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ABSTRACT

We introduce a novel optimal transport framework for probabilistic circuits (PCs).
While it has been shown recently that divergences between distributions repre-
sented as certain classes of PCs can be computed tractably, to the best of our
knowledge, there is no existing approach to compute the Wasserstein distance be-
tween probability distributions given by PCs. We consider a Wasserstein-type
distance that restricts the coupling measure of the associated optimal transport
problem to be a probabilistic circuit. We then develop an algorithm for computing
this distance by solving a series of small linear programs and derive the circuit
conditions under which this is tractable. Furthermore, we show that we can also
retrieve the optimal transport plan between the PCs from the solutions to these lin-
ear programming problems. We then consider the empirical Wasserstein distance
between a PC and a dataset, and show that we can estimate the PC parameters to
minimize this distance through an efficient iterative algorithm.

1 INTRODUCTION

The Wasserstein distance is a statistical distance metric corresponding to the objective value taken
by the optimal transport problem as proposed by Kantorovich’s optimal transport framework that,
given two probability measures, finds its optimal value at a coupling measure where the expected
distance between the original two measures is minimized (Kantorovich, 1942). Kantorovich’s op-
timal transport problem is a relaxation of Monge’s optimal transport problem, which requires that
the probability mass at each point in one distribution not be split up in transport to the second dis-
tribution (Monge, 1781). Computing such a distance has proven extremely useful, with applications
in generative modeling (Arjovsky et al., 2017), data privacy (Li et al., 2007), and distributionally
robust optimization (Rahimian & Mehrotra, 2022). However, computing the Wasserstein distance is
a highly intractable task for all but the simplest distributions.

Modeling probability distributions in a way that enables tractable computation of probabilistic
queries is of great interest to the machine learning community. Probabilistic circuits (PCs) (Choi
et al., 2020) provide a unifying framework for representing many classes of tractable probabilis-
tic models as computational graphs; within this framework, tractability of certain queries can be
guaranteed through imposing structural properties on the computational graph of the circuit. This
includes tractable marginal and conditional inference, as well as pairwise queries that compare two
circuits such as Kullback-Leibler Divergence and cross-entropy (Liang & Van den Broeck, 2017;
Vergari et al., 2021). However, to the best of our knowledge, there is no existing algorithm that
tractably computes the Wasserstein distance between two probabilistic circuits.

While algorithms for computing other statistical distance measures between PCs are well-
established, the Wasserstein distance offers a distinct advantage in many applications. Measures
such as KL-divergence and cross-entropy are unbounded between distributions with disjoint sup-
ports; conversely, the p-Wasserstein distance is always bounded for distributions with finite p-th
moments (Villani, 2008, p. 107). Computing the Wasserstein distance also provides a bound for
other statistical distance metrics such as the Prokhorov metric and the total-variation distance—we
suggest (Gibbs & Su, 2002) for more details. However, computing the Wasserstein distance is often
more intractable than other probabilistic queries such as the KL-divergence or cross-entropy due
to the inherent optimization problem required to be solved. In the case of Boolean distributions,
the 1-Wasserstein distance is intimately related to the total-variation (TV) distance; recent work has
shown that the latter is intractable to compute exactly, but that efficient approximation algorithms
exist (Bhattacharyya et al., 2023; Feng et al., 2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This paper focuses on computing (or bounding) the Wasserstein distance and optimal transport plan
between (i) two probabilistic circuits and (ii) a probabilistic circuit and an empirical distribution.
For (i) we propose a Wasserstein-type distance that upper-bounds the true Wasserstein distance and
provide an efficient and exact algorithm for computing it between two circuits (Section 3). For
(ii) we propose a parameter estimation algorithm for PCs that seeks to minimize the Wasserstein
distance between a circuit and an empirical distribution (Section 4). We empirically evaluate our
proposed methods on randomly generated PCs as well as on a benchmark dataset (Section 5).

2 PRELIMINARIES

We use capital letters (X) to denote random variables and lowercase letters (x) to denote their
assignments. Boldface denotes a set of random variables and their assignments respectively (e.g., X
and x).

2.1 WASSERSTEIN DISTANCES AND OPTIMAL TRANSPORT

Let P and Q be two probability measures on metric space Rn. For p ≥ 1, the p-Wasserstein distance
between P and Q is defined as:

Wp
p(P,Q) = inf

γ∈Γ(P,Q)
Eγ(x,y)[∥x− y∥pp] (1)

where Γ(P,Q) denotes the set of all couplings which are joint distributions whose marginal distri-
butions coincide exactly with P and Q. That is, the following holds for all γ ∈ Γ(P,Q):

P (x) =

∫
Rn

γ(x,y)dy, Q(y) =

∫
Rn

γ(x,y)dx (2)

Here, the Wasserstein objective of some (not necessarily optimal) coupling refers to the expectation
inside the infimum in Equation 1 taken over that coupling, and the Wasserstein distance between
two distributions refers to the value taken by the Wasserstein objective for the optimal coupling. It
can be shown that there is always a coupling that obtains the infimum above (Villani, 2008). Such
optimal coupling γ∗ induces a transport plan x 7→ γ∗(x, .). If the coupling is deterministic, this is
called a transport map x 7→ T (x) where T (x) is the support of γ∗(x, .).

2.2 PROBABILISTIC CIRCUITS

Many tractable probabilistic models—including arithmetic circuits (Darwiche, 2003), sum-product
networks (Poon & Domingos, 2011), cutset networks (Rahman et al., 2014), and more—can be
understood through a unifying framework of probabilistic circuits (Choi et al., 2020).
Definition 1 (Probabilistic circuit). A probabilistic circuit (PC) C over a set of discrete or contin-
uous random variables X is a parameterized, rooted directed acyclic graph (DAG) with three types
of nodes: sum, product and input nodes. Each sum node n has normalized parameters θn,c for each
child node c, and each input node n is associated with function fn that encodes a univariate prob-
ability distribution over one of the random variables Xi ∈ X, also called its scope sc(n). The set
of child nodes for an internal node (sum or product) n is denoted ch(n), and the sub-circuit rooted
at any node n parameterizes a probability distribution pn(x) over its scope sc(n) =

⋃
c∈ch(n) sc(c)

defined as follows:1

pn(x) =


fn(x) if n is an input node,∏

c∈ch(n) pc(x) if n is a product node,∑
c∈ch(n) θn,cpc(x) if n is a sum node.

Probabilistic circuits admit exact and efficient computation of many probabilistic inference queries,
enabled by enforcing certain structural constraints. In particular, throughout this paper we assume
two properties, smoothness and decomposability, which enable tractable computation of marginal

1Below, we implicitly project x onto sc(n) by only considering the dimensions that correspond to random
variables in the node’s scope
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and conditional queries. A PC is smooth if every sum node n ∈ C satisfies the following:
∀ni ∈ ch(n), sc(ni) = sc(n) (i.e., the children of the sum node have the same scope as the
parent); it is decomposable if every product node n ∈ C satisfies the following: ∀ni, nj ∈ ch(n),
sc(ni)

⋂
sc(nj) = ∅ (i.e., the children of the product node have disjoint scopes).

3 OPTIMAL TRANSPORT BETWEEN PROBABILISTIC CIRCUITS

We now consider the problem of computing Wasserstein distances and optimal transport plans be-
tween distributions represented by probabilistic circuits. For notational simplicity, suppose P (X)
and Q(Y) are two PCs defining probability measures on a metric space, with a bijective mapping
between variables in X and those in Y; w.l.o.g., let Xi and Yi map to each other. Moreover, we
assume that the univariate input distributions in the PCs allow constant-time computation of the
Wasserstein distance, following the standard assumption of tractability of input distributions for
tractable inference on PCs. In particular, this is the case for p-Wasserstein distance between cate-
gorical distributions and for the 2-Wasserstein distance between Gaussian distributions.

Unfortunately, even with the above assumptions, computing the Wasserstein distance between prob-
abilistic circuits is computationally hard.
Theorem 1. Suppose P and Q are probabilistic circuits over n Boolean variables. Then computing
the∞-Wasserstein distance between P and Q is coNP-hard.

In fact, the above is true even when the PCs satisfy stronger structural constraints (determinism
and structured decomposability) that enable tractable inference of hard queries such as maximum-
a-posteriori (MAP) Choi & Darwiche (2017) and entropy (Vergari et al., 2021) and even closed-
form maximum-likelihood parameter estimtion. At a high level, the proof proceeds by reducing
from the problem of deciding consistency of two OBDDs (a type of deterministic and structured-
decomposable circuits) which is NP-hard (Meinel & Theobald, 1998, Lemma 8.14). In particular,
given the two OBDDs, we can construct two deterministic and structured-decomposable PCs in
polynomial time such that the input OBDDs are consistent iff W∞ between the PCs is not 1. We
refer to Appendix C.1 for a detailed proof.

Theorem 1 shows that computing the∞-Wasserstein distance between two PCs is computationally
hard. Whether computing Wp for some other fixed p (such as p = 1 or 2) is NP-hard is still an open
question—although there only exist efficient algorithms that bound this quantity between GMMs,
rather than compute it exactly (Delon & Desolneux, 2020; Chen et al., 2018)— however, we are
interested in efficiently computing or upper-bounding Wp for arbitrary p, including W∞. Thus,
to address this computational challenge, we consider a Wasserstein-type distance between PCs by
restricting the set of coupling measures to be PCs of a particular structure. Furthermore, we derive
the structural conditions on the input PCs required to construct such structure and find the parameters
that minimize the Wasserstein objective in time quadratic in the size of the input circuits.

3.1 CWp: A DISTANCE BASED ON COUPLING CIRCUITS

We propose a notion of coupling circuit between two compatible (see Definition 2 below) PCs,
and introduce a Wasserstein-type distance CWp which restricts the coupling set in Equation 1 to
be circuits of this form. We then exploit the structural properties guaranteed by coupling circuits,
namely smoothness and decomposability, to derive efficient algorithms for computing CWp and
associated transport plan.
Definition 2 (Circuit compatibility (Vergari et al., 2021)). Two smooth and decomposable PCs P
and Q over RVs X and Y, respectively, are compatible if the following two conditions hold: (i) there
is a bijective mapping ↔ between RVs Xi and Yi, and (ii) any pair of product nodes n ∈ P and
m ∈ Q with the same scope up to the bijective mapping are mutually compatible and decompose
the scope the same way—that is, if n and m have scopes X and Y and X↔ Y, then n and m have
the same number of children, and for each child of n with scope Xi there is a corresponding child
of m with scope Yi such that Xi ↔ Yi. Such pair of nodes are called corresponding nodes.

Note that circuit compatibility is necessary for existing tractable algorithms for pairwise queries
on PCs (e.g., computing divergences); however, a pair of arbitrary non-compatible circuits may
be transformed into two structured-decomposable circuits and then made compatible, albeit with
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X1 X2

×

P (X)

Y1 Y2

×

Q(Y)

COUPLE(P,Q)

COUPLE(X1,Y1) COUPLE(X2,Y2)

×

C(X,Y)

P1 P2

P (X)

θP1 θP2

Q1 Q2 Q3

Q(Y)

θQ1 θQ2 θQ3

COUPLE(P,Q)

COUPLE(P1, Q1) COUPLE(P1, Q2) COUPLE(P1, Q3) COUPLE(P2, Q1) COUPLE(P2, Q2) COUPLE(P2, Q3)

C(X,Y)

θ1,1
θ1,2 θ1,3 θ2,1 θ2,2 θ2,3

θ1,1 + θ1,2 + θ1,3 = θP1 θ2,1 + θ2,2 + θ2,3 = θP2

θ1,1 + θ2,1 = θQ1 θ1,2 + θ2,2 = θQ2 θ1,3 + θ2,3 = θQ3

Figure 1: Construction of coupling circuits rooted at corresponding nodes, along with the parameter
constraints for a coupled sum node. Product nodes couple children with corresponding scopes, and
sum nodes couple the Cartesian product of the children. Note that corresponding sum nodes need
not have the same number of children.

a worst-case exponential increase in circuit size (de Colnet & Mengel, 2021; Zhang et al., 2024).
Furthermore, compatibility does not require that the circuit structures are the same, only their hier-
archical scope partitioning; for example, the number of children of corresponding sum nodes is not
constrained (see Appendix A for an example). Lastly, current state-of-the-art PC learning algorithms
naturally allow us to learn compatible circuit structures—assuming we assign the bijective mapping
ourselves (Dang et al., 2020; Liu & Van den Broeck, 2021).
Definition 3 (Coupling circuit). A coupling circuit C between two compatible PCs P and Q with
scopes X and Y, respectively, is a PC with the following properties. (i) Each node r ∈ C is
recursively a coupling of a pair of nodes n ∈ P and m ∈ Q.2 (ii) Each node r ∈ C that is a coupling
of sum nodes n ∈ P,m ∈ Q with edge weights {θi} and {θj} has edge weights {θi,j} such that∑

i θi,j = θj and
∑

j θi,j = θi for all i and j.

The second property described above ensures that such coupling circuit C satisfies the marginal-
matching constraints in Equation 2 with respect to P and Q (detailed derivation in Appendix C.2).
Furthermore, this property ensures that the sub-circuit rooted at any internal node in the coupling
circuit matches marginals to the corresponding nodes in the original circuits (which is a stronger
constraint than the entire coupling circuit simply matching marginal distributions to the original
circuits). We are now ready to define our proposed distance metric between PCs, which is the
minimum Wasserstein objective obtained by a valid parameterization of their coupling circuit.
Definition 4 (Circuit Wasserstein distance). Let P (X) and Q(Y) be compatible PCs and Cθ(X,Y)
their coupling circuit parameterized by θ. The p-Circuit Wasserstein distance between P and Q is:

CWp
p(P,Q) = min

θ
ECθ(x,y)[∥x− y∥pp].

We now investigate some properties of CWp. First, we note that CWp is indeed a metric on any set
of compatible circuits, which is contrary to some other statistical measures such as KL-divergence
used to compare distributions.
Proposition 1. For any set C of compatible circuits, CWp defines a metric on C.

Moreover, we have that CW bounds the true Wasserstein distance between PCs as both are infima
of the same Wasserstein objective, while the feasible set of couplings for CW is more restrictive.
Proposition 2. For compatible PCs P and Q, Wp(P,Q) ≤ CWp(P,Q).

This also implies that the coupling circuit C(x,y) corresponding to CWp(P,Q) induces a (albeit
not necessarily optimal) transport plan that maps a point x to a distribution C(y|x) and vice versa.

2The coupling circuit has the same structure as the product circuit (Vergari et al., 2021) of P and Q. Infor-
mally, this is done by constructing a cross product of children at every pair of sum nodes, and the product of
corresponding children at every pair of product nodes (see Figure 1). Algorithm 1 shows this construction.
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Algorithm 1 COUPLE(n,m): coupling circuit that optimizes CWp
p(n,m) of compatible PCs rooted at

nodes n,m

Note: We omit calls to a cache storing previously-computed coupling circuits COUPLE(n,m) for
simplicity.

1: if n,m are input nodes then r ← new product(n,m) ▷ Product node with children n,m
2: else if n,m are sum nodes then
3: r ← new sum node with parameters θi,j
4: for each ci ∈ n.children, cj ∈ m.children do
5: r.children[i, j]← COUPLE(ci, cj)

6: LP←



minimize
∑
i

∑
j

CWp(r.children[i, j]) ∗ θi,j

subject to ∀i,
∑
j

θi,j = θi

∀j,
∑
i

θi,j = θj

θi,j ∈ [0, 1]
7: solve LP ▷ Solve for optimal parameters θi,j
8: else if n,m are product nodes then
9: r ← new product node

10: for each c1 ∈ n.children, c2 ∈ m.children where sc(c1) = sc(c2) do
11: add COUPLE(c1, c2) to r.children ▷ Child is the coupling of corresponding children
12: return r

3.2 EXACT AND EFFICIENT COMPUTATION OF CWp

We now present our algorithm that exactly and efficiently computes the Circuit Wasserstein distance
of two compatible PCs, which in turn upper-bounds their Wasserstein distance. The key observation
enabling our algorithm is that the Wasserstein objective for a given parameterization of the coupling
circuit can be computed recursively through a single feedforward pass through the circuit, and thus
can also be minimized over its parameters in a single forward pass.

Recursive Computation of the Wasserstein Objective Let C(X,Y) be a coupling circuit and
g(n) = ECn [∥x− y∥pp] the corresponding CWp-objective function at each node n ∈ C. We can
write g(n) recursively as follows (see Appx. C.4 for correctness proof):

g(n) =


Wp

p(c1, c2) if n is a product with input node children,∑
c∈ch(n) g(c) if n is a product with sum or product node children,∑
c∈ch(n) θn,cg(c) if n is a sum node.

(3)

Thus, we can push computation of the Wasserstein objective down to the leaf nodes of a coupling
circuit, and our algorithm only requires a closed-form solution for Wp between univariate input
distributions as the base case. Note that the objective function at a decomposable product node is
the sum of the objective functions at its children; this is because the Lp

p-norm decomposes into the
sum of norm in each dimension.

Recursive Computation of the Optimal Coupling Circuit Parameters for CWp Leveraging
the recursive properties of the Wasserstein objective, we can compute the optimal parameters of
the coupling circuit by solving a small linear program at each sum node. Algorithm 1 details the
construction of a coupling circuit and finding the optimal parameters to compute CWp.

Specifically, we wish to find minθ g(n) where g(n) can be written recursively as in Equation 3.
By this definition, at sum nodes we can minimize the Wasserstein objective at each child indepen-
dently then solve a linear program using the objective value at the child nodes as constants: given
the optimal g(c) for each child node c of n, we can rewrite minθ g(n) = minθ

∑
c∈ch(n) θcg(c)

to see that solving for the sum node parameters reduces to solving a linear program. We can de-
compose the optimization problem this way because the optimization at children are independent

5
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of the parent parameters. At a product node, we can again push the problem down to the children:
minθ

∑
c∈ch(n) g(c) =

∑
c∈ch(n)(minθ g(c)), because the children nodes c ∈ ch(n) have disjoint

scopes due to decomposability and thus do not share any parameters.

Since the time to solve the linear program at each sum node depends only on the number of children
of the sum node, which is bounded, we consider this time constant when calculating the runtime of
the full algorithm. Thus, we can compute CWp and the corresponding transport plan between two
circuits in time linear in the size of the coupling circuit, or equivalently, quadratic in the size of the
original input circuits. Appendix C.6 presents correctness proof of the algorithm in more detail.

3.3 RELATION TO OPTIMAL TRANSPORT FOR GMMS

As probabilistic circuits with Gaussian input distributions can be interpreted as deep, compact rep-
resentations of Gaussian mixture models (GMMs), existing works studying optimal transport for
GMMs (Chen et al., 2018; Delon & Desolneux, 2020) are highly relevant. In particular, our pro-
posed notion of Circuit Wasserstein distance is closely related to the Mixture Wasserstein distance
(MW2) introduced by Delon & Desolneux (2020), who also derived an upper bound on the true
Wasserstein distance by restricting the coupling set to a GMM structure with quadratic number of
components and computed this metric by solving a linear program.

We can in fact directly leverage this algorithm to compute a bound on 2-Wasserstein distance be-
tween PCs. Specifically, we can “unroll” PCs with Gaussian inputs into their shallow representations
which correspond to GMMs and them compute MW2 between those unrolled GMMs. However, the
shallow representation of a PC may be exponentially larger than the size of the original circuit,
making this naive approach intractable; nevertheless, we consider this approach as a baseline for
our proposed approach and provide a detailed runtime comparison in Section 5. Furthermore, we
observe that MWp will be no larger than our proposed CWp because a coupling circuit can also be
unrolled into a GMM and thus must be in the coupling set for MWp; we also empirically compare
the efficacy of these two metrics in bounding the true Wasserstein distance in Section 5.

4 PARAMETER LEARNING OF PCS USING WASSERSTEIN DISTANCE

Motivated by past works that train generative models by minimizing the Wasserstein distance be-
tween the model and the empirical data distribution (Rout et al., 2022; Salimans et al., 2018; Tol-
stikhin et al., 2018; Arjovsky et al., 2017), we investigate the applicability of minimizing the Wasser-
stein distance between a PC and data as a means of learning the parameters of a given PC structure.

Formally, suppose we have a dataset D = {y(k)}nk=1 that induces the empirical probability measure
Q̂. Then for a given PC structure, we find its parameters θ to optimize the following:

min
θ

Wp
p(Pθ, Q̂) = min

θ
inf

γ∈Γ(Pθ,Q̂)
Eγ(x,y)[∥x− y∥pp]

= min
θ

inf
γ∈Γ(Pθ,Q̂)

1

n

n∑
k=1

Eγ(x|y(k))

[∥∥∥x− y(k)
∥∥∥p
p

]
. (4)

Note that the second line in Equation 4 comes from rewriting γ(x,y) = γ(x|y)γ(y), then apply-
ing linearity of integration since Q̂ is an empirical distribution. Unfortunately, solving the above
optimization problem is computationally hard.

Theorem 2. Suppose Pθ is a smooth and decomposable probabilistic circuit, and Q̂ is an empirical
distribution induced by a dataset D = {y(k)}nk=1. Then computing the parameters θ that minimizes
the empirical Wasserstein distance Wp

p(Pθ, Q̂) (i.e., solving Equation 4) is NP-hard.

We can show the above by a reduction from k-means clustering (Appendix C.5).

4.1 WASSERSTEIN-MINIMIZATION: AN ITERATIVE ALGORITHM

We again tackle this computational hardness by imposing a circuit structure on the coupling measure,
allowing us compute the Wasserstein objective and optimize it efficiently.
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Definition 5 (Empirical Circuit Wasserstein distance). Let P be a PC distribution and Q̂ an empirical
distribution induced by a dataset D = {y(k)}nk=1. The p-Empirical Circuit Wasserstein distance
between P and Q̂ is

ECWp
p(P, Q̂) = min

γ

1

n

n∑
k=1

Eγ(x|y(k))

[∥∥∥x− y(k)
∥∥∥p
p

]
,

where γ(x,y = y(k)) satisfies the following: (i) for each k ∈ {1, . . . , n}, γ(.,y = y(k)) is a PC
with the same structure as P (but not necessarily the same parameters) that normalizes to 1/n, and
(ii)

∑n
k=1 γ(x,y = y(k)) = P (x).

A coupling satisfying the above structure clearly satisfies the marginal constraints and is in Γ(P, Q̂).
Therefore, the empirical Circuit Wasserstein distance upper-bounds the empirical Wasserstein dis-
tance: Wp(P, Q̂) ≤ ECWp(P, Q̂). We will thus learn the parameters of PCs by minimizing this
upper bound, which can be computed efficiently as we show next.

We now present our iterative algorithm for minimum-Wasserstein parameter learning. In particular,
we wish to learn the circuit parameters θ that minimizes ECWp

p(Pθ, Q̂) which is in turn a minimiza-
tion problem over couplings γ. Thus, we alternate between (i) optimizing the coupling given the
current circuit parameters and (ii) updating the circuit parameters given the current coupling.

Let us first discuss step (i) which computes ECWp
p(Pθ, Q̂) for a given θ and in the process find

the corresponding coupling γ. First, rather than materializing a PC to represent γ(.,y = y(k)) for
each k as described in Definition 5, we can equivalently model a single coupling circuit γ as having
the same structure as P and a set of parameters {wr,c,k}nk=1 for each parameter θr,c in P . Then
optimizing the coupling circuit parameters amounts to minimizing the expected distance according
to the coupling distribution, similar to computing CW, and can be done efficiently by solving a
small linear program at each sum node. Here, we have the following marginal-matching constraints:∑n

k=1 wr,c,k = θr,c for each sum node r and child c and
∑

c wr,c,k = 1/n for each k.

Interestingly, the above linear program at each sum node is a variation of the continuous knapsack
problem (Michael Goodrich, 2002) and thus has a closed-form solution. In particular, the solution
results in a coupling circuit with each weight wc,k being either 1

n or zero (details in Appendix C.7).
Intuitively, the coupling circuit parameters w describe how each data point is routed through the cir-
cuit; because the optimal coupling is deterministic—each data point is either routed wholly through
an edge or not at all—we obtain a transport plan between the learned PC and empirical distribution.

Next, we discuss step (ii) which estimates the parameters θ of PC P from a given coupling γ. Be-
cause the coupling has the same structure as P , and its weights {wr,c,k} satisfy marginal-matching
constraints, we can simply extract the PC parameters: θr,c =

∑n
k=1 wr,c,k.

The above two steps are repeated iteratively until convergence; a pseudocode for the complete algo-
rithm is provided in Appendix B). Due to the closed-form solution of the LP, the time complexity of
one iteration of our algorithm is linear in both the size of the circuit and the size of the dataset, and
our algorithm is also guaranteed to converge (potentially to a local minimum) as every iteration only
decreases or preserves the empirical Wasserstein objective (Appendix C.8). Nevertheless, finding
the global optimum parameters minimizing the Wasserstein distance is still NP-hard, and our pro-
posed efficient algorithm may get stuck at a local minimum, similar to existing maximum-likelihood
parameter learning approaches.

We observe interesting parallels between our proposed Wasserstein-Minimization (WM) method and
Expectation-Maximization (EM) for maximum-likelihood parameter learning. EM is an iterative
algorithm that alternates between (i) computing the expected likelihood (marginalizing out the latent
variables) of current parameters in the E-step and (ii) estimating the parameters that maximize this
in the M-step, which is analogous to the two steps of WM: (i) computing the ECW for current
parameters and (ii) updating the parameters to minimize ECW.

5 EXPERIMENTS

In this section, we first empirically evaluate our proposed algorithm for computing CWp against
the algorithm proposed by Delon & Desolneux (2020) for computing MW2. We then compare
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Figure 2: Runtime of Wasserstein-type distance computation using our approach (blue dots) and the
baseline (red triangles). Each data point represents a pair of circuit structures corresponding to a
fixed circuit branching factor and fixed number of random variables in the circuit scope, averaged
over 100 random parameter initializations. For circuits larger than those depicted, the baseline
approach runs out of memory. See Appendix 5.1 for runtime results of our approach on larger
circuits.

the density-estimation capabilities of circuits learned using our proposed Wasserstein-Minimzation
(WM) algorithm against the Expectation-Maximization (EM) algorithm for PCs. Specifically, we
aim to answer the following three questions:

1. How does the runtime of our algorithm for computing CW2 scale with the size of the circuit
in practice, and how does that compare to MW2 computation (Delon & Desolneux, 2020)?

2. How close is the computed value of CW2 to MW2?

3. How do circuits learned using our Wasserstein-Minimzation algorithm compare with cir-
cuits learned using the classic Expectation-Maximization algorithm?

5.1 RUNTIME EXPERIMENTS FOR COMPUTING CW2

To evaluate the runtime of computing CW2, we consider a fixed variable scope and randomly con-
struct a balanced hierarchical scope partitioning. Then, we randomly construct two PCs with this
partitioning such that they are compatible; the PCs are constructed with a fixed sum node branching
factor and fixed rejoin probability—i.e., the chance that a graph connection to an existing node in
the PC will be made to add a child rather than creating a new node for the child, which is 0% in
the case of trees and set to 50% in the case of graphs. We implement our algorithm as detailed in
Algorithm 1 to compute the optimal transport map and value for CW2, as well as also implement
a PC-to-GMM unrolling algorithm and the algorithm proposed by Chen et al. (2018) to compute
MW2 (Delon & Desolneux, 2020).3

The results are summarized in Figure 2, which demonstrate the quadratic runtime of our algorithm
in the size of the original circuits, which sharply contrasts with the exponential runtime of the naive
computation of MW2 by circuit unrolling. For circuits with just over one hundred edges (after which
the algorithm runs out of memory), naively computing MW2 is over three hundred times slower than
computing CW2 with our feedforward algorithm. We include runtime results for circuits two orders
of magnitude larger in Appendix D.1.

5.2 COMPARING THE QUANTITIES OF CW2 AND MW2

Because both CW2 and MW2 upper-bound the true 2-Wasserstein distance, the smaller the values,
the tighter the bound. We adopt the same framework as we did for runtime experiments to randomly
construct compatible PCs and compute CW2 and MW2 between them. Due to the exponential
blowup of computing MW2 it quickly becomes impractical to compute (see Section 5.1); however,
we still attempt to provide some empirical insight into the difference between CWp and MWp.
Empirically, the difference between CWp and MWp grows with circuit size (see Appendix D.4 for
detailed figures).

3Code for our implementation and experiments will be made available online upon acceptance of the paper.
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Figure 3: (Left) CW2 between circuits learned on the given dataset partitions corresponding to
images with only that digit; lighter pixels represent a lower CWp. (Right) Cosine similarity between
dataset partitions; lighter pixels represent a higher cosine similarity.

Figure 4: Color transfer between images using coupling circuits. In each of the above figures, the
top two images represent images A and B, and the bottom two images represent image A transferred
to image B’s color palette and image B transferred to image A’s color palette respectively.

We also note that while the ratio CW2

MW2
is lower for circuits of higher depth, this can be attributed

to higher-depth circuits potentially having fewer learnable parameters (and thus less opportunity for
error to compound) relative to their size. A circuit with a large scope size (and thus high depth) but
small sum node branching factor can have the same number of edges but far fewer parameters than
a shallow circuit with a large sum node branching factor.

5.3 COMPUTING CW2 BETWEEN LEARNED CIRCUITS

To support the feasibility of our algorithm when applied to large, high-dimensional PCs, we com-
puted CWp between circuits learned on the MNIST dataset (LeCun et al., 1998) – a 784-dimensional
handwritten digits image dataset. Specifically, we first partitioned the dataset into 10 classes by the
digit depicted in the image, and then learned one circuit per class using the HCLT structure learning
algorithm (Liu & Van den Broeck, 2021) with a fixed block size of 4 (resulting in each circuit having
over 11k edges) and Expectation-Maximization parameter learning algorithm (Desana & Schnörr,
2016) implemented in PyJuice (Liu et al., 2024). We then computed CW2 between each pair of cir-
cuits (which took under two seconds per pair with our implementation), and plot these values along
with the average cosine similarity between the classes in Figure 3. We found that cosine similarity
between classes was inversely correlated with CWp between circuits learned on those classes with
a correlation coefficient of r = −0.78, supporting the utility of our proposed distance metric.

5.4 COLOR TRANSFER BETWEEN IMAGES USING OPTIMAL TRANSPORT

We adopt an application of optimal transport shown by Delon&Desolneux (2020), whereby we
transport the color histogram—the 3-dimensional probability distribution of pixel color values—of
image a to that of another image b. To do this, we learn compatible PCs P (X) and Q(Y) over the
color distributions of images a and b, compute the optimal coupling circuit C(X,Y), and transport
each pixel with color value x to the corresponding pixel EC [Y|X = x] (which can be computed
tractably). See Figure 4 for two examples.

9
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Figure 5: Visualization of the performance of PCs learned using Expectation Maximization (red
triangles) and Wasserstein Minimization (our approach, blue dots). The bits-per-dimension (bpd) of
the learned circuits does not decrease significantly with an increase in circuit size for circuits learned
using the empirical Wasserstein distance.

5.5 WASSERSTEIN-MINIMIZATION FOR CIRCUIT PARAMETER LEARNING

To determine the performance of our proposed Wasserstein-Minimization algorithm on density es-
timation tasks, we consider learning the parameters of circuits of various sizes from the MNIST
benchmark dataset (LeCun et al., 1998). We first generated the structure of the circuits using the
HCLT algorithm (Liu & Van den Broeck, 2021) implementation provided in PyJuice (Liu et al.,
2024), varying the “block size” to increase or decrease the number of parameters. We then learned
two sets of circuit parameters per structure per block size: one set of parameters was learned using
mini-batch EM (Desana & Schnörr, 2016), and the other set was learned using our proposed WM
algorithm. We performed early stopping for the EM algorithm that stops training once the point of
diminishing returns has been surpassed. All experiments were ran on a single NVIDIA L40s GPU.

In terms of bits-per-dimension, we observe that our algorithm performs nearly as well as EM for
small circuits (block size 4). However, as the size of the circuit increases, the performance of our
algorithm quickly stagnates; empirically, our WM approach does not seem to take full advantage of
the larger parameter space of larger models, with models orders of magnitude larger having better
but still comparable performance to their smaller counterparts. We refer to Figure 5 for more details.

6 CONCLUSION

This paper studied the optimal transport problem for probabilistic circuits. We introduced a
Wasserstein-type distance CWp between two PCs an proposed an efficient algorithm that computes
the distance and corresponding optimal transport plan in quadratic time in the size of the input cir-
cuits, provided that their circuit structures are compatible. We show that CWp always upper-bounds
the true Wasserstein distance, and that—when compared to the naive application of an existing al-
gorithm for computing a Wasserstein-type distance between GMMs to PCs—the former is exponen-
tially faster to compute between circuits. Lastly, we propose an iterative algorithm to minimize the
empirical Wasserstein distance between a circuit and data, suggesting an alternative, viable approach
to parameter estimation for PCs which is mainly done using maximum-likelihood estimation. While
performance was competitive with the EM algorithm for small circuits, we leave as future work to
get Wasserstein Minimization to fully exploit the increased expressiveness of larger models.

We consider this work an initial stepping stone towards a deeper understanding of optimal transport
theory for probabilistic circuits. Future work includes exploring more expressive formulations of
coupling circuits to obtain a tighter bound on Wasserstein distance—such as relaxing the node-by-
node parameter constraints to only require that the whole circuit matches marginal distributions to
the original circuits. Our work also leaves open the possibility of extending the marginal-preserving
properties of coupling circuits to the multimarginal setting for multimarginal generative modeling
with PCs, and computing Wasserstein barycenters for PCs. Moreover, we envision that the tractable
computation of a Wasserstein-type distance and transport plan between expressive models such as
PCs can lead to further development in various Wasserstein-based machine learning approaches.
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Figure 6: Two compatible circuits over X = (X1, X2, X3) and Y = (Y1, Y2, Y3). Note that com-
patibility does not require the same (or even notably similar) structures apart from the hierarchical
scope partitioning.

A ADDITIONAL FIGURES

We include an example of compatible circuits with different structures in Figure 6.

B ALGORITHM FOR MINIMUM WASSERSTEIN PARAMETER ESTIMATION

Our proposed algorithm is broadly divided into two steps: an inference step and a minimization
step. These steps are performed iteratively until model convergence. The inference step populates
a cache, which stores the expected distance of each data point at each node in the circuit. This
inference step is done in linear time in a bottom-up recursive fashion, making use of the cache for
already-computed results. This is provided in algorithm 2.

The minimization step is done top-down recursively, and seeks to route the data at a node to its
children in a way that minimizes the total expected distance between the routed data at each child
and the sub-circuit. The root node is initialized with all data routed to it. At a sum node, each data
point is routed to the child that has the smallest expected distance to it (making use of the cache
from the inference step), and the edge weight corresponding to a child is equal to the proportion of
data routed to that child; at a product node, the data point is routed to both children. Input node
parameters are updated to reflect the empirical distribution of the data routed to that node. The
minimization step is thus also done in linear time, and we note that this algorithm guarantees a non-
decreasing objective function (see Appendix C.8 for a proof). The algorithm for this is provided in
algorithm 3.

Algorithm 2 INFERENCE(n,D): returns a cache storing the distance between each data point dj ∈
D and each sub-circuit rooted at n, where n has children ci. For conciseness, we omit checking for
cache hits

for ci ∈ n.children do
INFERENCE(ci, D) ▷ recursively build cache

if n is a product node then
for dj ∈ D do

cache[n, dj ]←
∑

icache[ci, dj ]
if n is a sum node then

for dj ∈ D do
cache[n, dj ]←

∑
i θicache[ci, dj ]

if n is an input node then
for dj ∈ D do

cache[n, dj ]← dist(n, dj) ▷ here, dist(n, dj) is the expected distance between n and dj
return cache
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Algorithm 3 LEARN(n,D, cache): learns the parameters of circuit rooted at n on data points dj ∈
D

if not all parents of n have been learned then
return ▷ We only call this method on nodes who’s parents have all been learned

if n is a product node then
for ci ∈ n.children do

routing[ci]← routing[n] ▷ products route their data to their children
if n is a sum node then
∀θi, θi ← 0 ▷ zero out parameters
for dj ∈ routing[n] do ▷ route data points at current node to children

ci ← argminci cache[ci, dj ] ▷ ci is the child node of n for which dj has the lowest
distance

routing[ci]← dj ▷ route dj to ci
θi ← θi +

1
|routing[n]| ▷ update parameter weight

if n is an input node then
n.parameters← parameters matching empirical distribution of routing[n]

C PROOFS

C.1 HARDNESS PROOF OF THE∞-WASSERSTEIN DISTANCE BETWEEN CIRCUITS

Theorem 1. Suppose P and Q are probabilistic circuits over n Boolean variables. Then computing
the∞-Wasserstein distance between P and Q is coNP-hard, even when P and Q are deterministic
and structured-decomposable.

Proof. We will prove hardness by reducing the problem of deciding equivalence of two DNF formu-
las, which is known to be coNP-hard, to Wasserstein distance computation between two compatible
PCs.

Consider a DNF α containing m terms {α1, . . . , αm} over Boolean variables X. We will construct
a PC Pα associated with this DNF as follows. For each term αi, we construct a product of input
nodes—one for each X ∈ X whose literal appears in term αi, 1[X = 1] for a positive literal and
1[X = 0] for negative. Then we construct a sum unit with uniform parameters over these products
as the root of our PC: Pα =

∑m
i=1

1
mPαi

. We can easily smooth this PC by additionally multiplying
Pαi with a sum node 1

21[X = 0] + 1
21[X = 1] for each variable X that does not appear in αi.

Furthermore, note that every product node in this circuit fully factorizes the variables X, and thus
the PC is trivially compatible with any decomposable circuit over X and in particular with any other
PC for a DNF over X, constructed as above.

Clearly, the above PC Pα assigns probability mass only to the models of α. In other words, for any
x ∈ {0, 1}n, Pα(x) > 0 iff x |= α (i.e. there is a term αi that is satisfied by x).

C.2 PROOF OF THE MARGINAL-MATCHING PROPERTIES OF COUPLING CIRCUITS

Proposition 3. Let P and Q be compatible PCs. Then any feasible coupling circuit C as defined in
Def. 3 matches marginals to P and Q.

Proof. We will prove this by induction. Our base case is two corresponding input nodes n1, n2 ∈
P,Q. The sub-circuit in C rooted at the product of n1 and n2 is a product node with copies of n1

and n2 as children, which clearly matches marginals to n1 and n2.

Now, let n1 and n2 be arbitrary corresponding nodes in P and Q, and assume that the product
circuits for all children of the two nodes match marginals. We then have two cases:

Case 1: n1, n2 are product nodes Since the circuits are compatible, we know that n1 and n2 have
the same number of children—let the number of children be k. Thus, let c1,i represent the i’th child
of n1, and let c2,i represent the i’th child of n2. The coupling circuit of n1 and n2 (denoted n) is

14
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a product node with k children, where the i’th child is the coupling circuit of c1,i and c2,i (denoted
ci).

By induction, the distribution Pci(X,Y) at each child coupling sub-circuit matches marginals to the
original sub-circuits: Pci(X) = Pc1,i(X), and Pci(Y) = Pc2,i(Y). n1 and n2 being product nodes
means that Pn1(X) =

∏
i Pc1,i(X) and Pn2(Y) =

∏
i Pc2,i(Y), so thus Pn(X) =

∏
i Pci(X) =∏

i Pc1,i(X) and Pn(Y) =
∏

i Pci(Y) =
∏

i Pc2,i(Y). Therefore, n matches marginals to n1 and
n2.

Case 2: n1, n2 are sum nodes Let the number of children of n1 be k1 and the number of children
of n2 be k2. Let c1,i represent the i’th child of n1, and let c2,j represent the j’th child of n2. The
coupling circuit of n1 and n2 (denoted n) is a sum node with k1 ∗ k2 children, where the (i, j)’th
child is the coupling circuit of c1,i and c2,j (denoted ci,j).

By induction, the distribution Pci,j (X,Y) at each child coupling sub-circuit matches marginals to
the original sub-circuits: Pci,j (X) = Pc1,i(X), and Pci,j (Y) = Pc2,j (Y). n1 and n2 being sum
nodes means that Pn1

(X) =
∑

i θiPc1,i(X) and Pn2
(Y) =

∑
j θjPc2,j (Y), so thus

Pn(X) =
∑
i

∑
j

θi,jPci,j (X) =
∑
i

∑
j

θi,jPc1,i(X) =
∑
i

θiPc1,i(X) = Pn1
(X)

Pn(Y) =
∑
i

∑
j

θi,jPci,j (Y) =
∑
i

∑
j

θi,jPc2,j (Y) =
∑
j

θjPc2,j (Y) = Pn2
(Y) (5)

Note that we rewrite
∑

i θi,j = θj and
∑

j θi,j = θi by the constraints on coupling circuits. There-
fore, n satisfies marginal constraints.

C.3 PROOF OF THE METRIC PROPERTIES OF CWp

Proposition 1 (Metric Properties of CWp). For any set C of compatible circuits, CWp defines a
metric on C.

Proof. It is clear that CWp is symmetric since construction of the coupling circuit is symmetric.
Furthermore, since CWp upper-bounds Wp, it must also be non-negative.

If CWp(P,Q) = 0, then Wp(P,Q) = 0 so P = Q. Any constraint-satisfying assignment of the
parameters of a coupling circuit between P and P would also result in the Wasserstein objective
at the root node being 0, since the base-case computation of Wp at the leaf nodes would always be
zero.

Now, we show that CWp satisfies the triangle inequality. Let P,Q,R ∈ C be compatible PCs over
random variables X,Y, and Z, and let d1 = CWp(P,Q), d2 = CWp(P,R), and d3 = CWp(R,Q)
with optimal coupling circuits C1, C2, and C3. We can construct circuits C2(x|z) and C3(y|z) that
are still compatible with C2 and C3, since conditioning a circuit preserves the structure. Because
all of these are compatible, we can then construct circuit C(X,Y,Z) = C2(X|Z)C3(Y|Z)R(Z).
Thus, C is a coupling circuit of P,Q, and R such that C2(x,y) =

∫
C(x,y, z)dz and C3(y, z) =∫

C(x,y, z)dx. Then we have:

CWp(P,Q) =

∫
∥x− y∥pp C1(x,y)dxdy =

∫
∥(x− z)− (y − z)∥pp C(x,y, z)dxdydz

≤
∫
∥x− z∥pp C2(x, z)dxdz+

∫
∥z− y∥pp C3(y, z)dydz

= CWp(P,R) + CWp(R,Q)

Thus, CWp satisfies the triangle inequality, which concludes the proof.

C.4 RECURSIVE COMPUTATION OF THE WASSERSTEIN OBJECTIVE

Referring to Definition 4, the Wasserstein objective for a given coupling circuit C(x,y) is the ex-
pected distance between x and y. Below, we demonstrate that the Wasserstein objective at a sum
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node that decomposes into C(x,y) =
∑

i θiCi(x,y) is simply the weighted sum of the Wasserstein
objectives at its children:

EC(x,y)[∥x− y∥pp] =
∫
∥x− y∥pp C(x,y)dxdy =

∫
∥x− y∥pp

∑
i

θiCi(x,y)dxdy

=
∑
i

θi

∫
∥x− y∥pp Ci(x,y)dxdy =

∑
i

θi ECi(x,y)[∥x− y∥pp] (6)

Now, consider a decomposable product node, where C(x,y) = C1(x1,y1)C2(x2,y2)
4. Below,

we see that the Wasserstein objective at the parent is simply the sum of the Wasserstein objectives at
its children:

EC(x,y)[∥x− y∥pp] =
∫
∥x− y∥pp C(x,y)dxdy =

∫
∥x− y∥pp C1(x1,y1)C2(x2,y2)dxdy

=

∫
(∥x1 − y1∥pp + ∥x2 − y2∥pp)× C1(x1,y1)C2(x2,y2)dx1dx2dy1dy2

=

(∫
∥x1 − y1∥pp C1(x1,y1)dx1dy1

)
+

(∫
∥x2 − y2∥pp)C2(x2,y2)dx2dy2

)
= EC1(x1,y1)[∥x1 − y1∥pp] + EC2(x2,y2)[∥x2 − y2∥pp] (7)

Thus, we can push computation of Wasserstein objective down to the leaf nodes of a coupling circuit.

C.5 HARDNESS PROOF OF COMPUTING MINIMUM-WASSERSTEIN PARAMETERS

Theorem 2. Suppose Pθ is a smooth and decomposable probabilistic circuit, and Q̂ is an empirical
distribution induced by a dataset D = {y(k)}nk=1. Then computing the parameters θ that minimizes
the empirical Wasserstein distance Wp

p(Pθ, Q̂) (i.e., solving Equation 4) is NP-hard.

Proof. We will prove this hardness result by reducing k-means clustering—which is known to be
NP-hard (Dasgupta, 2008)—to learning the minimum Wasserstein parameters of a circuit. Consider
a set of points x1...xn ∈ Rd and a number of clusters k. We will construct a Gaussian PC C
associated with this problem as follows: the root of C is a sum node with k children; each child is a
product node with d univariate Gaussian input node children (so each product node is a multivariate
Gaussian comprised of independent univariate Gaussians). Minimizing the parameters of C over
xi corresponds to finding a routing of data points xi that minimizes the total distance between all
xi’s and the mean of the multivariate Gaussian child each xi is routed to. A solution to k-means
can be retrieved by taking the mean of each child of the root sum node to be the center of each of k
clusters.

C.6 PROOF OF THE OPTIMALITY OF COUPLING CIRCUIT PARAMETER LEARNING IN
ALGORITHM 1

Proposition 4. Suppose P and Q are compatible probabilistic circuits with coupling circuit C. Then
the parameters of C—and thus CWp—can be computed exactly in a bottom-up recursive fashion.

Proof. We will construct a recursive argument showing that the optimal parameters of C can be
computed exactly. Let n ∈ C be some non-input node in the coupling circuit C that is the product
of nodes n1 and n2 in P and Q respectively. Then we have three cases:

Case 1: n is a product node with input node children Due to the construction of the coupling
circuit, n must have two children that are input nodes with scopes Xk and Yk. Thus, CWp(n) is
simply computed in closed-form as the p-Wasserstein distance between the input distributions.

4We assume for notational simplicity that product nodes have two children, but it is straightforward to
rewrite a product node with more than two children as a chain of product nodes with two children each and see
that our result still holds.
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Case 2: n is a product node with non-input node children By recursion, CWp(n) =∑
i CWp(ci) for each child ci of n (see 7).

Case 3: n is a sum node Let θi,j be the parameter corresponding to the product of the i-
th child of n1 and j-th child of n2. We want to solve the following optimization problem
inf EPn(X,Y)[∥X−Y∥pp], which can be rewritten as follows:

inf EPn(X,Y)[∥X−Y∥pp] = inf

∫
Rd×Rd

∥X−Y∥pp Pn(X,Y)dXdY (8)

Rewriting the distribution of n as a mixture of its child distributions ci,j , we get:

= inf
θ,Pi,j

∫
Rd×Rd

∥X−Y∥pp
∑
i,j

θi,jPci,j (X,Y)dXdY (9)

Due to linearity of integrals, we can bring out the sum:

= inf
θ,Pi,j

∑
i,j

θi,j

∫
Rd×Rd

∥X−Y∥pp Pci,j (X,Y)dXdY (10)

Lastly, due to the acyclicity of PCs, we can separate out infθi,Pi,j
into infθi infPi,j

and push the
latter infimum inside the sum.

= inf
θ

∑
i,j

θi,j(inf
Pi,j

∫
Rd×Rd

∥X−Y∥pp Pci,j (X,Y)dXdY) (11)

Thus, we can solve the inner optimization problem first (corresponding to the optimization prob-
lems at the children), and then the outer problem (the optimization problem at the current node).
Therefore, a bottom-up recursive algorithm is exact.

C.7 DERIVING A CLOSED-FORM SOLUTION TO THE LINEAR PROGRAMS FOR PARAMETER
UPDATES

For a sum node s with m children s1...sm and a dataset with n data points d1...dn each with weight
wj , we construct a linear program with m ∗ n variables xi,j as follows:

min
m∑
i=1

n∑
j=1

Esi [∥X− dj∥22]xi,j s.t.
m∑
i=1

xi,j = wj ∀j

Note that the constraints do not overlap for differing values of j. Thus, we can break this problem
up into n smaller linear programs, each with the following form:

min
m∑
i=1

Esi [∥X− dj∥22]xi,j s.t.
m∑
i=1

xi,j = wj

The only constraint here requires that the sum of objective variables is equal to wj . Thus, the
objective is minimized when xi,j corresponding to the smallest coefficient takes value wj and all
other variables take value 0. Thus, the solution to the original linear program can be thought of as
assigning each data point to the sub-circuit that has the smallest expected distance to it.

C.8 PROOF THAT THE WASSERSTEIN MINIMIZATION ALGORITHM HAS A MONOTONICALLY
DECREASING OBJECTIVE

Proposition 5. For a circuit rooted at n and dataset D routed to it, the Wasserstein distance between
the empirical distribution of D and sub-circuit rooted at n will not increase after an iteration of
algorithm B
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Figure 7: Runtime for algorithms computing CW2 and MW2. The first pair of graphs considers
only tree-shaped PCs, whereas the second pair considers graph-shaped PCs as well. Note that the
right-side graphs use logarithmic scaling. Number of circuit edges represents the number of edges
in both circuits combined, and each data point represents an average over 100 runs.

Proof. Let En[D] denote the Wasserstein distance between the empirical distribution of D and sub-
circuit rooted at n before an iteration of algorithm B, and let En′ [D] denote the distance after an
iteration. We will show by induction that En′ [D] ≤ En[D]. Our base case is when n is an input
node. By setting the parameters of n to as closely match the empirical distribution of D as possible,
there is no parameter assignment with a lower Wasserstein distance to D so thus one iteration of
algorithm B does not increase the objective value.

Recursively, we have two cases:

Case 1: n is a product node By the decomposition of the Wasserstein objective, we have that
En[D] =

∑
i Eci [D], which is ≥

∑
i Ec′i

[D] = En′ [D] by induction.

Case 2: n is a sum node By the decomposition of the Wasserstein objective, we have that
En[D] =

∑
i θi Eci [Di] (where Di ⊆ D is the data routed to ni), which is ≥

∑
i θi Ec′i

[Di] =

En′ [D] by induction. Our parameter updates also update each Di → D′
i, but that also guaran-

tees that Ec′i
[Di] ≥ Ec′i

[D′
i] since Di = D′

i is within the feasible set of updates for Di. Thus,
En[D] ≥ En′ [D], so therefore the Wasserstein objective is monotonically decreasing.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RUNTIME EXPERIMENTS FOR COMPUTING CWp

The value obtained for each circuit size is averaged over 100 runs, and we omit data points for
experiments that ran out of memory. Lastly, all experiments were ran on a machine with an Intel
Core i9-10980XE CPU and 256Gb of RAM—these experiments made no use of GPUs. To solve the
linear programs we used Gurobi (Gurobi Optimization, LLC, 2024), a commercial linear program
solver available under academic license.

Figure 7 shows the complete set of runtime results.
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EM Circuit Deterministic WM Stochastic WM
Circuit Block Size W2 BPD W2 BPD W2 BPD

4 32631 1.414 32766 1.495 29963 1.532
16 32873 1.242 32751 1.465 29984 1.509
64 33264 1.192 32749 1.458 30999 1.485

128 33737 1.175 32749 1.455 31483 1.474
256 34974 1.172 32528 1.459 32520 1.459

Table 1: Comparison of Wasserstein objective value and bits-per-dimension (BPD) between circuits
learned via EM and WM (our approach), lower is better. The lowest value for each circuit size is
bolded. Deterministic WM routes all data points optimally to minimize the Wasserstein objective,
while stochastic WM randomly routes a data point to one of the children with probability p and
optimally with probability 1− p.

D.2 EMPIRICAL WASSERSTEIN PARAMETER ESTIMATION EXPERIMENTAL RESULTS

We investigated the computed Wasserstein objective and bits-per-dimension (BPD) of circuits of
various sizes learned using EM and WM (our method). We found that larger circuits trained via
EM have a significantly lower BPD than smaller circuits, which was not the case for circuits trained
via WM. Looking at the Wasserstein objective for these circuits, we see that bpd is not directly
correlated with the Wasserstein objective; circuits with a lower Wasserstein objective can have a
slightly higher bpd, and vice versa.

Lastly, we consider a modification of Algorithm B that employs stochastic routing of data at sum
nodes; succinctly, we introduce hyperparameter p that introduces a probability p that a given data
point is routed randomly with uniform probability to any given child node, and a probability 1 − p
that the data point is routed optimally as detailed in Algorithm B. When p = 0, we refer to this as
deterministic WM; otherwise, we refer to the algorithm as stochastic WM.

In our experiments, we found that p = 0.1 yields the best results for minimizing the Wasserstein
objective. For circuits of block size 4, we observe that this significantly decreases the Wasserstein
objective without a significant change to the bits-per-dimension of the learned circuit. Over 5 ran-
dom restarts, the stochastic WM algorithm resulted in a Wasserstein objective between 29947 and
29986; conversely, the deterministic WM algorithm resulted in a Wasserstein objective of 32766.
However, this decrease in Wasserstein distance resulted in no decrease in bits-per-dimension for the
trained models, with stochastic WM yielding circuits with BPDs of between 1.503 and 1.537. See
Table 1 for more details.

D.3 VISUALIZING TRANSPORT PLANS BETWEEN PCS

Since our algorithm does not only return CWp between two circuits but also the corresponding
transport plan, we can visualize the transport of point densities between the two distributions by
conditioning the coupling circuit on an assignment of random variables in one circuit. We can
similarly visualize the transport plan for an arbitrary region in one PC to another by conditioning on
the random variable assignments being within said region.

Since the transport plan for a single point (or a region of points) is itself a PC, we can query it like we
would any other circuit; for example, sampling a set of corresponding points, as well as computing
maximum a posteriori—which is tractable if the original two circuits are marginal-deterministic
(Choi et al., 2020)—for the transport plan of a point corresponds to the most likely corresponding
point in the second distribution for the given point. Because a coupling circuit inherits the structural
properties of the original circuit, it is straightforward to understand what queries are and are not
tractable for a point transport map.

In Figure 8, we provide an example of visualizing the optimal transport plan between two randomly-
generated PCs. We note that despite the transport plan being constrained to be a PC with a certain
structure, the resulting transport plan matches our intuition as to what an optimal transport plan
should look like.
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Figure 8: Visualization of transporting the indicated points from the distribution parameterized by
PC 1 to the distribution parameterized by PC 2. The points (red triangle and blue circle) were
arbitrarily selected to show how a point mass is redistributed according to the computed transport
map. The top two figures visualize the input distributions, while the bottom two figures visualize
where the point density indicated is transported to from the first to the second distribution.

Figure 9: Ratio of CW2

MW2
, lower is better. Each data point represents a pair of circuit structures

corresponding to a fixed circuit branching factor and fixed number of random variables in the circuit
scope, averaged over 100 random parameter initializations. Empirically, the gap between CW2 and
MW2 grows roughly linearly in the size of the circuit. The hue of each point represents the circuit
depth, with lighter points being a higher depth.

D.4 EMPIRICALLY COMPARING THE QUANTITIES CW2 AND MW2

Figure 9 shows with larger circuits having a larger difference between CW2 and MW2 when com-
pared to smaller circuits, corresponding to CWp being a looser upper-bound of both MWp and the
true Wassertein distance.
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