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ABSTRACT

Transfer learning typically involves loading pre-trained weights as an initializa-
tion, followed by fine-tuning on a downstream task. As pre-trained models be-
come ever larger, this procedure is becoming prohibitively expensive, as we are
forced to re-use the pre-trained architecture for fine-tuning. This procedure also
precludes combining multiple pre-trained models that learn complementary infor-
mation. Moreover, alternatives such as knowledge distillation do not reflect that
we wish to transfer aspects of the pre-trained representation that are most rele-
vant to the downstream task. To address these challenges, we introduce Adaptive
Feature Transfer (AFT). Instead of transferring weights, AFT operates purely on
features, thereby decoupling the choice of the pre-trained model from the possibly
smaller downstream model. AFT (1) enables transfer from multiple pre-trained
models, even over multiple modalities, with minimal training overhead and no
inference overhead; (2) selectively transfers the information in the pre-trained
features most relevant for the downstream task, through a prior that favors low
mutual information between the downstream inputs and features given the pre-
trained features; (3) performs feature transfer in an efficient kernel formulation
that prioritizes the most relevant degrees of freedom. Empirically, AFT delivers a
substantial boost in performance across diverse vision, language, and multi-modal
datasets, relative to both standard transfer learning and knowledge distillation with
the downstream model. Anonymous code for reproducing our results are available
at https://anonymous.4open.science/r/aft-6C30.
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(c) Scalability with pre-trained model performance

Figure 1: Adaptive Feature Transfer (AFT) enables compute-efficient transfer learning from an
arbitrary set of pre-trained models into a single downstream model, significantly outperforming
competing methods including Knowledge Distillation (KD) and B-Tuning (You et al., 2022) when
averaged over (a) 6 vision tasks and (b) 8 NLP tasks. (c) AFT performance correlates uniquely well
with the quality of the pre-trained features, as measured by the linear probe accuracy. The marker
size indicates pre-trained model size, ranging from 87M to 2.7B.

1 INTRODUCTION

Despite its increasing importance, transfer learning methodology has not kept up with the demands
of modern deep learning. It remains the standard practice to simply start with a pre-trained parameter
vector and then fine-tune on downstream data with the same architecture. As pre-trained models
continue to grow in size (Bommasani et al., 2021; Brown et al., 2020; Dosovitskiy et al., 2020; Zhai
et al., 2022), the computational burden of fine-tuning them drastically escalates to the point that
many practitioners do not possess the resources to fine-tune state-of-the-art models in vision and
language. Furthermore, this approach precludes transferring from multiple pre-trained models that
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learn complementary information due to different pre-training strategies, when a variety of distinctly
pre-trained models have become available in domains such as computer vision (Oquab et al., 2023;
Radford et al., 2021; Kolesnikov et al., 2020; Chen et al., 2020) and language (Devlin et al., 2018;
Sanh et al., 2020; Touvron et al., 2023).

To address these limitations, we propose Adaptive Feature Transfer (AFT), a highly efficient method
to transfer from an arbitrary set of pre-trained models into a single downstream model within the
compute budget of training only the downstream model. Based on the observation that the fea-
tures from a well-pretrained models are likely to contain information highly relevant to downstream
predictions, AFT introduces an informative prior favoring low mutual information between the
downstream inputs and features given the pre-trained features. AFT then efficiently optimizes it
by exploiting a kernel formulation of the objective. This approach empowers AFT to perform cross-
architecture transfers and assimilate complementary information from multiple pre-trained models.

Across multiple vision, language, and multi-modal datasets, we show AFT delivers a substantial
performance improvement compared to both standard transfer learning (STL) and alternatives such
as Knowledge Distillation and B-Tuning (You et al., 2022). Moreover, we find AFT exhibits a high
correlation between its performance and the quality of pre-trained features, measured by their linear
probe accuracies, and a strong ability to harness complementary information learned by multiple
pre-trained models (Figure 1).

2 RELATED WORK

Transfer learning Standard transfer learning proceeds by loading a pre-trained parameter vector
as the initialization for parameters θ of a downstream model with the same architecture, followed
by updating θ by minimizing the downstream loss L(θ), known as fine-tuning (Zhuang et al., 2019).
This simple approach has enabled state-of-the-art performances on a wide range of vision (Doso-
vitskiy et al., 2020; Oquab et al., 2023; He et al., 2015) and language tasks (Devlin et al., 2018;
Touvron et al., 2023). To extract additional useful information from the pre-trained model, Shwartz-
Ziv et al. (2022) propose a Bayesian transfer learning approach. In addition to using the pre-trained
initialization, this approach uses an approximate posterior for the pre-training data as an informative
prior p(θ) for downstream learning, leading to improved performance across several vision datasets.
Similar to standard transfer learning, this approach restricts the downstream model to have the same
architecture as the pre-trained model, since it requires evaluating the approximate posterior of the
pre-trained model at the downstream parameters θ. Conceptually, the Bayesian transfer learning per-
spective points to a natural possibility of transferring across architectures or from many pre-trained
models. This can be done by defining an informative prior that similarly facilitates the transfer of
information learned by the pre-trained models without requiring the downstream model to have the
same architecture.

Knowledge distillation Knowledge Distillation (KD) (Hinton et al., 2015) is a method that can be
applied to compress a large model, referred to as the teacher model, to a smaller model, referred to
as the student model, with the goal of minimizing performance degradation (Wang & Yoon, 2020).
Traditionally, KD starts with a teacher T trained on a dataset D and then trains the student S to
match the predictions of the teacher on the same dataset to achieve model compression. In the
setting of transfer learning, this version of KD is generally not suitable for training a student to
perform a novel downstream task, since the teacher does not predict the downstream targets (e.g.
the classes may be different) and we therefore don’t wish to match the student’s prediction to the
teacher’s. Instead, we focus on the version of KD which trains the student to predict the teacher’s
features ϕT , such as through a learned linear transformation V applied to the student’s feature ϕS
under a regression objective Ex∼D

[
∥ϕT (x)− V ϕS(x)∥22

]
, where V can account for the difference

in dimensionality (Heo et al., 2019a; Huang & Wang, 2017; Heo et al., 2019b; Gu et al., 2023; Ahn
et al., 2019). This procedure can be extended to use multiple teachers by simultaneously minimizing
the sum of multiple KD objectives each with a different teacher, as proposed in Liu et al. (2020); Wu
et al. (2021), equivalent to simultaneously predicting the concatenation of the teachers’ features.

While KD is a natural candidate for model compression, its objective is fundamentally misaligned
with the goal of transfer learning. Ahn et al. (2019) show that the feature space KD objective has an
information-theoretic interpretation as minimizing H(ϕT |ϕS) the conditional entropy of the teacher
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features given the student features, which penalizes any information learned by the teacher but not
by the student. Since the teacher was trained on a related but different pre-training task, we should
only aim to transfer information useful for performing the downstream task, rather than compressing
all information learned by the teacher into the student irrespective of its downstream relevance.

Multi-Source Transfer Learning Lee et al. (2019) propose to learn a classifier defined as a
weighted combination of frozen pre-trained features, where the weights are derived from non-linear
maximal correlation analysis. Chang et al. (2022) uses a mixture of experts (MoE) model to com-
bine complementary information across different models and datasets to address the issue of data
scarcity in material sciences. These methods do not reduce the inference cost with large pre-trained
models. Gu et al. (2023) proposes to transfer features from the teachers to the students layer by
layer, allowing for multiple teachers and different architectures .You et al. (2022) proposes Bayesian
Tuning (B-Tuning) to efficiently transfer from heterogeneous pre-trained models by encouraging
the fine-tuned model to predict the approximate posterior predictive mean of a linear model with
pre-trained feature extractors, a low dimensional projection of the pre-trained features. In addition,
several works propose to rank and select pre-trained models or features for transferring to a specific
downstream task (You et al., 2022; Fumero et al., 2023; Deshpande et al., 2021). These methods
are complementary to and can be used together with our method, which aims to maximize transfer
performance once a set of pre-trained models is chosen.

3 OUR METHOD: ADAPTIVE FEATURE TRANSFER

We now introduce Adaptive Feature Transfer (AFT), a method that enables transfer learning from a
set of pre-trained models of arbitrary sizes and architectures into a single downstream model, with
negligible compute overhead compared to only training the downstream model.

3.1 CONSTRUCTING AN INFORMATIVE PRIOR FROM PRE-TRAINED FEATURES

The core idea of AFT is to impose an informative prior on the downstream learning to favor making
predictions based on information already present in the pre-trained features, as they are highly likely
to contain useful knowledge for the downstream task. Specifically, let θ ∈ RP be the downstream
model parameters, a random variable X ∈ Rdin be the downstream inputs, Φ = ϕθ(X) ∈ Rdϕ
be the features of the downstream model, Y = WΦ ∈ Rdout be the downstream model outputs,
and Ψ = ψ(X) ∈ Rdψ be some fixed pre-trained features, formed by concatenating the last layer
features from an arbitrary number of pre-trained. We encode our preference with a prior that favors
low mutual information between downstream features Φ and the input X conditioned on Ψ,

p(θ) ∝ exp(−βI(Φ;X|Ψ)), (1)

where the I(Φ;X|Ψ) measures information about the input used by the model to generate down-
stream features Φ that is not present in the pre-trained features Ψ and β > 0 controls the strength of
this prior. The mutual information is given by

I(Φ;X|Ψ) = H(Φ|Ψ)−H(Φ|X,Ψ) = EΦ,Ψ[− log p(Φ|Ψ)] + c ≤ EΦ,Ψ[− log qρ(Φ|Ψ)] + c,
(2)

where H(Φ|X,Ψ) is some constant c since Φ is deterministic given X and we used a a variational
distribution qρ(Φ|Ψ) with variational parameters ρ to approximate the inaccessible conditional den-
sity p(Φ|Ψ) and bound the mutual information.

We then perform Maximum A Posteriori (MAP) estimation, which minimizes the resulting bound
on the negative log posterior, equal to L(θ) + βR(θ), where L(θ) is the unregularized loss (e.g.
cross-entropy loss) and R(θ) is the bound on the mutual information given by

R(θ) = min
ρ

EΦ,Ψ[− log qρ(Φ|Ψ)], (3)

where the expectation can only be estimated using training samples. The effect of optimizing
this objective is to maximize the downstream data fit while minimizing the information in down-
stream features Φ that cannot be decoded from the pre-trained features Ψ via the map qρ(Φ|Ψ),
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after optimizing for variational parameters ρ. We consider a simple Gaussian parameterization
qρ(Φ|Ψ) = N (Φ|ρΨ, I), where ρ : Rdψ → Rdϕ is an affine transformation, which leads to:

R(θ) = min
ρ

EΦ,Ψ

[
∥Φ− ρΨ∥2

]
, (4)

after ignoring some θ−independent constants. Since the minimization over the offsets in the affine
transformation is equivalent to subtracting the mean from both Φ and Ψ, we will henceforth assume
that Φ and Ψ have been pre-processed to have zero-mean and assume ρ ∈ Rdϕ×dψ to be a linear
transformation. Contrasting this objective with the KD objective, expressed in the current notations:

RKD(θ) = min
V

EΦ,Ψ

[
∥V Φ−Ψ∥2

]
, (5)

with V ∈ Rdψ×dϕ , we see that minimizing the KD objective requires the downstream Φ features
to contain all information needed to predict the pre-trained features Ψ, while our objective R(θ)
only requires the downstream features Φ to lie in the span of the pre-trained features Ψ, allowing
for discarding information in Ψ. Therefore, when optimized together with the training loss, our
objective R(θ) makes it much easier for the downstream model to selectively transfer only the task-
relevant features from pre-training.

3.2 IMPROVING THE OBJECTIVE USING THE KERNEL

Estimating the regularization term R(θ) requires handling both optimization and statistical chal-
lenges: 1) since evaluating R(θ) requires finding the optimal variational parameters ρ, which
changes every time we update θ, we want to maximally simplify the optimization problem for ρ,
and 2) since we wish to estimate the true R(θ), or equivalently the true I(Φ, X|Ψ), whose exact
value is given by an expectation over the true rather than empirical distribution of Φ and Ψ, we want
to avoid over-fitting to the training data when optimizing for ρ when we replace the expectation in
Eq. 4 with its empirical estimate.

In addition to the simplifying assumption on the form of qρ(Φ|Ψ), we now show how to exploit a
kernel formulation of the objective to further mitigate both challenges. Recall that the behavior of
a linear model f(·) = w⊤ϕ(·) is completely characterized by its kernel kΦ(x, x′) = ϕ(x)⊤ϕ(x′).
From a kernel perspective, the existence of ρ ∈ Rdϕ×dψ such that Φ = ρΨ is exactly equivalent to
the existence of ρ̃ ∈ Rdϕ×dψ such that kΦ = kρ̃Ψ. Therefore, in AFT we replace the ℓ2 distance
between the features with a distance between their kernel functions

RAFT(θ) = min
ρ

√
E
[
(kΦ(X,X ′)− kρΨ(X,X ′))

2
]
, (6)

where X and X ′ are drawn from the input distribution. As with the previous objective in Eq. 4,
this objective achieves a minimum value of 0 if and only if each ϕi(·), i = 1, ..., dϕ, are in the span
of {ψi(·)}

dψ
i=1. However, the kernel formulation has the key advantage that part of the optimization

problem over ρ is done automatically since the kernel is invariant under any orthogonal transforma-
tion of the features, implying that we only need to optimize ρ up to an orthogonal transformation,
significantly reducing the complexity of the inner optimization.

To prevent over-fitting the variational parameters ρ to the empirical distribution of the features, we
parameterize ρ as a diagonal matrix diag(σ(s)), i.e. ρii = σ(si), where σ is the sigmoid func-
tion and s is a dψ-dimensional vector. Note the ability to use a diagonal ρ is a distinct advan-
tage of the kernel formulation, which does not require the features to have the same dimensions.
Using this parameterization, we greatly reduce the number of variational parameters to optimize,
while retaining the ability for the model to weigh each dimension of the pre-trained features ac-
cording to their task-relevance. Furthermore, thanks to using the kernel formulation, we are ef-
fectively searching over all ρ′ = Uρ = Udiag(s), where U is any orthogonal matrix, that map
between pre-trained and downstream features, without actually optimizing the dense matrix U. Fi-
nally, we normalize the features to have unit ℓ2 norm before computing the respective kernels, i.e.,
kΦ(x, x

′) := ϕ(x)⊤ϕ(x′)/∥ϕ(x)∥∥ϕ(x′)∥, to reduce the variance in the entries of the kernel. In Sec-
tion 4.5, we compare AFT with its other variants and show that both using the kernel formulation
and learning a diagonal ρ indeed improves its performance.
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Stochastic kernel distance estimation For a practical implementation, we estimate

δ(θ, ρ) :=

√
E
[
(kΦ(X,X ′)− kρΨ(X,X ′))

2
]

with a mini-batch estimate δ̂(θ, ρ) :=√
1
B2

∑B
i=1

∑B
j=1 (kΦ(xi, xj)− kρΦ(xi, xj))

2
= 1

B

∥∥∥KΦ
batch −KρΨ

batch

∥∥∥
F
, where KΦ

batch and

KρΨ
batch are kernel matrices evaluated on a batch of B inputs. We then perform gradient-based

optimization jointly over (θ, ρ). Algorithm 1 details the training procedure using the SGD optimizer
for simplicity. Note we compute and cache the pre-trained features on the training set once and
simply retrieve them during training without spending additional time to compute them.

Algorithm 1 Adaptive Feature Transfer (AFT)
Require: Pre-computed pre-trained features, downstream data, downstream model fθ = W ◦ ϕθ,

downstream loss function L, batch size B, learning rates (η1, η2), regularization coefficient β
1: for each mini-batch (Xbatch ∈ RB×din , Ybatch ∈ RB×dout ,Ψbatch ∈ RB×dψ ) do
2: Compute features Φbatch = ϕθ(Xbatch) ∈ RB×dϕ and outputs Ŷbatch = ΦbatchW

⊤

3: Scale pre-trained features Ψbatch ← Ψbatchρ
⊤

4: Subtract the mini-batch mean from Φbatch and Ψbatch and normalize each row
5: Compute B ×B mini-batch kernels KΦ

batch = ΦbatchΦ
⊤
batch,K

ρΨ
batch = ΨbatchΨ

⊤
batch

6: Compute mini-batch loss L̂(θ) = L(θ, Ybatch, Ŷbatch) and the kernel distance estimate:

δ̂(θ, ρ) =
1

B

∥∥∥KΦ
batch −KρΨ

batch

∥∥∥
F

7: Update θ and ρ using SGD:

θ ← θ − η1∇θ

(
L̂(θ) + βδ̂(θ, ρ)

)
, ρ← ρ− η2∇ρδ̂(θ, ρ)

8: end for

4 EXPERIMENTS

We evaluate our proposed method Adaptive Feature Transfer (AFT) across a variety of vision, lan-
guage, and multi-modal datasets and compare with standard transfer learning (STL), Knowledge
distillation (KD), and B-Tuning (You et al., 2022). All four methods start with the same pre-trained
initialization of the downstream model, except that AFT, KD, and B-Tuning additionally optimize
their respective regularization terms that enable transfer from one or multiple additional pre-trained
models. A hyperparameter β > 0 is tuned on validation performance to optimally weigh the regu-
larization term for each method. We include full experiment details, such as hyperparameter tuning
in the Appendix A. We report the mean and standard errors computed across 3 runs for each method.

4.1 IMAGE CLASSIFICATION

Effective transfer from SOTA vision foundation models We evaluate AFT’s ability to trans-
fer from state-of-the-art vision foundation models into commonly used downstream architectures,
including ViT-S (Dosovitskiy et al., 2020), MLP-Mixer-B (Tolstikhin et al., 2021), and ResNet-
50 (He et al., 2015). We initialize the downstream models with ImageNet-1K checkpoints for all
methods. In Figure 2a and 2b, we show performance when transferring from ViT-G DINOv2, the
largest model in the DINOv2 family with over a billion parameters, on CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), Oxford Flowers-102 (Nilsback & Zisserman, 2008),
Oxford-IIIT Pets (Parkhi et al., 2012), Describable Textures Dataset (DTD) (Cimpoi et al., 2014)
and Food-101 (Bossard et al., 2014) datasets. We find AFT significantly boosts the performance of
all three models, reducing the error by an average of over 15% relative to STL performance (Figure
2a), and considerably outperforms KD and B-Tuning in most cases as well as on average.

Transfer from multiple pre-trained models In Figure 2c, we show the performance on
CIFAR-100 when transferring from various vision foundation models, including BiT ResNet-
101x3 (Kolesnikov et al., 2020) (denoted BiT), CLIP ViT-G (Radford et al., 2021) (denoted CLIP)
and ViT-G DINOv2 (Oquab et al., 2023) (denoted DINO). AFT yields large improvements over STL
and significantly outperforms all other competing methods except for ResNet-50, where KD is better
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Figure 2: Evaluation on 6 vision datasets using ViT-S, MLP-Mixer-B, and ResNet-50 as downstream
models. (a) AFT achieves a significantly lower normalized error, averaged across 6 datasets and 3
downstream models when transferring from ViT-G DINOv2. The error is normalized by the STL er-
ror before averaging. (b) Breakdown of unnormalized error for each downstream model and dataset.
(c) Effect of transfer from different pre-trained models and their combinations on CIFAR-100. AFT
achieves the best performance when combining features from multiple pre-trained models (DINO +
CLIP or BIT + DINO + CIP). (d) Downstream accuracy versus linear probe accuracy of pre-trained
features for AFT, B-Tuning, and KD, averaged across 3 downstream models on CIFAR-100. AFT
yields consistent performance gains as we improve the quality of the pre-trained features, showing
the highest correlation with the linear probe accuracy. The marker size represents the number of
parameters in the pre-trained models, ranging from 87 million to 2.7 billion.

by a small margin compared to AFT. AFT consistently achieves the best performance by transfer
from multiple pre-trained models such as DINOv2 + CLIP or BIT + DINOv2 + CLIP, suggesting
that AFT is leveraging complementary features learned by these models due to different inductive
biases, pre-training objectives, and pre-training data. For example, while CLIP is trained with a
contrastive objective for matching images to texts, DINOv2 is trained with pure self-supervision
without text information, and BiT is fully supervised and uses a ResNet architecture rather than a
ViT. Consequently, each model is likely to learn useful but different visual features that contain com-
plementary information relevant to the downstream task. On the other hand, combining pre-trained
features from multiple models can lead to rapid growth in the amount of redundant or irrelevant fea-
tures, necessitating an adaptive approach that can identify and only transfer the most relevant subset
for the task. In Section 4.4, we show AFT indeed adaptively reweights the features depending on
the pre-trained models provided. By contrast, in Figure 2c, we find that KD, which aims to distill all
information learned by the pre-trained models, is unable to benefit from using multiple of them.

Predictable performance scaling As AFT biases the final-layer linear predictor to use task-
relevant features from the pre-trained models, we expect its performance to correlate with the quality
of pre-trained features, as measured by their linear probe accuracy (accuracy of a linear classifier
using those features). Indeed, Figure 2d shows a strong correlation between the two, demonstrating
that 1) AFT is effective at transferring the kernel formed by the features of the pre-trained kernel,
and 2) AFT will achieve better performance with pre-trained models that learn more useful features
for the downstream task. As a result, we can predict for which pre-trained model(s) AFT will likely
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Figure 3: Evaluation on 8 language dataset using BERT Small and DistillBert as downstream mod-
els. (a) AFT achieves a significantly lower normalized error, averaged across 6 datasets and 2
downstream models when transferring from Flan-T5 Large. The error is normalized by the STL er-
ror before averaging. (b) Breakdown of unnormalized error for each downstream model and dataset.
(c) Downstream accuracy versus linear probe accuracy of pre-trained features for AFT, B-Tuning,
and KD, averaged across both downstream models on BoolQ. AFT yields consistent performance
gains as we improve the quality of the pre-trained features, showing the highest correlation with the
linear probe accuracy. The marker size is proportional to the number of parameters in the pre-trained
models, ranging from 61M to 14B.

achieve the best performance, by evaluating their linear probe accuracies, greatly simplifying the
selection of the pre-trained model(s) in practice. Indeed, we could have correctly predicted in every
setting that transferring from ViT DINOv2 + ViT CLIP would outperform transferring from either
by noting that the combination of both models has a higher linear probe accuracy than either model.
By comparison, other methods’ performance is less well correlated with the linear probe accuracy,
which explains why they don’t benefit from transferring multiple models and provides strong ev-
idence to our claim that AFT is a superior approach to transfer learning that should scale better
as we use larger and better pre-trained models. While the linear probe accuracy of a sufficiently
large pre-trained model can exceed the accuracy of AFT, the former is only efficient to train (via
logistic regression) but still expensive to deploy, as it requires inference with the original pre-trained
model, and is therefore not a viable alternative to the methods considered here. For example, the
linear probe accuracy of ViT-L CLIP roughly matches AFT accuracy when transferred to ViT-S on
CIFAR-100, but ViT-L CLIP has 428M parameters, 20 times larger than ViT-S.

4.2 NATURAL LANGUAGE PROCESSING

We explore transferring from some of the strongest open-source large language models, including
GPT-2 (Radford et al., 2019), Flan-T5 (Chung et al., 2022), and LLaMA 2 (Touvron et al., 2023),
into much smaller ones: BERT Small (Devlin et al., 2018) and DistillBERT (Sanh et al., 2020). In
language models, there is no exact analog of last-layer features at the input level since the model
maintains an embedding for each token. As such, we follow the common practices for extracting
input (i.e. sequence) level features for the following models used in our evaluation as follows: we
use the embedding of the [CLS] token for BERT models, and the decoder’s embedding of the last
token for GPT-3, Flan-T5, and LLaMA.
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In Figure 3a and 3b, we show the performance of AFT and competing methods at transferring from
Flan-T5 Large to BERT Small and DistillBERT on the following 8 datasets: Large Movie Review
(IMDB) (Maas et al., 2011), BoolQ (Wang et al., 2019), MNLI (Williams et al., 2018), SST-2
(Socher et al., 2013), MRPC (Dolan & Brockett, 2005), QQP (Wang et al., 2018), QNLI (Rajpurkar
et al., 2016) and RTE Wang et al. (2018). AFT significantly outperforms the competing methods.

Similar to the case for vision, we find AFT’s performance scales with a strong correlation with the
linear probe accuracy of pre-trained features, as shown in Figure 3c, whereas other methods have
a much lower correlation. In addition, we find using AFT with pre-trained language models with
instruction-tuning, like Flan-T5 and LLaMA Chat, led to the best performance after transfer, in line
with their superior zero-shot question answering capabilities (Chung et al., 2022).

Unlike in vision datasets, we find combining multiple pre-trained models often leads to no improve-
ment in AFT’s performance, as shown in Figure 3c. However, this behavior is not surprising since
combining these pre-trained models does not increase the linear probe accuracy either, suggesting
there is little complementary and non-overlapping information learned between these pre-trained
language models. A natural explanation here is that these pre-trained large language models are all
highly similar to each other in the pre-training datasets, objectives, and architectures, since they are
all transformer-based generative models trained predominantly with next or masked token prediction
on a similar distribution of text from the internet.

4.3 MULTI-MODALITY

The capability to efficiently transfer from multiple models naturally positions AFT for use in multi-
modal applications. In these settings, the architecture typically includes modality-specific sub-
components, like an image encoder and a text encoder. Since pre-trained models with strong perfor-
mance often exist for each individual modality, we expect AFT can boost multi-modal performance
by transferring the complementary, modality-specific features learned by these models. To illus-
trate this possibility, we consider SNLI-VE (Xie et al., 2019; 2018), a challenging visual entailment
dataset where the objective is to determine if a given text accurately corresponds to an image, with
the possible classes being positive, negative, or neutral. We use the smallest version of CLIP as the
downstream model, which consists of a ResNet-50 image encoder and a transformer text encoder,
initialized to the trained checkpoint. From the image features ϕI(xI) and text features ϕT (xT ), we
construct a classifier fθ(xI , xT ) =Wϕ(xI , xT ) whose features ϕ(xI , xT ) is given by the (flattened)
tensor product ϕI(xI)⊗ ϕT (xT ), which represent the pairwise interactions between the image and
text features and enable computations such as ϕI(xI)⊤ϕT (xT ), a measure of semantic similarity
between the image and text due to the CLIP pre-training. In Table 1, we find that AFT can improve
CLIP’s performance on this task by simultaneously transferring from a ViT-L trained with DINOv2
and LLaMA 13B and again outperforms KD.

Table 1: AFT improves CLIP’s accuracy on SNLI-VE by transfer from DINOv2 and LLaMA 13B.

Method STL KD AFT

SNLI-VE Acc. 73.69±0.28 74.05±0.05 74.39±0.18

4.4 VISUALIZING LEARNED FEATURE WEIGHTING IN ρ

In Figure 4a, we show the distribution of learned feature weights ρi at convergence on CIFAR-
100 with ViT-S as the downstream model and pre-trained models from the set {BiT, DINO, CLIP}.
AFT indeed learns non-uniform weighting for individual features (ρi is initialized to 0.5 for all i).
When transferring from all three models, AFT learns to upweight CLIP and DINO features and
downweight BiT features, in line with our finding in Figure 2c that adding BiT to DINO and CLIP
features did not improve further transfer performance.

In Figure 4b, we show the weights learned when we transfer from DINO and a random noise model
whose features contain no useful information and are sampled from N (0, Idnoise), where dnoise =
2048 is the feature dimension of the noise model. AFT successfully assigns much smaller weights
to the noise features so that the performance is unaffected by their presence, as shown in Figure 4c.
By contrast, KD performance quickly degrades to near STL level as we introduce the noise features.
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Figure 4: (a) Distribution of learned feature weights ρ for each pre-trained model. The legend shows
which pre-trained models are simultaneously used. (b) Distribution of ρ in the presence of random
noise features. (c) AFT performance as a function of noise dimensions.

4.5 ABLATION EXPERIMENTS

We investigate the impact of key design choices in AFT on its performance on CIFAR-100 and
BoolQ dataset. We compare AFT with four other variants where a) we do not use a kernel formula-
tion and directly use the objective listed in Eq. 4 as a regularization, b) the ability to learn a diagonal
ρ is disabled, causing it to default to identity, c) we replace the linear kernel k(x, x′) = ϕ(x)⊤ϕ(x′)

with radial basis function (RBF) kernel k(x, x′) = exp
(
−∥ϕ(x)− ϕ(x′)∥2

)
, or d) we perform bi-

level optimization over θ and ρ by performing 5 inner updates for ρ per update of θ. We find using
the kernel formulation and learning the feature weights ρ are essential to AFT’s performance, while
the use of alternative kernels such as the RBF kernel and bi-level optimization does not impact the
performance in any significant way.

We also investigate the effectiveness of AFT in data-scarce scenarios by sub-sampling the CIFAR-
100 and BoolQ training set. AFT remains the most effective method cross training set sizes.
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Figure 5: (a) Ablation studies: using the kernel and learning ρ are the most essential contributors to
AFT’s performance. (b) AFT is the best performing method across data set sizes.

5 CONCLUSION

Our work addresses an important and timely problem in transfer learning: how to efficiently trans-
fer from the variety of pre-trained models, each requiring increasingly large compute budgets to
directly fine-tune and perform inference with, into a single smaller downstream model. To do so,
we propose AFT, a novel method for transfer learning that accurately reflects the reality that not all
the pre-trained features will be relevant to the downstream task. As a result, AFT is fundamentally
more well-suited for transfer learning than Knowledge Distillation, which transfers information ir-
respective of its relevance to the downstream task. Through an extensive evaluation with various
state-of-the-art pre-trained models and downstream models on 15 datasets across vision, language,
and vision-language tasks, we show AFT significantly outperforms the competing methods across
the board and benefits considerably more from stronger pre-trained models.

We hope our work enables the community to more effectively leverage large pre-trained models that
have otherwise been prohibitively expensive to use.
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REPRODUCIBILITY STATEMENT

We provide a self-contained anonymous code base for reproducing all results at https://
anonymous.4open.science/r/aft-6C30. We also provide training details including the
hyperparameter grid, optimizer, and data preprocessing in Appendix A. We have carefully checked
that the method description presented in Section 3 correctly corresponds to our implementation.
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A TRAINING DETAILS

In all experiments, we tune the hyperparameter β for AFT, KD, and B-Tuning by holding out 10%
of the original training set and choosing the β that achieves the highest holdout accuracy. We
subsequently train with that β on all of the training set and report test performance.

A.1 VISION EXPERIMENTS

We use the timm (Wightman, 2019) implementation for all vision models, their pre-trained check-
points, and data preprocessing pipelines. We do not use data augmentation in any experiment.

We use the Adam optimizer in all experiments and train for 50,000 steps with a batch size of 128
and a cosine lr decay schedule. We use a base learning rate of 1e − 4 for ViT-S and MLP Mixer-
B, and 1e − 3 for ResNet-50. We tune β ∈ {3, 10, 30} for AFT, β ∈ {0.1, 1, 10} for KD, and
β ∈ {1, 1e2, 1e3, 1e4} for B-Tuning. We use the Adam optimizer and a learning rate of 1e − 2 for
updating the vector s parameterizing the diagonal elements of ρ.

A.2 LANGUAGE EXPERIMENTS

We use the Hugging Face implementation of all the language models. We use the Adam optimizer
in all experiments and train for 50,000 steps with a batch size of 64 and a cosine lr decay schedule.
We use a base learning rate of 2e− 5 for both BERT Small and DistilBERT. We tune β ∈ {1, 3, 10}
for AFT, β ∈ {0.01, 0.1, 1} for KD, and β ∈ {1, 1e2, 1e3, 1e4} for B-Tuning. We use the Adam
optimizer and a learning rate of 1e−2 for updating the vector s parameterizing the diagonal elements
of ρ.

A.3 SNLI-VE EXPERIMENTS

We use the Hugging Face implementation of CLIP ResNet-50. We use the Adam optimizer in all
experiments and train for 1 epoch with a batch size of 64. We use a base learning rate of 1e − 5
for CLIP ResNet-50. We tune β ∈ {1, 3, 10} for AFT, and β ∈ {0.01, 0.1, 1} for KD. We use the
Adam optimizer and a learning rate of 1e− 2 for updating the vector s parameterizing the diagonal
elements of ρ.

A.4 EXTENDED RESULTS

Table 2: Unnormalized results for transfer to ViT-S in Figure 2c.

Method BiT CLIP DINO DINO+CLIP BiT+DINO+CLIP

KD 87.79±0.07 88.06±0.06 88.17±0.06 87.96±0.21 88.13±0.01

B-Tuning 88.01±0.05 88.57±0.06 88.54±0.11 88.66±0.13 88.67±0.04

AFT 88.25±0.09 88.56±0.06 88.88±0.06 89.23±0.10 89.14±0.00

Table 3: Unnormalized results for transfer to MLP-Mixer in Figure 2c.

Method BiT CLIP DINO DINO+CLIP BiT+DINO+CLIP

KD 86.21±0.05 86.63±0.13 86.42±0.11 86.55±0.27 86.40±0.06

B-Tuning 87.34±0.06 87.42±0.10 87.20±0.16 87.43±0.02 87.27±0.04

AFT 87.40±0.03 87.92±0.02 87.76±0.11 88.23±0.07 88.42±0.02
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Table 4: Unnormalized results for transfer to ResNet-50 in Figure 2c.

Method BiT CLIP DINO DINO+CLIP BiT+DINO+CLIP

KD 86.64±0.15 87.32±0.16 87.18±0.10 87.62±0.07 87.29±0.14

B-Tuning 85.57±0.10 85.42±0.04 85.49±NaN 85.06±0.05 85.19±0.11

AFT 86.17±0.05 86.78±0.07 86.91±0.09 87.18±0.04 87.08±0.10
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