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ABSTRACT

Key-Value (KV) caching is a common technique to enhance the computational
efficiency of Large Language Models (LLMs), but its memory overhead grows
rapidly with input length. Prior work has shown that not all tokens are equally im-
portant for text generation, proposing layer-level KV cache compression to selec-
tively retain key information. Recognizing the distinct roles of attention heads in
generation, we propose HeadKV, a head-level KV cache compression method, and
HeadKV-R2, which leverages a novel contextual reasoning ability estimation for
compression. Our approach operates at the level of individual heads, estimating
their importance for contextual QA tasks that require both retrieval and reason-
ing capabilities. Extensive experiments across diverse benchmarks (LongBench,
LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct),
and long-context abilities tests demonstrate that our head-level KV cache com-
pression significantly outperforms strong baselines, particularly in low-resource
settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the
KV cache while achieving 97% of the performance of the full KV cache on the
contextual question answering benchmark. 1

1 INTRODUCTION

Modern Large Language Models (LLMs) increasingly support extremely long inputs: GPT-
4 (Achiam et al., 2023), Llama-3 (Dubey et al., 2024), and Qwen-2 (Yang et al., 2024) handle
up to 128K tokens, while Claude (Anthropic, 2024) supports up to 1 million tokens. These extended
capacities improve performance on tasks like dialogue generation (Li et al., 2024a; Yi et al., 2024),
question answering (Ho et al., 2020; Xu et al., 2023), and summarization (Xiao & Carenini, 2019;
Koh et al., 2022). As input lengths increase, memory usage and latency grow significantly due to
self-attention in transformers. To improve inference speed and efficiency, most LLM inference con-
sists of two phases: prefilling for input processing and decoding for token generation, with key and
value states from attention cached for reuse (KV cache). However, as input length increases, KV
cache memory grows rapidly, posing significant challenges for storage and efficiency.

To address this, KV cache compression methods (Xiao et al., 2024; Li et al., 2024d; Cai et al., 2024;
Feng et al., 2024) have been proposed, typically using token eviction to optimize retention per layer
or head during prefilling, reducing memory without impacting performance. However, none have
explored varying KV cache size across individual heads. Inspired by prior observations (Voita et al.,
2019; Wu et al., 2024; Zheng et al., 2024) that attention heads vary in importance for generation, we
propose HeadKV, a head-level KV cache compression method that allocates KV cache budgets
based on head importance distribution using a novel retrieval and reasoning importance estimation.
Specifically, heads deemed more important are allocated larger KV cache budgets, while less impor-
tant ones receive smaller allocations, optimizing memory usage without sacrificing performance.

In addition to allocating KV cache across attention heads rather than layers, a key aspect of our
approach is distributing cache budgets based on head importance measures. Prior work (Wu et al.,
2024) proposed method to identify retrieval heads, using importance estimation to assess each head’s

1The method has been integrated with the Flash Attention, and the code will be made publicly available.
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Figure 1: Our proposed head-level KV cache compression method consists of two steps: (1) Head-
Level Importance Score Estimation (upper part): important heads that contribute to the contextual
reasoning ability are identified using Needle-in-a-Haystack tests. (2) Head-Level KV Cache Allo-
cation (lower part): KV cache budgets for each head during the prefilling phase are allocated based
on the importance score distribution identified in the first step.

role in retrieving relevant context. We integrate their measure with our head-level KV cache com-
pression as a baseline, observing improved performance over layer-level cache compression.

However, we argue that allocating larger KV cache budgets solely to retrieval heads is insufficient
for tasks like contextual Question Answering (QA), which requires both retrieval and reasoning to
handle long input contexts effectively. To address this, we propose an importance-score estimation
method that jointly evaluates each head’s retrieval and reasoning capabilities for KV cache
allocation. Specifically, as illustrated in the Importance Score Estimation section of Figure 1, we
construct questions that require both the retrieval and reasoning abilities of the LLM. For instance,
in the provided example, the model must first identify “who is younger between John and Mary”
(John) by referencing the context of their ages, and then retrieve John’s favorite thing. We then
estimate the importance score of each head based on the attention scores generated by the model
while answering the question. Using the estimated importance scores, we allocate the KV cache
budget for each individual head, meaning that heads demonstrating greater importance in retrieval
and reasoning retain a larger portion of the KV cache, as shown in the Head-Level Allocation section
of Figure 1. Within each head, we then retain only the most relevant KV cache entries, following
the strategy proposed in Li et al. (2024d).

We conduct experiments on various benchmarks requiring both retrieval and reasoning abilities,
including QA tasks from LongBench (Bai et al., 2024) and LooGLE (Li et al., 2024b), using back-
bone models such as Llama-3-8B-Instruct (Dubey et al., 2024) and Mistral-7B-Instruct (Jiang et al.,
2023a). Our results demonstrate that the head-level KV cache compression method outperforms
previous approaches on nearly all tasks. Furthermore, the allocation strategy based on our esti-
mated importance scores—reflecting both retrieval and reasoning abilities—outperforms allocation
strategies based on retrieval ability alone. In challenging scenarios like needle-in-a-Haystack and
reasoning-in-a-Haystack tests, our methods effectively preserve the model’s retrieval and reason-
ing capabilities. Finally, experiments on memory and latency reveal that our approach significantly
reduces memory usage and decoding latency, comparing with the original full KV.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 ATTENTION HEADS

Multi-Head Attention, a fundamental component of Transformer architectures (Vaswani et al.,
2017), has been extensively analyzed to understand the roles of individual attention heads (Voita
et al., 2019; Olsson et al., 2022; Jin et al., 2024; Wu et al., 2024; Zheng et al., 2024), often with
goals such as pruning redundant heads(Shim et al., 2021; Kwon et al., 2022) or enhancing inter-
pretability(Olsson et al., 2022; Jin et al., 2024; Zheng et al., 2024). For example, Voita et al. (2019)
observed that only a small subset of heads plays a key role in machine translation, typically man-
aging positional information, syntactic parsing, or focusing on rare words. Similarly, Olsson et al.
(2022) identified ’induction heads’ that implement a copy-and-paste mechanism, enabling models to
replicate previously encountered sequences. Additionally, Zheng et al. (2024) provided a thorough
overview of recent efforts to characterize the diverse functions of attention heads, categorizing them
into four types: Knowledge Recalling, In-Context Identification, Latent Reasoning, and Expression
Preparation. A closely related study by Wu et al. (2024) discovered “retrieval heads” that play a cru-
cial role in knowledge acquisition, using Needle-in-a-Haystack tests. These insights into head-level
functionality serve as the foundation for our head-level KV cache compression methods, designed
to jointly preserve both retrieval and reasoning capabilities during the compression process.

2.2 KV CACHE COMPRESSION

Improving computational efficiency for LLMs, particularly for extremely long inputs, has attracted
considerable research interest (Shazeer, 2019; Chen et al., 2023; Dao, 2024; Zhou et al., 2024; Ye
et al., 2024), including caching key and value vectors in Multi-Head Attention to improve generation
efficiency (Xiao et al., 2024; Zhang et al., 2023; Li et al., 2024d; Cai et al., 2024). One challenge with
full KV cache approaches is that the memory usage increases linearly with input length, leading to
significant memory management challenges. Various KV cache compression techniques have been
proposed to reduce memory usage and improve inference efficiency. For example, Xiao et al. (2024)
addressed the ‘attention sink’ issue with StreamingLLM, retaining only the first k tokens’ KV cache.
Zhang et al. (2023) applied the Heavy Hitter Oracle strategy to select key cache entries, while Li
et al. (2024d) used the attention scores of the last α tokens to identify relevant entries. Cai et al.
(2024) introduced PyramidKV, assigning smaller cache budgets to higher layers based on attention
matrix patterns.

While these methods have improved performance and efficiency, they largely depend on rigid layer-
level allocation strategies, which may not fully optimize KV cache allocation for downstream tasks.
Feng et al. (2024) proposed dynamic head-level allocation using attention scores but still relied on
layer-level budgeting. Similarly, Tang et al. (2024) employed Retrieval Heads distribution for head-
level allocation but retained a Full KV cache for key heads, limiting true head-level compression.
In contrast, our approach allocates KV cache solely based on head-level importance scores, inde-
pendent of layer constraints, resulting in more effective compression and outperforming baselines
without increasing decoding latency or memory usage.

3 METHOD

This section presents our proposed head-level KV cache compression method, which consists of
three key components: (1) identifying important heads and calculating head-level importance score
distributions (3.1), (2) using these distributions to efficiently allocate KV cache budgets across heads
(3.2), and (3) determining which Key and Value vectors to retain within each head (3.3).

3.1 HEAD-LEVEL IMPORTANCE SCORE ESTIMATION

Accurate budget allocation at the head level requires identifying which heads are most and least
important for the given task. By leveraging this importance distribution, we can assign larger KV
cache budgets to more critical heads and smaller budgets to less significant ones. To achieve this,
we propose a novel importance-score estimation method, inspired by Wu et al. (2024), which allows
us to effectively estimate the importance of each attention head for optimal KV cache allocation.

3
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Retrieval Example

Needle:
The best thing to do in Beijing is to

take a walk in Chaoyang Park and have a cup of
Espresso in the evening.

q: What is the best thing to do in Beijing?
q: What is the favorite thing of the younger one

between John and Mary?

Needle:
John is 12 years old. Mary is 13 years old. 

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's  favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Reasoning-Retrieval Example

Figure 2: Comparison of examples for head identification: Needle-in-a-Haystack test example from
Wu et al. (2024) for identifying Retrieval Heads distribution (left), and our proposed Needle-in-a-
Haystack test example for identifying Retrieval-Reasoning Heads distribution (right).

Retrieval Heads Wu et al. (2024) use the Needle-in-a-Haystack test 2 and custom retrieval ex-
amples, as shown in Figure 2, to estimate the importance score for each head. In these examples,
a question q that cannot be answered using the model’s parametric knowledge is paired with an
answer k (the “Needle”) inserted into a haystack c at different positions pi. The model is required
to retrieve the exact answer k from the combined input (k, c).

During each decoding step t, a head h earns a fraction of the importance score if (1) the token with
the highest attention score argmax(ah) matches the generated token, and (2) the token is part of
the inserted answer k. The final importance score for each head h is calculated accordingly:

Sh =

N∑
t=1

N t, where N t =

{
1
N if argmax(at

h) ∈ k

0 otherwise
(1)

where N is the length of the inserted answer k, and at
h is the attention score on the combined input

from head h at t-sh decoding step. By using various settings of the inserted position pi, they obtain
the head-level Retrieval Heads distribution.

Directly using this distribution poses two issues: (1) it focuses on the retrieval-and-paste mechanism,
lacking consideration for the contextual and reasoning skills needed for complex questions; and (2)
the distribution is too sparse for effective head-level KV cache allocation, with nearly 70% of heads
receiving an importance score of zero due to the strict exact-match requirement (Wu et al., 2024).

Retrieval-Reasoning (R2) Heads To address these issues, we propose a new importance score
estimation method that accounts for both the retrieval and reasoning abilities of the heads, enabling
a more accurate assessment of their significance.

First, we construct retrieval-reasoning examples by adding explicit contextual reasoning steps to
the retrieval examples from Wu et al. (2024), as shown in the Retrieval-Reasoning Example part of
Figure 2. We further modify the inserted needle into three parts: k = (r, c1, c2), where r is the
reasoning step, and c1 and c2 are different answers to the refined question q. The model must reason
with r to retrieve and generate the correct answer c2, avoiding the wrong answer c1.

Secondly, we refine the estimation method by focusing on the entire correct answer c2 (Correct Copy
in Figure 1), since all tokens are relevant to the question q. This approach aligns with Contextual
QA, which requires both retrieval and reasoning abilities. By considering the full correct answer, the
importance score for each head h no longer depends solely on the token with the highest attention
score. The importance score for head h is calculated as follows:

Sh =

N∑
t=1

N∑
i=1

Mt
i, where Mt

i =

{
ai

N if top-i(at
h) ∈ c2

0 otherwise
(2)

2https://github.com/gkamradt/LLMTest NeedleInAHaystack
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where ai ∈ at
h represents the i-th highest attention score from head h, and top-i(at

h) is the token
with the i-th highest score at t-th decoding step. We compute the importance score by considering
the entire correct answer and increasing the number of tokens evaluated per head (Importance Score
Estimation in Figure 1). Intuitively, heads with higher attention on the correct answer k should
receive higher importance scores. We further refine the score using attention weights, yielding a
more accurate distribution, as shown in Eq. 2.

3.2 HEAD-LEVEL KV CACHE ALLOCATION

With the importance scores estimated for each head, we can identify the key heads and allocate the
KV cache budget accordingly. In this section, we explain how to incorporate these distributions into
head-level KV cache allocation.

Preliminary In Multi-Head Attention, for each head h in layer l, the embedded input X =
{x1, x2, . . . , xn} ∈ Rn×d is mapped into different subspaces using the query W l

Q, key W l
K , and

value W l
V ∈ Rd×dh matrices:

Ql
h = XW l

Q ∈ Rn×dh ; Kl
h = XW l

K ∈ Rn×dh ; V l
h = XW l

V ∈ Rn×dh . (3)

To optimize memory and enhance efficiency, KV cache compression methods (Xiao et al., 2024;
Li et al., 2024d; Cai et al., 2024) are employed to discard unimportant KV cache entries while
preserving performance. For each head h, the compressed KV cache is reduced to Kl

h ∈ Rs×dh and
V l
h ∈ Rs×dh , where s ≪ n, resulting in a significant improvement to computational efficiency.

Head-level Allocation Previous works on KV cache compression during the prefill phase (Xiao
et al., 2024; Li et al., 2024d; Cai et al., 2024; Feng et al., 2024) are limited to layer-level allocation,
using either uniform or dynamic budgets per layer, but treating all heads within a layer equally.
While Feng et al. (2024) incorporate head-level information, their approach still depends on layer-
level allocation as a prerequisite.

Building on the head-level importance distributions, we propose a comprehensive KV cache alloca-
tion strategy. Each head h is initially assigned a fixed KV cache size b with an associated importance
score Sh. To allow dynamic allocation, we create a shared budget pool B by extracting a portion
of the budget from each head, leaving the remainder as the basic budget. This process is illustrated
in the Head-Level Allocation section of Figure 1. The budget pool B is then distributed among the
heads in proportion to their importance scores Sh. The importance score distribution S was L1-
normalized to ensure that the sum of Sh equals to 1. The final head-level KV cache allocation is as
follows:

B =
b

β
× L×H; bh = (b− b

β
) + Sh ×B (4)

where b is the initial fix budget for each head, β is a hyper-parameter to control the size of the
dynamic budget pool, L and H is the numbers of layers and heads of current LLM respectively.

The last α instruct tokens are preserved before forming the dynamic budget pool B to guide the
selection process, as detailed in Section 3.3. The retained KV cache for each head includes: (1) the
basic budget (b− b

β ), (2) the dynamic budget Sh ×B, proportional to its importance score, and (3)
the last α instruct tokens.

3.3 KV CACHE SELECTION

After determining the number of KV cache entries to retain using the above algorithm, we apply an
attention-based selection strategy from prior works (Li et al., 2024d; Cai et al., 2024; Feng et al.,
2024) to keep the most relevant entries. Specifically, the last α instruction tokens (local windows)
guide KV cache selection for each head. Attention scores from these local windows to the remaining
tokens are aggregated through a pooling layer, with higher-scoring tokens considered more impor-
tant and retained in the cache.

5
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4 EXPERIMENTS AND ANALYSIS

This section outlines the experimental setup, including KV cache baselines and implementation
details. We also conduct additional experiments that: (1) emphasize the importance of enhancing
contextual reasoning in importance score estimation (4.3); (2) use the Needle-in-a-Haystack and
Reasoning-in-a-Haystack tests to demonstrate how our head-level KV cache compression improves
long-context retrieval and reasoning (4.4); and (3) provide a comprehensive comparison with previ-
ous methods, showing our approach delivers superior performance while maintaining computational
efficiency (4.5).

4.1 EXPERIMENT SETTINGS

Models and Datasets We compare our head-level KV cache compression method against strong
baselines using two open-source LLMs: Llama-3-8B-Instruct (Dubey et al., 2024) and Mistral-7B-
Instruct (Jiang et al., 2023a). The evaluation is based on two benchmarks for long-context un-
derstanding: LongBench (Bai et al., 2024) and LooGLE (Li et al., 2024b). For LongBench, we
use datasets from the Single-Doc QA and Multi-Doc QA categories to assess contextual reasoning.
For LooGLE, we focus on the Long Dependency QA task, which includes four QA-related tasks.
Dataset details are in Appendix Table 5.

Baselines and Settings We evaluate three strong KV cache compression methods as baselines,
ensuring all retain the same number of KV cache entries for fair comparison:

1) SnapKV (Li et al., 2024d) uses the last α tokens as local windows to guide KV cache
selection. Attention scores from these windows to the remaining tokens are pooled to
cluster information and guide the selection process.

2) PyramidKV (Cai et al., 2024) follows a pyramid attention pattern, allocating more KV
cache to lower layers to retain key information, while reducing the budget for higher layers
where information is already aggregated.

3) Ada-KV (Feng et al., 2024) dynamically allocates budgets to heads within each layer based
on their concentration degrees, and can be combined with SnapKV or PyramidKV. Ada-
SnapKV is used as the baseline due to its superior performance over Ada-PyramidKV.

Our proposed head-level KV cache compression method also requires a strategy to guide KV cache
selection after allocating the budget. Therefore, we use the SnapKV method to guide the selection
process for each head. We set the size of the local windows α = 8 for both the baselines and our
method. The hyper-parameter β, which controls the size of the shared budget pool, was chosen from
{1.005, 1.01, 1.1, 1.2, 1.5, 2, 5, 10}, and we report the best performance.

4.2 MAIN RESULTS

Table 1 lists the evaluation results for contextual tasks from the LongBench and LooGLE bench-
marks. Our head-level KV cache compression method consistently outperforms strong baselines,
especially with 64 and 128 KV cache configurations. In resource-constrained settings, precise KV
cache allocation is crucial. Layer-level methods allocate a fixed cache size to all heads within a layer,
making it difficult to retain essential information. Ada-SnapKV improves this by allowing dynamic
allocation within layers, but still relies on fixed layer-level budgets. In contrast, our head-level strat-
egy allocates dynamically across individual heads, retaining critical information by adjusting the
budget based on each head’s importance.

We perform head-level allocation using both the standard Retrieval Heads distribution (HeadKV-R)
and our Retrieval-Reasoning Heads distribution (HeadKV-R2) for global KV cache allocation. This
combination leads to superior performance across benchmarks. Notably, integrating the Retrieval-
Reasoning Heads distribution significantly improves results over the standard Retrieval Heads dis-
tribution, highlighting the impact of our approach. Our Retrieval-Reasoning distribution even sur-
passes the Full-KV cache average (32.90), achieving 32.95 with a 1024 KV cache. Overall, both
the head-level allocation strategy and Retrieval-Reasoning distribution are key to these performance
gains.

6
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Method Single-Doc QA Multi-Doc QA Avg. Long dependency QA Avg.
NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Doc.QA Info. Retrieval Timeline Computation

Llama-3-8B-Instruct, KV Size = Full

FullKV 25.56 32.07 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01

Llama-3-8B-Instruct, KV Size = 128

SnapKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43 8.36 9.46 0.79 6.56 6.29
PyramidKV 22.01 17.05 31.52 39.27 28.99 18.34 26.20 8.89 9.63 0.61 6.72 6.46
Ada-SnapKV 22.99 19.95 34.22 42.97 30.82 20.15 28.52 9.07 10.3 0.54 6.59 6.63
HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38 8.87 10.35 0.78 7.52 6.88
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00 9.60 11.13 0.67 7.22 7.16

Llama-3-8B-Instruct, KV Size = 1024

SnapKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65 9.61 11.34 0.53 7.22 7.18
PyramidKV 25.38 26.83 36.90 44.09 34.24 21.49 31.49 8.98 11.41 0.53 6.96 6.97
Ada-SnapKV 25.79 29.24 38.74 43.93 36.34 19.79 32.31 8.65 11.41 0.53 7.71 7.08
HeadKV-R 24.85 30.94 39.82 43.52 36.58 20.37 32.68 9.20 11.67 0.55 7.71 7.28
HeadKV-R2 24.66 30.82 39.56 43.97 36.47 22.24 32.95 9.02 11.51 0.47 7.85 7.21

Mistral-7B-Instruct, KV Size = Full

FullKV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55

Mistral-7B-Instruct, KV Size = 128

SnapKV 21.47 21.95 45.24 33.88 21.83 15.53 26.65 10.86 12.24 0.57 8.81 8.12
PyramidKV 21.76 21.98 43.72 32.76 22.73 15.59 26.42 10.64 11.9 0.47 8.69 7.93
Ada-SnapKV 21.57 24.59 46.70 35.74 25.57 14.37 28.09 11.14 12.37 0.45 9.57 8.38
HeadKV-R 23.97 29.60 48.40 39.66 26.31 18.13 31.01 11.43 13.04 0.53 10.26 8.82
HeadKV-R2 25.04 27.95 48.48 41.28 27.65 18.05 31.41 11.44 13.08 0.63 10.20 8.84

Mistral-7B-Instruct, KV Size = 1024

SnapKV 25.38 30.22 49.29 41.84 26.60 18.08 31.90 11.69 13.89 0.52 10.54 9.16
PyramidKV 24.28 30.05 49.17 40.49 26.43 18.80 31.54 11.77 14.51 0.51 10.19 9.25
Ada-SnapKV 24.82 31.49 48.80 41.18 27.38 18.22 31.98 11.96 13.82 0.53 9.92 9.06
HeadKV-R 25.87 31.44 49.55 41.95 27.09 19.88 32.63 12.21 14.17 0.50 10.58 9.37
HeadKV-R2 25.64 32.54 50.49 41.80 27.88 18.89 32.87 11.94 14.93 0.50 10.49 9.47

Table 1: Performance comparison on the LongBench and LooGLE benchmarks for Llama-3-8B-
Instruct and Mistral-7B-Instruct. Our head-level KV cache compression method outperforms all
baselines, especially in low-resource settings (KV size = 128). It even exceeds the FullKV result
(32.90) on Llama-3-8B-Instruct (KV size = 1024, 32.95), highlighting the benefits of incorporating
contextual reasoning for head selection.
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Figure 3: Results for different KV cache sizes (64, 128, 256, 512, 1024), showing average accuracy
across six datasets from the LongBench benchmark with an average input length of 8,683 tokens.
Notably, a KV cache size of 64 retains just 0.7% of the total tokens.

In addition, we present the results for various retained KV cache sizes (64, 128, 256, 512, 1024) in
Figure 3, , with detailed results available in Appendix Table 4.

4.3 RETRIEVAL-REASONING HEADS

As detailed in Section 3.1, we propose to improve the standard Retrieval Heads distribution by in-
corporating retrieval-reasoning examples and refining importance score estimation to better capture
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Figure 4: Head visualization for Llama-3-8B-Instruct results. The Retrieval Heads distribution is
sparse to effectively differentiate between heads, while our Retrieval-Reasoning Heads has denser
distribution for such differentiation. See Appendix Figure7 for Mistral-7B-Instruct results.

Method
Single-Doc QA Multi-Doc QA Avg.

NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique

Llama-3-8B-Instruct, KV Size=128

HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38
HeadKV-ER 23.33 25.86 40.28 43.25 33.23 20.28 31.04
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00

Mistral-7B-Instruct, KV Size=128

HeadKV-R 23.97 29.60 48.40 39.66 26.31 18.13 31.01
HeadKV-ER 23.23 28.70 48.10 41.39 27.31 17.39 31.02
HeadKV-R2 25.04 27.95 48.48 41.28 27.65 18.05 31.41

Table 2: Ablation study results on the LongBench benchmarks. HeadKV-R leverages the standard
Retrieval Heads distribution. HeadKV-ER uses the retrieval examples from Wu et al. (2024) but
with our proposed importance score estimation method. HeadKV-R2 leverages both our proposed
importance score estimation method and the retrieval-reasoning examples.

contextual reasoning and identify relevant heads. We also conduct an ablation study to evaluate the
impact of these modifications.

Table 2 presents the ablation study results, while Figure 4 provides visualizations for each distribu-
tion. Alongside the standard Retrieval Heads and Retrieval-Reasoning Heads distributions, we intro-
duce the Enhanced-Retrieval Heads distribution, using retrieval examples with our modified impor-
tance score estimation method. Comparing Retrieval Heads (HeadKV-R) and Enhanced-Retrieval
Heads (HeadKV-ER) reveals that focusing on the entire needle, rather than specific tokens, improves
performance. Figure 4 shows that the Retrieval Heads distribution is sparse, while the Enhanced-
Retrieval and Retrieval-Reasoning distributions are much denser. The strict constraints on the Re-
trieval Heads distribution result in most heads receiving a score of zero, leading to a worse results
when incorporating Retrieval Heads distributions.

While the Enhanced-Retrieval Heads distribution improves performance slightly, it remains rely on
retrieval examples and lacks full consideration of contextual reasoning. In contrast, the Retrieval-
Reasoning Heads distribution, reflecting both retrieval and reasoning abilities, consistently outper-
forms other methods, underscoring the value of incorporating retrieval-reasoning examples.

4.4 LONG-CONTEXT RETRIEVAL AND REASONING

We conduct the Needle-in-a-Haystack test to assess the long-context retrieval ability of different KV
cache compression methods. As illustrated in Figure 5, we set the KV size to 128 for all meth-
ods and keep the other hyperparameters consistent with previous experiments. Results from the
Llama-3-8B-Instruct demonstrate that our head-level KV cache compression method effectively re-
tain important information compared with other strong baselines, verifying the superior long-context
retrieval ability of our proposed method. However, these tests only retrieve the inserted needle from
the haystack and paste it into the generation, lacking an assessment of contextual reasoning ability

8
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PyramidKV Average score: 97.30

HeadKV-R Average score: 98.10

SnapKV Average score: 87.40

Ada-SnapKV Average score: 95.30

HeadKV-R2 Average score: 98.20

Llama-3-8B-Instrcut
FullKV Average score: 100.00

Context Length Context Length

Figure 5: Needle-in-a-Haystack test results on Llama-3-8B-Instruct with KV cache = 128. We
build our head-level KV cache method based on SnapKV and our proposed method significantly
outperform all strong baselines. Moreover, our Retrieval-Reasoning Heads distribution maintains
and improves long context retrieval ability. Results on Mistral-7B-Instruct can be found in Appendix
Figure 8, which are consistent with results on Llama-3-8B-Instruct.

Method 0k 1k 2k 4k 8k Avg. 0k 1k 2k 4k 8k 16k 32k Avg.

FullKV 63.00 59.40 55.80 56.60 50.40 57.04 61.40 55.20 52.40 40.80 40.40 35.00 31.80 45.29

Llama-3-8B-Instruct, KV Size=128 Mistral-7B-Instruct, KV Size=128

SnapKV 60.80 57.00 54.80 52.60 45.60 54.16 56.60 50.60 46.60 34.40 35.40 33.20 29.00 40.83
PyramidKV 61.20 58.00 52.80 52.60 47.60 54.44 58.40 50.60 46.80 36.00 36.20 31.20 28.40 41.09
Ada-SnapKV 61.80 59.20 53.80 53.60 46.60 55.00 58.00 51.20 46.20 35.40 36.40 31.60 28.80 41.09
HeadKV-R 61.60 57.00 52.60 55.00 49.60 55.16 58.40 54.00 50.80 38.00 37.40 31.80 30.20 42.94
HeadKV-R2 62.60 60.40 55.00 55.80 50.40 56.84 60.20 54.20 51.20 37.20 37.40 32.60 28.80 43.09

Table 3: Reasoning-in-a-Haystack test results with KV cache = 128. The final results are averaged
across QA1-QA5 tasks for each length. Unlike the Needle-in-a-Haystack test, this test inserts mul-
tiple needles into the haystack, requiring the model to reason through them to extract the correct
answer.

in long-context scenarios. This long-context contextual reasoning ability is crucial for many tasks,
such as question answering (QA), summarization (Kuratov et al., 2024; Li et al., 2024c). Therefore,
we conduct the Reasoning-in-a-Haystack test to evaluate the long-context reasoning ability of each
KV cache compression method across different scenarios.

We follow the setup from Kuratov et al. (2024) to conduct the Reasoning-in-a-Haystack test. This
test enhances the bAbI benchmark (Weston et al., 2015), designed for reasoning evaluation, by
using text from the PG19 dataset (Rae et al., 2020) as the haystack. Reasoning needles from bAbI
are inserted into the haystack, and the model must retrieve and reason through them to generate the
correct answer. We use the dataset from Kuratov et al. (2024), averaging results across QA1-QA5
tasks for evaluation. Examples of tasks are shown in Figure 12.

As shown in Table 3, our head-level KV cache compression method significantly outperforms strong
baselines, demonstrating its superior long-context reasoning. By incorporating retrieval-reasoning
examples, our method achieves even better accuracy, particularly with the Llama-3-8B-Instruct
model. Notably, combining head-level KV cache allocation with the standard Retrieval Heads distri-
bution also yields improved results over other baselines. This is due to two factors: first, as shown in
Figure 4, there is overlap between Retrieval and Retrieval-Reasoning Heads, indicating heads may
serve multiple roles. Second, since the bAbI benchmark contains the answer within the inserted
needle (see Figure 12), emphasizing retrieval alone helps our method locate the needle.
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Figure 6: The Decoding Latency and Peak Memory Usage results. Our proposed method maintain
the comparable computational efficiency with other KV cache compression baselines.

4.5 MEMORY & LATENCY

In this section, we evaluate the computational efficiency of our head-level KV cache compression
method using the Mistral-7B-Instruct model with a maximum sequence length of 32K, and FlashAt-
tention (Dao, 2024) as the default setting.

To assess the decoding latency of each method, we use 32K-length data from the Reasoning-in-a-
Haystack test as input and set various generation lengths (1, 512, 1024, 2048, 4096) for comparison.
As shown in the Decoding Latency of Figure 6, our proposed method achieves the same decoding
latency as other KV cache compression methods while maintaining performance closest to the Full
KV cache. Notably, the decoding latency includes both the pre-filling time and the decoding time.
Therefore, we can conclude that the pre-filling time for our method and other baselines (such as
PyramidKV, Ada-SnapKV) is almost negligible, as shown at the starting point (generation length =
1) of Decoding Latency in Figure 6.

In addition to decoding latency, KV cache compression methods also aim to reduce memory usage
during the decoding phase. Therefore, we provide the Peak Memory Usage results, as shown in the
Peak Memory Usage of Figure 6. All results for Peak Memory Usage are averaged over three trials.
Our proposed methods achieve performance comparable to other KV cache compression baselines,
significantly reducing memory usage compared to the Full KV cache.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce HeadKV-R2, a head-level KV cache compression method with two key
components. We propose a strategy for allocating KV cache budgets across attention heads based
on their importance scores and develop a novel approach to estimate these scores by constructing
examples that account for both retrieval and reasoning abilities. By allocating larger KV cache bud-
gets to more important heads and smaller budgets to less important ones, our approach efficiently
retain important KV cache than layer-level KV cache compression methods. We thoroughly evaluate
HeadKV across multiple benchmarks, models, and long-context ability tests, with comprehensive
results demonstrating that our method achieves superior performance while maintaining computa-
tional efficiency.

For future work, further exploration of various types of attention heads could offer valuable in-
sights, such as those involved in in-context learning (Olsson et al., 2022) and truthfulness (Li et al.,
2023). For example, placing greater emphasis on truthfulness heads could help mitigate issues like
hallucination, thereby improving the factual accuracy of model outputs. Additionally, it would be
worthwhile to investigate the development of a general task-specific score estimation algorithm. One
potential direction is to leverage gradients from specific tasks to allocate KV cache budgets more ef-
fectively, enabling tailored compression to enhance model performance across diverse applications.
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Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks, 2015. URL https://arxiv.org/abs/1502.05698.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mecha-
nistically explains long-context factuality, 2024. URL https://arxiv.org/abs/2404.
15574.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Wen Xiao and Giuseppe Carenini. Extractive summarization of long documents by combining
global and local context. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3011–3021, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1298. URL https://aclanthology.org/D19-1298.

Fangyuan Xu, Yixiao Song, Mohit Iyyer, and Eunsol Choi. A critical evaluation of evaluations for
long-form question answering, 2023. URL https://arxiv.org/abs/2305.18201.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-aware
kv cache and two-phase partition, 2024. URL https://arxiv.org/abs/2402.15220.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems, 2024. URL https://arxiv.org/abs/
2402.18013.

13

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2407.15891
https://arxiv.org/abs/2407.15891
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/P19-1580
https://aclanthology.org/P19-1580
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://openreview.net/forum?id=NG7sS51zVF
https://aclanthology.org/D19-1298
https://arxiv.org/abs/2305.18201
https://arxiv.org/abs/2402.15220
https://arxiv.org/abs/2402.18013
https://arxiv.org/abs/2402.18013


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
Xiong, and Zhiyu Li. Attention heads of large language models: A survey, 2024. URL https:
//arxiv.org/abs/2409.03752.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models, 2024. URL https:
//arxiv.org/abs/2404.14294.

14

https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILE RESULTS

In Table 4, we show the detailed results of Figure 3 in the main paper.

Method Single-Doc QA Multi-Doc QA
Avg.

Long dependency QA
Avg. β

NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Doc.QA Info. Retrieval Timeline Computation
Llama-3-8B-Instruct, KV Size=Full -

FKV 25.56 32.07 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01 -
Llama-3-8B-Instruct, KV Size=64

SKV 20.51 12.80 31.69 37.02 25.91 17.02 24.16 8.84 9.43 0.66 6.18 6.28 -
PyramidKV 21.17 13.66 29.34 34.86 23.46 15.88 23.06 8.27 9.31 0.63 6.86 6.27 -
Ada-SKV 22.26 17.30 33.37 39.82 27.86 17.85 26.41 9.08 9.86 0.55 6.82 6.58 -

Ours. Copy 22.67 23.54 37.51 37.45 29.76 19.01 28.32 8.80 10.51 0.58 6.68 6.64 2
Ours. Mix 23.21 25.33 38.71 40.64 31.33 19.35 29.76 9.46 10.66 0.61 6.92 6.91 1.2

Llama-3-8B-Instruct, KV Size=128
SKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43 8.36 9.46 0.79 6.56 6.29 -

PyramidKV 22.01 17.05 31.52 39.27 28.99 18.34 26.20 8.89 9.63 0.61 6.72 6.46 -
Ada-SKV 22.99 19.95 34.22 42.97 30.82 20.15 28.52 9.07 10.3 0.54 6.59 6.63 -

Ours. Copy 23.49 25.39 38.15 42.45 32.84 19.95 30.38 8.87 10.35 0.78 7.52 6.88 1.5
Ours. Mix 21.80 29.19 41.89 43.73 35.01 20.40 32.00 9.60 11.13 0.67 7.22 7.16 1.01

Llama-3-8B-Instruct, KV Size=256
SKV 23.38 20.18 37.65 42.80 33.23 20.01 29.54 9.04 10.59 0.53 7.53 6.92 -

PyramidKV 23.94 20.27 36.27 42.51 31.44 19.99 29.07 8.66 10.61 0.53 6.98 6.70 -
Ada-SKV 24.20 24.63 37.95 43.64 33.27 20.03 30.62 9.29 11.23 0.62 7.10 7.06 -

Ours. Copy 23.83 29.04 39.90 42.36 33.58 20.57 31.54 9.05 11.15 0.52 7.22 6.99 1.1
Ours. Mix 24.68 30.49 38.59 44.32 36.41 20.54 32.51 9.47 11.56 0.54 7.65 7.31 1.1

Llama-3-8B-Instruct, KV Size=512
SKV 25.47 23.75 38.64 43.66 33.98 19.83 30.89 9.00 11.07 0.63 7.34 7.01 -

PyramidKV 24.69 23.65 35.10 43.25 31.16 20.06 29.65 8.90 10.62 0.74 7.57 6.96 -
Ada-SKV 25.73 25.44 37.84 43.78 33.95 19.83 31.09 9.22 11.18 0.53 7.42 7.09 -

Ours. Copy 23.84 29.21 39.79 44.41 36.09 20.59 32.32 9.13 11.61 0.56 7.12 7.11 1.2
Ours. Mix 24.75 29.75 38.03 44.43 36.45 21.67 32.51 9.34 11.26 0.56 7.54 7.18 1.1

Llama-3-8B-Instruct, KV Size=1024
SKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65 9.61 11.34 0.53 7.22 7.18 -

PyramidKV 25.38 26.83 36.90 44.09 34.24 21.49 31.49 8.98 11.41 0.53 6.96 6.97 -
Ada-SKV 25.79 29.24 38.74 43.93 36.34 19.79 32.31 8.65 11.41 0.53 7.71 7.08 -

Ours. Copy 24.85 30.94 39.82 43.52 36.58 20.37 32.68 9.20 11.67 0.55 7.71 7.28 1.2
Ours. Mix 24.66 30.82 39.56 43.97 36.47 22.24 32.95 9.02 11.51 0.47 7.85 7.21 1.2

Mistral-7B-Instruct, KV Size=Full
FKV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55 -

Mistral-7B-Instruct, KV Size=64
SKV 19.95 18.63 38.16 31.24 21.39 13.81 23.86 10.41 11.49 0.46 9.38 7.94 -

PyramidKV 20.91 19.61 38.05 32.18 22.87 15.26 24.81 10.64 11.69 0.56 9.06 7.99 -
Ada-SKV 22.70 21.28 42.39 34.35 22.40 14.85 26.33 10.56 11.50 0.45 8.72 7.81 -

Ours. Copy 24.23 25.22 46.02 38.82 26.05 17.41 29.63 10.94 13.14 0.63 9.11 8.46 1.5
Ours. Mix 21.77 26.57 48.39 40.12 26.76 16.21 29.97 11.19 13.94 0.48 9.87 8.87 1.2

Mistral-7B-Instruct, KV Size=128
SKV 21.47 21.95 45.24 33.88 21.83 15.53 26.65 10.86 12.24 0.57 8.81 8.12 -

PyramidKV 21.76 21.98 43.72 32.76 22.73 15.59 26.42 10.64 11.9 0.47 8.69 7.93 -
Ada-SKV 21.57 24.59 46.70 35.74 25.57 14.37 28.09 11.14 12.37 0.45 9.57 8.38 -

Ours. Copy 23.97 29.60 48.40 39.66 26.31 18.13 31.01 11.43 13.04 0.53 10.26 8.82 1.5
Ours. Mix 25.04 27.95 48.48 41.28 27.65 18.05 31.41 11.44 13.08 0.63 10.20 8.84 1.1

Mistral-7B-Instruct, KV Size=256
SKV 22.26 24.94 48.30 36.76 25.16 14.93 28.72 11.07 12.39 0.53 9.13 8.28 -

PyramidKV 21.42 25.36 47.94 38.75 25.82 15.30 29.10 11.57 12.35 0.56 9.51 8.50 -
Ada-SKV 23.81 27.04 48.56 38.32 25.34 16.42 29.91 11.67 13.57 0.52 10.53 9.07 -

Ours. Copy 24.98 29.31 49.01 41.36 27.16 17.34 31.53 11.94 13.30 0.63 10.95 9.21 2
Ours. Mix 24.94 31.02 50.76 42.11 26.14 18.47 32.24 12.37 13.88 0.48 9.86 9.15 1.005

Mistral-7B-Instruct, KV Size=512
SKV 24.18 28.87 48.74 38.84 25.48 15.04 30.19 11.96 13.47 0.52 10.50 9.11 -

PyramidKV 23.07 28.97 48.37 39.54 25.63 16.59 30.36 11.34 13.32 0.65 10.81 9.03 -
Ada-SKV 24.22 29.92 48.96 40.08 25.55 17.45 31.03 12.12 14.53 0.52 10.57 9.44 -

Ours. Copy 24.97 30.94 49.45 42.25 26.34 18.54 32.08 12.09 13.88 0.62 10.94 9.38 1.01
Ours. Mix 25.59 31.33 50.26 42.66 27.20 19.37 32.74 11.62 15.61 0.50 9.97 9.43 1.005

Mistral-7B-Instruct, KV Size=1024
SKV 25.38 30.22 49.29 41.84 26.60 18.08 31.90 11.69 13.89 0.52 10.54 9.16 -

PyramidKV 24.28 30.05 49.17 40.49 26.43 18.80 31.54 11.77 14.51 0.51 10.19 9.25 -
Ada-SKV 24.82 31.49 48.80 41.18 27.38 18.22 31.98 11.96 13.82 0.53 9.92 9.06 -

Ours. Copy 25.87 31.44 49.55 41.95 27.09 19.88 32.63 12.21 14.17 0.50 10.58 9.37 1.5
Ours. Mix 25.64 32.54 50.49 41.80 27.88 18.89 32.87 11.94 14.93 0.50 10.49 9.47 1.01

Table 4: Details results for different KV cache (64, 128, 256, 512, 1024) on Llama-3-8B-Instruct
and Mistral-7B-Instruct.

B DATASET DETAILS

Table 5 provides details of the datasets used in our experiments. To evaluate the retrieval and contex-
tual reasoning abilities of different KV cache compression methods, we use six question-answering
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datasets from LongBench (Bai et al., 2024) and four additional question-answering datasets from
LooGLE (Li et al., 2024b) as benchmarks. For the LooGLE datasets, we randomly selected 100
examples to form the datasets used in this study.

Source Label Task Task Type Eval metric Avg Len Language Nums

LongBench NrtvQA NarrativeQA Single-Doc. QA F1 18,409 EN 200
LongBench Qasper Qasper Single-Doc. QA F1 3,619 EN 200
LongBench MF-en MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
LongBench HotpotQA HotpotQA Multi-Doc. QA F1 9,151 EN 200
LongBench 2WikiMQA 2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
LongBench Musique Musique Multi-Doc. QA F1 11,214 EN 200
LooGLE Doc.QA Comprehension&reasoning Long Dependency QA F1 15,498 EN 100
LooGLE Info.Retrieval Multiple information retrieval Long Dependency QA F1 14,808 EN 100
LooGLE Timeline Timeline reorder Long Dependency QA F1 15,425 EN 100
LooGLE Computation Computation Long Dependency QA F1 17,001 EN 100

Table 5: Details of Datasets.

C LONGBENCH RESULTS

We list the evaluation results on the remaining datasets from LongBench (Bai et al., 2024) in Table 6.
Our head-level KV cache compression method also outperforms the other baselines, particularly on
summarization and Code datasets across Llama-3-8B-Instruct and Mistral-7B-Instruct.

Method
Summarization Few-Shot Learning Synthetic Code

Avg.
GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe LCC RB-P

Llama-3-8B-Instruct, KV Size=Full

FullKV 28.71 23.26 26.64 73.5 90.48 42.33 4.80 69.25 59.29 54.05 47.23

Llama-3-8B-Instruct, KV Size=128

SnapKV 19.83 21.80 21.41 65.50 89.72 38.71 5.75 69.00 58.74 54.57 44.50
Ada-SnapKV 20.89 22.11 21.68 70.50 90.82 39.20 5.91 69.50 59.75 54.86 45.52
HeadKV-R 21.08 22.35 22.50 71.50 89.45 38.40 5.00 69.50 60.89 59.92 46.06
HeadKV-R2 21.76 22.16 23.94 71.50 90.19 38.88 6.60 69.50 61.08 60.21 46.58

Mistral-7B-Instruct, KV Size=Full

FullKV 32.87 24.24 27.10 71.00 86.23 42.79 2.75 86.98 56.93 54.49 48.54

Mistral-7B-Instruct, KV Size=128

SnapKV 20.76 22.72 21.38 67.00 85.06 40.22 3.51 65.06 52.20 47.01 42.49
Ada-SnapKV 21.13 22.76 22.25 68.50 85.60 41.05 3.33 62.54 52.88 49.25 42.93
HeadKV-R 22.19 22.86 22.57 69.50 85.46 41.16 3.56 74.49 54.60 50.89 44.73
HeadKV-R2 24.30 23.48 24.18 70.50 85.54 40.72 4.83 72.63 55.49 51.39 45.31

Table 6: Results on LongBench (KV cache=128).
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Figure 7: Head visualization results on Mistral-7B-Instruct. Our enhanced distribution can also
cover the important retrieval heads.
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PyramidKV Average score: 91.60

HeadKV-R Average score: 94.20

SnapKV Average score: 80.10

Ada-SnapKV Average score: 95.00

HeadKV-R2 Average score: 96.00

Mistral-7B-Instruct
FullKV Average score: 100.00

Context Length Context Length

Figure 8: Needle-in-a-Haystack test results on Mistral-7B-Instruct. The results are consist with
those on Llama-3-8B-Instruct and our Retrieval-Reasoning Heads distribution (HeadKV-R2 still
outperforms other strong baselines.

D REASONING-IN-A-HAYSTACK DETAILS

As shown in Figure 12, we provide examples for each task used in the Reasoning-in-a-Haystack
test3. We use the dataset curated by Kuratov et al. (2024) for the Reason-in-a-Haystack test. Specif-
ically, they use the “Input” listed in Figure 12 as the needle and split it into different sentences using
dot. These sentences are then inserted into various positions within the haystack to form the final
Reason-in-a-Haystack test examples.

As shown in Figure 13, we provide detailed results across different context lengths and tasks. Our
proposed head-level KV cache compression method achieves the best average score among all meth-
ods. Notably, on the Llama-3-8B-Instruct model, our method surpasses the Full KV cache on the
QA3 task, the most challenging task among the five, as indicated in Kuratov et al. (2024). This sug-
gests that our Retrieval-Reasoning Heads distributions are better at capturing semantically relevant
and important content, leading to generating the correct answers.

E CONSTRUCT RETRIEVAL-REASONING EXAMPLES

For guiding head-level KV cache compression, we need to obtain the importance score for each head.
To achieve this, we manually construct specific examples to ensure that the model relies on heads
rather than internal knowledge to answer questions during the Needle-in-a-Haystack experiment.
Therefore, we construct retrieval-reasoning examples based on retrieval examples Wu et al. (2024)
by introducing different reasoning paths into examples to emphasize the contextual reasoning ability.
One constructed Retrieval-Reasoning example is shown in the right of Figure 2. In addition to that
example, we reverse the question to create a total of two Retrieval-Reasoning examples.

Following the setup outlined in Wu et al. (2024), in the Needle-in-a-Haystack experiment, we use
the model’s maximum training length as the maximum haystack length and evenly select 5 different
length values as the actual haystack lengths. For each haystack length, the question is inserted at 10
different depths, uniformly distributed from the start to the end of the current haystack length. In
total, we generate 100 examples per model to collect Retrieval-Reasoning Head distributions.

The addition of reasoning content r and incorrect answers c1 aims to introduce complexity and
context to the reasoning process, which we believe could highlight different heads depending on
whether the head supports accurate reasoning patterns or not. Here’s how we envisioned their role:

3https://huggingface.co/datasets/RMT-team/babilong

17

https://huggingface.co/datasets/RMT-team/babilong


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

q: What is the favorite thing of the younger one
between John and Mary?

Needle:
John is 12 years old. Mary is 13 years old. 

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's  favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Retrieval-Reasoning Example1

q: What is the favorite thing of the older one between
John and Mary?

Needle:
John is 12 years old. Mary is 13 years old. 

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's  favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Retrieval-Reasoning Example2

Figure 9: Constructed Retrieval-Reasoning examples. They are used to conduct Needle-in-a-
Haystack experiment to obtain the Retrieval-Reasoning Heads distribution.

Aligning with the requirements of contextual reasoning: Based on the in-depth analysis on the
contextual reasoning dataset, we know that the answer to the corresponding question will still appear
in the input but with various distractors. Therefore, the model continues to rely on the retrieval-and-
paste mechanism to obtain the true answer. The original retrieval heads estimation method did not
account for this phenomenon, but we address it by adding logic and simulating incorrect answers to
achieve a more accurate distribution.

Introducing Diverse Reasoning Paths: By incorporating both reasoning content and incorrect
answers, we are simulating two different potential reasoning paths. The incorrect answer acts as a
distractor and we hope to find heads that concentrate on the correct answer even though the incorrect
answer has almost the same structure with the correct answer. We expected the correct answer c2
to be treated as the ground truth in the estimation equation, similar to the original Retrieval Heads
estimation method.

Focusing on the correct reasoning path: The purpose of constructing Retrieval-Reasoning ex-
amples is to obtain the importance score for each head, which then guides the head-level KV cache
budget allocation. Therefore, our goal is to identify the important heads rather than those focused on
incorrect answers. By emphasizing the important heads, the heads that focus on incorrect answers
are naturally ignored, as they share the same shared global budget pool.

Aligning with the standard Retrieval Heads estimation: we followed the setup in Wu et al.
(2024) and determined the Retrieval-Reasoning Heads distributions based on the Needle-in-a-
Haystack experiment. Since Needle-in-a-Haystack experiment only outputs the correct answer, we
choose to focus on the correct answer to ensure that the maximum importance score each head can
achieve in Eq. 2 is 1. Adding additional logic would disrupt this property, potentially affecting the
final distribution.

F PSEUDO CODE

Codes shown in Listing 1 demonstrates the core steps required for head-level KV cache budget
allocation based on the obtained importance score distribution.

• The obtain head budget function dynamically determines the budget for each head based
on the previously obtained importance score distribution as shown in Eq.4. Since the im-
portance score distribution is static and does not change with the input, this function only
needs to be executed once during model initialization.

• The head kv function allocates budgets for different heads. First, we use SnapKV as the
selection strategy to guide the specific selection process. After obtaining the budget and
determining the selection strategy, we perform the selection and obtain the final retained
results based on the budget.

1
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2 def obtain_head_budget(...):
3 # Load saved importance score distribution
4 with open(data_path, ’r’) as file:
5 head_list = json.loads(file.readline())
6 # accumulate the importance score and convert to tensor
7 head_score_list = [np.mean(l[1]) for l in head_list.items()]
8 head_score_list = torch.tensor(head_score_list / sum(head_score_list))
9 # Obtain the importance score distribution

10 total_attention = head_score_list.reshape(num_hidden_layers, num_attention_heads)
11 # Construct shared budget pool and define the minimum KV cache budget
12 total_pool_capacity = (base_capacity // beta) * num_hidden_layers * num_attention_heads
13 min_num = (base_capacity - base_capacity // self.beta)
14 # Head-level Allocation based on the importance score
15 head_capacity = torch.round(total_attention * total_pool_capacity + min_num).int()
16
17 def head_kv(...):
18 # calculate attn_score from the observation windows to input. (SnapKV)
19 attn_score = calcul_attn_sore(self, key_states, query_states)
20 # Sorted based on attn_score and obtain indices.
21 _,indices = attn_score.sort(dim=-1,descending=True)
22 # Obtain cached index for each head.
23 for head_idx in range(num_heads):
24 cache_index = indices[head_idx][...,:head_capacity[self.layer_idx][head_idx]]
25 # Expand the indices to match the head dimension for gathering. (Same as SnapKV)
26 cache_index = cache_index.view(1, 1, -1, 1).expand(-1, -1, -1, head_dim)
27 # Gather the compressed past key and value states based on the selected indices. (Same

as SnapKV)
28 top_Kcache = origin_heads_key_states[head_idx].gather(dim=2,index=cache_index)
29 top_Vcache = origin_heads_value_states[head_idx].gather(dim=2,index=cache_index)
30 # Merge with obervation windows
31 selected_k = torch.cat([top_Kcache,origin_heads_key_states[head_idx][:, :, -self.

window_size:, :]],dim=2)
32 selected_v = torch.cat([top_Vcache,origin_heads_value_states[head_idx][:, :, -self.

window_size:, :]],dim=2)
33
34 # Combine together
35 heads_key_states.append(selected_k.view(-1, head_dim))
36 heads_value_states.append(selected_v.view(-1, head_dim))
37 # Merge together
38 heads_key_states = torch.cat(heads_key_states, dim=0)
39 heads_value_states = torch.cat(heads_value_states, dim=0)
40
41 return heads_key_states,heads_value_states

Listing 1: Implementation of HeadKV in Pseudo PyTorch style.
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Figure 10: Results for different β, showing average accuracy across six datasets from the LongBench
benchmark.

G HYPER-PARAMETER ANALYSIS

The only hyper-parameter introduced by our proposed method is β, which defines the size of the
shared global budget pool B. Other hyper-parameters, such as the number of instruction tokens α,
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are kept consistent with the settings provided in the PyramidKV codebase.4 We also ensure that all
other hyper-parameters are consistent across both the baselines and our proposed method. For the
hyper-parameter β, as we said in Section 4.1, it was chosen from 1.005, 1.01, 1.1, 1.2, 1.5, 2, 5,
10 and we report the best performance according the average score results rather than choosing one
beta for each dataset. The details results on Llama-3-8B-Instruct and Mistral-7B-Instruct with KV
cache=128 are shown in Figure 11.

For hyper-parameter β, a smaller value represents a larger shared budget pool B according to Eq. 4,
meaning that KV cache allocation relies more heavily on the importance score distribution for alloca-
tion. The results show that Head-R2 performs better with a smaller β, indicating that our Retrieval-
Reasoning head distribution is more effective in guiding KV cache budget allocation. It is also
worth noting that both Head-R and Head-R2 outperformed Ada-SnapKV, which is current SOTA
method, across the different β values we set for Llama-3-8B-Instruct and Mistral-7B-Instruct. This
demonstrates the stability performance of our proposed head-level KV cache compression method.

H DISCUSSION

In addition to KV cache compression methods, another approach to mitigating the long-context sce-
narios during the pre-filling stage and enhancing the model’s ability to handle long texts is context
compression (Jiang et al., 2023b; 2024; Ge et al., 2024; Qin et al., 2024). Within the field of context
compression, there are also different directions exploring how to compressing prompts. For exam-
ple, Jiang et al. (2023b; 2024) proposed defining an additional module to compress the original
prompt while ensuring that the meaning and coherence of the prompt remain intact before and after
compression. The compressed text will serve as the input for the subsequent LLMs. On the other
hand, Ge et al. (2024) and Qin et al. (2024) adopted a different compression strategy by compressing
original prompt into memory slots instead of text. Ge et al. (2024) proposed ICAE method, which
employs an additional trained in-context autoencoder to compress the input into a fixed-length mem-
ory slots, which are then used as the input to LLMs. They pretrained and fine-tuned the proposed
in-context autoencoder to enable its capacity and generalization. Qin et al. (2024) further utilize the
model’s internal hidden states as the retained content after compression, with an additional scorer
employed for the corresponding selection.

The target of KV cache compression is the KV cache itself, whereas the goal of context compression
is the original input or the corresponding representations derived from the input. From the perspec-
tive of context compression, current KV cache compression methods can be viewed as compressing
the input context using the model’s own knowledge, without relying on trainable modules for selec-
tion. For instance, the SnapKV Li et al. (2024d) method, which our approach builds upon, uses the
last α tokens as the observation window and selectively retained KV cache based on attention from
these tokens. Compared to context compression methods like LLMLingua (Jiang et al., 2023b) and
ICAE (Ge et al., 2024), current KV cache compression methods are simpler, as they do not require
defining or training additional components. They ar also easier to achieve higher computational
efficiency, as these KV cache compression methods avoid relying on external components to obtain
compressed inputs and do not require recomputing the key and value matrices.

4https://github.com/Zefan-Cai/PyramidKV/
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Figure 11: Results for different β. We leverage scikit-learn to extract 15% of each of the six datasets
as a validation set (HeadKV-validation), while the remaining data was used as the test set (HeadKV-
test). The black line represents the optimal β value determined based on the validation set.

qa1

Input: John travelled to the hallway. Mary journeyed to the
bathroom. Daniel went back to the bathroom. John moved to the
bedroom.

Question: Where is Mary?
Target: bathroom

qa4

Input: The hallway is east of the bathroom. The bedroom is west
of the bathroom.

Question: What is the bathroom east of?
Target: bedroom

qa2

Input: Daniel took the milk there. John journeyed to the garden.
Daniel went back to the hallway. Daniel journeyed to the bathroom.
Daniel dropped the milk. Daniel took the milk there. John grabbed
the apple there. Sandra journeyed to the kitchen. John went to the
hallway. Sandra went back to the garden.

Question:  Where is the apple?
Target: hallway

qa3

Input:  Mary picked up the apple. John went to the garden. Sandra
travelled to the office. Sandra took the milk. John went to the
bedroom. Sandra went to the kitchen. John journeyed to the office.
Mary left the apple. Mary travelled to the office. Sandra went to the
office. Daniel went to the hallway. Sandra discarded the milk.

Question:  Where was the milk before the office?
Target: kitchen

qa5

Input: Fred picked up the football there. Fred gave the football to
Jeff. Bill went back to the bathroom. Jeff grabbed the milk there.
Jeff gave the football to Fred. Fred handed the football to Jeff.
Jeff handed the football to Fred. Fred gave the football to Jeff.

Question:Who did Fred give the football to?
Target: Jeff

Figure 12: Examples for each task used in Reasoning-in-a-Haystack test.
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Figure 13: Detail results for Reasoning-in-a-Haystack test on five datasets.
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