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The rapid evolution of Artificial Intelligence (AI), particularly Large Language1

Models (LLMs), marks a significant departure from earlier machine learning (ML)2

paradigms. This advancement has exposed critical misconceptions in our under-3

standing of the “model” itself, especially evident in evaluation methodologies4

that often rely on narrow observational windows to assess overall model quality.5

This paper argues that a fundamental reconceptualization of the “model” itself is6

necessary to address this evaluative crisis. We introduce a five-tiered hierarchical7

framework. Specifically, we divide models into: Noumenal, Conceptual, Instan-8

tiated, Reachable, and Observable ones. Using this framework, we examine the9

historical development of how models have been conceptualized and evaluated10

within the ML field, analyzing the roles of experiments, ablation studies, and11

datasets. The paper further argues that LLMs’ current development fundamen-12

tally challenges these long-standing evaluation patterns, as existing benchmarks13

and metrics increasingly fail to capture the true capabilities and limitations of14

these complex models. Our primary contribution is to consolidate and structure15

many of these historical insights and evolving challenges. By organizing these16

often fragmented pieces of understanding into the proposed five-tiered hierarchical17

framework, we aim to offer a more cohesive and systematic lens for approaching18

AI model evaluation. We believe that such a structured approach, which encourages19

assessment strategies to be explicitly contextualized by a model’s position within20

this hierarchy and informed by its preceding layer, can help cultivate a more robust21

and meaningful comprehension of these increasingly complex LLM systems.22

1 Introduction23

Artificial intelligence has undergone several phases of rapid advancement. Yet, the recent emergence24

and widespread adoption of Large Language Models mark a fundamental shift [11, 17, 33, 36, 132].25

This development significantly challenges established approaches, not only in how AI is created26

but, crucially, in how it is evaluated [5, 21, 67, 71, 110, 127]. The sophisticated capabilities of27

contemporary AI models have surpassed the existing conceptual and methodological tools previously28

used to understand and evaluate ML systems [11]. This paper will explore the characteristics of this29

significant change, by proposing a hierarchical perspective for assessing AI models, to help navigate30

the present difficulties in LLMs’ evaluation. Historically, earlier ML systems were typically designed31

for clearly defined, narrow tasks, such as classifying images or detecting spam [61]. While their32

internal structures could be complex, they were often more transparent. Evaluation metrics could33

frequently provide a direct measure of the model’s usefulness for its intended function. For example,34

the accuracy of a classification model was a relatively clear indicator of its performance [10]. In35

contrast, LLMs are moving beyond restricted, task-specific roles towards more general abilities and36

often display emergent behaviors [121]. These new emergent skills—such as learning from examples37
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within the prompt (in-context learning [16]), step-by-step reasoning (chain-of-thought [122]), and38

even behaviors that appear to be creative or strategic [45, 128], were not the primary goals of their39

design, nor were they easily observable in older ML models. Often, the full range of their potential40

behaviors is not known in advance, even by their creators [11]. The appearance of unexpected41

abilities signifies that a system’s overall properties cannot be fully understood simply by examining42

its individual components or its initial design specifications [3].43

Currently, the most common approach to assessing LLMs is through what might be called a “small44

observation window”. This method usually involves testing models on standardized benchmarks.45

However, by their very nature, these benchmarks can only examine a tiny fraction of a model’s46

potential range of behaviors [96]. Such limited observation can lead to an erroneous understanding47

regarding a model’s true quality, its ability to generalize to new situations, and its potential risks,48

including safety concerns [49]. For instance, high performance on a specific benchmark might result49

from issues like data contamination [72] (where test data was accidentally part of the training data) or50

it might simply show that the model has overfitted to the particular behavior of the benchmark tasks,51

rather than demonstrating a genuinely robust and widely applicable capability. Therefore, evaluating52

LLMs as if they were merely more powerful versions of traditional, fully understandable ML53

models is a fundamental error in categorization [101]. An over-reliance on these narrow evaluation54

windows can inadvertently create a superficial or misleading impression of understanding, akin to55

a “simulacrum” [6]. In this situation, reported benchmark scores can become disconnected from56

the model’s actual abilities. They may represent a performance specifically manufactured for that57

benchmark, rather than an intrinsic, generalizable quality of the model itself. This practice can result58

in a hyperreal [125] assessment environment within the research community, where the benchmark59

score is treated as more significant or real. Such a scenario risks skewing the research agenda towards60

optimizing performance on these limited benchmarks, rather than pursuing a more comprehensive61

understanding or development of AI capabilities.62

While much of the existing literature has concentrated on the design and refinement of evaluation63

benchmarks [13, 21, 22, 25, 26, 52, 59, 64, 66, 76, 86, 93, 96, 98, 99, 108, 110, 116, 130, 133],64

this paper seeks to complement these efforts by focusing on the underlying conceptualization of65

the model itself. We observe that effectively addressing the current challenges in evaluating LLMs66

benefits from a clearer and more structured understanding of what constitutes a “model” in67

this evolving landscape. Our work aims to synthesize various perspectives by proposing that models68

can be understood across multiple levels of abstraction and concrete realization. To this end, we69

introduce a five-tier hierarchical framework, which forms the conceptual backbone of this paper:70

• Noumenal Model: The ultimate, and perhaps inherently unknowable, generative principles71

or reality that the AI system is intended to approximate or capture.72

• Conceptual Model: The intended design, underlying theories, and architectural blueprints.73

• Instantiated Model: The actual implemented algorithmic artifact with an initialization state.74

• Reachable Model: The optimized model, with the full spectrum of its potential behaviors.75

• Observable Model: A subset of behaviors that are actually witnessed during specific evalua-76

tion procedures and interactions.77

The subsequent sections will discuss the definition of these five tiers, drawing inspiration from78

established traditions of modeling and abstraction in both philosophy and science [37]. We will then79

trace the historical development and relevance of these conceptual layers within the field of machine80

learning, highlighting how the emergence of LLMs overturns the interrelation between these layers.81

Finally, we propose that robust assessment should involve a more deliberate and structured approach,82

where evaluations conducted at a specific model tier are explicitly defined and constrained by an83

understanding of the preceding, more fundamental tier, contributing to a more systematic framework84

for meaningful, comprehensive, and reliable evaluations of LLM systems.85

2 Hierarchical Ontology of Models86

To navigate the complexities of modern AI systems, particularly LLMs, it is proposed that the very87

concept of “model” be deconstructed and reassembled into a hierarchical ontology. Before the88

detailed definitions, we first briefly introduce our inspiration drawn from established principles in89

system theory, cognitive science, AI planning, and machine learning.90
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Hierarchical analysis of complex systems is a well-established paradigm. General system theory [12,91

114] and hierarchy theory [106] explain that layered structures improve understanding of system92

components, interactions, scales, and observer roles, helping manage complexity due to differing93

interactions and emergent properties across levels. Such analysis is also applied in cognitive science94

for AI frameworks. For example, David Marr proposes three levels for understanding information-95

processing systems, the computational theory (goal and logic of computation), representation and96

algorithm (how the theory is implemented), and hardware implementation (physical realization) [75].97

Similarly, Allen Newell distinguished between the knowledge level, which describes a system in terms98

of its goals and the knowledge it rationally employs, and the symbol level, which details the specific99

symbolic representations and processes that mechanize this knowledge [84, 85]. These frameworks100

highlight the importance of differentiating between abstract purpose, procedural specification, and101

concrete instantiation. Furthermore, fundamental concepts from ML also inform our hierarchical102

view. For instance, the initial design of an AI system often implicitly defines a hypothesis space103

for all the possible functions or solutions [10, 81], thus an algorithm could then search this space104

within a specific instantiation. Crucially, these ML theories also emphasize the distinction between a105

model’s true generalization capability (on unseen data) and its observed performance on finite test106

sets. Building upon these diverse theoretical foundations, our proposed five-tier hierarchical ontology107

aims to provide a specialized framework tailored to the nuances of modern AI systems, particularly108

LLMs, and the challenges they pose for evaluation.109

Definition 2.1 (MN : Noumenal) The Noumenal Model represents the ultimate, perhaps intrinsi-110

cally unknowable, generative principles or the “true” underlying structure of the reality that an AI111

system aims to capture or approximate. The Noumenal Model is the ideal form of knowledge or the112

perfect causal understanding of a domain.113

Philosophically, this concept draws inspiration from Immanuel Kant’s notion of the noumenon or114

thing-in-itself [57], particularly his distinction between phenomena and noumena (Critique of Pure115

Reason, A235/B294–A260/B315). We can conceptualize a theoretical machine learning model that116

remains fundamentally unrecognizable to human beings, and which we can only ever imperfectly117

apprehend through phenomena [73]. Such a model would not be a black box whose mechanisms are118

too complex for us to trace, but rather one whose fundamental operational principles and cognitive119

architecture have no common standard of human thoughts and empirical observation.120

On one hand, the existence of MN is in the fundamental assumptions in the philosophy of science,121

which posit an objective reality governed by (perhaps not fully) discoverable and comprehensible122

natural laws (through systematic observation and experimentation). On the other hand, though123

wholly unknowable, recognition of a MN carries practical weight, compelling critical examination124

of AI’s fundamental goals. For instance, contemporary LLMs are primarily trained to predict the125

next token in a sequence, implicitly adopting the data’s statistical distribution as their learning target.126

However, if MN truly incorporates profound principles such as “core knowledge” [60, 109] or127

“causal structures” [90], then merely mimicking surface-level statistical patterns in data may be128

insufficient, resulting in the brittleness of LLMs. Consequently, holding the idea that any scientific129

system can only provide an approximation of the MN , encourages a re-evaluation of AI’s ultimate130

objectives and the methodologies used for designing the learning tasks.131

Definition 2.2 (MC: Conceptual) The Conceptual Model comprises the intended design and speci-132

fied architecture, underlying theory and theoretical assumptions, chosen algorithms and blueprint133

of the system, and finally, the high-level goals the system is meant to achieve, as envisioned by its134

human creators.135

Following the Kantian inspiration, the human mind actively structures experience through a priori136

categories of understanding (e.g., causality, unity) to make sense of the phenomenal world (Critique137

of Pure Reason, B1-B2, A70/B95-A83/B109). MC , therefore, imposes a conceptual structure onto138

a problem domain or desired functionality, from the observed phenomena. More specifically, it139

contains i) the system’s high-level objectives (e.g., the form of loss functions), ii) the theoretical140

assumptions guiding its operation (e.g., assumptions about the data, learning processes), iii) the141

selected algorithms and data structures, iv) the overall formal description of the system which act as142

Kantian schemata that mediate between pure concepts and observations.143

MC is a necessary abstraction (e.g., “attention”), with logic formalizing it in AI systems (e.g., “is all144

you need” [112]). The logical framework enables structured human thought to engage with complex145
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realities, allowing designers to specify an AI’s intended knowledge, reasoning, and behaviors [14,146

100]. Although the logical formalisms of the abstracted MC may not fully predict or constrain the147

complex behaviors of these systems in operation (especially, LLMs’ actual behaviors can largely148

diverge from an (expectative) logical rigor design, see Section 3). Nevertheless, acknowledging149

its limitations does not diminish the importance of MC ; it constitutes the logical starting point,150

becoming the vitally important reference benchmark for evaluating behavior deviation, diagnosing151

system failures, and understanding unexpected problems.152

Definition 2.3 (MI : Instantiated) The Instantiated Model refers to the actual, concrete algorithmic153

artifact that has been implemented in code and exists as a computational entity, encompassing the154

specific implementation of algorithms, the precise network architecture, the initialized parameter155

values, and the exact software and hardware environment in which the model operates.156

We intentionally define the concept of initialization parameters more vaguely and expansively,157

encompassing a potential pre-training phase (at any specific checkpoint, but before task-specific158

fine-tuning), not just a single random initialization of an established network. This is because159

the initialization scheme itself also constitutes a concrete instantiation of the MC’s abstracted160

content. For instance, a neural network could be initialized (and further optimized) randomly [102],161

orthogonally [54], or self-supervisedly with a large-scale dataset [16, 31]. These initialized parameter162

values define the model’s specific state at a particular stage, directly influencing its subsequent163

learning trajectory and potential capabilities (of the Reachable Model). For instance, a pre-trained164

MI can be highly structured, with parameters encoding significant general-purpose knowledge and165

representations. Indeed, parameters taken from any specific checkpoint during or after a training166

process also define a distinct MI , a snapshot of its learned state. However, it is crucial to distinguish167

MI from merely a pre-trained model, despite being a key example due to their structured initial168

parameters. MI more broadly signifies the model’s tangible, concrete configuration at any defined169

starting point that serves as the foundation prior to the specific optimization process designed to170

evolve it towards its Reachable counterpart.171

Furthermore, the specific characteristics of MI play a crucial role in constraining and shaping the172

subsequent Reachable Model. The journey from the MC (e.g., the idea of attention mechanism) to the173

MI (e.g., the specific code with initial weights of a Transformer) involves numerous design choices174

and initial conditions. Small variations in architecture or minor differences in initialization can send175

the model down different optimization paths, leading to distinct Reachable Models (MR) with varying176

capabilities and biases. This is a critical juncture, as these early decisions and their non-obvious177

influences on the model’s development represent the first steps in a gradual departure from the original178

concept, significantly contributing to the well-known “black-box” problem [68]. Nevertheless, gaining179

a better understanding of the MI ’s intrinsic properties (its architecture, representational style, and180

initial state) is critical for anticipating the characteristics of the final, trained Reachable Model.181

Definition 2.4 (MR: Reachable) The Reachable Model is the Instantiated Model after its optimiza-182

tion on a specific learning dataset (i.e., the set of finalized learned parameters). More broadly, it183

encompasses the full spectrum of potential behaviors and internal stochastic processes (e.g., sampling184

strategies) that the optimized model could exhibit across all possible valid inputs.185

In general, MR signifies more than just a post-trained model. While the “Reachable” materializes186

after an optimization process acting upon an MI , its defining characteristic is the representation of187

the model’s complete potential capabilities, a direct consequence of its specific learned parameters.188

Thus, the focus is on this entire accessible behavioral repertoire, rather than merely the model’s189

status as having completed a training phase. While MR represents the totality of what the model can190

ultimately do, much of this capacity may not be immediately apparent from its static components191

or the original design intentions. Meanwhile, the inscrutable nature of the training process further192

intensifies the departure of MR from the initial concept. Consequently, MR becomes more akin to193

what is typically understood as a “black-box model.” Furthermore, it is within MR that emergent194

abilities manifest, which were not explicitly designed into MC nor readily predictable from the195

MI alone, but arise from the interplay of scale, data, and the optimization process. Such behavior196

is indeed central to the essence that the term “black box” seeks to embody, while significant prior197

research in this domain has already been dedicated to understanding MR. Examples include work198

on adversarial testing [43], red-teaming [39], and frameworks for predicting emergent abilities [121].199

This underscores that critical aspects like AI safety [49] and alignment [4] are, at their core, attributes200
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of MR, necessitating evaluation strategies far more comprehensive than current standard practices201

and equipped to grapple with its inherent complexity and opacity.202

Definition 2.5 (MO: Observable) The Observable Model constitutes the subset of the Reachable203

Model’s behaviors that are actually witnessed, measured, and documented through available/existing204

evaluation protocols, datasets, and metrics. The Observable Model is the empirical manifestation of205

the AI systems’ performance under particular inspection.206

The observable manifestation is precisely what current AI benchmarks aim to capture, for instance, in207

the natural language process scenarios, we use MMLU [48, 120] for general knowledge, GLUE [116]208

and SuperGLUE [115] for natural language understanding, and more comprehensive frameworks209

like HELM [66]. However, the critical issue is that the choice of what to observe profoundly shapes210

our perception of an AI’s capabilities. This is because how convincing (plausibility [32, 79]) an211

explanation of an observed behavior is to a human user is often based on interactions with, and212

interpretations of, the Observable Model. For example, if an LLM is observed to perform well213

on simple problems presented in a benchmark but fails on more complex versions of the same214

underlying task, then we probably recognize this LLM as having only primary capabilities on this215

task, which can be a total misunderstanding about the potentiality resided within the Reachable216

Model. Unfortunately, essentially, even though current benchmarks have been working hard on217

providing a better observation window. For instance, HELM strives for "Broad coverage... Multi-218

metric measurement... Standardization" to improve how the Observable Model is captured. They219

still need to explicitly acknowledge the inherent incompleteness of any such observation. In this way,220

the Observable Model can become a skewed or unrepresentative sample of the Reachable Model’s221

true nature, and optimizing for it does not necessarily translate to the underlying Reachable Model222

having improved in a broadly generalizable manner, nor does it guarantee closer approximation to223

the Conceptual or Noumenal ideals.224

3 Evolution of Model Conceptualizations225

The conceptualization of the “model” in machine learning has not been static; rather, it has undergone226

a continuous process of evolution and enrichment. The hierarchical structure situated above the227

Noumenal Model, was not an instantaneous creation, nor did it arise spontaneously with current228

advanced systems like LLMs; rather, it reflects a gradual process of differentiation. Specifically, when229

an AI system has significantly expanded the scope of its capabilities and conceptual complexity, a230

more concrete model tier would be “crystallized” from the lower one. Below, we will demonstrate this231

change through a rough definition of > and ≃ between models of different tiers. Briefly, Model Tier232

A > Model Tier B (A is broader/encompasses B) signifies A is more fundamental, B is a constrained233

version or subset of A, and the A-to-B transition involves reduction or constraint. Model Tier A ≃234

Model Tier B (A is similar/equal to B) signifies no significant practical gap between them; they235

largely capture each other reciprocally, and transitioning between them doesn’t substantially alter236

information or their core nature.237

Differentiation from the Conceptual Model: For models such as Naive Bayes and Decision Trees,238

which possess relatively simple structures and clear theoretical underpinnings, their hierarchical239

relationship can be expressed as: MN > MC ≃ MI ≃ MR ≃ MO. For instance, if the ultimate240

true principles of the target domain, e.g., the true biological mechanisms for disease prediction,241

are represented in MN . But, the Naive Bayes classifier based on selected features for disease242

prediction [46] represents a simplified concept, capturing only a limited, abstracted view of the243

observation, often with strong independence assumptions [10]. Meanwhile, these simpler models’244

MC can be generally translated into MI ’s implementation faithfully, since there are fewer degrees245

of freedom that would lead to significant deviations. For instance, the recursive partitioning logic246

and splitting criteria for decision tree algorithms like ID3 or C4.5 [81, 95] strictly follow the concept247

of a tree structure. The training process then fully determines MI ’s final form and behavior, such248

as calculating conditional probabilities for Naive Bayes from data, or selecting splits and growing249

branches for a decision tree. Since these models operate based on explicit, inspectable rules or clearly250

defined probabilistic inferences [82], the space of potential outputs for any given input is constrained251

and directly calculable from the MR. Finally, due to this deterministic and transparent nature, MR’s252

full spectrum of potential behaviors can be comprehensively captured by standard evaluation metrics253

(e.g., precision, recall, F1-score, ROC curves) on representative test sets. Therefore, we conclude that254

MO derived from such evaluations is thus a reliable and sufficiently complete representation of MI255

and MR’s capabilities and limitations for the defined problem scope.256
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Differentiation from the Instantiated Model: For models like K-Nearest Neighbors (KNN), Support257

Vector Machines (SVM), and Linear Regression, their hierarchical relationship shows a subtle258

change: MN > MC > MI ≃ MR ≃ MO. While MN of ultimate reality transcends any259

human-designed MC , a key distinction is that the theoretical ideals within the MC are more260

abstract than their practical implementation. For instance, SVM’s maximum-margin hyperplane261

and the kernel trick [10, 28], Linear Regression’s best-fitting plane achieved by minimizing a loss262

function [46], or KNN’s neighbor-based decision principle [29, 46]. This separation occurs because263

instantiation necessitates specific, constraining choices that are not contained in underlying concepts,264

such as particular SVM kernel functions (e.g., RBF, polynomial) and regularization parameter [104],265

optimization algorithms and loss functions like SMO [92] for SVMs or gradient descent with L2266

regularized mean squared error for linear regression, or defined K-values and distance metrics (e.g.,267

Euclidean, Minkowski) for KNN. These choices make the implemented algorithmic artifact (MI )268

a particular, constrained realization of the broader conceptual theory. Despite this MC > MI269

distinction, once these models are trained and their parameters are finalized (e.g., support vectors270

identified, regression coefficients determined, or training samples stored for KNN), their behavior271

becomes fully determined by this learned state, since there are generally no further complex emergent272

abilities beyond what is directly implied by the chosen structure and learned parameters. Furthermore,273

these instantiations, even with specific choices, are still highly structured and predictable. Their274

mechanisms are transparent enough (e.g., linear coefficients, support vector locations, distance275

calculations) to allow standard evaluation methods to comprehensively capture their performance on276

test data, making MO a faithful and reasonably complete representation of MR.277

Differentiation from the Reachable Model: For models like Shallow Neural Networks (Shallow278

NN), Multilayer Perceptrons (MLP), and Restricted Boltzmann Machines (RBM), the distinctions279

between tiers intensify further, typically expressed as: MN > MC > MI > MR ≃ MO. The280

gap widens from MI to MR, as this tier critically encompasses not only the specific architectural281

implementation (e.g., topology of a three-layer MLP and choice of activation functions) but also282

the initial parameter values (e.g., random initializations [41, 47]), which are vital for the subsequent283

optimization trajectory as they set the starting point in a complex, non-convex loss landscape [69,284

77]. Consequently, the complex optimization process of training a neural network transforms the285

initial states (MI ) to ones with significantly different capabilities and behaviors (MR). Different286

initialization seeds [91] or minor variations in the optimization process [20] can lead the network to287

converge to different local minima in the loss landscape, resulting in distinct MR even from nearly288

MI Models [42]. Nevertheless, for these shallow networks, although their internal representations289

may begin to exhibit the opacity characteristic of deep learning (i.e., having global non-local sub-290

representations) [87], their overall behavioral complexity is generally considered sufficiently bounded.291

Practically, it is often assumed that standard, diverse benchmarks and evaluation metrics can still292

capture their core capabilities and generalization performance reasonably well [46], making MO a293

fair, albeit perhaps not exhaustive, representation of MR’s overall performance.294

Differentiation from the Observable Model: As network depth and complexity increase, Deep295

Neural Networks (DNNs) exhibit more intricate hierarchical relationships, summarized as: MN >296

MC > MI > MR > MO. While the distinctions established in shallow NNs persist, a critical297

new divergence distinguishing DNNs arises between MR and MO. Due to their vast parameter298

counts, deep architectures, and extensive training on large datasets, DNNs learn extremely complex299

functions, resulting in an MR with an enormous potential behavioral space not explicitly programmed300

nor easily predictable from MI alone. However, our current methods of observation, standard301

evaluation protocols and benchmarks such as ImageNet [30], GLUE [116], or even comprehensive302

frameworks like HELM [66], can only access a limited subset of this vast behavioral repertoire.303

MO is frequently reported to fail in fully presenting the true scope of MR’s capabilities. For304

instance, models’ brittleness is easily demonstrated when faced with out-of-distribution inputs or305

slight adversarial paraphrases, which exposes superficial “shortcut” learning rather than robust306

understanding [40, 49, 86, 96].307

A note on large language models: For contemporary LLMs, the hierarchical gaps between conceptual308

tiers of models are widening dramatically, with the largest and most significant divide occurring309

between MR and MO, broadly expressed as: MN > MC > MI > MR >> MO. While310

significant gaps separate Noumenal model goals (e.g., representing human language, knowledge,311

and reasoning) from Conceptual designs and Instantiations (e.g., Transformers [112], Mamba [44]).312

The pre-existing distinctions are amplified in MR created by extensive post-training. MR of an313
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LLM exhibits an immensely vast potential behavioral space, featuring (sometimes) unpredictable314

emergent abilities like in-context learning, instruction following, and complex reasoning [119, 121].315

Concurrently, significant risks are reported, such as generating hallucinations [55], amplifying316

biases [7], or producing harmful content [123]. However, the combinatorial nature of language317

and the sheer scale of these models create a serious mismatch; what we learn from MO is a very318

incomplete picture of an LLM’s true overall abilities and the hidden dangers within its MR. This319

mismatch is a fundamental reason for the current problems in testing LLMs, the major challenges in320

making them behave safely and as intended, and the troublesome practice of “SOTA chasing”.321

This evaluation challenge appears to be significantly compounded by the field’s tendency to rely322

on an evaluation paradigm inherited from earlier ML. In those earlier and simpler systems, relative323

transparency and tighter coupling between the tiers characterized the confidence in standard metrics324

and experimental setups. These approaches became deeply ingrained and are now being somewhat325

uncritically applied to LLMs. With LLMs, the relationships between the tiers have become signifi-326

cantly more complex, opaque, and divergent. The historical success of these evaluation norms with327

simpler models established certain “patternized experiments” and expectations about what constitutes328

“good evaluation.” These established practices were then naturally carried over when LLMs emerged,329

despite them possessing vastly different characteristics, particularly in the complexity and opacity of330

their Instantiated and Reachable tiers. This “historical muscle memory” from evaluating simpler331

models, when applied to the new context of LLMs, can be seen as a significant contributor to332

the current evaluation challenges. In many ways, the field might have been attempting to navigate333

new, complex terrains using guides developed for older, more familiar landscapes.334

4 Towards Hierarchically-Informed Evaluation Strategies335

The advent of LLMs necessitates a significant re-evaluation of established methodologies for ex-336

perimental design, ablation studies, and dataset curation, which form the bedrock of traditional337

“patternized experiments.” This situation demands a shift in the overarching goal of LLM evalua-338

tion: moving away from rendering final, summative judgments based predominantly on leaderboard339

rankings (MO) towards an ongoing, iterative process of model cartography. To achieve this, we340

first review how LLMs break the patterns, then we introduce the paradigm that hierarchically probes341

different aspects across model tiers, by assessing each in explicit relation to its antecedents. A detailed342

proposal for this frameworks is provided in the appdenix.343

4.1 Rethinking Experimental Design, Ablation, and Dataset Curation344

Experimental design aimed to test hypotheses derived from an MC (e.g., the utility of a specific345

feature) or to generate an MO by measuring a trained MI ’s performance. While typically, experi-346

mental designs for early ML assume variables could be isolated and their effects clearly measured,347

this paradigm is inadequate for LLMs. Their profound sensitivity to subtle variations in prompt-348

ing [70] and the immense difficulty in controlling for confounding variables when assessing complex,349

generative behaviors make controlled experiments challenging. Static benchmarks, forming the350

traditional MO, often fail to capture the dynamic and vast capabilities of an LLM’s MR. Moreover,351

such benchmarks cannot explicitly probe inter-tier relationships (e.g., assessing the fidelity between352

a Conceptual design choice, like an architectural modification for long-context reasoning, and its353

actual manifestation in MI ’s representations), or systematically explore hypothesized regions of the354

Reachable behavior space to understand emergent capabilities [121] and their operational boundaries.355

Ablation studies have historically served to understand component contributions within an MI to its356

Reachable performance, helping to validate or refine MC choices [42]. This reductionist approach,357

however, faces severe limitations with LLMs. In these highly complex, non-linear systems, represen-358

tations are often distributed, and components (like neurons or attention heads) can be polysemantic,359

contributing to multiple functions [34, 88]. Consequently, removing (or changing) a component from360

an LLM doesn’t simply isolate its original function; it can yield a fundamentally different system with361

altered internal dynamics and potentially different emergent properties. Interpreting such changes362

as the “contribution” of the ablated part becomes problematic, akin to challenges in intervening on363

complex causal systems [90]. Simple ablations may therefore offer superficial or even misleading364

insights into an LLM’s MI ’s functional architecture or the mechanisms generating its Reachable365

behaviors. Therefore, more cautious interpretations are essential, and complementary approaches366

like perturbation studies (assessing sensitivity to small changes) or influence studies (tracing impacts367
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of training data/features) might offer more reliable, albeit still partial, insights into these deeply368

interconnected systems.369

Dataset curation focused on gathering data samples presumed to be representative of some aspect of370

the Noumenal Model. The goal was to train an MI into a generalizable MR, carefully navigating371

the bias-variance tradeoff [10]. However, in the LLM scenarios, the scale and often uncurated nature372

of web-derived training corpora make it exceptionally difficult to ensure true representativeness or,373

critically, to prevent contamination with data that might overlap with evaluation benchmarks. Such374

contamination can grossly inflate MO performance, providing a misleading picture of an LLM’s real375

generalization capabilities within its Reachable space [72]. Therefore, datasets should essentially be376

tools for characterizing MR itself, verifying alignment between Conceptual and Instantiated tiers.377

4.2 Paradigm of Model Cartography378

Beyond Current Benchmarks for the Observable Model: MO’s performance and behaviors should379

be interpreted not in isolation, but in direct relation to the known (or reasonably estimated) properties380

of MR. The key question becomes: Does the observed performance on a benchmark or specific381

task reflect a robust and generalizable capability within the broader Reachable space, or is it an382

isolated success, perhaps an artifact of the evaluation setup, data contamination, or a highly specific383

and narrow competence? This involves probing the gap between observed performance and latent384

potential. Therefore, the primary goal is to determine if observed behaviors are indicative of broader,385

stable capabilities within the Reachable space or are mere artifacts. To achieve this, we should386

consider the following:387

• Utilize metrics like the Model Utilization Index [19] to assess if high Observable performance388

stems from robust, general mechanisms (indicating broad Reachable capability) or overused,389

narrow circuits (implying fragile, benchmark-specific success).390

• Employ adaptive testing, dynamic benchmarks, and interactive protocols to explore the391

Reachable space, especially around areas of success or failure identified in static tests [18].392

• Focus on “construct validity” [2]: investigate if Observable benchmark performance correlates393

with diverse, real-world task performance when both theoretically use the same underlying394

(Reachable) abilities [78].395

• Test if Observable performance holds under slight perturbations of inputs, changes in prompt-396

ing style, or minor variations in context. Robustness suggests the observed behavior taps into397

a stable region of the Reachable space [63, 107].398

Probing the Reachable Model: The characteristics of MR, including its potential for beneficial399

emergent capabilities or undesirable harmful behaviors, should be assessed by investigating the400

properties of MI . Rather than passively waiting for behaviors to manifest in the Observable tier, the401

goal is to proactively use interpretability techniques, or formal methods on both MR and MI to402

predict and characterize its potential behavioral repertoire. To this end, consider:403

• Develop and apply advanced mechanistic interpretability to probe the MI ’s internals, map404

its Reachable behaviors and circuits (beyond input-output analysis), acknowledging field405

limitations and progress [105].406

• Employ intervention methods (e.g., from causal inference) to see how internal components407

affect Reachable behaviors, going beyond simple ablation to controlled perturbations and408

counterfactual analyses [129].409

• Characterize the “behavioral envelope” or “capability manifold” by exploring model responses410

to diverse, structured inputs aimed at revealing a wide range of latent skills [8, 65].411

• Analyze training dynamics and learning trajectories, check if the model learns representations412

aligned with the instantiated framework, or it finds “shortcuts,” exploiting spurious data413

correlations, and developing misaligned internal concepts [94, 97].414

Assessing the Instantiated Model: The properties of the MI should be evaluated for their fidelity to415

the specifications, goals, and theoretical underpinnings of MC . This involves asking: How faithful416

do interpretations of observed behavior map onto the model’s actual internal computations and417

mechanisms? Are there significant or unintended deviations that arose during implementation or418

training? The objective is to assess the fidelity of the actual implementation against its original design419

specifications and theoretical goals. Achieving this requires considering:420
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• Conduct rigorous audits of the implemented architecture and core algorithmic components421

(e.g., attention mechanisms, layer structures, activation functions) against the detailed specifi-422

cations and theoretical assumptions documented in MC [80].423

• Analyze chosen hyperparameters and embedded architectural constraints for consistency with424

MC’s design rationale and implicit theoretical foundations [50, 53, 58, 126].425

• Developing techniques to trace the influence of pre-training data [23, 56], initialization426

strategies, and architectural components [113] on the model’s ultimate potential (its Reachable427

state) is crucial.428

• For pre-trained foundation models, assess if their initial representations and zero-shot ca-429

pabilities on relevant basic tasks align with the objectives and knowledge domains of their430

conceptual pre-training design [118].431

Validating Alignment with the Conceptual Model: MC itself can be subjected to evaluation by432

investigating its coherence and soundness, involving philosophical and theoretical critique: How well433

do the theories of language, reasoning, or intelligence embedded in MC align with deeper principles434

of true linguistic competence or general intelligence? Does MC adequately represent the problem it435

aims to solve or the reality it aims to model? We should therefore consider:436

• Engage in critical analysis of the core concepts (e.g., understanding, reasoning, creativity, or437

safety), ensuring their definitions are adequate and well-grounded approximations of the true438

(Noumenal) nature of these complex phenomena [1].439

• Apply principles from the philosophy of information and epistemology, guaranteeing MC440

explicitly acknowledges its own level of abstraction, inherent simplifications, and limitations441

concerning the complexity of the Noumenal ideal it seeks to address [38, 124].442

• Subject MC to scrutiny from experts in relevant fields beyond AI, such as cognitive science,443

linguistics, philosophy, and ethics, to assess the validity and potential blind spots of its444

foundational assumptions [9, 79, 103].445

Acknowledging the Noumenal Model in Evaluation Design: While MN may be unknowable in446

its entirety, its consideration should inform evaluation design. This means designing evaluations that447

probe for “core knowledge” or fundamental understanding of underlying principles (e.g., intuitive448

physics, causality, basic logic), rather than solely testing task-specific pattern matching. The tasks449

included in MO should be critically assessed to determine whether they serve as good proxies for the450

more fundamental principles believed to constitute MN for a given domain of intelligence, regardless451

of how they are conceptualized (e.g., Turing Test [111], Winograd Schema Challenge [62] and their452

variations [15, 24, 51, 74]).453

5 Conclusion454

The rapid ascent of LLMs has outpaced traditional methods of understanding and evaluating artificial455

intelligence. We argue that a core issue lies in a persistent mis-cognition of the “model” concept456

itself, often leading to an over-reliance on narrow, observable behaviors as proxies for overall model457

quality and capability. To help address this, we organize the historical insights into a proposed458

five-tiered hierarchical framework, distinguishing between the Noumenal (the ultimate generative459

principles), Conceptual (the intended design), Instantiated (the algorithmic artifact), Reachable (the460

full potential behavior space), and Observable (the witnessed behaviors) models, aiming to offer a461

more cohesive and systematic lens for approaching AI model evaluation. We have explored how462

LLMs’ vast behavioral potential, particularly when viewed through the lens of historically diverging463

conceptualizations of these tiers in machine learning, challenges established experimental patterns464

and underscores the value of evolving our evaluation systems. We suggest that developing evaluation465

strategies that explicitly consider the relationships between these tiers can lead to more insightful and466

robust assessments. Adopting such hierarchically-informed perspectives is not intended to propose467

an entirely new paradigm in isolation, but rather to encourage a more nuanced and contextualized468

approach by building upon the collective and structured understanding of the field. This way of469

thinking endeavors to cultivate a more meaningful comprehension of these complex systems, fostering470

responsible innovation and contributing to the development of AI that is beneficial, robust, and aligned471

with human values.472
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A A Feasible Proposal for Explicitly Hierarchical Evaluation Frameworks827

Building on our summary of LLM assessment literature in Section 4.2, which highlighted key828

concerns and practical methods relevant to our suggested layer-wise framework, this section aims829

to synthesize these elements into a cohesive, operationalizable schema. Hierarchical evaluation830

frameworks are particularly promising, as exemplified by the ReFeR system [83]. ReFeR employs831

a “peer review” model where smaller AI “evaluators” provide initial assessments, and a more832

capable “area chair” model synthesizes these into final scores and reasoning. This hierarchical,833

multi-perspective meta-methodology strongly aligns with our goals. Consequently, we adopt a similar834

hierarchical system to embody our proposed model cartography as shown below.835

• (MO) The assessment group that focuses on benchmark performance and output quality.836

– One important approach involves employing adaptive testing and dynamic benchmarks,837

as exemplified by Zhang et al. (2024) [131]. Their method first extracts reasoning838

graphs from existing benchmark data points and then perturbs these graphs to generate839

novel test cases. Subsequently, a code-augmented LLM verifies the correctness of840

labels for the newly generated data. Using this framework, they observed that LLM841

performance declines with increasing task complexity, often revealing greater biases842

and excessive sensitivity to specific content. This research highlights the value of843

evaluating LLMs beyond conventional static benchmarks, offering a more dynamic844

perspective on assessing their capabilities and limitations.845

– Another promising practice is measuring an LLM’s “usage of capacity,” as proposed846

by Cao et al. (2025) [19]. The central concept is that a comprehensive assessment of847

an LLM’s ability should consider the effort it expends to achieve an outcome. To this848

end, they introduce a measure called MUI to quantify how extensively a model utilizes849

its capabilities to complete tasks. This approach yields model rankings consistent850

with expert judgment and demonstrates robustness to variance. Their work offers851

a significant step towards addressing challenges in assessing model capacity and852

potentially mitigating the impact of data contamination on evaluations. Furthermore,853

combining this method with adaptive testing and dynamic benchmarks could allow854

for a more comprehensive “observation dynamics” of LLM performance.855

• (MR) The assessment group that employs interpretability techniques and evaluates robustness856

to perturbations.857

– Advanced mechanistic interpretability is vital for understanding and confirming a858

model’s reachable capabilities. For instance, circuit discovery is a key method for859

linking these observable behaviors to the model’s internally instantiated concepts.860

Seminal work by Elhage et al. (2021) [35] has shown how specific learned modules,861

like attention heads, are integral to behaviors such as in-context learning. Although862

applying such detailed techniques to larger, more complex models is challenging,863

emerging automated methods like Automatic Circuit DisCovery (ACDC) [27] offer864

a promising path. These tools aim to pinpoint underlying mechanisms and could865

provide more systematic ways, potentially even quantifiable measures, to assess how866

specific, predefined behaviors (i.e., a standard dataset) are realized within a model’s867

architecture.868

– Complementing interpretability techniques, exploring model responses to strategically869

designed inputs provides valuable insights. Adversarial prompting is a prominent ex-870

ample, involving inputs crafted to exploit model vulnerabilities or specific processing871

mechanisms. The generation of such prompts has become increasingly accessible; for872

instance, tools like AdvPrompter [89] can rapidly produce human-readable adversarial873

prompts, sometimes even while preserving the original prompt’s semantic meaning.874

A model’s susceptibility and characteristic responses to a suite of such prompts can875

serve as a crucial basis for metrics to evaluate its propensity for undesirable reachable876

behaviors, including generating misinformation, revealing sensitive information, or877

engaging in incorrect reasoning.878

• (MI ) The assessment group that investigates the faithfulness of explanations or analyzes879

internal activation patterns.880
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– For different instantiations of a concept, it’s crucial to assess whether their chosen881

hyperparameters and architectural constraints align with the underlying design ratio-882

nale and theoretical foundations. This is particularly true for models with pre-trained883

initializations, where the pre-training data is fundamental to how well the model884

instantiates the concept by leveraging its learned general features and representations.885

These theoretical foundations are often informed by scaling laws [50, 53, 58, 126].886

Scaling laws describe how a model’s performance (often measured by loss) predictably887

relates to key factors such as model size, dataset size, and training compute, with this888

relationship typically characterizable by mathematical functions. Consequently, by889

comparing the actual performance of a series of model instantiations against predic-890

tions derived from these scaling laws, we can confirm the quality of their instantiation.891

This process also allows us to forecast the potential performance of significantly larger892

models, thereby guiding strategic research directions.893

– Another effective approach to assess how well concepts are instantiated within a model894

is to employ visualizations of its internal modules. For instance, attention head visual-895

izations [113] illustrate the patterns of attention, detailing how much consideration896

each token gives to other tokens in the input (or across encoder-decoder interactions)897

within specific attention heads and layers. This aids in understanding information898

flow and identifying which tokens influence the representations of others. A further899

example is the visualization of expert routing in Mixture-of-Experts models [117],900

which demonstrates how different experts are activated in response to various input901

tokens. Such examples underscore that visualization is crucial for gaining an intu-902

itive understanding of how a model instantiates concepts and for debugging potential903

conceptual issues.904

• (MC ) The assessment group that oversees the multi-tier assessments, comparing them against905

the documented goals and assumptions of the concepts.906

– Although directly measuring the inherent “quality” of a concept is challenging, trans-907

lating qualitative concepts and theoretical underpinnings, such as understanding,908

reasoning, creativity, or safety, into measurable outcomes is essential for genuinely909

assessing conceptual results. To achieve this, there is a pressing need to develop and910

implement precise metrics. Such metrics are indispensable for objectively evaluating911

how effectively observed phenomena reflect these carefully defined concepts and912

whether the system under scrutiny adheres to its acknowledged operational bound-913

aries. This, in turn, enables a more robust and empirically grounded validation of that914

system’s conceptual achievements.915

B Border Impacts and Limitations916

Border Impacts: Adopting the proposed five-tier hierarchical view of AI models carries significant917

implications for AI development, research methodology, and AI epistemology. For development, it918

encourages designing systems with evaluability in mind at each level, from clear concept articulation919

and transparent implementation to better management of the optimized model’s scope. In research,920

this framework calls for a shift from “SOTA-chasing” on narrow benchmarks to new experimental921

designs and metrics that provide deeper insights into different model tiers, their interrelations,922

behavior, generalization capabilities, and alignment. Epistemologically, the framework redefines923

what it means to “understand” an AI model, challenging the adequacy of single-score evaluations for924

complex systems and aligning with broader philosophical discussions about observing and inferring925

truths about partially unobservable entities, such as those addressed by the Noumenal and Reachable926

tiers, thereby contributing to the philosophy of AI.927

Limitations: Operationalizing the proposed multi-tier evaluation framework presents considerable928

challenges. A primary difficulty is defining clear, measurable, and meaningful criteria for the more929

abstract Noumenal and Conceptual levels; for instance, assessing the “plausibility” of a Conceptual930

Model becomes empirically perplexing when tied to an inherently unknowable Noumenon. Another931

significant hurdle involves characterizing the full, combinatorially explosive spectrum of an LLM’s932

potential behaviors, especially for models with billions of parameters and global representations.933

Furthermore, existing substantial challenges in LLM evaluation, such as frequent benchmark updates,934

the high cost of comprehensive assessment, and mitigating data contamination, are likely to be935
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amplified within such a demanding multi-tier regime. Finally, there’s the inherent risk that any new,936

complex evaluation framework could itself become a target for “SOTA-chasing,” diverting efforts to937

metric optimization without necessarily achieving genuine progress in underlying model quality or938

understanding.939
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