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ABSTRACT

Sparse Mixture of Experts (SMoEs) have emerged as an efficient architecture for
large language models. While recent community efforts have focused on merging
multiple models to create SMoEs, deploying these merged models remains chal-
lenging due to their substantial memory requirements. In this paper, we present
DeltaMoE, a training-free delta compression pipeline that enables efficient de-
ployment of SMoE models through structured sparsity and quantization. Our
evaluation shows that DeltaMoE achieves up to a 2.34× compression ratio and
2.57× throughput improvement. DeltaMoE is also scalable with the number of
experts, making it particularly suitable for large SMoE models.

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to remarkable performance in various
tasks. The performance of LLMs is largely correlated to their scale (i.e., number of parameters).
However, training and serving these models in production is challenging due to the large memory
and computational cost. Sparse Mixture of Experts (SMoEs), emerged as an efficient architecture for
LLMs, addresses some of these challenges by activating only a subset of experts, improving training
efficiency and inference speed (Fedus et al., 2022). This architecture has been adopted in several
state-of-the-art models, such as Mixtral (Jiang et al., 2024), DeepSeek (DeepSeek-AI, 2024), and
Switch Transformer (Fedus et al., 2022). However, training SMoEs still remains expensive Fedus
et al. (2022) and serving them requires large memory capacity, as all experts need to be loaded into
the GPU memory for fast inference.

To address the cost of “creating” SMoEs, recent efforts have been made to build SMoEs by fine-
tuning dense models separately and merging them into an SMoE (Sukhbaatar et al., 2024; Goddard
et al., 2025). These merged models often share the same model architecture and initialization. By
analyzing the weight distribution in these particular models, we observe that the difference between
experts is often small. This observation suggests that storing full expert weights independently may
be inefficient. Instead, recent work on model delta compression (Yao et al., 2024; Liu et al., 2024b;
Isik et al., 2023), has shown that small differences between weights often lead to an opportunity
for more efficient model serving via delta compression. Based on this, we propose DeltaMoE,
a training-free model compression and serving method that leverages quantization and structured
sparsity for SMoEs, which improves serving efficiency without sacrificing model quality.

We show that our approach can achieve performance on par with the original SMoE model while
reducing the memory footprint by up to 2.34× and throughput by 2.57× compared to serving SMoE
models in FP16 precision. The improvement becomes more significant as the number of experts
increases, making our approach particularly suitable for large SMoE models.
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Figure 1: Expert weight values and delta of phixtral-2x2 8, an open-source merged SMoE
(Labonne, 2024)
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Figure 2: DeltaMoE compression algorithm

Related Work LLM compression has emerged as a crucial research direction for deploying these
models. Most related to our work is DeltaZip Yao et al. (2024), which compresses multiple fine-
tuned model variants. For SMoEs, there has been work on compressing the model as a whole, such
as QMoE Frantar & Alistarh (2023) and Li et al. (2024). In contrast, we focus on a training-free
compression method for merged MoEs (MMoEs) with both quantization and structured pruning.

2 APPROACH

2.1 DELTA COMPRESSION FOR MIXTURE OF EXPERTS

Our compression approach is based on the observation that the weight differences, the deltas, be-
tween expert weights within the same SMoE block are often small for MMoEs, which allows for
aggressive quantization and pruning with minimal impact on performance, due to the more compact
quantization grid. We apply delta compression by defining a “base weight” representation W l

b for
each SMoE block l in the network and expressing the weights of each expert e in it as W l

b + ∆l
e.

The small magnitude of ∆e allows for aggressive compression. Our compression pipeline includes:

1) Extracting Deltas. We randomly select one expert per SMoE block as the base weight, producing
a base weight for each SMoE block. As a next step, we compute the difference between each expert
and its correspondent base weight to obtain the delta. The base weights are then stored in FP16,
while deltas undego our delta compression pipeline.

2) Expert Delta Compression. We apply a series of compression techniques optimized for GPU
hardware features. In line with existing work in delta compression (Yao et al., 2024; Isik et al.,
2023; Liu et al., 2024a), we employ both structured 2:4 pruning and quantization. Structured 2:4
pruning is setting at least two elements within each four contiguous elements in the delta matrix to 0,
which allows us to take advantage of sparse tensor cores (Bai & Li, 2023) for efficient sparse matrix
multiplication while quantization reduces the model’s memory footprint. This way, we perform
inference at a lower memory budget and reduce the memory bandwidth bottleneck.

3) Model Saving. Compressed delta weights are stored in a sparse, packed format. Specifically, for
a weight matrix W , we store the indices of the non-zero elements as indices I and non-zero values
V in 2/4 bits. Since we employ structured pruning, we can encode the indices in 2 bits only. The
nonzero values are quantized to 2/4 bits, and packed into 32-bit integers. Base weights, attention
layer weights, and other parameters (e.g., LM head) remain in FP16.
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2.2 COMPRESSED MIXTURE OF EXPERTS SERVING ENGINE

Base and Delta Decoupling. At inference time, we separate base and delta computations using an
algebraic manipulation. Let Y be the SMoE layer output, Wb the base weight, αi the gating function
output, and Wi the weights of the i-th expert. Then, the SMoE computation can be expanded as:

Y =
∑
i

αiWiX =
∑
i

αi(Wb +∆i)X = WbX +
∑
i

αi∆i (1)

Base weight computations use a standard FP16 GEMM, while delta multiplications remain in a
sparse low-precision format. A key advantage of this decoupling is that the deltas remain com-
pressed during inference, which significantly reduces the data movement and memory footprint dur-
ing inference. This has two main benefits: it enables loading larger MoEs under the same memory
budget and allows for employing larger batch sizes.

Delta Computation We integrate the FP16×INT4-2:4 Sparse Marlin kernel (Frantar et al., 2024)
for delta computations. This particular kernel is optimized for 4-bit precision and structured pruning.

3 EXPERIMENTS

We conduct two sets of experiments to evaluate the performance of our approach. First, we evaluate
the post-compression model accuracy on a set of benchmark datasets. Second, we evaluate the
inference speed and memory footprint of the compressed model on a real-world serving system.

2 4 6 8 10 12
Number of Experts

2

3

4

5

6
Co

m
pr

es
sio

n 
Ra

tio
2b  compression
4b  compression

Figure 3: Compression ratio in-
creases with the number of experts
for a Llama 3-based SMoE.

Our experiments focus on merged SMoE models, where mul-
tiple models, each fine-tuned on a different dataset and all
originating from the same base model, are integrated into a
single SMoE model. While our method is effective in this
setting due to the small differences between experts, it is not
inherently limited to merged models – any scenario where ex-
pert weight variations are small can benefit from our compres-
sion approach. We create an SMoE model where we replace
the MLP blocks with SMoE blocks. We merge models fine-
tuned from Llama 3.1-8B-Instruct (Meta, 2024), and use it as
the base. We merge them by averaging their attention weights
and incorporating the feedforward layers from the fine-tuned
models as expert weights within the SMoE blocks. The rout-
ing function is trained on a combined subset of the expert
models’ fine-tuning datasets. The models are constructed us-
ing mergekit (Goddard et al., 2025).

3.1 POST-COMPRESSION MODEL QUALITY AND MODEL SIZE

#E #Par Size (GB) BoolQ Accuracy LogiQA Accuracy MMLU Accuracy
FP16 4b⋆ 2b⋆ FP16 4b⋆ 2b⋆ FP16 4b⋆ 2b⋆ FP16 4b⋆ 2b⋆

2 14 B 27.3 20.3 18.8 84.4 83.6 83.5 31.3 31.8 31.0 68.5 64.5 64.4
3 19 B 38.6 24.5 16.5 83.8 83.7 83.6 31.5 31.2 31.5 68.4 68.5 68.4
4 25 B 49.9 24.5 17.2 84.4 84.4 84.7 31.6 31.8 32.4 68.6 68.6 68.5
5 31 B 61.2 28.7 17.9 84.6 84.5 84.6 32.1 31.2 32.0 68.7 68.7 68.8
6 36 B 72.4 30.9 18.9 84.5 84.4 84.5 32.7 32.3 32.0 68.7 65.1 68.6
8 47 B 95.0 35.1 20.9 85.1 85.0 84.9 31.0 31.2 30.6 68.6 68.7 68.5

Table 1: Model size and quality of DeltaMoE vs. uncompressed (FP16); ⋆ represents 50% struc-
tured sparsity.

Table 3.1 demonstrates the accuracy of the original model and post-compressed models. Albeit
significant reduction in the size, we found the accuracies remain comparable after compression.
Figure 3 shows the compression ratio as we add more experts. The compression ratio increases as
we increase the number of experts, which allows serving significantly larger models within the same
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memory budget. This is because the expert weights become the dominating factor in the total size
of the model as we increase the number of experts, which is a key advantage of DeltaMoE.

3.2 SERVING PERFORMANCE
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Figure 4: E2E latency and throughput for Poisson arrival rate λ = 20 and varying number of experts.
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Figure 5: E2E latency and throughput for a 5 Expert SMoE with varying poisson arrival rate λ

We evaluate model performance using two key metrics: average end-to-end (E2E) latency and out-
put throughput on an A100 SXM GPU. E2E latency is defined as the time elapsed from a client
sending a prompt to receiving the last token of the response. Output throughput is defined as the
average number of tokens generated per second. We use the SMoE model definition from Hugging-
Face Transformers (Wolf et al., 2020) for our baseline. We use a serving engine build on top of
SGLang (Zheng et al., 2023) to serve both the baseline and the compressed models. To fit unquan-
tized models on a single A100 GPU, we focus on evaluation of MoEs with up to six experts.

Figure 4 shows the relationship between the number of experts and performance. Increasing the
number of experts leads to an increase in both speedup and throughput. For example, at 6 experts,
we achieve a 1.91× reduction in E2E latency and a 2.56× increase in throughput. This gain largely
stems from the lower memory footprint of DeltaMoE, enabling larger batch sizes. As the expert
count rises, the batch size difference between DeltaMoE and the baseline widens further.

Another key factor is the decoupling of delta and base computations. On the one hand, it increases
the number of FLOPs performed as we require to accumulate the results of the multiplication with
the base weight and the delta weights. This overhead remains invariant to the number of experts. On
the other hand, DeltaMoE replaces FP16 GEMM operations for the experts with more bandwidth-
efficient and sparse FP16-INT4-2:4 computations. As we increase the number of experts, the impact
of the constant overhead decreases, reducing the E2E latency of DeltaMoE.

Figure 5 examines the performance of an SMoE with five experts across different request rates.
DeltaMoE outperforms the baseline across all measured arrival rates. The largest speedups can be
seen in the range between 5 and 20 requests per second, where the unquantized model has yet to
reach its maximum throughput unlike the quantized one. We also observe a small latency reduction
at an arrival rate of 1, when both models are operating at a small batch size. This suggests that the
reduced data movement during matrix multiplication also contributes to the performance gains.
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4 CONCLUSION

In this work, we introduce DeltaMoE, a training-free and efficient compression and serving tech-
nique for merged Sparse Mixture of Experts models, which significantly reduces the memory foot-
print without sacrificing model accuracy. Our evaluation showed that DeltaMoE achieved sub-
stantial improvement in both inference speed and memory efficiency, reaching a 1.88x speedup and
2.34x compression ratio for a 6 expert MoE. Our approach also scales when there are more experts in
the network. One potential direction that we plan to explore in the future is extending and studying
similar techniques on general SMoE models.
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