of-the-475
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Figure 6: Visualization of prediction of previous method
and IS3 approach in task 4. Our approach greatly miti-
gates the E2O and O2E shift problems and balances the
old and new classes well on the model predictions.

art method in multiple settings, from FG-1-PG-1 476

to FG-8-PG-2. The poor performance of the pre- 477

vious method may be attributed to the ignorance 478

of O2E. As shown in Fig.6, during the learning 479

process, the previous method, ExtendNER, con- 480

fuses new entities with non-entities due to O2E 481

and old entities with non-entities due to E2O. Both 482

of them together lead to poor prediction results of 483

the model. We have effectively mitigated the above 484

problems through our framework IS3, which strikes 485

a good balance between maintaining old entities 486

and learning new ones. 487

To further demonstrate the effectiveness of our 488

method, we visualize the feature representation 489

through T-SNE (Van der Maaten and Hinton, 2008). 490

As shown in Fig.11 in appendix E, the ExtendNER 491

method faces serious E2O and O2E problems, with 492

new entities and non-entities overwriting old ones, 493

leading to catastrophic forgetting. Our method suc- 494

cessfully addresses the issue of semantic bias that 495
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Input Sentence In     the    near   future , the     Russian Tu      River   Region  N       Conference will also be held in Vlad  .

ExtendNER      O      O      O      O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  O  O

CFNER          O      B-DATE B-DATE O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  B-GPE O

RDP            B-DATE B-DATE B-DATE O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  B-GPE O

IS3(Ours) O      O      O      O      O B-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT    O    O    O  O    O  B-GPE O

Ground Truth   O      O      O      O      O B-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT    O    O    O  O    O  B-GPE O 

O2E: E2O:

O2E:

Figure 7: A sample from OntoNotes5. EVENT, DATE, GPE are old entites. ORG is a new entity. The previous
method had the issue of mislabeling non-entities as old entities and overwriting old entities as new ones. In
contrast, our method accurately labels old entities when learning the new entity, demonstrating its effectiveness and
superiority.

Table 2: The ablation study of our method on i2b2
and OntoNotes5 under the setting FG-1-PG-1, MAVEN
under the setting FG-18-PG-10. The ablation of each
component resulted in a significant decrease in model
performance, proving the effectiveness of all our com-
ponents.

Methods
i2b2 OntoNotes5 MAVEN

AT Ā AT Ā AT Ā

IS3 (Ours) 43.88 ± 2.05 56.87 ± 0.56 50.23 ± 0.94 54.65 ± 0.84 40.15 ± 0.38 48.16 ± 0.16

w/o LDebias
ce 40.79 ± 0.89 54.39 ± 0.19 47.89 ± 0.91 52.77 ± 1.21 38.19 ± 0.98 46.56 ± 0.58

w/o Lpro 25.88 ± 2.78 45.95 ± 2.53 44.26 ± 1.33 50.07 ± 1.08 34.64 ± 0.78 45.15 ± 0.39

w/o Both 23.22 ± 2.12 37.81 ± 3.81 42.77 ± 0.22 49.11 ± 0.49 31.03 ± 0.34 42.61 ± 0.87

arises when the model learns a new task.496

Ablation Study We explored the validity of the497

components of our approach through ablation ex-498

periments, and the results are shown in Table499

2. We removed the debiased cross-entropy loss500

LDebias
ce and prototype loss Lpro modules, respec-501

tively. These results demonstrate the essential roles502

played by both LDebias
ce and Lpro modules. The503

LDebias
ce reduces the penalizing effect of the new504

entity on the old entity and enhances the discrimina-505

tion between the old and new entities by improving506

the prediction confidence of the old entity. The507

Lpro corrects the bias of modeling new entities by508

shrinking the scope of over-labeling new entities509

through old prototypes.510

Hyper-Parameter Analysis Fig.8 shows the511

results of different hyper-parameter choices on512

OntoNotes5 with the setting FG-1-PG-1. We con-513

sider two hyper-parameters: the correction factor514

in the debiased cross-entropy loss δ and the weight515

of the prototype loss β. The results show that δ516

around 0.5 reaches the best result, indicating that517

a moderate penalty effect reduction favors model518

performance. As β keeps increasing, it makes the519

model overfit for the old prototype, leading to a520

decrease in model performance.521

Case Study We provide an example in Fig.7 to522

demonstrate that the previous method suffers from523

an O2E offset when learning a new entity ORG,524
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Figure 8: The results of different hyper-parameter
choices on i2b2 with the setting FG-1-PG-1. We show
the results are δ ∈ (0, 1] and β ∈ (0, 1].

overwriting the old entity EVENT as a new entity. 525

Simultaneously, the model inherits past O2E issues 526

(labeling [O] as [DATE]). Additionally, it suffers 527

from E2O, which fails to recognize the old entity 528

accurately. Our method effectively balances these 529

two types of offset problems and is more conducive 530

to model learning. 531

6 Conclusion 532

In this paper, we introduce a novel perspective on 533

the catastrophic forgetting problem in incremental 534

sequence annotation, identifying and addressing 535

both E2O and O2E semantic shifts. Bridging gaps 536

in previous research, we propose the IS3 frame- 537

work to tackle both issues. Comprehensive exper- 538

iments on three datasets demonstrate that our IS3 539

method significantly outperforms previous state- 540

of-the-art approaches. This work provides a fresh 541

outlook on the incremental sequence labeling task 542

and offers effective solutions to mitigate the catas- 543

trophic forgetting problem. 544
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7 Limitations545

While the proposed method effectively mitigates546

catastrophic forgetting to some extent, its reliance547

on the predictions of old models for preserving548

existing knowledge can result in accumulated pre-549

diction errors, which may lead to poor model per-550

formance in more incremental steps. Moreover,551

the current method does not thoroughly explore552

the relationship between the penalty effect and553

the dataset, leaving potential avenues for future554

research.555
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produces logits Φ(·) = ωT · fθ(·) : X → R|Yt|,762

where ω represents the classifier weights for the763

corresponding dimensions and Yt represents the764

current label set. The softmax probability of new765

entity is defined as: pyi = eΦyi (xi)∑
y′∈Yt

eΦy′ (xi). The766

derivation of Debiased Cross-entropy Loss Func-767

tion is proved as follows:768

∂Lce

∂ωy′
=

∂Lce

∂pyi
· ∂pyi
∂Φy′(xi)

·
∂Φy′(xi)

∂ωy′

= − 1

ln 2 · pyi
· fθ(xi) ·

∂pyi
∂Φy′(xi)

=
fθ(xi)

ln 2
· py′ ∝ eΦy′(xi)(y′ ̸= yi)

(8)769

for the same input xi,
fθ(xi)
ln 2 can be viewed as a770

constant. Therefore, the gradient penalty of the771

new entity over the old entity is proportional to the772

probability value of the old entity.773

B Datasets774

Table 3: Examples of inputs and outputs for each
dataset.

Dataset Entity Type Sample Entity Type Sequence (Alphabetical Order)
AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,

i2b2 16 141k
IDNUM, MEDICALRECORD, ORGANIZATION,
PATIENT, PHONE, PROFESSION, STATE, STREET,
USERNAME, ZIP
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,

OntoNotes5 18 77k
LAW, LOC, MONEY, NORP, ORDINAL, ORG,
PERCENT, PERSON, PRODUCT, QUANTITY, TIME,
WORK_OF_ART

MAVEN 178 124k
ACTION, ARREST, BRINGING, CONTROL, EXPANSION,
INCIDENT, INFLUENCE, VIOLENCE etc.

Table 4: Detailed description of each dataset.

Inputs Xinhua news agency , Beijing , August 31st
FL B-ORG I-ORG I-ORG O B-GPE O B-DATE I-DATE

Inputs There were no direct effects of the earthquake ’ s
FL O O O O B-Influence O O B-Catastrophe O O

shaking due to its low intensity.
B-Motion O O O O O

FL means the full ground-truth label for all steps.775

During the learning process, we will label unseen776

entities as non-entities [O].777

C Baselines778

The introduction about the baselines in the experi-779

ment and their settings are as follows:780

• SelfTrain (Rosenberg et al., 2005; De Lange781

et al., 2019): SelfTrain utilizes the labels gen-782

erated by the predictions of the old model on783

the new dataset, combined with the labels of784

the new entities, to guide the training of the785

new model.786

• ExtendNER (Monaikul et al., 2021): Extend- 787

NER introduces knowledge distillation to re- 788

view the knowledge of old entities, aiming to 789

align the outputs of the old and new models 790

for old entities using KL divergence. In con- 791

trast to SelfTrain, ExtendNER retains specific 792

structural information through the probability 793

distribution of the model output. The coeffi- 794

cient of the distillation loss λ = 2. 795

• CFNER (Zheng et al., 2022): CFNER pro- 796

poses a unified causal framework to extract 797

causality from both new entity types and the 798

Other-Class and employs curriculum learning 799

to alleviate the impact of label noise and in- 800

troduce a self-adaptive weight to balance the 801

causal effects between new entity types and 802

the Other-Class. The number of matched to- 803

kens K = 3, the initial value of balancing 804

weight λbase = 2 and the initial value of con- 805

fidence threshold δ1 = 1. 806

• DLD (Zhang et al., 2023c): DLD decomposes 807

a prediction logit into two terms, measuring 808

the probability of an input token belonging to 809

a specific entity type or not. The coefficient 810

of the distillation loss λ = 2. 811

• RDP (Zhang et al., 2023b): RDP introduces 812

a task relation distillation scheme with two 813

aims: ensuring inter-task semantic consis- 814

tency by minimizing inter-task relation dis- 815

tillation loss and enhancing model predic- 816

tion confidence by minimizing intra-task self- 817

entropy loss. The coefficient of inter-task re- 818

lation distillation loss λ1 = 0.3 and the coeffi- 819

cient of intra-task self-entropy loss λ2 = 0.1. 820

• OCILNER (Ma et al., 2023): OCILNER intro- 821

duces a novel representation learning method 822

aimed at acquiring discriminative represen- 823

tations for entities and non-entities, which 824

can dynamically identify entity clusters within 825

non-entities. The threshold for relabeling sam- 826

ples βi = 0.98− 0.05 ∗ (t− i), where t is the 827

current step, and i is the id of the old task. 828

• ICE (Liu and Huang, 2023): ICE freezes the 829

backbone model and the old entity classifiers, 830

focusing solely on training new entity classi- 831

fiers. This approach includes two methods: 832

ICE_O and ICE_PLO. The former combines 833

logits of non-entity with logits of new enti- 834

ties for output probability computation during 835
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training, while the latter combines all previous836

logits with new entity logits.837

• CFPD (Zhang et al., 2023a): CPFD intro-838

duces a pooled feature distillation loss that839

adeptly balances the trade-off between retain-840

ing knowledge of old entity types and acquir-841

ing new ones and a confidence-based pseudo-842

labeling method for the non-entity type. The843

balancing weight λ = 2.844

D Metrics845

The last step Macro F1 result AT and the average846

Macro F1 result Ā are defined as follows:847

at =
1

|Dt|

|Dt|∑
i=1

1(argmax
y′∈Yi

Φt,y′(xi) = yi), (9)848

where at represents the F1 score of the tth entity,849

|Dt| repesents the number of entities and 1(·) is the850

indicator for Φt,y′(xi) = yi.851

AT =
1

N

N∑
j=1

aj , (10)852

where AT stands for the MacroF1 score at incre-853

mental step t.854

Ā =
1

N

N∑
k=1

ATk
, (11)855

where Ā stands for the average MacroF1 score for856

all incremental steps.857

E Additional Experimental Results858

Table 5 highlights the superiority of our method IS3859

over previous methods on MAVEN. However, due860

to its larger number of classes, the performance861

of the model decreases in subsequent incremen-862

tal steps. Table 7 shows the results of the experi-863

ments conducted on OntoNotes5. Our method IS3864

achieves improvements over the previous SOTA865

ranging from 5.47% to 10.52% in MarcoF1 score,866

and 3.89% to 6.53%, under four settings (FG-1-PG-867

1, FG-2-PG-2, FG-8-PG-1, and FG-8-PG- 2) of the868

OntoNotes5 dataset.869

The previous method exhibits a rapid decrease in870

probability distribution with increasing incremental871

steps, coinciding with a decline in the F1 score. In872

contrast, our approach IS3 effectively mitigates873

the model’s penalization of old entities, thereby874

maintaining good performance.875

Table 5: Comparisons with state-of-the-art methods on
MAVEN. The best results are highlighted in bold and
the second best results are underlined.

Methods
MAVEN

AT Ā

SEQ 3.69 ± 0.17 11.75 ± 0.13

SelfTrain 35.33 ± 0.41 45.42 ± 0.76

ExtendNER 13.81 ± 0.56 24.92 ± 0.74

CFNER 22.74 ± 1.52 34.77 ± 1.38

DLD 14.18 ± 0.37 24.98 ± 0.43

RDP 28.76 ± 2.44 38.01 ± 1.09

OCILNER 21.70 ± 1.77 30.13 ± 0.75

ICE_PLO 39.01 ± 0.51 44.02 ± 0.96

ICE_O 38.16 ± 1.26 43.43 ± 1.31

CPFD 27.28 ± 1.39 41.31 ± 1.31

IS3 (Ours) 40.15 ± 0.38 48.16 ± 0.16
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Figure 9: The F1 score and probability distributions of
class "DATE" in OntoNotes5 with incremental steps.

Table 6: The comparison of training time and trainable
parameters for each task on OntoNotes5.

# Time (Min) # Trainable Params each Task

SEQ 150 109M
SelfTrain 276 109M

ExtendNER 182 109M
CFNER 512 109M

DLD 158 109M
RDP 188 109M

OCILNER 420 109M
ICE 126 28K

CPFD 282 109M
Ours 155 109M
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Table 7: Comparisons with state-of-the-art methods on OntoNotes5. The best results are highlighted in bold and the
second best results are underlined.

Dataset Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā

OntoNotes5

FT 1.65 ± 0.11 12.91 ± 0.41 4.49 ± 0.44 20.69 ± 0.25 1.42 ± 0.08 12.41 ± 0.38 3.97 ± 0.37 21.45 ± 0.28

SelfTrain 38.32 ± 5.29 47.07 ± 1.67 52.23 ± 0.43 56.14 ± 0.88 38.26 ± 3.44 49.31 ± 2.92 51.71 ± 1.39 58.51 ± 1.04

ExtendNER 28.62 ± 2.42 42.20 ± 2.16 45.05 ± 0.61 52.30 ± 1.03 25.71 ± 5.67 40.34 ± 3.64 44.82 ± 2.42 55.25 ± 1.58

CFNER 44.76 ± 0.28 50.76 ± 1.61 49.29 ± 2.25 55.94 ± 1.37 46.81 ± 0.99 54.91 ± 0.69 51.41 ± 2.21 60.41 ± 0.43

DLD 22.22 ± 5.38 38.47 ± 4.73 44.88 ± 0.78 51.91 ± 1.15 25.25 ± 1.69 41.43 ± 1.01 44.53 ± 1.66 55.17 ± 1.18

RDP 38.25 ± 5.02 48.14 ± 2.60 48.55 ± 3.54 54.81 ± 2.57 39.31 ± 4.29 52.28 ± 3.11 50.34 ± 1.86 59.89 ± 0.83

OCILNER 14.91 ± 4.39 24.72 ± 3.21 26.31 ± 2.38 35.96 ± 1.76 19.39 ± 2.98 30.41 ± 2.98 23.28 ± 4.21 30.27 ± 4.46

ICE_PLO 39.69 ± 0.36 43.76 ± 0.16 43.81 ± 0.34 46.38 ± 0.36 42.69 ± 0.09 46.95 ± 0.21 44.66 ± 0.61 47.72 ± 0.61

ICE_O 38.87 ± 0.37 43.51 ± 0.23 40.82 ± 0.35 44.71 ± 0.28 45.98 ± 0.28 49.11 ± 0.49 48.01 ± 0.49 49.91 ± 0.57

CPFD 33.44 ± 1.18 44.73 ± 0.69 43.48 ± 0.72 50.79 ± 1.05 41.77 ± 2.79 52.46 ± 1.02 48.36 ± 2.35 58.60 ± 1.99

IS3 (Ours) 50.23 ± 0.94 54.65 ± 0.84 57.23 ± 1.19 58.25 ± 0.56 56.11 ± 1.15 61.44 ± 0.11 62.23 ± 0.10 66.01 ± 0.74
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(b) i2b2 (FG-2-PG-2)
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(c) i2b2 (FG-8-PG-1)
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(e) OntoNotes5 (FG-1-PG-1)
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(f) OntoNotes5 (FG-2-PG-2)
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(g) OntoNotes5 (FG-8-PG-1)
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Figure 10: Comparison of the step-wise Macro F1 score on i2b2 and OntoNotes5.
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Figure 11: The T-SNE visualization of the feature representations on ExtendNER and our method. Our approach
IS3 greatly mitigates O2E and E2O, resulting in good discrimination between old and new entities.
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