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Abstract

The rapid evolution of Artificial Intelligence (Al), particularly Large Language
Models (LLMs), marks a significant departure from earlier machine learning (ML)
paradigms. This advancement has exposed critical misconceptions in our under-
standing of the “model” itself, especially evident in evaluation methodologies
that often rely on narrow observational windows to assess overall model quality.
This paper argues that a fundamental reconceptualization of the “model” itself is
necessary to address this evaluative crisis. We introduce a five-tiered hierarchical
framework. Specifically, we divide models into: Noumenal, Conceptual, Instan-
tiated, Reachable, and Observable ones. Using this framework, we examine the
historical development of how models have been conceptualized and evaluated
within the ML field, analyzing the roles of experiments, ablation studies, and
datasets. The paper further argues that LLMs’ current development fundamen-
tally challenges these long-standing evaluation patterns, as existing benchmarks
and metrics increasingly fail to capture the true capabilities and limitations of
these complex models. Our primary contribution is to consolidate and structure
many of these historical insights and evolving challenges. By organizing these
often fragmented pieces of understanding into the proposed five-tiered hierarchical
framework, we aim to offer a more cohesive and systematic lens for approaching
Al model evaluation. We believe that such a structured approach, which encourages
assessment strategies to be explicitly contextualized by a model’s position within
this hierarchy and informed by its preceding layer, can help cultivate a more robust
and meaningful comprehension of these increasingly complex LLM systems.

1 Introduction

Artificial intelligence has undergone several phases of rapid advancement. Yet, the recent emergence
and widespread adoption of Large Language Models mark a fundamental shift [[11} 17, 33,136} [132]].
This development significantly challenges established approaches, not only in how Al is created
but, crucially, in how it is evaluated [l 21} 167} [71} [110L [127]. The sophisticated capabilities of
contemporary Al models have surpassed the existing conceptual and methodological tools previously
used to understand and evaluate ML systems [[L1]. This paper will explore the characteristics of this
significant change, by proposing a hierarchical perspective for assessing Al models, to help navigate
the present difficulties in LLMs’ evaluation. Historically, earlier ML systems were typically designed
for clearly defined, narrow tasks, such as classifying images or detecting spam [61]. While their
internal structures could be complex, they were often more transparent. Evaluation metrics could
frequently provide a direct measure of the model’s usefulness for its intended function. For example,
the accuracy of a classification model was a relatively clear indicator of its performance [10]. In
contrast, LLMs are moving beyond restricted, task-specific roles towards more general abilities and
often display emergent behaviors [[121]]. These new emergent skills—such as learning from examples
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within the prompt (in-context learning [16l]), step-by-step reasoning (chain-of-thought [122]]), and
even behaviors that appear to be creative or strategic [45,[128]], were not the primary goals of their
design, nor were they easily observable in older ML models. Often, the full range of their potential
behaviors is not known in advance, even by their creators [11]. The appearance of unexpected
abilities signifies that a system’s overall properties cannot be fully understood simply by examining
its individual components or its initial design specifications [3]].

Currently, the most common approach to assessing LLMs is through what might be called a “small
observation window”. This method usually involves testing models on standardized benchmarks.
However, by their very nature, these benchmarks can only examine a tiny fraction of a model’s
potential range of behaviors [96]. Such limited observation can lead to an erroneous understanding
regarding a model’s true quality, its ability to generalize to new situations, and its potential risks,
including safety concerns [49]. For instance, high performance on a specific benchmark might result
from issues like data contamination [[72] (where test data was accidentally part of the training data) or
it might simply show that the model has overfitted to the particular behavior of the benchmark tasks,
rather than demonstrating a genuinely robust and widely applicable capability. Therefore, evaluating
LLMs as if they were merely more powerful versions of traditional, fully understandable ML
models is a fundamental error in categorization [101]]. An over-reliance on these narrow evaluation
windows can inadvertently create a superficial or misleading impression of understanding, akin to
a “simulacrum” [6]. In this situation, reported benchmark scores can become disconnected from
the model’s actual abilities. They may represent a performance specifically manufactured for that
benchmark, rather than an intrinsic, generalizable quality of the model itself. This practice can result
in a hyperreal [125]] assessment environment within the research community, where the benchmark
score is treated as more significant or real. Such a scenario risks skewing the research agenda towards
optimizing performance on these limited benchmarks, rather than pursuing a more comprehensive
understanding or development of Al capabilities.

While much of the existing literature has concentrated on the design and refinement of evaluation
benchmarks [[13} 21} 22 25} 126} 152} 59| |64] |66, 76, 86}, 93| 96| 198, 199, (108, [110} [116} 130} [133]],
this paper seeks to complement these efforts by focusing on the underlying conceptualization of
the model itself. We observe that effectively addressing the current challenges in evaluating LLMs
benefits from a clearer and more structured understanding of what constitutes a “model” in
this evolving landscape. Our work aims to synthesize various perspectives by proposing that models
can be understood across multiple levels of abstraction and concrete realization. To this end, we
introduce a five-tier hierarchical framework, which forms the conceptual backbone of this paper:

* Noumenal Model: The ultimate, and perhaps inherently unknowable, generative principles
or reality that the Al system is intended to approximate or capture.

* Conceptual Model: The intended design, underlying theories, and architectural blueprints.
* Instantiated Model: The actual implemented algorithmic artifact with an initialization state.
* Reachable Model: The optimized model, with the full spectrum of its potential behaviors.

* Observable Model: A subset of behaviors that are actually witnessed during specific evalua-
tion procedures and interactions.

The subsequent sections will discuss the definition of these five tiers, drawing inspiration from
established traditions of modeling and abstraction in both philosophy and science [37]]. We will then
trace the historical development and relevance of these conceptual layers within the field of machine
learning, highlighting how the emergence of LLMs overturns the interrelation between these layers.
Finally, we propose that robust assessment should involve a more deliberate and structured approach,
where evaluations conducted at a specific model tier are explicitly defined and constrained by an
understanding of the preceding, more fundamental tier, contributing to a more systematic framework
for meaningful, comprehensive, and reliable evaluations of LLM systems.

2 Hierarchical Ontology of Models

To navigate the complexities of modern Al systems, particularly LLMs, it is proposed that the very
concept of “model” be deconstructed and reassembled into a hierarchical ontology. Before the
detailed definitions, we first briefly introduce our inspiration drawn from established principles in
system theory, cognitive science, Al planning, and machine learning.
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Hierarchical analysis of complex systems is a well-established paradigm. General system theory [12}
114]] and hierarchy theory [[106] explain that layered structures improve understanding of system
components, interactions, scales, and observer roles, helping manage complexity due to differing
interactions and emergent properties across levels. Such analysis is also applied in cognitive science
for Al frameworks. For example, David Marr proposes three levels for understanding information-
processing systems, the computational theory (goal and logic of computation), representation and
algorithm (how the theory is implemented), and hardware implementation (physical realization) [75].
Similarly, Allen Newell distinguished between the knowledge level, which describes a system in terms
of its goals and the knowledge it rationally employs, and the symbol level, which details the specific
symbolic representations and processes that mechanize this knowledge [84} [85]. These frameworks
highlight the importance of differentiating between abstract purpose, procedural specification, and
concrete instantiation. Furthermore, fundamental concepts from ML also inform our hierarchical
view. For instance, the initial design of an Al system often implicitly defines a hypothesis space
for all the possible functions or solutions [10, [81]], thus an algorithm could then search this space
within a specific instantiation. Crucially, these ML theories also emphasize the distinction between a
model’s true generalization capability (on unseen data) and its observed performance on finite test
sets. Building upon these diverse theoretical foundations, our proposed five-tier hierarchical ontology
aims to provide a specialized framework tailored to the nuances of modern Al systems, particularly
LLMs, and the challenges they pose for evaluation.

Definition 2.1 (M y: Noumenal) The Noumenal Model represents the ultimate, perhaps intrinsi-
cally unknowable, generative principles or the “true” underlying structure of the reality that an Al
system aims to capture or approximate. The Noumenal Model is the ideal form of knowledge or the
perfect causal understanding of a domain.

Philosophically, this concept draws inspiration from Immanuel Kant’s notion of the noumenon or
thing-in-itself [S7], particularly his distinction between phenomena and noumena (Critique of Pure
Reason, A235/B294-A260/B315). We can conceptualize a theoretical machine learning model that
remains fundamentally unrecognizable to human beings, and which we can only ever imperfectly
apprehend through phenomena [[73]]. Such a model would not be a black box whose mechanisms are
too complex for us to trace, but rather one whose fundamental operational principles and cognitive
architecture have no common standard of human thoughts and empirical observation.

On one hand, the existence of My is in the fundamental assumptions in the philosophy of science,
which posit an objective reality governed by (perhaps not fully) discoverable and comprehensible
natural laws (through systematic observation and experimentation). On the other hand, though
wholly unknowable, recognition of a My carries practical weight, compelling critical examination
of AI’s fundamental goals. For instance, contemporary LL.Ms are primarily trained to predict the
next token in a sequence, implicitly adopting the data’s statistical distribution as their learning target.
However, if My truly incorporates profound principles such as “core knowledge” [60, [109]] or
“causal structures” [90]], then merely mimicking surface-level statistical patterns in data may be
insufficient, resulting in the brittleness of LLMs. Consequently, holding the idea that any scientific
system can only provide an approximation of the My, encourages a re-evaluation of AI’s ultimate
objectives and the methodologies used for designing the learning tasks.

Definition 2.2 (M : Conceptual) The Conceptual Model comprises the intended design and speci-
fied architecture, underlying theory and theoretical assumptions, chosen algorithms and blueprint
of the system, and finally, the high-level goals the system is meant to achieve, as envisioned by its
human creators.

Following the Kantian inspiration, the human mind actively structures experience through a priori
categories of understanding (e.g., causality, unity) to make sense of the phenomenal world (Critique
of Pure Reason, B1-B2, A70/B95-A83/B109). M ¢, therefore, imposes a conceptual structure onto
a problem domain or desired functionality, from the observed phenomena. More specifically, it
contains 1) the system’s high-level objectives (e.g., the form of loss functions), ii) the theoretical
assumptions guiding its operation (e.g., assumptions about the data, learning processes), iii) the
selected algorithms and data structures, iv) the overall formal description of the system which act as
Kantian schemata that mediate between pure concepts and observations.

M is a necessary abstraction (e.g., “attention”), with logic formalizing it in Al systems (e.g., “is all
you need” [[112]). The logical framework enables structured human thought to engage with complex
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realities, allowing designers to specify an AI’s intended knowledge, reasoning, and behaviors [[14}
100]. Although the logical formalisms of the abstracted M ¢ may not fully predict or constrain the
complex behaviors of these systems in operation (especially, LLMs’ actual behaviors can largely
diverge from an (expectative) logical rigor design, see Section [3). Nevertheless, acknowledging
its limitations does not diminish the importance of M; it constitutes the logical starting point,
becoming the vitally important reference benchmark for evaluating behavior deviation, diagnosing
system failures, and understanding unexpected problems.

Definition 2.3 (M : Instantiated) The Instantiated Model refers to the actual, concrete algorithmic
artifact that has been implemented in code and exists as a computational entity, encompassing the
specific implementation of algorithms, the precise network architecture, the initialized parameter
values, and the exact software and hardware environment in which the model operates.

We intentionally define the concept of initialization parameters more vaguely and expansively,
encompassing a potential pre-training phase (at any specific checkpoint, but before task-specific
fine-tuning), not just a single random initialization of an established network. This is because
the initialization scheme itself also constitutes a concrete instantiation of the M’s abstracted
content. For instance, a neural network could be initialized (and further optimized) randomly [102],
orthogonally [54]], or self-supervisedly with a large-scale dataset [[16,|31]]. These initialized parameter
values define the model’s specific state at a particular stage, directly influencing its subsequent
learning trajectory and potential capabilities (of the Reachable Model). For instance, a pre-trained
M can be highly structured, with parameters encoding significant general-purpose knowledge and
representations. Indeed, parameters taken from any specific checkpoint during or after a training
process also define a distinct M, a snapshot of its learned state. However, it is crucial to distinguish
M from merely a pre-trained model, despite being a key example due to their structured initial
parameters. M more broadly signifies the model’s tangible, concrete configuration at any defined
starting point that serves as the foundation prior to the specific optimization process designed to
evolve it towards its Reachable counterpart.

Furthermore, the specific characteristics of M play a crucial role in constraining and shaping the
subsequent Reachable Model. The journey from the M (e.g., the idea of attention mechanism) to the
M (e.g., the specific code with initial weights of a Transformer) involves numerous design choices
and initial conditions. Small variations in architecture or minor differences in initialization can send
the model down different optimization paths, leading to distinct Reachable Models (M ) with varying
capabilities and biases. This is a critical juncture, as these early decisions and their non-obvious
influences on the model’s development represent the first steps in a gradual departure from the original
concept, significantly contributing to the well-known “black-box” problem [68]. Nevertheless, gaining
a better understanding of the M ;’s intrinsic properties (its architecture, representational style, and
initial state) is critical for anticipating the characteristics of the final, trained Reachable Model.

Definition 2.4 (M r: Reachable) The Reachable Model is the Instantiated Model after its optimiza-
tion on a specific learning dataset (i.e., the set of finalized learned parameters). More broadly, it
encompasses the full spectrum of potential behaviors and internal stochastic processes (e.g., sampling
strategies) that the optimized model could exhibit across all possible valid inputs.

In general, M, signifies more than just a post-trained model. While the “Reachable” materializes
after an optimization process acting upon an M, its defining characteristic is the representation of
the model’s complete potential capabilities, a direct consequence of its specific learned parameters.
Thus, the focus is on this entire accessible behavioral repertoire, rather than merely the model’s
status as having completed a training phase. While M g represents the totality of what the model can
ultimately do, much of this capacity may not be immediately apparent from its static components
or the original design intentions. Meanwhile, the inscrutable nature of the training process further
intensifies the departure of M g from the initial concept. Consequently, M r becomes more akin to
what is typically understood as a “black-box model.” Furthermore, it is within M g that emergent
abilities manifest, which were not explicitly designed into M nor readily predictable from the
M alone, but arise from the interplay of scale, data, and the optimization process. Such behavior
is indeed central to the essence that the term “black box™ seeks to embody, while significant prior
research in this domain has already been dedicated to understanding M . Examples include work
on adversarial testing [43]], red-teaming [39], and frameworks for predicting emergent abilities [121].
This underscores that critical aspects like Al safety [49] and alignment [4] are, at their core, attributes
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of Mg, necessitating evaluation strategies far more comprehensive than current standard practices
and equipped to grapple with its inherent complexity and opacity.

Definition 2.5 (M : Observable) The Observable Model constitutes the subset of the Reachable
Model’s behaviors that are actually witnessed, measured, and documented through available/existing
evaluation protocols, datasets, and metrics. The Observable Model is the empirical manifestation of
the Al systems’ performance under particular inspection.

The observable manifestation is precisely what current Al benchmarks aim to capture, for instance, in
the natural language process scenarios, we use MMLU [48] [120]] for general knowledge, GLUE [116]
and SuperGLUE [[115] for natural language understanding, and more comprehensive frameworks
like HELM [66]. However, the critical issue is that the choice of what to observe profoundly shapes
our perception of an AI’s capabilities. This is because how convincing (plausibility [32, [/9]) an
explanation of an observed behavior is to a human user is often based on interactions with, and
interpretations of, the Observable Model. For example, if an LLM is observed to perform well
on simple problems presented in a benchmark but fails on more complex versions of the same
underlying task, then we probably recognize this LLM as having only primary capabilities on this
task, which can be a total misunderstanding about the potentiality resided within the Reachable
Model. Unfortunately, essentially, even though current benchmarks have been working hard on
providing a better observation window. For instance, HELM strives for "Broad coverage... Multi-
metric measurement... Standardization" to improve how the Observable Model is captured. They
still need to explicitly acknowledge the inherent incompleteness of any such observation. In this way,
the Observable Model can become a skewed or unrepresentative sample of the Reachable Model’s
true nature, and optimizing for it does not necessarily translate to the underlying Reachable Model
having improved in a broadly generalizable manner, nor does it guarantee closer approximation to
the Conceptual or Noumenal ideals.

3 Evolution of Model Conceptualizations

The conceptualization of the “model” in machine learning has not been static; rather, it has undergone
a continuous process of evolution and enrichment. The hierarchical structure situated above the
Noumenal Model, was not an instantaneous creation, nor did it arise spontaneously with current
advanced systems like LLMs; rather, it reflects a gradual process of differentiation. Specifically, when
an Al system has significantly expanded the scope of its capabilities and conceptual complexity, a
more concrete model tier would be “crystallized” from the lower one. Below, we will demonstrate this
change through a rough definition of > and ~ between models of different tiers. Briefly, Model Tier
A > Model Tier B (A is broader/encompasses B) signifies A is more fundamental, B is a constrained
version or subset of A, and the A-to-B transition involves reduction or constraint. Model Tier A ~
Model Tier B (A is similar/equal to B) signifies no significant practical gap between them; they
largely capture each other reciprocally, and transitioning between them doesn’t substantially alter
information or their core nature.

Differentiation from the Conceptual Model: For models such as Naive Bayes and Decision Trees,
which possess relatively simple structures and clear theoretical underpinnings, their hierarchical
relationship can be expressed as: My > Mg ~ M; ~ Mg ~ M. For instance, if the ultimate
true principles of the target domain, e.g., the true biological mechanisms for disease prediction,
are represented in M. But, the Naive Bayes classifier based on selected features for disease
prediction [46] represents a simplified concept, capturing only a limited, abstracted view of the
observation, often with strong independence assumptions [10]]. Meanwhile, these simpler models’
M can be generally translated into M ;’s implementation faithfully, since there are fewer degrees
of freedom that would lead to significant deviations. For instance, the recursive partitioning logic
and splitting criteria for decision tree algorithms like ID3 or C4.5 [81} 193] strictly follow the concept
of a tree structure. The training process then fully determines M ;’s final form and behavior, such
as calculating conditional probabilities for Naive Bayes from data, or selecting splits and growing
branches for a decision tree. Since these models operate based on explicit, inspectable rules or clearly
defined probabilistic inferences [82]), the space of potential outputs for any given input is constrained
and directly calculable from the M . Finally, due to this deterministic and transparent nature, Mpg’s
full spectrum of potential behaviors can be comprehensively captured by standard evaluation metrics
(e.g., precision, recall, F1-score, ROC curves) on representative test sets. Therefore, we conclude that
Mo derived from such evaluations is thus a reliable and sufficiently complete representation of M
and M R’s capabilities and limitations for the defined problem scope.
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Differentiation from the Instantiated Model: For models like K-Nearest Neighbors (KNN), Support
Vector Machines (SVM), and Linear Regression, their hierarchical relationship shows a subtle
change: My > Mg > Mjp ~ Mpr ~ M. While My of ultimate reality transcends any
human-designed M, a key distinction is that the theoretical ideals within the M are more
abstract than their practical implementation. For instance, SVM’s maximum-margin hyperplane
and the kernel trick [[10} 28], Linear Regression’s best-fitting plane achieved by minimizing a loss
function [46]], or KNN’s neighbor-based decision principle [29,46]. This separation occurs because
instantiation necessitates specific, constraining choices that are not contained in underlying concepts,
such as particular SVM kernel functions (e.g., RBF, polynomial) and regularization parameter [104]],
optimization algorithms and loss functions like SMO [92] for SVMs or gradient descent with L2
regularized mean squared error for linear regression, or defined K-values and distance metrics (e.g.,
Euclidean, Minkowski) for KNN. These choices make the implemented algorithmic artifact (M)
a particular, constrained realization of the broader conceptual theory. Despite this Mo > Mj
distinction, once these models are trained and their parameters are finalized (e.g., support vectors
identified, regression coefficients determined, or training samples stored for KNN), their behavior
becomes fully determined by this learned state, since there are generally no further complex emergent
abilities beyond what is directly implied by the chosen structure and learned parameters. Furthermore,
these instantiations, even with specific choices, are still highly structured and predictable. Their
mechanisms are transparent enough (e.g., linear coefficients, support vector locations, distance
calculations) to allow standard evaluation methods to comprehensively capture their performance on
test data, making Mo a faithful and reasonably complete representation of M g.

Differentiation from the Reachable Model: For models like Shallow Neural Networks (Shallow
NN), Multilayer Perceptrons (MLP), and Restricted Boltzmann Machines (RBM), the distinctions
between tiers intensify further, typically expressed as: My > Mg > M; > Mpr ~ Mo. The
gap widens from M to Mg, as this tier critically encompasses not only the specific architectural
implementation (e.g., topology of a three-layer MLP and choice of activation functions) but also
the initial parameter values (e.g., random initializations [41} 47]), which are vital for the subsequent
optimization trajectory as they set the starting point in a complex, non-convex loss landscape [[69,
77]. Consequently, the complex optimization process of training a neural network transforms the
initial states (M) to ones with significantly different capabilities and behaviors (M r). Different
initialization seeds [91] or minor variations in the optimization process [20] can lead the network to
converge to different local minima in the loss landscape, resulting in distinct M r even from nearly
M Models [42]. Nevertheless, for these shallow networks, although their internal representations
may begin to exhibit the opacity characteristic of deep learning (i.e., having global non-local sub-
representations) [87], their overall behavioral complexity is generally considered sufficiently bounded.
Practically, it is often assumed that standard, diverse benchmarks and evaluation metrics can still
capture their core capabilities and generalization performance reasonably well [46]], making Mo a
fair, albeit perhaps not exhaustive, representation of M g’s overall performance.

Differentiation from the Observable Model: As network depth and complexity increase, Deep
Neural Networks (DNNs) exhibit more intricate hierarchical relationships, summarized as: My >
Me > Mp > Mpi > M. While the distinctions established in shallow NNs persist, a critical
new divergence distinguishing DNNs arises between M and M. Due to their vast parameter
counts, deep architectures, and extensive training on large datasets, DNNs learn extremely complex
functions, resulting in an M r with an enormous potential behavioral space not explicitly programmed
nor easily predictable from M alone. However, our current methods of observation, standard
evaluation protocols and benchmarks such as ImageNet [30], GLUE [116], or even comprehensive
frameworks like HELM [66]], can only access a limited subset of this vast behavioral repertoire.
Mo is frequently reported to fail in fully presenting the true scope of Mpg’s capabilities. For
instance, models’ brittleness is easily demonstrated when faced with out-of-distribution inputs or
slight adversarial paraphrases, which exposes superficial “shortcut” learning rather than robust
understanding [40, 49, 186, (96].

A note on large language models: For contemporary LL.Ms, the hierarchical gaps between conceptual
tiers of models are widening dramatically, with the largest and most significant divide occurring
between My and Mg, broadly expressed as: My > Mg > M; > Mg >> Mp. While
significant gaps separate Noumenal model goals (e.g., representing human language, knowledge,
and reasoning) from Conceptual designs and Instantiations (e.g., Transformers [[112], Mamba [44]).
The pre-existing distinctions are amplified in Mg created by extensive post-training. Mg of an
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LLM exhibits an immensely vast potential behavioral space, featuring (sometimes) unpredictable
emergent abilities like in-context learning, instruction following, and complex reasoning [[119,[121].
Concurrently, significant risks are reported, such as generating hallucinations [55], amplifying
biases [7], or producing harmful content [123|]. However, the combinatorial nature of language
and the sheer scale of these models create a serious mismatch; what we learn from My is a very
incomplete picture of an LLM’s true overall abilities and the hidden dangers within its M . This
mismatch is a fundamental reason for the current problems in testing LL.Ms, the major challenges in
making them behave safely and as intended, and the troublesome practice of “SOTA chasing”.

This evaluation challenge appears to be significantly compounded by the field’s tendency to rely
on an evaluation paradigm inherited from earlier ML. In those earlier and simpler systems, relative
transparency and tighter coupling between the tiers characterized the confidence in standard metrics
and experimental setups. These approaches became deeply ingrained and are now being somewhat
uncritically applied to LLMs. With LLMs, the relationships between the tiers have become signifi-
cantly more complex, opaque, and divergent. The historical success of these evaluation norms with
simpler models established certain “patternized experiments” and expectations about what constitutes
“good evaluation.” These established practices were then naturally carried over when LLMs emerged,
despite them possessing vastly different characteristics, particularly in the complexity and opacity of
their Instantiated and Reachable tiers. This “historical muscle memory” from evaluating simpler
models, when applied to the new context of LL.Ms, can be seen as a significant contributor to
the current evaluation challenges. In many ways, the field might have been attempting to navigate
new, complex terrains using guides developed for older, more familiar landscapes.

4 Towards Hierarchically-Informed Evaluation Strategies

The advent of LLMs necessitates a significant re-evaluation of established methodologies for ex-
perimental design, ablation studies, and dataset curation, which form the bedrock of traditional
“patternized experiments.” This situation demands a shift in the overarching goal of LLM evalua-
tion: moving away from rendering final, summative judgments based predominantly on leaderboard
rankings (M) towards an ongoing, iterative process of model cartography. To achieve this, we
first review how LLMs break the patterns, then we introduce the paradigm that hierarchically probes
different aspects across model tiers, by assessing each in explicit relation to its antecedents. A detailed
proposal for this frameworks is provided in the appdenix.

4.1 Rethinking Experimental Design, Ablation, and Dataset Curation

Experimental design aimed to test hypotheses derived from an M (e.g., the utility of a specific
feature) or to generate an M by measuring a trained M ’s performance. While typically, experi-
mental designs for early ML assume variables could be isolated and their effects clearly measured,
this paradigm is inadequate for LLMs. Their profound sensitivity to subtle variations in prompt-
ing [[70] and the immense difficulty in controlling for confounding variables when assessing complex,
generative behaviors make controlled experiments challenging. Static benchmarks, forming the
traditional M, often fail to capture the dynamic and vast capabilities of an LLM’s M . Moreover,
such benchmarks cannot explicitly probe inter-tier relationships (e.g., assessing the fidelity between
a Conceptual design choice, like an architectural modification for long-context reasoning, and its
actual manifestation in M ’s representations), or systematically explore hypothesized regions of the
Reachable behavior space to understand emergent capabilities [121] and their operational boundaries.

Ablation studies have historically served to understand component contributions within an M to its
Reachable performance, helping to validate or refine M choices [42]. This reductionist approach,
however, faces severe limitations with LLMs. In these highly complex, non-linear systems, represen-
tations are often distributed, and components (like neurons or attention heads) can be polysemantic,
contributing to multiple functions [34} 88]]. Consequently, removing (or changing) a component from
an LLM doesn’t simply isolate its original function; it can yield a fundamentally different system with
altered internal dynamics and potentially different emergent properties. Interpreting such changes
as the “contribution” of the ablated part becomes problematic, akin to challenges in intervening on
complex causal systems [90]]. Simple ablations may therefore offer superficial or even misleading
insights into an LLM’s M ’s functional architecture or the mechanisms generating its Reachable
behaviors. Therefore, more cautious interpretations are essential, and complementary approaches
like perturbation studies (assessing sensitivity to small changes) or influence studies (tracing impacts
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of training data/features) might offer more reliable, albeit still partial, insights into these deeply
interconnected systems.

Dataset curation focused on gathering data samples presumed to be representative of some aspect of
the Noumenal Model. The goal was to train an M into a generalizable M g, carefully navigating
the bias-variance tradeoff [10]. However, in the LLM scenarios, the scale and often uncurated nature
of web-derived training corpora make it exceptionally difficult to ensure true representativeness or,
critically, to prevent contamination with data that might overlap with evaluation benchmarks. Such
contamination can grossly inflate M performance, providing a misleading picture of an LLM’s real
generalization capabilities within its Reachable space [[72]]. Therefore, datasets should essentially be
tools for characterizing M g, itself, verifying alignment between Conceptual and Instantiated tiers.

4.2 Paradigm of Model Cartography

Beyond Current Benchmarks for the Observable Model: M o’s performance and behaviors should
be interpreted not in isolation, but in direct relation to the known (or reasonably estimated) properties
of M. The key question becomes: Does the observed performance on a benchmark or specific
task reflect a robust and generalizable capability within the broader Reachable space, or is it an
isolated success, perhaps an artifact of the evaluation setup, data contamination, or a highly specific
and narrow competence? This involves probing the gap between observed performance and latent
potential. Therefore, the primary goal is to determine if observed behaviors are indicative of broader,
stable capabilities within the Reachable space or are mere artifacts. To achieve this, we should
consider the following:

* Utilize metrics like the Model Utilization Index [19] to assess if high Observable performance
stems from robust, general mechanisms (indicating broad Reachable capability) or overused,
narrow circuits (implying fragile, benchmark-specific success).

* Employ adaptive testing, dynamic benchmarks, and interactive protocols to explore the
Reachable space, especially around areas of success or failure identified in static tests [[18]].

* Focus on “construct validity” [2]: investigate if Observable benchmark performance correlates
with diverse, real-world task performance when both theoretically use the same underlying
(Reachable) abilities [78]].

* Test if Observable performance holds under slight perturbations of inputs, changes in prompt-
ing style, or minor variations in context. Robustness suggests the observed behavior taps into
a stable region of the Reachable space 63} [107]].

Probing the Reachable Model: The characteristics of M g, including its potential for beneficial
emergent capabilities or undesirable harmful behaviors, should be assessed by investigating the
properties of M. Rather than passively waiting for behaviors to manifest in the Observable tier, the
goal is to proactively use interpretability techniques, or formal methods on both My and M to
predict and characterize its potential behavioral repertoire. To this end, consider:

* Develop and apply advanced mechanistic interpretability to probe the M’s internals, map
its Reachable behaviors and circuits (beyond input-output analysis), acknowledging field
limitations and progress [105].

* Employ intervention methods (e.g., from causal inference) to see how internal components
affect Reachable behaviors, going beyond simple ablation to controlled perturbations and
counterfactual analyses [[129].

* Characterize the “behavioral envelope” or “capability manifold” by exploring model responses
to diverse, structured inputs aimed at revealing a wide range of latent skills [I8} |65]].

* Analyze training dynamics and learning trajectories, check if the model learns representations
aligned with the instantiated framework, or it finds “shortcuts,” exploiting spurious data
correlations, and developing misaligned internal concepts [94, [97].

Assessing the Instantiated Model: The properties of the M should be evaluated for their fidelity to
the specifications, goals, and theoretical underpinnings of M. This involves asking: How faithful
do interpretations of observed behavior map onto the model’s actual internal computations and
mechanisms? Are there significant or unintended deviations that arose during implementation or
training? The objective is to assess the fidelity of the actual implementation against its original design
specifications and theoretical goals. Achieving this requires considering:
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* Conduct rigorous audits of the implemented architecture and core algorithmic components
(e.g., attention mechanisms, layer structures, activation functions) against the detailed specifi-
cations and theoretical assumptions documented in M ¢ [80Q].

* Analyze chosen hyperparameters and embedded architectural constraints for consistency with
M’s design rationale and implicit theoretical foundations [S0} 53} 58 [126]].

* Developing techniques to trace the influence of pre-training data [23] |56]], initialization
strategies, and architectural components [113]] on the model’s ultimate potential (its Reachable
state) is crucial.

* For pre-trained foundation models, assess if their initial representations and zero-shot ca-
pabilities on relevant basic tasks align with the objectives and knowledge domains of their
conceptual pre-training design [[118]].

Validating Alignment with the Conceptual Model: M itself can be subjected to evaluation by
investigating its coherence and soundness, involving philosophical and theoretical critique: How well
do the theories of language, reasoning, or intelligence embedded in M ¢ align with deeper principles
of true linguistic competence or general intelligence? Does M adequately represent the problem it
aims to solve or the reality it aims to model? We should therefore consider:

* Engage in critical analysis of the core concepts (e.g., understanding, reasoning, creativity, or
safety), ensuring their definitions are adequate and well-grounded approximations of the true
(Noumenal) nature of these complex phenomena [1]].

* Apply principles from the philosophy of information and epistemology, guaranteeing M ¢
explicitly acknowledges its own level of abstraction, inherent simplifications, and limitations
concerning the complexity of the Noumenal ideal it seeks to address [38, [124].

* Subject M to scrutiny from experts in relevant fields beyond Al, such as cognitive science,
linguistics, philosophy, and ethics, to assess the validity and potential blind spots of its
foundational assumptions [9, 79} [103]].

Acknowledging the Noumenal Model in Evaluation Design: While M may be unknowable in
its entirety, its consideration should inform evaluation design. This means designing evaluations that
probe for “core knowledge” or fundamental understanding of underlying principles (e.g., intuitive
physics, causality, basic logic), rather than solely testing task-specific pattern matching. The tasks
included in M should be critically assessed to determine whether they serve as good proxies for the
more fundamental principles believed to constitute M y for a given domain of intelligence, regardless
of how they are conceptualized (e.g., Turing Test [111]], Winograd Schema Challenge [62]] and their
variations [15, 24} 51} [74]).

5 Conclusion

The rapid ascent of LLMs has outpaced traditional methods of understanding and evaluating artificial
intelligence. We argue that a core issue lies in a persistent mis-cognition of the “model” concept
itself, often leading to an over-reliance on narrow, observable behaviors as proxies for overall model
quality and capability. To help address this, we organize the historical insights into a proposed
five-tiered hierarchical framework, distinguishing between the Noumenal (the ultimate generative
principles), Conceptual (the intended design), Instantiated (the algorithmic artifact), Reachable (the
full potential behavior space), and Observable (the witnessed behaviors) models, aiming to offer a
more cohesive and systematic lens for approaching Al model evaluation. We have explored how
LLMs’ vast behavioral potential, particularly when viewed through the lens of historically diverging
conceptualizations of these tiers in machine learning, challenges established experimental patterns
and underscores the value of evolving our evaluation systems. We suggest that developing evaluation
strategies that explicitly consider the relationships between these tiers can lead to more insightful and
robust assessments. Adopting such hierarchically-informed perspectives is not intended to propose
an entirely new paradigm in isolation, but rather to encourage a more nuanced and contextualized
approach by building upon the collective and structured understanding of the field. This way of
thinking endeavors to cultivate a more meaningful comprehension of these complex systems, fostering
responsible innovation and contributing to the development of Al that is beneficial, robust, and aligned
with human values.
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A A Feasible Proposal for Explicitly Hierarchical Evaluation Frameworks

Building on our summary of LLM assessment literature in Section £.2] which highlighted key
concerns and practical methods relevant to our suggested layer-wise framework, this section aims
to synthesize these elements into a cohesive, operationalizable schema. Hierarchical evaluation
frameworks are particularly promising, as exemplified by the ReFeR system [83]]. ReFeR employs
a “peer review” model where smaller Al “evaluators” provide initial assessments, and a more
capable “area chair” model synthesizes these into final scores and reasoning. This hierarchical,
multi-perspective meta-methodology strongly aligns with our goals. Consequently, we adopt a similar
hierarchical system to embody our proposed model cartography as shown below.

* (M) The assessment group that focuses on benchmark performance and output quality.

— One important approach involves employing adaptive testing and dynamic benchmarks,
as exemplified by Zhang et al. (2024) [131]. Their method first extracts reasoning
graphs from existing benchmark data points and then perturbs these graphs to generate
novel test cases. Subsequently, a code-augmented LLM verifies the correctness of
labels for the newly generated data. Using this framework, they observed that LLM
performance declines with increasing task complexity, often revealing greater biases
and excessive sensitivity to specific content. This research highlights the value of
evaluating LLMs beyond conventional static benchmarks, offering a more dynamic
perspective on assessing their capabilities and limitations.

— Another promising practice is measuring an LLM’s “usage of capacity,” as proposed
by Cao et al. (2025) [19]. The central concept is that a comprehensive assessment of
an LLM’s ability should consider the effort it expends to achieve an outcome. To this
end, they introduce a measure called MUI to quantify how extensively a model utilizes
its capabilities to complete tasks. This approach yields model rankings consistent
with expert judgment and demonstrates robustness to variance. Their work offers
a significant step towards addressing challenges in assessing model capacity and
potentially mitigating the impact of data contamination on evaluations. Furthermore,
combining this method with adaptive testing and dynamic benchmarks could allow
for a more comprehensive “observation dynamics” of LLM performance.

* (M p) The assessment group that employs interpretability techniques and evaluates robustness
to perturbations.

— Advanced mechanistic interpretability is vital for understanding and confirming a
model’s reachable capabilities. For instance, circuit discovery is a key method for
linking these observable behaviors to the model’s internally instantiated concepts.
Seminal work by Elhage et al. (2021) [35]] has shown how specific learned modules,
like attention heads, are integral to behaviors such as in-context learning. Although
applying such detailed techniques to larger, more complex models is challenging,
emerging automated methods like Automatic Circuit DisCovery (ACDC) [27]] offer
a promising path. These tools aim to pinpoint underlying mechanisms and could
provide more systematic ways, potentially even quantifiable measures, to assess how
specific, predefined behaviors (i.e., a standard dataset) are realized within a model’s
architecture.

— Complementing interpretability techniques, exploring model responses to strategically
designed inputs provides valuable insights. Adversarial prompting is a prominent ex-
ample, involving inputs crafted to exploit model vulnerabilities or specific processing
mechanisms. The generation of such prompts has become increasingly accessible; for
instance, tools like AdvPrompter [89] can rapidly produce human-readable adversarial
prompts, sometimes even while preserving the original prompt’s semantic meaning.
A model’s susceptibility and characteristic responses to a suite of such prompts can
serve as a crucial basis for metrics to evaluate its propensity for undesirable reachable
behaviors, including generating misinformation, revealing sensitive information, or
engaging in incorrect reasoning.

* (M) The assessment group that investigates the faithfulness of explanations or analyzes
internal activation patterns.
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— For different instantiations of a concept, it’s crucial to assess whether their chosen
hyperparameters and architectural constraints align with the underlying design ratio-
nale and theoretical foundations. This is particularly true for models with pre-trained
initializations, where the pre-training data is fundamental to how well the model
instantiates the concept by leveraging its learned general features and representations.
These theoretical foundations are often informed by scaling laws [50} 153} 58| [126].
Scaling laws describe how a model’s performance (often measured by loss) predictably
relates to key factors such as model size, dataset size, and training compute, with this
relationship typically characterizable by mathematical functions. Consequently, by
comparing the actual performance of a series of model instantiations against predic-
tions derived from these scaling laws, we can confirm the quality of their instantiation.
This process also allows us to forecast the potential performance of significantly larger
models, thereby guiding strategic research directions.

— Another effective approach to assess how well concepts are instantiated within a model
is to employ visualizations of its internal modules. For instance, attention head visual-
izations [[113] illustrate the patterns of attention, detailing how much consideration
each token gives to other tokens in the input (or across encoder-decoder interactions)
within specific attention heads and layers. This aids in understanding information
flow and identifying which tokens influence the representations of others. A further
example is the visualization of expert routing in Mixture-of-Experts models [117]],
which demonstrates how different experts are activated in response to various input
tokens. Such examples underscore that visualization is crucial for gaining an intu-
itive understanding of how a model instantiates concepts and for debugging potential
conceptual issues.

* (M) The assessment group that oversees the multi-tier assessments, comparing them against
the documented goals and assumptions of the concepts.

— Although directly measuring the inherent “quality” of a concept is challenging, trans-
lating qualitative concepts and theoretical underpinnings, such as understanding,
reasoning, creativity, or safety, into measurable outcomes is essential for genuinely
assessing conceptual results. To achieve this, there is a pressing need to develop and
implement precise metrics. Such metrics are indispensable for objectively evaluating
how effectively observed phenomena reflect these carefully defined concepts and
whether the system under scrutiny adheres to its acknowledged operational bound-
aries. This, in turn, enables a more robust and empirically grounded validation of that
system’s conceptual achievements.

B Border Impacts and Limitations

Border Impacts: Adopting the proposed five-tier hierarchical view of Al models carries significant
implications for Al development, research methodology, and Al epistemology. For development, it
encourages designing systems with evaluability in mind at each level, from clear concept articulation
and transparent implementation to better management of the optimized model’s scope. In research,
this framework calls for a shift from “SOTA-chasing” on narrow benchmarks to new experimental
designs and metrics that provide deeper insights into different model tiers, their interrelations,
behavior, generalization capabilities, and alignment. Epistemologically, the framework redefines
what it means to “understand” an Al model, challenging the adequacy of single-score evaluations for
complex systems and aligning with broader philosophical discussions about observing and inferring
truths about partially unobservable entities, such as those addressed by the Noumenal and Reachable
tiers, thereby contributing to the philosophy of Al

Limitations: Operationalizing the proposed multi-tier evaluation framework presents considerable
challenges. A primary difficulty is defining clear, measurable, and meaningful criteria for the more
abstract Noumenal and Conceptual levels; for instance, assessing the “plausibility” of a Conceptual
Model becomes empirically perplexing when tied to an inherently unknowable Noumenon. Another
significant hurdle involves characterizing the full, combinatorially explosive spectrum of an LLM’s
potential behaviors, especially for models with billions of parameters and global representations.
Furthermore, existing substantial challenges in LLM evaluation, such as frequent benchmark updates,
the high cost of comprehensive assessment, and mitigating data contamination, are likely to be
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amplified within such a demanding multi-tier regime. Finally, there’s the inherent risk that any new,
complex evaluation framework could itself become a target for “SOTA-chasing,” diverting efforts to
metric optimization without necessarily achieving genuine progress in underlying model quality or

understanding.
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