OPTIMAL TRANSPORT FOR PROBABILISTIC CIRCUITS

Anonymous authors

000

001 002 003

004

006 007

008 009

010

011

012

013

014

015

016

017

018

019

021

Paper under double-blind review

ABSTRACT

We introduce a novel optimal transport framework for probabilistic circuits (PCs). While it has been shown recently that divergences between distributions represented as certain classes of PCs can be computed tractably, to the best of our knowledge, there is no existing approach to compute the Wasserstein distance between probability distributions given by PCs. We consider a Wasserstein-type distance that restricts the coupling measure of the associated optimal transport problem to be a probabilistic circuit. We then develop an algorithm for computing this distance by solving a series of small linear programs and derive the circuit conditions under which this is tractable. Furthermore, we show that we can also retrieve the optimal transport plan between the PCs from the solutions to these linear programming problems. We then consider the empirical Wasserstein distance between a PC and a dataset, and show that we can estimate the PC parameters to minimize this distance through an efficient iterative algorithm.

023 1 INTRODUCTION

025 The Wasserstein distance is a statistical distance metric corresponding to the objective value taken 026 by the optimal transport problem as proposed by Kantorovich's optimal transport framework that, 027 given two probability measures, finds its optimal value at a coupling measure where the expected distance between the original two measures is minimized (Kantorovich, 1942). Kantorovich's op-029 timal transport problem is a relaxation of Monge's optimal transport problem, which requires that the probability mass at each point in one distribution not be split up in transport to the second distribution (Monge, 1781). Computing such a distance has proven extremely useful, with applications 031 in generative modeling (Arjovsky et al., 2017), data privacy (Li et al., 2007), and distributionally robust optimization (Rahimian & Mehrotra, 2022). However, computing the Wasserstein distance is 033 a highly intractable task for all but the simplest distributions. 034

Modeling probability distributions in a way that enables tractable computation of probabilistic queries is of great interest to the machine learning community. Probabilistic circuits (PCs) (Choi et al., 2020) provide a unifying framework for representing many classes of tractable probabilistic models as computational graphs; within this framework, tractability of certain queries can be guaranteed through imposing structural properties on the computational graph of the circuit. This includes tractable marginal and conditional inference, as well as pairwise queries that compare two circuits such as Kullback-Leibler Divergence and cross-entropy (Liang & Van den Broeck, 2017; Vergari et al., 2021). However, to the best of our knowledge, there is no existing algorithm that tractably computes the Wasserstein distance between two probabilistic circuits.

043 While algorithms for computing other statistical distance measures between PCs are well-044 established, the Wasserstein distance offers a distinct advantage in many applications. Measures 045 such as KL-divergence and cross-entropy are unbounded between distributions with disjoint sup-046 ports; conversely, the *p*-Wasserstein distance is always bounded for distributions with finite *p*-th 047 moments (Villani, 2008, p. 107). Computing the Wasserstein distance also provides a bound for 048 other statistical distance metrics such as the Prokhorov metric and the total-variation distance-we suggest (Gibbs & Su, 2002) for more details. However, computing the Wasserstein distance is often more intractable than other probabilistic queries such as the KL-divergence or cross-entropy due 051 to the inherent optimization problem required to be solved. In the case of Boolean distributions, the 1-Wasserstein distance is intimately related to the total-variation (TV) distance; recent work has 052 shown that the latter is intractable to compute exactly, but that efficient approximation algorithms exist (Bhattacharyya et al., 2023; Feng et al., 2023).

This paper focuses on computing (or bounding) the Wasserstein distance and optimal transport plan
between (i) two probabilistic circuits and (ii) a probabilistic circuit and an empirical distribution.
For (i) we propose a Wasserstein-type distance that upper-bounds the true Wasserstein distance and
provide an efficient and exact algorithm for computing it between two circuits (Section 3). For
(ii) we propose a parameter estimation algorithm for PCs that seeks to minimize the Wasserstein
distance between a circuit and an empirical distribution (Section 4). We empirically evaluate our
proposed methods on randomly generated PCs as well as on a benchmark dataset (Section 5).

061 062

063 064

067 068

069

072

073

077

078

087

2 PRELIMINARIES

We use capital letters (X) to denote random variables and lowercase letters (x) to denote their assignments. Boldface denotes a set of random variables and their assignments respectively (e.g., X and x).

2.1 WASSERSTEIN DISTANCES AND OPTIMAL TRANSPORT

Let P and Q be two probability measures on metric space \mathbb{R}^n . For $p \ge 1$, the *p*-Wasserstein distance between P and Q is defined as:

$$\mathbf{W}_{p}^{p}(P,Q) = \inf_{\gamma \in \Gamma(P,Q)} \mathbb{E}_{\gamma(\mathbf{x},\mathbf{y})}[\|\mathbf{x} - \mathbf{y}\|_{p}^{p}]$$
(1)

where $\Gamma(P,Q)$ denotes the set of all *couplings* which are joint distributions whose marginal distributions coincide exactly with P and Q. That is, the following holds for all $\gamma \in \Gamma(P,Q)$:

$$P(\mathbf{x}) = \int_{\mathbb{R}^n} \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}, \quad Q(\mathbf{y}) = \int_{\mathbb{R}^n} \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$
(2)

Here, the *Wasserstein objective* of some (not necessarily optimal) coupling refers to the expectation inside the infimum in Equation 1 taken over that coupling, and the *Wasserstein distance* between two distributions refers to the value taken by the Wasserstein objective for the optimal coupling. It can be shown that there is always a coupling that obtains the infimum above (Villani, 2008). Such optimal coupling γ^* induces a *transport plan* $\mathbf{x} \mapsto \gamma^*(\mathbf{x}, .)$. If the coupling is deterministic, this is called a *transport map* $\mathbf{x} \mapsto T(x)$ where T(x) is the support of $\gamma^*(\mathbf{x}, .)$.

2.2 PROBABILISTIC CIRCUITS

Many tractable probabilistic models—including arithmetic circuits (Darwiche, 2003), sum-product networks (Poon & Domingos, 2011), cutset networks (Rahman et al., 2014), and more—can be understood through a unifying framework of *probabilistic circuits* (Choi et al., 2020).

Definition 1 (Probabilistic circuit). A probabilistic circuit (PC) C over a set of discrete or continuous random variables **X** is a parameterized, rooted directed acyclic graph (DAG) with three types of nodes: sum, product and input nodes. Each sum node n has normalized parameters $\theta_{n,c}$ for each child node c, and each input node n is associated with function f_n that encodes a univariate probability distribution over one of the random variables $X_i \in \mathbf{X}$, also called its *scope* $\mathbf{SC}(n)$. The set of child nodes for an internal node (sum or product) n is denoted $\mathsf{Ch}(n)$, and the sub-circuit rooted at any node n parameterizes a probability distribution $p_n(x)$ over its scope $\mathbf{SC}(n) = \bigcup_{c \in \mathsf{ch}(n)} \mathbf{SC}(c)$ defined as follows:¹

$$p_n(\mathbf{x}) = \begin{cases} f_n(\mathbf{x}) & \text{if } n \text{ is an input node,} \\ \prod_{c \in \mathsf{ch}(n)} p_c(\mathbf{x}) & \text{if } n \text{ is a product node,} \\ \sum_{c \in \mathsf{ch}(n)} \theta_{n,c} p_c(\mathbf{x}) & \text{if } n \text{ is a sum node.} \end{cases}$$

101 102 103

104

105

106

099 100

> Probabilistic circuits admit exact and efficient computation of many probabilistic inference queries, enabled by enforcing certain structural constraints. In particular, throughout this paper we assume two properties, *smoothness* and *decomposability*, which enable tractable computation of marginal

¹Below, we implicitly project \mathbf{x} onto $\mathbf{SC}(n)$ by only considering the dimensions that correspond to random variables in the node's scope

and conditional queries. A PC is *smooth* if every sum node $n \in C$ satisfies the following: $\forall n_i \in ch(n), sc(n_i) = sc(n)$ (i.e., the children of the sum node have the same scope as the parent); it is *decomposable* if every product node $n \in C$ satisfies the following: $\forall n_i, n_j \in ch(n)$, $sc(n_i) \cap sc(n_i) = \emptyset$ (i.e., the children of the product node have disjoint scopes).

- 112
- 113 114

3 OPTIMAL TRANSPORT BETWEEN PROBABILISTIC CIRCUITS

115 We now consider the problem of computing Wasserstein distances and optimal transport plans be-116 tween distributions represented by probabilistic circuits. For notational simplicity, suppose $P(\mathbf{X})$ 117 and $Q(\mathbf{Y})$ are two PCs defining probability measures on a metric space, with a bijective mapping 118 between variables in X and those in Y; w.l.o.g., let X_i and Y_i map to each other. Moreover, we 119 assume that the univariate input distributions in the PCs allow constant-time computation of the 120 Wasserstein distance, following the standard assumption of tractability of input distributions for tractable inference on PCs. In particular, this is the case for p-Wasserstein distance between cate-121 gorical distributions and for the 2-Wasserstein distance between Gaussian distributions. 122

¹²³ Unfortunately, even with the above assumptions, computing the Wasserstein distance between probabilistic circuits is computationally hard.

Theorem 1. Suppose P and Q are probabilistic circuits over n Boolean variables. Then computing the ∞ -Wasserstein distance between P and Q is coNP-hard.

127

In fact, the above is true even when the PCs satisfy stronger structural constraints (determinism 128 and structured decomposability) that enable tractable inference of hard queries such as maximum-129 a-posteriori (MAP) Choi & Darwiche (2017) and entropy (Vergari et al., 2021) and even closed-130 form maximum-likelihood parameter estimtion. At a high level, the proof proceeds by reducing 131 from the problem of deciding consistency of two OBDDs (a type of deterministic and structured-132 decomposable circuits) which is NP-hard (Meinel & Theobald, 1998, Lemma 8.14). In particular, 133 given the two OBDDs, we can construct two deterministic and structured-decomposable PCs in 134 polynomial time such that the input OBDDs are consistent iff W_{∞} between the PCs is not 1. We 135 refer to Appendix C.1 for a detailed proof. 136

Theorem 1 shows that computing the ∞ -Wasserstein distance between two PCs is computationally 137 hard. Whether computing W_p for some other fixed p (such as p = 1 or 2) is NP-hard is still an open 138 question—although there only exist efficient algorithms that bound this quantity between GMMs, 139 rather than compute it exactly (Delon & Desolneux, 2020; Chen et al., 2018)— however, we are 140 interested in efficiently computing or upper-bounding W_p for arbitrary p, including W_{∞} . Thus, 141 to address this computational challenge, we consider a Wasserstein-type distance between PCs by 142 restricting the set of coupling measures to be PCs of a particular structure. Furthermore, we derive 143 the structural conditions on the input PCs required to construct such structure and find the parameters 144 that minimize the Wasserstein objective in time quadratic in the size of the input circuits.

145 146 147

3.1 CW_p : A DISTANCE BASED ON COUPLING CIRCUITS

We propose a notion of *coupling circuit* between two *compatible* (see Definition 2 below) PCs, and introduce a Wasserstein-type distance CW_p which restricts the coupling set in Equation 1 to be circuits of this form. We then exploit the structural properties guaranteed by coupling circuits, namely smoothness and decomposability, to derive efficient algorithms for computing CW_p and associated transport plan.

Definition 2 (Circuit compatibility (Vergari et al., 2021)). Two smooth and decomposable PCs Pand Q over RVs X and Y, respectively, are *compatible* if the following two conditions hold: (i) there is a bijective mapping \leftrightarrow between RVs X_i and Y_i , and (ii) any pair of product nodes $n \in P$ and $m \in Q$ with the same scope up to the bijective mapping are mutually compatible and decompose the scope the same way—that is, if n and m have scopes X and Y and X \leftrightarrow Y, then n and m have the same number of children, and for each child of n with scope X_i there is a corresponding child of m with scope Y_i such that $X_i \leftrightarrow Y_i$. Such pair of nodes are called *corresponding* nodes.

159

Note that circuit compatibility is necessary for existing tractable algorithms for pairwise queries
 on PCs (e.g., computing divergences); however, a pair of arbitrary non-compatible circuits may be transformed into two structured-decomposable circuits and then made compatible, albeit with

163

164

166

167

169

170 171

172

173

174

175

202

Figure 1: Construction of coupling circuits rooted at corresponding nodes, along with the parameter
constraints for a coupled sum node. Product nodes couple children with corresponding scopes, and
sum nodes couple the Cartesian product of the children. Note that corresponding sum nodes need
not have the same number of children.

a worst-case exponential increase in circuit size (de Colnet & Mengel, 2021; Zhang et al., 2024).
Furthermore, compatibility does not require that the circuit structures are the same, only their hierarchical scope partitioning; for example, the number of children of corresponding sum nodes is not constrained (see Appendix A for an example). Lastly, current state-of-the-art PC learning algorithms naturally allow us to learn compatible circuit structures—assuming we assign the bijective mapping ourselves (Dang et al., 2020; Liu & Van den Broeck, 2021).

Definition 3 (Coupling circuit). A *coupling circuit* C between two compatible PCs P and Q with scopes X and Y, respectively, is a PC with the following properties. (i) Each node $r \in C$ is recursively a coupling of a pair of nodes $n \in P$ and $m \in Q^2$ (ii) Each node $r \in C$ that is a coupling of sum nodes $n \in P, m \in Q$ with edge weights $\{\theta_i\}$ and $\{\theta_j\}$ has edge weights $\{\theta_{i,j}\}$ such that $\sum_i \theta_{i,j} = \theta_j$ and $\sum_j \theta_{i,j} = \theta_i$ for all i and j.

The second property described above ensures that such coupling circuit C satisfies the marginalmatching constraints in Equation 2 with respect to P and Q (detailed derivation in Appendix C.2). Furthermore, this property ensures that the sub-circuit rooted at any internal node in the coupling circuit matches marginals to the corresponding nodes in the original circuits (which is a stronger constraint than the entire coupling circuit simply matching marginal distributions to the original circuits). We are now ready to define our proposed distance metric between PCs, which is the minimum Wasserstein objective obtained by a valid parameterization of their coupling circuit.

Definition 4 (Circuit Wasserstein distance). Let $P(\mathbf{X})$ and $Q(\mathbf{Y})$ be compatible PCs and $C_{\theta}(\mathbf{X}, \mathbf{Y})$ their coupling circuit parameterized by θ . The *p*-Circuit Wasserstein distance between P and Q is: $CWP(P, Q) = \min \mathbb{E}$

$$\mathsf{CW}_p^p(P,Q) = \min_{\alpha} \mathbb{E}_{C_{\theta}(\mathbf{x},\mathbf{y})}[\|\mathbf{x} - \mathbf{y}\|_p^p].$$

We now investigate some properties of CW_p . First, we note that CW_p is indeed a metric on any set of compatible circuits, which is contrary to some other statistical measures such as KL-divergence used to compare distributions.

Proposition 1. For any set C of compatible circuits, CW_p defines a metric on C.

Moreover, we have that CW bounds the true Wasserstein distance between PCs as both are infima of the same Wasserstein objective, while the feasible set of couplings for CW is more restrictive.

Proposition 2. For compatible PCs P and Q, $W_p(P,Q) \leq CW_p(P,Q)$.

This also implies that the coupling circuit $C(\mathbf{x}, \mathbf{y})$ corresponding to $\mathsf{CW}_p(P, Q)$ induces a (albeit not necessarily optimal) transport plan that maps a point \mathbf{x} to a distribution $C(\mathbf{y}|\mathbf{x})$ and vice versa.

²¹⁴ ²The coupling circuit has the same structure as the product circuit (Vergari et al., 2021) of P and Q. Infor-215 mally, this is done by constructing a *cross product* of children at every pair of sum nodes, and the product of corresponding children at every pair of product nodes (see Figure 1). Algorithm 1 shows this construction.

216 Algorithm 1 COUPLE(n, m): coupling circuit that optimizes $CW_n^p(n, m)$ of compatible PCs rooted at 217 nodes n, m218 **Note:** We omit calls to a cache storing previously-computed coupling circuits COUPLE(n, m) for 219 simplicity. 220 1: if n, m are input nodes then $r \leftarrow$ new product(n, m) \triangleright Product node with children n,m221 2: else if n, m are sum nodes then 222 $r \leftarrow$ new sum node with parameters $\theta_{i,j}$ 3: 223 for each $c_i \in n$.children, $c_i \in m$.children do 4: 224 5: $r.children[i, j] \leftarrow COUPLE(c_i, c_j)$ 225 $\mathsf{LP} \leftarrow \begin{cases} \text{minimize} & \sum_{i} \sum_{j} \mathsf{CW}_{p}(r.\mathsf{children}[i,j]) * \theta_{i,j} \\ \text{subject to} & \forall i, \sum_{j} \theta_{i,j} = \theta_{i} \\ & \forall j, \sum_{i} \theta_{i,j} = \theta_{j} \end{cases}$ 226 227 228 229 230 231 232 solve LP 7: \triangleright Solve for optimal parameters $\theta_{i,j}$ 233 8: else if n, m are product nodes then 9: $r \leftarrow$ new product node 235 for each $c_1 \in n$.children, $c_2 \in m$.children where $SC(c_1) = SC(c_2)$ do 10: 236 add COUPLE (c_1, c_2) to r.children \triangleright Child is the coupling of corresponding children 11: 237 12: **return** *r* 238

3.2 EXACT AND EFFICIENT COMPUTATION OF CW_p

239

240 241

242

243

244

245

246

251 252

253 254

260

We now present our algorithm that exactly and efficiently computes the Circuit Wasserstein distance of two compatible PCs, which in turn upper-bounds their Wasserstein distance. The key observation enabling our algorithm is that the Wasserstein objective for a given parameterization of the coupling circuit can be computed recursively through a single feedforward pass through the circuit, and thus can also be minimized over its parameters in a single forward pass.

Recursive Computation of the Wasserstein Objective Let $C(\mathbf{X}, \mathbf{Y})$ be a coupling circuit and $g(n) = \mathbb{E}_{C_n}[\|\mathbf{x} - \mathbf{y}\|_p^p]$ the corresponding CW_p -objective function at each node $n \in C$. We can write g(n) recursively as follows (see Appx. C.4 for correctness proof):

 $g(n) = \begin{cases} \mathsf{W}_p^p(c_1, c_2) & \text{if } n \text{ is a product with input node children,} \\ \sum_{c \in \mathsf{ch}(n)} g(c) & \text{if } n \text{ is a product with sum or product node children,} \\ \sum_{c \in \mathsf{ch}(n)} \theta_{n,c} g(c) & \text{if } n \text{ is a sum node.} \end{cases}$ (3)

Thus, we can push computation of the Wasserstein objective down to the leaf nodes of a coupling circuit, and our algorithm only requires a closed-form solution for W_p between univariate input distributions as the base case. Note that the objective function at a decomposable product node is the *sum* of the objective functions at its children; this is because the L_p^p -norm decomposes into the sum of norm in each dimension.

Recursive Computation of the Optimal Coupling Circuit Parameters for CW_p Leveraging the recursive properties of the Wasserstein objective, we can compute the optimal parameters of the coupling circuit by solving a small linear program at each sum node. Algorithm 1 details the construction of a coupling circuit and finding the optimal parameters to compute CW_p .

Specifically, we wish to find $\min_{\theta} g(n)$ where g(n) can be written recursively as in Equation 3. By this definition, at sum nodes we can minimize the Wasserstein objective at each child independently then solve a linear program using the objective value at the child nodes as constants: given the optimal g(c) for each child node c of n, we can rewrite $\min_{\theta} g(n) = \min_{\theta} \sum_{c \in ch(n)} \theta_c g(c)$ to see that solving for the sum node parameters reduces to solving a linear program. We can decompose the optimization problem this way because the optimization at children are independent of the parent parameters. At a product node, we can again push the problem down to the children: $\min_{\theta} \sum_{c \in ch(n)} g(c) = \sum_{c \in ch(n)} (\min_{\theta} g(c))$, because the children nodes $c \in ch(n)$ have disjoint scopes due to decomposability and thus do not share any parameters.

Since the time to solve the linear program at each sum node depends only on the number of children of the sum node, which is bounded, we consider this time constant when calculating the runtime of the full algorithm. Thus, we can compute CW_p and the corresponding transport plan between two circuits in time linear in the size of the coupling circuit, or equivalently, quadratic in the size of the original input circuits. Appendix C.6 presents correctness proof of the algorithm in more detail.

279 280

3.3 RELATION TO OPTIMAL TRANSPORT FOR GMMS

As probabilistic circuits with Gaussian input distributions can be interpreted as deep, compact representations of Gaussian mixture models (GMMs), existing works studying optimal transport for GMMs (Chen et al., 2018; Delon & Desolneux, 2020) are highly relevant. In particular, our proposed notion of Circuit Wasserstein distance is closely related to the Mixture Wasserstein distance (MW₂) introduced by Delon & Desolneux (2020), who also derived an upper bound on the true Wasserstein distance by restricting the coupling set to a GMM structure with quadratic number of components and computed this metric by solving a linear program.

288 We can in fact directly leverage this algorithm to compute a bound on 2-Wasserstein distance be-289 tween PCs. Specifically, we can "unroll" PCs with Gaussian inputs into their shallow representations which correspond to GMMs and them compute MW_2 between those unrolled GMMs. However, the 290 shallow representation of a PC may be exponentially larger than the size of the original circuit, 291 making this naive approach intractable; nevertheless, we consider this approach as a baseline for 292 our proposed approach and provide a detailed runtime comparison in Section 5. Furthermore, we 293 observe that MW_p will be no larger than our proposed CW_p because a coupling circuit can also be unrolled into a GMM and thus must be in the coupling set for MW_p ; we also empirically compare 295 the efficacy of these two metrics in bounding the true Wasserstein distance in Section 5. 296

297 298

299

304

305

306 307 308

4 PARAMETER LEARNING OF PCs USING WASSERSTEIN DISTANCE

Motivated by past works that train generative models by minimizing the Wasserstein distance between the model and the empirical data distribution (Rout et al., 2022; Salimans et al., 2018; Tolstikhin et al., 2018; Arjovsky et al., 2017), we investigate the applicability of minimizing the Wasserstein distance between a PC and data as a means of learning the parameters of a given PC structure.

Formally, suppose we have a dataset $\mathcal{D} = {\mathbf{y}^{(k)}}_{k=1}^{n}$ that induces the empirical probability measure \hat{Q} . Then for a given PC structure, we find its parameters θ to optimize the following:

$$\min_{\theta} \mathbf{W}_{p}^{p}(P_{\theta}, \hat{Q}) = \min_{\theta} \inf_{\gamma \in \Gamma(P_{\theta}, \hat{Q})} \mathbb{E}_{\gamma(\mathbf{x}, \mathbf{y})} [\|\mathbf{x} - \mathbf{y}\|_{p}^{p}]$$
$$= \min_{\theta} \inf_{\gamma \in \Gamma(P_{\theta}, \hat{Q})} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{\gamma(\mathbf{x}|\mathbf{y}^{(k)})} \left[\left\| \mathbf{x} - \mathbf{y}^{(k)} \right\|_{p}^{p} \right].$$
(4)

310 311

320

322

Note that the second line in Equation 4 comes from rewriting $\gamma(\mathbf{x}, \mathbf{y}) = \gamma(\mathbf{x}|\mathbf{y})\gamma(\mathbf{y})$, then applying linearity of integration since \hat{Q} is an empirical distribution. Unfortunately, solving the above optimization problem is computationally hard.

Theorem 2. Suppose P_{θ} is a smooth and decomposable probabilistic circuit, and \hat{Q} is an empirical distribution induced by a dataset $\mathcal{D} = \{\mathbf{y}^{(k)}\}_{k=1}^{n}$. Then computing the parameters θ that minimizes the empirical Wasserstein distance $W_{p}^{p}(P_{\theta}, \hat{Q})$ (i.e., solving Equation 4) is NP-hard.

We can show the above by a reduction from k-means clustering (Appendix C.5).

321 4.1 WASSERSTEIN-MINIMIZATION: AN ITERATIVE ALGORITHM

We again tackle this computational hardness by imposing a circuit structure on the coupling measure, allowing us compute the Wasserstein objective and optimize it efficiently.

Definition 5 (Empirical Circuit Wasserstein distance). Let *P* be a PC distribution and \hat{Q} an empirical distribution induced by a dataset $\mathcal{D} = {\mathbf{y}^{(k)}}_{k=1}^n$. The *p*-Empirical Circuit Wasserstein distance between *P* and \hat{Q} is

328

 $\mathsf{ECW}_p^p(P,\hat{Q}) = \min_{\gamma} \frac{1}{n} \sum_{k=1}^n \mathbb{E}_{\gamma(\mathbf{x}|\mathbf{y}^{(k)})} \left[\left\| \mathbf{x} - \mathbf{y}^{(k)} \right\|_p^p \right],$

where $\gamma(\mathbf{x}, \mathbf{y} = \mathbf{y}^{(k)})$ satisfies the following: (i) for each $k \in \{1, ..., n\}$, $\gamma(., \mathbf{y} = \mathbf{y}^{(k)})$ is a PC with the same structure as P (but not necessarily the same parameters) that normalizes to 1/n, and (ii) $\sum_{k=1}^{n} \gamma(\mathbf{x}, \mathbf{y} = \mathbf{y}^{(k)}) = P(\mathbf{x})$.

A coupling satisfying the above structure clearly satisfies the marginal constraints and is in $\Gamma(P, \hat{Q})$. Therefore, the empirical Circuit Wasserstein distance upper-bounds the empirical Wasserstein distance: $W_p(P, \hat{Q}) \leq ECW_p(P, \hat{Q})$. We will thus learn the parameters of PCs by minimizing this upper bound, which can be computed efficiently as we show next.

We now present our *iterative algorithm* for minimum-Wasserstein parameter learning. In particular, we wish to learn the circuit parameters θ that minimizes $\mathsf{ECW}_p^p(P_\theta, \hat{Q})$ which is in turn a minimization problem over couplings γ . Thus, we alternate between (i) optimizing the coupling given the current circuit parameters and (ii) updating the circuit parameters given the current coupling.

Let us first discuss step (i) which computes $\mathsf{ECW}_p^p(P_\theta, \hat{Q})$ for a given θ and in the process find the corresponding coupling γ . First, rather than materializing a PC to represent $\gamma(., \mathbf{y} = \mathbf{y}^{(k)})$ for each k as described in Definition 5, we can equivalently model a single coupling circuit γ as having the same structure as P and a set of parameters $\{w_{r,c,k}\}_{k=1}^n$ for each parameter $\theta_{r,c}$ in P. Then optimizing the coupling circuit parameters amounts to minimizing the expected distance according to the coupling distribution, similar to computing CW, and can be done efficiently by solving a small linear program at each sum node. Here, we have the following marginal-matching constraints: $\sum_{k=1}^n w_{r,c,k} = \theta_{r,c}$ for each sum node r and child c and $\sum_c w_{r,c,k} = 1/n$ for each k.

Interestingly, the above linear program at each sum node is a variation of the continuous knapsack problem (Michael Goodrich, 2002) and thus has a closed-form solution. In particular, the solution results in a coupling circuit with each weight $w_{c,k}$ being either $\frac{1}{n}$ or zero (details in Appendix C.7). Intuitively, the coupling circuit parameters w describe how each data point is routed through the circuit; because the optimal coupling is deterministic—each data point is either routed wholly through an edge or not at all—we obtain a *transport plan* between the learned PC and empirical distribution.

Next, we discuss step (ii) which estimates the parameters θ of PC *P* from a given coupling γ . Because the coupling has the same structure as *P*, and its weights $\{w_{r,c,k}\}$ satisfy marginal-matching constraints, we can simply extract the PC parameters: $\theta_{r,c} = \sum_{k=1}^{n} w_{r,c,k}$.

The above two steps are repeated iteratively until convergence; a pseudocode for the complete algorithm is provided in Appendix B). Due to the closed-form solution of the LP, the time complexity of one iteration of our algorithm is linear in both the size of the circuit and the size of the dataset, and our algorithm is also guaranteed to converge (potentially to a local minimum) as every iteration only decreases or preserves the empirical Wasserstein objective (Appendix C.8). Nevertheless, finding the global optimum parameters minimizing the Wasserstein distance is still NP-hard, and our proposed efficient algorithm may get stuck at a local minimum, similar to existing maximum-likelihood parameter learning approaches.

We observe interesting parallels between our proposed Wasserstein-Minimization (WM) method and Expectation-Maximization (EM) for maximum-likelihood parameter learning. EM is an iterative algorithm that alternates between (i) computing the expected likelihood (marginalizing out the latent variables) of current parameters in the E-step and (ii) estimating the parameters that maximize this in the M-step, which is analogous to the two steps of WM: (i) computing the ECW for current parameters and (ii) updating the parameters to minimize ECW.

374 375

5 EXPERIMENTS

In this section, we first empirically evaluate our proposed algorithm for computing CW_p against the algorithm proposed by Delon & Desolneux (2020) for computing MW_2 . We then compare

Figure 2: Runtime of Wasserstein-type distance computation using our approach (blue dots) and the baseline (red triangles). Each data point represents a pair of circuit structures corresponding to a fixed circuit branching factor and fixed number of random variables in the circuit scope, averaged over 100 random parameter initializations. For circuits larger than those depicted, the baseline approach runs out of memory. See Appendix 5.1 for runtime results of our approach on larger circuits.

the density-estimation capabilities of circuits learned using our proposed Wasserstein-Minimzation (WM) algorithm against the Expectation-Maximization (EM) algorithm for PCs. Specifically, we aim to answer the following three questions:

- 1. How does the runtime of our algorithm for computing CW_2 scale with the size of the circuit in practice, and how does that compare to MW_2 computation (Delon & Desolneux, 2020)?
- 2. How close is the computed value of CW_2 to MW_2 ?
- 3. How do circuits learned using our Wasserstein-Minimzation algorithm compare with circuits learned using the classic Expectation-Maximization algorithm?
- 405 5.1 RUNTIME EXPERIMENTS FOR COMPUTING CW₂

To evaluate the runtime of computing CW_2 , we consider a fixed variable scope and randomly con-407 struct a balanced hierarchical scope partitioning. Then, we randomly construct two PCs with this 408 partitioning such that they are compatible; the PCs are constructed with a fixed sum node branching 409 factor and fixed rejoin probability—i.e., the chance that a graph connection to an existing node in 410 the PC will be made to add a child rather than creating a new node for the child, which is 0% in 411 the case of trees and set to 50% in the case of graphs. We implement our algorithm as detailed in 412 Algorithm 1 to compute the optimal transport map and value for CW_2 , as well as also implement 413 a PC-to-GMM unrolling algorithm and the algorithm proposed by Chen et al. (2018) to compute 414 MW_2 (Delon & Desolneux, 2020).³

The results are summarized in Figure 2, which demonstrate the quadratic runtime of our algorithm in the size of the original circuits, which sharply contrasts with the exponential runtime of the naive computation of MW_2 by circuit unrolling. For circuits with just over one hundred edges (after which the algorithm runs out of memory), naively computing MW_2 is over *three hundred times slower* than computing CW_2 with our feedforward algorithm. We include runtime results for circuits two orders of magnitude larger in Appendix D.1.

421 422

423

378

379

380

381

382

384

385

386

387

388

389

390

391

392 393 394

396

397

399 400

401

402

403 404

406

5.2 Comparing the Quantities of CW_2 and MW_2

424 Because both CW_2 and MW_2 upper-bound the true 2-Wasserstein distance, the smaller the values, 425 the tighter the bound. We adopt the same framework as we did for runtime experiments to randomly 426 construct compatible PCs and compute CW_2 and MW_2 between them. Due to the exponential 427 blowup of computing MW_2 it quickly becomes impractical to compute (see Section 5.1); however, 428 we still attempt to provide some empirical insight into the difference between CW_p and MW_p . 429 Empirically, the difference between CW_p and MW_p grows with circuit size (see Appendix D.4 for 430 detailed figures).

³Code for our implementation and experiments will be made available online upon acceptance of the paper.

Figure 3: (*Left*) CW_2 between circuits learned on the given dataset partitions corresponding to images with only that digit; lighter pixels represent a lower CW_p . (*Right*) Cosine similarity between dataset partitions; lighter pixels represent a higher cosine similarity.

Figure 4: Color transfer between images using coupling circuits. In each of the above figures, the top two images represent images A and B, and the bottom two images represent image A transferred to image B's color palette and image B transferred to image A's color palette respectively.

We also note that while the ratio $\frac{CW_2}{MW_2}$ is lower for circuits of higher depth, this can be attributed to higher-depth circuits potentially having fewer learnable parameters (and thus less opportunity for error to compound) relative to their size. A circuit with a large scope size (and thus high depth) but small sum node branching factor can have the same number of edges but far fewer parameters than a shallow circuit with a large sum node branching factor.

5.3 COMPUTING CW₂ BETWEEN LEARNED CIRCUITS

To support the feasibility of our algorithm when applied to large, high-dimensional PCs, we com-puted CW_n between circuits learned on the MNIST dataset (LeCun et al., 1998) – a 784-dimensional handwritten digits image dataset. Specifically, we first partitioned the dataset into 10 classes by the digit depicted in the image, and then learned one circuit per class using the HCLT structure learning algorithm (Liu & Van den Broeck, 2021) with a fixed block size of 4 (resulting in each circuit having over 11k edges) and Expectation-Maximization parameter learning algorithm (Desana & Schnörr, 2016) implemented in PyJuice (Liu et al., 2024). We then computed CW_2 between each pair of cir-cuits (which took under two seconds per pair with our implementation), and plot these values along with the average cosine similarity between the classes in Figure 3. We found that cosine similarity between classes was inversely correlated with CW_p between circuits learned on those classes with a correlation coefficient of r = -0.78, supporting the utility of our proposed distance metric.

5.4 COLOR TRANSFER BETWEEN IMAGES USING OPTIMAL TRANSPORT

We adopt an application of optimal transport shown by Delon&Desolneux (2020), whereby we transport the *color histogram*—the 3-dimensional probability distribution of pixel color values—of image *a* to that of another image *b*. To do this, we learn compatible PCs $P(\mathbf{X})$ and $Q(\mathbf{Y})$ over the color distributions of images *a* and *b*, compute the optimal coupling circuit $C(\mathbf{X}, \mathbf{Y})$, and transport each pixel with color value **x** to the corresponding pixel $\mathbb{E}_C[\mathbf{Y}|\mathbf{X} = \mathbf{x}]$ (which can be computed tractably). See Figure 4 for two examples.

Figure 5: Visualization of the performance of PCs learned using Expectation Maximization (red triangles) and Wasserstein Minimization (our approach, blue dots). The bits-per-dimension (bpd) of the learned circuits does not decrease significantly with an increase in circuit size for circuits learned using the empirical Wasserstein distance.

5.5 WASSERSTEIN-MINIMIZATION FOR CIRCUIT PARAMETER LEARNING

To determine the performance of our proposed Wasserstein-Minimization algorithm on density es-504 timation tasks, we consider learning the parameters of circuits of various sizes from the MNIST 505 benchmark dataset (LeCun et al., 1998). We first generated the structure of the circuits using the 506 HCLT algorithm (Liu & Van den Broeck, 2021) implementation provided in PyJuice (Liu et al., 507 2024), varying the "block size" to increase or decrease the number of parameters. We then learned 508 two sets of circuit parameters per structure per block size: one set of parameters was learned using mini-batch EM (Desana & Schnörr, 2016), and the other set was learned using our proposed WM 509 algorithm. We performed early stopping for the EM algorithm that stops training once the point of 510 diminishing returns has been surpassed. All experiments were ran on a single NVIDIA L40s GPU. 511

In terms of bits-per-dimension, we observe that our algorithm performs nearly as well as EM for small circuits (block size 4). However, as the size of the circuit increases, the performance of our algorithm quickly stagnates; empirically, our WM approach does not seem to take full advantage of the larger parameter space of larger models, with models orders of magnitude larger having better but still comparable performance to their smaller counterparts. We refer to Figure 5 for more details.

517 518

486

487 488

489 490

491

492

493

494

495

496

497

502

6 CONCLUSION

519 520 521

This paper studied the optimal transport problem for probabilistic circuits. We introduced a 522 Wasserstein-type distance CW_p between two PCs an proposed an efficient algorithm that computes 523 the distance and corresponding optimal transport plan in quadratic time in the size of the input cir-524 cuits, provided that their circuit structures are compatible. We show that CW_p always upper-bounds 525 the true Wasserstein distance, and that-when compared to the naive application of an existing al-526 gorithm for computing a Wasserstein-type distance between GMMs to PCs-the former is exponen-527 tially faster to compute between circuits. Lastly, we propose an iterative algorithm to minimize the 528 empirical Wasserstein distance between a circuit and data, suggesting an alternative, viable approach 529 to parameter estimation for PCs which is mainly done using maximum-likelihood estimation. While 530 performance was competitive with the EM algorithm for small circuits, we leave as future work to 531 get Wasserstein Minimization to fully exploit the increased expressiveness of larger models.

We consider this work an initial stepping stone towards a deeper understanding of optimal transport theory for probabilistic circuits. Future work includes exploring more expressive formulations of coupling circuits to obtain a tighter bound on Wasserstein distance—such as relaxing the node-bynode parameter constraints to only require that the whole circuit matches marginal distributions to the original circuits. Our work also leaves open the possibility of extending the marginal-preserving properties of coupling circuits to the multimarginal setting for multimarginal generative modeling with PCs, and computing Wasserstein barycenters for PCs. Moreover, we envision that the tractable computation of a Wasserstein-type distance and transport plan between expressive models such as PCs can lead to further development in various Wasserstein-based machine learning approaches.

540 REFERENCES

552

553

554 555

556

566

567

568 569

570

571

572

575

576

577

580

581

582

583

584 585

586

- Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 214–223. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/ arjovsky17a.html.
- Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, and N. V.
 Vinodchandran. On approximating total variation distance. In *Proceedings of the Thirty- Second International Joint Conference on Artificial Intelligence*, IJCAI-2023, pp. 3479–3487.
 International Joint Conferences on Artificial Intelligence Organization, August 2023. doi:
 10.24963/ijcai.2023/387. URL http://dx.doi.org/10.24963/ijcai.2023/387.
 - Yongxin Chen, Tryphon T Georgiou, and Allen Tannenbaum. Optimal transport for gaussian mixture models. *IEEE Access*, 7:6269–6278, 2018.
 - Arthur Choi and Adnan Darwiche. On relaxing determinism in arithmetic circuits. In *International Conference on Machine Learning*, pp. 825–833. PMLR, 2017.
- YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying framework for tractable probabilistic models. oct 2020. URL http://starai.cs.ucla.edu/ papers/ProbCirc20.pdf.
- Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: Learning structureddecomposable probabilistic circuits. In Manfred Jaeger and Thomas Dyhre Nielsen (eds.), Proceedings of the 10th International Conference on Probabilistic Graphical Models, volume 138
 of Proceedings of Machine Learning Research, pp. 137–148. PMLR, 23–25 Sep 2020. URL https://proceedings.mlr.press/v138/dang20a.html.
 - Adnan Darwiche. A differential approach to inference in bayesian networks. *Journal of the ACM* (*JACM*), 50(3):280–305, 2003.
 - Sanjoy Dasgupta. The hardness of k-means clustering. UCSD Technical Report, 2008. URL https://www.cs.columbia.edu/~verma/classes/uml/ref/clustering_kmeans_NPhard_dasgupta.pdf.
- Alexis de Colnet and Stefan Mengel. A compilation of succinctness results for arithmetic circuits,
 2021. URL https://arxiv.org/abs/2110.13014.
 - Julie Delon and Agnes Desolneux. A wasserstein-type distance in the space of gaussian mixture models. *SIAM Journal on Imaging Sciences*, 13(2):936–970, 2020.
- 578 Mattia Desana and Christoph Schnörr. Expectation maximization for sum-product networks as exponential family mixture models. 04 2016. doi: 10.48550/arXiv.1604.07243.
 - Weiming Feng, Heng Guo, Mark Jerrum, and Jiaheng Wang. A simple polynomial-time approximation algorithm for the total variation distance between two product distributions. *TheoretiCS*, Volume 2, June 2023. ISSN 2751-4838. doi: 10.46298/theoretics.23.7. URL http: //dx.doi.org/10.46298/theoretics.23.7.
 - Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International Statistical Review / Revue Internationale de Statistique, 70(3):419–435, 2002. ISSN 03067734, 17515823. URL http://www.jstor.org/stable/1403865.
- 588
 589
 590
 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.com.
- Leonid Kantorovich. On the transfer of masses. *Dokl. Akad. Nauk. SSSR*, 37:227–229, 1942.
- 593 Yann LeCun, Léon Bottou, Yoshua Bengio, , and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 1998.

- Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond kanonymity and l-diversity. In 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115, 2007. doi: 10.1109/ICDE.2007.367856.
- Yitao Liang and Guy Van den Broeck. Towards compact interpretable models : Shrinking of learned probabilistic sentential decision diagrams. In *IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI)*, 2017. URL http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.
- Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In M. Ran zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
 Neural Information Processing Systems, volume 34, pp. 3558–3570. Curran Associates, Inc.,
 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
 file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf.
- Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A systems perspective, 2024. URL https://arxiv.org/abs/2406.00766.
- Christoph Meinel and Thorsten Theobald. *Algorithms and Data Structures in VLSI Design: OBDD- foundations and applications.* Springer Science & Business Media, 1998.
- Roberto Tamassia Michael Goodrich. Algorithm Design: Foundations, Analysis, and Internet Examples. John Wiley & Sons, 2002.
- Gaspard Monge. *Mémoire sur la théorie des déblais et des remblais*. De l'Imprimerie Royale, 1781.
- Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011 *IEEE International Conference on Computer Vision Workshops (ICCV Workshops)*, pp. 689–690. IEEE, 2011.
- Hamed Rahimian and Sanjay Mehrotra. Frameworks and results in distributionally robust optimization. Open Journal of Mathematical Optimization, 3:1-85, July 2022. ISSN 2777-5860. doi: 10.5802/ojmo.15. URL http://dx.doi.org/10.5802/ojmo.15.
- Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable, and scalable approach for improving the accuracy of chow-liu trees. In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II 14*, pp. 630–645. Springer, 2014.
- Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport maps. In *International Conference on Learning Representations*, 2022.
- Tim Salimans, Dimitris Metaxas, Han Zhang, and Alec Radford. Improving gans using optimal
 transport. In *6th International Conference on Learning Representations, ICLR 2018*, 2018.
- Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein autoencoders. In *International Conference on Learning Representations*, 2018.
- Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy den Broeck. A Compositional At las of Tractable Circuit Operations for Probabilistic Inference. In *Advances in Neural Information Processing Systems*, volume 34, pp. 13189–13201, 2021.
- 638639 Cedric Villani. *Optimal Transport, old and new*, volume 338. Springer Science & Business, 2008.
- Honghua Zhang, Benjie Wang, Marcelo Arenas, and Guy Van den Broeck. Restructuring tractable
 probabilistic circuits, 2024. URL https://arxiv.org/abs/2411.12256.

- 644
- 645

646

Figure 6: Two compatible circuits over $\mathbf{X} = (X_1, X_2, X_3)$ and $\mathbf{Y} = (Y_1, Y_2, Y_3)$. Note that compatibility does not require the same (or even notably similar) structures apart from the hierarchical scope partitioning.

ADDITIONAL FIGURES А

We include an example of compatible circuits with different structures in Figure 6.

В ALGORITHM FOR MINIMUM WASSERSTEIN PARAMETER ESTIMATION

Our proposed algorithm is broadly divided into two steps: an inference step and a minimization step. These steps are performed iteratively until model convergence. The inference step populates a cache, which stores the expected distance of each data point at each node in the circuit. This inference step is done in linear time in a bottom-up recursive fashion, making use of the cache for already-computed results. This is provided in algorithm 2.

The minimization step is done top-down recursively, and seeks to route the data at a node to its children in a way that minimizes the total expected distance between the routed data at each child and the sub-circuit. The root node is initialized with all data routed to it. At a sum node, each data point is routed to the child that has the smallest expected distance to it (making use of the cache from the inference step), and the edge weight corresponding to a child is equal to the proportion of data routed to that child; at a product node, the data point is routed to both children. Input node parameters are updated to reflect the empirical distribution of the data routed to that node. The minimization step is thus also done in linear time, and we note that this algorithm guarantees a non-decreasing objective function (see Appendix C.8 for a proof). The algorithm for this is provided in algorithm 3.

> Algorithm 2 INFERENCE(n, D): returns a cache storing the distance between each data point $d_i \in$ D and each sub-circuit rooted at n, where n has children c_i . For conciseness, we omit checking for cache hits

688	cache hits	
689	for $c_i \in n$.children do	
690	$INFERENCE(c_i, D)$	▷ recursively build cache
691	if n is a product node then	
692	for $d_j \in D$ do	
693	$cache[n, d_j] \leftarrow \sum_i cache[c_i, d_j]$	
694	if n is a sum node then	
695	for $d_j \in D$ do	
696	$cache[n, d_j] \leftarrow \sum_i \theta_i cache[c_i, d_j]$	
697	if n is an input node then	
698	for $d_j \in D$ do	
699	$cache[n, d_j] \leftarrow dist(n, d_j) \triangleright here, dist(n, d_j)$	is the expected distance between n and d_j
700	return cache	
701		

if not all parents of n have return	been learned then Ve only call this method on nodes who's parents have all been learned			
if <i>n</i> is a product node then				
for $c_i \in n$.children do				
routing $[c_i] \leftarrow$ routi	$ng[n]$ \triangleright products route their data to their children			
if n is a sum node then				
$\forall \theta_i, \theta_i \leftarrow 0$	▷ zero out parameters			
for $d_j \in \operatorname{routing}[n]$ do	▷ route data points at current node to children			
$c_i \leftarrow \arg\min_{c_i} \mathbf{ca}$	$ehe[c_i, d_j]$ $\triangleright c_i$ is the child node of n for which d_j has the lowest			
distance	b route d to a			
$[\operatorname{foutility}] [C_i] \leftarrow a_j$	\triangleright undete peremeter weight			
$\sigma_i \leftarrow \sigma_i + \frac{1}{ \text{routing}[n] }$	b update parameter weight			
if n is an input node then				
n .parameters \leftarrow param	eters matching empirical distribution of routing $[n]$			
C PROOFS C.1 Hardness Proof of	THE ∞ -Wasserstein Distance Between Circuits			
Theorem 1. Suppose P and the ∞ -Wasserstein distance band structured-decomposable	Q are probabilistic circuits over n Boolean variables. Then computing etween P and Q is coNP-hard, even when P and Q are <i>deterministic</i> .			
<i>Proof.</i> We will prove hardness as, which is known to be col PCs.	s by reducing the problem of deciding equivalence of two DNF formu- P-hard, to Wasserstein distance computation between two compatible			
Consider a DNF α containing <i>m</i> terms $\{\alpha_1, \ldots, \alpha_m\}$ over Boolean variables X . We will construct PC P_{α} associated with this DNF as follows. For each term α_i , we construct a product of input odes—one for each $X \in \mathbf{X}$ whose literal appears in term α_i , $\mathbb{1}[X = 1]$ for a positive literal and $\mathbb{1}[X = 0]$ for negative. Then we construct a sum unit with uniform parameters over these product s the root of our PC: $P_{\alpha} = \sum_{i=1}^{m} \frac{1}{2}P_{\alpha}$. We can easily smooth this PC by additionally multiplyin				
P_{α} , with a sum node $\frac{1}{2}\mathbb{1}[X]$	$= 0] + \frac{1}{2}\mathbb{1}[X = 1]$ for each variable X that does not appear in α_i .			
Furthermore, note that every	product node in this circuit fully factorizes the variables $\mathbf{\hat{X}}$, and thus			
he PC is trivially compatible	with any decomposable circuit over $\mathbf X$ and in particular with any other			
PC for a DNF over \mathbf{X} , constr	icted as above.			
Clearly, the above PC P_{α} ass	gns probability mass only to the models of α . In other words, for any			
$\mathbf{x} \in \{0,1\}^n$, $P_{\alpha}(\mathbf{x}) > 0$ iff \mathbf{x}	$\models \alpha$ (i.e. there is a term α_i that is satisfied by x).			
C.2 PROOF OF THE MARC	INAL-MATCHING PROPERTIES OF COUPLING CIRCUITS			
Proposition 3. Let P and Q Def. 2 metabolic manipulation	be compatible PCs. Then any feasible coupling circuit C as defined in C and Q			
Der. 5 matches marginals to	- anu Q.			
Droof Wa will may this he	induction Our base case is two corresponding input podes			
P, Q . The sub-circuit in C read n_2 as children, which cle	oted at the product of n_1 and n_2 is a product node with copies of n_1 arly matches marginals to n_1 and n_2 .			
Now let n_1 and n_2 be arbit	ary corresponding nodes in P and O and assume that the product			
circuits for all children of the	two nodes match marginals. We then have two cases:			
Case 1. m. m. and made at -	adag Since the circuits are connectible we know that a and a house			
the same number of children- of n_1 , and let $c_{2,i}$ represent	-let the number of children be k. Thus, let $c_{1,i}$ represent the <i>i</i> 'th child he <i>i</i> 'th child of n_2 . The coupling circuit of n_1 and n_2 (denoted n) is			

a product node with k children, where the i'th child is the coupling circuit of $c_{1,i}$ and $c_{2,i}$ (denoted c_i).

By induction, the distribution $P_{c_i}(\mathbf{X}, \mathbf{Y})$ at each child coupling sub-circuit matches marginals to the original sub-circuits: $P_{c_i}(\mathbf{X}) = P_{c_{1,i}}(\mathbf{X})$, and $P_{c_i}(\mathbf{Y}) = P_{c_{2,i}}(\mathbf{Y})$. n_1 and n_2 being product nodes means that $P_{n_1}(\mathbf{X}) = \prod_i P_{c_{1,i}}(\mathbf{X})$ and $P_{n_2}(\mathbf{Y}) = \prod_i P_{c_{2,i}}(\mathbf{Y})$, so thus $P_n(\mathbf{X}) = \prod_i P_{c_i}(\mathbf{X}) = \prod_i P_{c_i}(\mathbf{X}) = \prod_i P_{c_{1,i}}(\mathbf{X})$ and $P_n(\mathbf{Y}) = \prod_i P_{c_{2,i}}(\mathbf{Y})$. Therefore, n matches marginals to n_1 and n_2 .

Case 2: n_1, n_2 **are sum nodes** Let the number of children of n_1 be k_1 and the number of children of n_2 be k_2 . Let $c_{1,i}$ represent the *i*'th child of n_1 , and let $c_{2,j}$ represent the *j*'th child of n_2 . The coupling circuit of n_1 and n_2 (denoted n) is a sum node with $k_1 * k_2$ children, where the (i, j)'th child is the coupling circuit of $c_{1,i}$ and $c_{2,j}$ (denoted $c_{i,j}$).

By induction, the distribution $P_{c_{i,j}}(\mathbf{X}, \mathbf{Y})$ at each child coupling sub-circuit matches marginals to the original sub-circuits: $P_{c_{i,j}}(\mathbf{X}) = P_{c_{1,i}}(\mathbf{X})$, and $P_{c_{i,j}}(\mathbf{Y}) = P_{c_{2,j}}(\mathbf{Y})$. n_1 and n_2 being sum nodes means that $P_{n_1}(\mathbf{X}) = \sum_i \theta_i P_{c_{1,i}}(\mathbf{X})$ and $P_{n_2}(\mathbf{Y}) = \sum_j \theta_j P_{c_{2,j}}(\mathbf{Y})$, so thus

$$P_{n}(\mathbf{X}) = \sum_{i} \sum_{j} \theta_{i,j} P_{c_{i,j}}(\mathbf{X}) = \sum_{i} \sum_{j} \theta_{i,j} P_{c_{1,i}}(\mathbf{X}) = \sum_{i} \theta_{i} P_{c_{1,i}}(\mathbf{X}) = P_{n_{1}}(\mathbf{X})$$
$$P_{n}(\mathbf{Y}) = \sum_{i} \sum_{j} \theta_{i,j} P_{c_{i,j}}(\mathbf{Y}) = \sum_{i} \sum_{j} \theta_{i,j} P_{c_{2,j}}(\mathbf{Y}) = \sum_{j} \theta_{j} P_{c_{2,j}}(\mathbf{Y}) = P_{n_{2}}(\mathbf{Y}) \quad (5)$$

Note that we rewrite $\sum_{i} \theta_{i,j} = \theta_j$ and $\sum_{j} \theta_{i,j} = \theta_i$ by the constraints on coupling circuits. Therefore, *n* satisfies marginal constraints.

C.3 PROOF OF THE METRIC PROPERTIES OF CW_p

Proposition 1 (Metric Properties of CW_p). For any set C of compatible circuits, CW_p defines a metric on C.

785

780

781

Proof. It is clear that CW_p is symmetric since construction of the coupling circuit is symmetric. Furthermore, since CW_p upper-bounds W_p , it must also be non-negative.

If $CW_p(P,Q) = 0$, then $W_p(P,Q) = 0$ so P = Q. Any constraint-satisfying assignment of the parameters of a coupling circuit between P and P would also result in the Wasserstein objective at the root node being 0, since the base-case computation of W_p at the leaf nodes would always be zero.

Now, we show that CW_p satisfies the triangle inequality. Let $P, Q, R \in C$ be compatible PCs over random variables \mathbf{X}, \mathbf{Y} , and \mathbf{Z} , and let $d_1 = CW_p(P, Q)$, $d_2 = CW_p(P, R)$, and $d_3 = CW_p(R, Q)$ with optimal coupling circuits C_1, C_2 , and C_3 . We can construct circuits $C_2(\mathbf{x}|\mathbf{z})$ and $C_3(\mathbf{y}|\mathbf{z})$ that are still compatible with C_2 and C_3 , since conditioning a circuit preserves the structure. Because all of these are compatible, we can then construct circuit $C(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = C_2(\mathbf{X}|\mathbf{Z})C_3(\mathbf{Y}|\mathbf{Z})R(\mathbf{Z})$. Thus, C is a coupling circuit of P, Q, and R such that $C_2(\mathbf{x}, \mathbf{y}) = \int C(\mathbf{x}, \mathbf{y}, \mathbf{z})d\mathbf{z}$ and $C_3(\mathbf{y}, \mathbf{z}) =$ $\int C(\mathbf{x}, \mathbf{y}, \mathbf{z})d\mathbf{x}$. Then we have:

799 800

806

$$\begin{split} \mathsf{CW}_p(P,Q) &= \int \|\mathbf{x} - \mathbf{y}\|_p^p C_1(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \int \|(\mathbf{x} - \mathbf{z}) - (\mathbf{y} - \mathbf{z})\|_p^p C(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &\leq \int \|\mathbf{x} - \mathbf{z}\|_p^p C_2(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} + \int \|\mathbf{z} - \mathbf{y}\|_p^p C_3(\mathbf{y}, \mathbf{z}) d\mathbf{y} d\mathbf{z} \\ &= \mathsf{CW}_p(P, R) + \mathsf{CW}_p(R, Q) \end{split}$$

805 Thus, CW_p satisfies the triangle inequality, which concludes the proof.

807 C.4 RECURSIVE COMPUTATION OF THE WASSERSTEIN OBJECTIVE 808

Referring to Definition 4, the Wasserstein objective for a given coupling circuit $C(\mathbf{x}, \mathbf{y})$ is the expected distance between \mathbf{x} and \mathbf{y} . Below, we demonstrate that the Wasserstein objective at a sum

810 node that decomposes into $C(\mathbf{x}, \mathbf{y}) = \sum_i \theta_i C_i(\mathbf{x}, \mathbf{y})$ is simply the weighted sum of the Wasserstein 811 objectives at its children: 812

813

814 815

$$=\sum heta_i \int |$$

$$=\sum_{i}\theta_{i}\int \|\mathbf{x}-\mathbf{y}\|_{p}^{p}C_{i}(\mathbf{x},\mathbf{y})d\mathbf{x}d\mathbf{y}=\sum_{i}\theta_{i}\mathbb{E}_{C_{i}(\mathbf{x},\mathbf{y})}[\|\mathbf{x}-\mathbf{y}\|_{p}^{p}]$$
(6)

820

831 832

833

Now, consider a decomposable product node, where $C(\mathbf{x}, \mathbf{y}) = C_1(\mathbf{x}_1, \mathbf{y}_1)C_2(\mathbf{x}_2, \mathbf{y}_2)^4$. Below, we see that the Wasserstein objective at the parent is simply the *sum* of the Wasserstein objectives at its children:

 $\mathbb{E}_{C(\mathbf{x},\mathbf{y})}[\|\mathbf{x}-\mathbf{y}\|_{p}^{p}] = \int \|\mathbf{x}-\mathbf{y}\|_{p}^{p} C(\mathbf{x},\mathbf{y}) d\mathbf{x} d\mathbf{y} = \int \|\mathbf{x}-\mathbf{y}\|_{p}^{p} \sum_{i} \theta_{i} C_{i}(\mathbf{x},\mathbf{y}) d\mathbf{x} d\mathbf{y}$

$$\mathbb{E}_{C(\mathbf{x},\mathbf{y})}[\|\mathbf{x}-\mathbf{y}\|_{p}^{p}] = \int \|\mathbf{x}-\mathbf{y}\|_{p}^{p}C(\mathbf{x},\mathbf{y})d\mathbf{x}d\mathbf{y} = \int \|\mathbf{x}-\mathbf{y}\|_{p}^{p}C_{1}(\mathbf{x}_{1},\mathbf{y}_{1})C_{2}(\mathbf{x}_{2},\mathbf{y}_{2})d\mathbf{x}d\mathbf{y}$$

$$= \int (\|\mathbf{x}_{1}-\mathbf{y}_{1}\|_{p}^{p}+\|\mathbf{x}_{2}-\mathbf{y}_{2}\|_{p}^{p}) \times C_{1}(\mathbf{x}_{1},\mathbf{y}_{1})C_{2}(\mathbf{x}_{2},\mathbf{y}_{2})d\mathbf{x}_{1}d\mathbf{x}_{2}d\mathbf{y}_{1}d\mathbf{y}_{2}$$

$$= \left(\int \|\mathbf{x}_{1}-\mathbf{y}_{1}\|_{p}^{p}C_{1}(\mathbf{x}_{1},\mathbf{y}_{1})d\mathbf{x}_{1}d\mathbf{y}_{1}\right) + \left(\int \|\mathbf{x}_{2}-\mathbf{y}_{2}\|_{p}^{p})C_{2}(\mathbf{x}_{2},\mathbf{y}_{2})d\mathbf{x}_{2}d\mathbf{y}_{2}\right)$$

$$= \mathbb{E}_{C_{1}(\mathbf{x}_{1},\mathbf{y}_{1})}[\|\mathbf{x}_{1}-\mathbf{y}_{1}\|_{p}^{p}] + \mathbb{E}_{C_{2}(\mathbf{x}_{2},\mathbf{y}_{2})}[\|\mathbf{x}_{2}-\mathbf{y}_{2}\|_{p}^{p}]$$
(7)

Thus, we can push computation of Wasserstein objective down to the leaf nodes of a coupling circuit.

C.5 HARDNESS PROOF OF COMPUTING MINIMUM-WASSERSTEIN PARAMETERS

834 **Theorem 2.** Suppose P_{θ} is a smooth and decomposable probabilistic circuit, and \hat{Q} is an empirical 835 distribution induced by a dataset $\mathcal{D} = {\mathbf{y}^{(k)}}_{k=1}^{n}$. Then computing the parameters θ that minimizes 836 the empirical Wasserstein distance $W_n^p(P_\theta, \hat{Q})$ (i.e., solving Equation 4) is NP-hard.

837 838

839

840

841

842

843

844

845

846

847 848

849

850 851

852

853 854

855

856

857 858

859

860

861

Proof. We will prove this hardness result by reducing k-means clustering—which is known to be NP-hard (Dasgupta, 2008)-to learning the minimum Wasserstein parameters of a circuit. Consider a set of points $x_1...x_n \in \mathbb{R}^d$ and a number of clusters k. We will construct a Gaussian PC C associated with this problem as follows: the root of C is a sum node with k children; each child is a product node with d univariate Gaussian input node children (so each product node is a multivariate Gaussian comprised of independent univariate Gaussians). Minimizing the parameters of C over x_i corresponds to finding a routing of data points x_i that minimizes the total distance between all x_i 's and the mean of the multivariate Gaussian child each x_i is routed to. A solution to k-means can be retrieved by taking the mean of each child of the root sum node to be the center of each of kclusters.

PROOF OF THE OPTIMALITY OF COUPLING CIRCUIT PARAMETER LEARNING IN C.6 Algorithm 1

Proposition 4. Suppose P and Q are compatible probabilistic circuits with coupling circuit C. Then the parameters of C—and thus CW_p —can be computed exactly in a bottom-up recursive fashion.

Proof. We will construct a recursive argument showing that the optimal parameters of C can be computed exactly. Let $n \in C$ be some non-input node in the coupling circuit C that is the product of nodes n_1 and n_2 in P and Q respectively. Then we have three cases:

Case 1: *n* is a product node with input node children Due to the construction of the coupling circuit, n must have two children that are input nodes with scopes X_k and Y_k . Thus, $CW_p(n)$ is simply computed in closed-form as the *p*-Wasserstein distance between the input distributions.

⁸⁶² ⁴We assume for notational simplicity that product nodes have two children, but it is straightforward to 863 rewrite a product node with more than two children as a chain of product nodes with two children each and see that our result still holds.

Case 2: *n* is a product node with non-input node children By recursion, $CW_p(n) = \sum_i CW_p(c_i)$ for each child c_i of *n* (see 7).

Case 3: *n* is a sum node Let $\theta_{i,j}$ be the parameter corresponding to the product of the *i*-th child of n_1 and *j*-th child of n_2 . We want to solve the following optimization problem inf $\mathbb{E}_{P_n(\mathbf{X},\mathbf{Y})}[\|\mathbf{X} - \mathbf{Y}\|_p^p]$, which can be rewritten as follows:

$$\inf \mathbb{E}_{P_n(\mathbf{X},\mathbf{Y})}[\|\mathbf{X}-\mathbf{Y}\|_p^p] = \inf \int_{\mathbb{R}^d \times \mathbb{R}^d} \|\mathbf{X}-\mathbf{Y}\|_p^p P_n(\mathbf{X},\mathbf{Y}) d\mathbf{X} d\mathbf{Y}$$
(8)

Rewriting the distribution of n as a mixture of its child distributions $c_{i,j}$, we get:

$$= \inf_{\theta, P_{i,j}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|\mathbf{X} - \mathbf{Y}\|_p^p \sum_{i,j} \theta_{i,j} P_{c_{i,j}}(\mathbf{X}, \mathbf{Y}) d\mathbf{X} d\mathbf{Y}$$
(9)

Due to linearity of integrals, we can bring out the sum:

$$= \inf_{\theta, P_{i,j}} \sum_{i,j} \theta_{i,j} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|\mathbf{X} - \mathbf{Y}\|_p^p P_{c_{i,j}}(\mathbf{X}, \mathbf{Y}) d\mathbf{X} d\mathbf{Y}$$
(10)

Lastly, due to the acyclicity of PCs, we can separate out $\inf_{\theta_i, P_{i,j}}$ into $\inf_{\theta_i} \inf_{P_{i,j}}$ and push the latter infimum inside the sum.

$$= \inf_{\theta} \sum_{i,j} \theta_{i,j} (\inf_{P_{i,j}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|\mathbf{X} - \mathbf{Y}\|_p^p P_{c_{i,j}}(\mathbf{X}, \mathbf{Y}) d\mathbf{X} d\mathbf{Y})$$
(11)

Thus, we can solve the inner optimization problem first (corresponding to the optimization problems at the children), and then the outer problem (the optimization problem at the current node).
Therefore, a bottom-up recursive algorithm is exact.

C.7 DERIVING A CLOSED-FORM SOLUTION TO THE LINEAR PROGRAMS FOR PARAMETER UPDATES

For a sum node s with m children $s_1...s_m$ and a dataset with n data points $d_1...d_n$ each with weight w_j , we construct a linear program with m * n variables $x_{i,j}$ as follows:

$$\min \quad \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{E}_{s_i} [\|\mathbf{X} - d_j\|_2^2] x_{i,j} \qquad \text{s.t.} \quad \sum_{i=1}^{m} x_{i,j} = w_j \; \forall j$$

Note that the constraints do not overlap for differing values of j. Thus, we can break this problem up into n smaller linear programs, each with the following form:

min
$$\sum_{i=1}^{m} \mathbb{E}_{s_i} [\|\mathbf{X} - d_j\|_2^2] x_{i,j}$$
 s.t. $\sum_{i=1}^{m} x_{i,j} = w_j$

The only constraint here requires that the sum of objective variables is equal to w_j . Thus, the objective is minimized when $x_{i,j}$ corresponding to the smallest coefficient takes value w_j and all other variables take value 0. Thus, the solution to the original linear program can be thought of as assigning each data point to the sub-circuit that has the smallest expected distance to it.

913 C.8 PROOF THAT THE WASSERSTEIN MINIMIZATION ALGORITHM HAS A MONOTONICALLY
 914 DECREASING OBJECTIVE

Proposition 5. For a circuit rooted at n and dataset D routed to it, the Wasserstein distance between the empirical distribution of D and sub-circuit rooted at n will not increase after an iteration of algorithm B

Figure 7: Runtime for algorithms computing CW_2 and MW_2 . The first pair of graphs considers only tree-shaped PCs, whereas the second pair considers graph-shaped PCs as well. Note that the right-side graphs use logarithmic scaling. Number of circuit edges represents the number of edges in both circuits combined, and each data point represents an average over 100 runs.

Proof. Let $\mathbb{E}_n[D]$ denote the Wasserstein distance between the empirical distribution of D and subcircuit rooted at n before an iteration of algorithm B, and let $\mathbb{E}_{n'}[D]$ denote the distance after an iteration. We will show by induction that $\mathbb{E}_{n'}[D] \leq \mathbb{E}_n[D]$. Our base case is when n is an input node. By setting the parameters of n to as closely match the empirical distribution of D as possible, there is no parameter assignment with a lower Wasserstein distance to D so thus one iteration of algorithm B does not increase the objective value.

Recursively, we have two cases:

Case 1: *n* is a product node By the decomposition of the Wasserstein objective, we have that $\mathbb{E}_n[D] = \sum_i \mathbb{E}_{c_i}[D]$, which is $\geq \sum_i \mathbb{E}_{c'_i}[D] = \mathbb{E}_{n'}[D]$ by induction.

Case 2: *n* is a sum node By the decomposition of the Wasserstein objective, we have that $\mathbb{E}_n[D] = \sum_i \theta_i \mathbb{E}_{c_i}[D_i]$ (where $D_i \subseteq D$ is the data routed to n_i), which is $\geq \sum_i \theta_i \mathbb{E}_{c'}[D_i] =$ $\mathbb{E}_{n'}[D]$ by induction. Our parameter updates also update each $D_i \to D'_i$, but that also guaran-tees that $\mathbb{E}_{c'}[D_i] \geq \mathbb{E}_{c'}[D'_i]$ since $D_i = D'_i$ is within the feasible set of updates for D_i . Thus, $\mathbb{E}_n[D] \geq \mathbb{E}_{n'}[D]$, so therefore the Wasserstein objective is monotonically decreasing.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RUNTIME EXPERIMENTS FOR COMPUTING CW_p

The value obtained for each circuit size is averaged over 100 runs, and we omit data points for experiments that ran out of memory. Lastly, all experiments were ran on a machine with an Intel Core i9-10980XE CPU and 256Gb of RAM—these experiments made no use of GPUs. To solve the linear programs we used Gurobi (Gurobi Optimization, LLC, 2024), a commercial linear program solver available under academic license.

Figure 7 shows the complete set of runtime results.

	EM Circuit		Deterministic WM		Stochastic WM	
Circuit Block Size	W_2	BPD	W_2	BPD	W_2	BPD
4	32631	1.414	32766	1.495	29963	1.532
16	32873	1.242	32751	1.465	29984	1.509
64	33264	1.192	32749	1.458	30999	1.485
128	33737	1.175	32749	1.455	31483	1.474
256	34974	1.172	32528	1.459	32520	1.459

Table 1: Comparison of Wasserstein objective value and bits-per-dimension (BPD) between circuits learned via EM and WM (our approach), lower is better. The lowest value for each circuit size is bolded. Deterministic WM routes all data points optimally to minimize the Wasserstein objective, while stochastic WM randomly routes a data point to one of the children with probability p and optimally with probability 1 - p.

980

981

982

983

986 987

D.2 EMPIRICAL WASSERSTEIN PARAMETER ESTIMATION EXPERIMENTAL RESULTS

We investigated the computed Wasserstein objective and bits-per-dimension (BPD) of circuits of various sizes learned using EM and WM (our method). We found that larger circuits trained via EM have a significantly lower BPD than smaller circuits, which was not the case for circuits trained via WM. Looking at the Wasserstein objective for these circuits, we see that bpd is not directly correlated with the Wasserstein objective; circuits with a lower Wasserstein objective can have a slightly higher bpd, and vice versa.

Lastly, we consider a modification of Algorithm B that employs *stochastic routing* of data at sum nodes; succinctly, we introduce hyperparameter p that introduces a probability p that a given data point is routed randomly with uniform probability to any given child node, and a probability 1 - pthat the data point is routed optimally as detailed in Algorithm B. When p = 0, we refer to this as *deterministic WM*; otherwise, we refer to the algorithm as *stochastic WM*.

In our experiments, we found that p = 0.1 yields the best results for minimizing the Wasserstein objective. For circuits of block size 4, we observe that this significantly decreases the Wasserstein objective without a significant change to the bits-per-dimension of the learned circuit. Over 5 random restarts, the stochastic WM algorithm resulted in a Wasserstein objective between 29947 and 29986; conversely, the deterministic WM algorithm resulted in a Wasserstein objective of 32766. However, this decrease in Wasserstein distance resulted in no decrease in bits-per-dimension for the trained models, with stochastic WM yielding circuits with BPDs of between 1.503 and 1.537. See Table 1 for more details.

1007 1008

1010

1009 D.3 VISUALIZING TRANSPORT PLANS BETWEEN PCs

Since our algorithm does not only return CW_p between two circuits but also the corresponding transport plan, we can visualize the transport of point densities between the two distributions by conditioning the coupling circuit on an assignment of random variables in one circuit. We can similarly visualize the transport plan for an arbitrary region in one PC to another by conditioning on the random variable assignments being within said region.

Since the transport plan for a single point (or a region of points) is itself a PC, we can query it like we would any other circuit; for example, sampling a set of corresponding points, as well as computing *maximum a posteriori*—which is tractable if the original two circuits are marginal-deterministic (Choi et al., 2020)—for the transport plan of a point corresponds to the most likely corresponding point in the second distribution for the given point. Because a coupling circuit inherits the structural properties of the original circuit, it is straightforward to understand what queries are and are not tractable for a point transport map.

In Figure 8, we provide an example of visualizing the optimal transport plan between two randomly generated PCs. We note that despite the transport plan being constrained to be a PC with a certain structure, the resulting transport plan matches our intuition as to what an optimal transport plan should look like.

