
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOT ALL HEADS MATTER: A HEAD-LEVEL KV
CACHE COMPRESSION METHOD WITH INTEGRATED
RETRIEVAL AND REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Key-Value (KV) caching is a common technique to enhance the computational
efficiency of Large Language Models (LLMs), but its memory overhead grows
rapidly with input length. Prior work has shown that not all tokens are equally im-
portant for text generation, proposing layer-level KV cache compression to selec-
tively retain key information. Recognizing the distinct roles of attention heads in
generation, we propose HeadKV, a head-level KV cache compression method, and
HeadKV-R2, which leverages a novel contextual reasoning ability estimation for
compression. Our approach operates at the level of individual heads, estimating
their importance for contextual QA tasks that require both retrieval and reason-
ing capabilities. Extensive experiments across diverse benchmarks (LongBench,
LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct),
and long-context abilities tests demonstrate that our head-level KV cache com-
pression significantly outperforms strong baselines, particularly in low-resource
settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the
KV cache while achieving 97% of the performance of the full KV cache on the
contextual question answering benchmark. 1

1 INTRODUCTION

Modern Large Language Models (LLMs) increasingly support extremely long inputs: GPT-
4 (Achiam et al., 2023), Llama-3 (Dubey et al., 2024), and Qwen-2 (Yang et al., 2024) handle
up to 128K tokens, while Claude (Anthropic, 2024) supports up to 1 million tokens. These extended
capacities improve performance on tasks like dialogue generation (Li et al., 2024a; Yi et al., 2024),
question answering (Ho et al., 2020; Xu et al., 2023), and summarization (Xiao & Carenini, 2019;
Koh et al., 2022). As input lengths increase, memory usage and latency grow significantly due to
self-attention in transformers. To improve inference speed and efficiency, most LLM inference con-
sists of two phases: prefilling for input processing and decoding for token generation, with key and
value states from attention cached for reuse (KV cache). However, as input length increases, KV
cache memory grows rapidly, posing significant challenges for storage and efficiency.

To address this, KV cache compression methods (Xiao et al., 2024; Li et al., 2024d; Cai et al., 2024;
Feng et al., 2024) have been proposed, typically using token eviction to optimize retention per layer
or head during prefilling, reducing memory without impacting performance. However, none have
explored varying KV cache size across individual heads. Inspired by prior observations (Voita et al.,
2019; Wu et al., 2024; Zheng et al., 2024) that attention heads vary in importance for generation, we
propose HeadKV, a head-level KV cache compression method that allocates KV cache budgets
based on head importance distribution using a novel retrieval and reasoning importance estimation.
Specifically, heads deemed more important are allocated larger KV cache budgets, while less impor-
tant ones receive smaller allocations, optimizing memory usage without sacrificing performance.

In addition to allocating KV cache across attention heads rather than layers, a key aspect of our
approach is distributing cache budgets based on head importance measures. Prior work (Wu et al.,
2024) proposed method to identify retrieval heads, using importance estimation to assess each head’s

1The method has been integrated with the Flash Attention, and the code will be made publicly available.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Wrong Copy

Head3
Head4

Layers

H
ea

ds Head5

Head3

Head5
Head4

Local Windows Basic Budget Dynamic Budget

Prefilling Phase After Compression

told us so much he ... we did our best to ...

Context
Needle Sentences

Reason Correct Copy
Context

Question: What is the favorite thing of
the younger one between John and Mary?

Answer: John's ...
Top-N Attention

Rest AttentionImportance Score Estimation

Head-Level Allocation

For Current Head

(N tokens)

0.13/N

0.08
0.05

+ ...Importance Score:

Importance Score Distribution

Total Heads: Num of Layers * Num of Heads

SUM

John is 12 years old. Mary is 13 years old. Mary's favorite thing is to... John's favorite thing is ...

Figure 1: Our proposed head-level KV cache compression method consists of two steps: (1) Head-
Level Importance Score Estimation (upper part): important heads that contribute to the contextual
reasoning ability are identified using Needle-in-a-Haystack tests. (2) Head-Level KV Cache Allo-
cation (lower part): KV cache budgets for each head during the prefilling phase are allocated based
on the importance score distribution identified in the first step.

role in retrieving relevant context. We integrate their measure with our head-level KV cache com-
pression as a baseline, observing improved performance over layer-level cache compression.

However, we argue that allocating larger KV cache budgets solely to retrieval heads is insufficient
for tasks like contextual Question Answering (QA), which requires both retrieval and reasoning to
handle long input contexts effectively. To address this, we propose an importance-score estimation
method that jointly evaluates each head’s retrieval and reasoning capabilities for KV cache
allocation. Specifically, as illustrated in the Importance Score Estimation section of Figure 1, we
construct questions that require both the retrieval and reasoning abilities of the LLM. For instance,
in the provided example, the model must first identify “who is younger between John and Mary”
(John) by referencing the context of their ages, and then retrieve John’s favorite thing. We then
estimate the importance score of each head based on the attention scores generated by the model
while answering the question. Using the estimated importance scores, we allocate the KV cache
budget for each individual head, meaning that heads demonstrating greater importance in retrieval
and reasoning retain a larger portion of the KV cache, as shown in the Head-Level Allocation section
of Figure 1. Within each head, we then retain only the most relevant KV cache entries, following
the strategy proposed in Li et al. (2024d).

We conduct experiments on various benchmarks requiring both retrieval and reasoning abilities,
including QA tasks from LongBench (Bai et al., 2024) and LooGLE (Li et al., 2024b), using back-
bone models such as Llama-3-8B-Instruct (Dubey et al., 2024) and Mistral-7B-Instruct (Jiang et al.,
2023a). Our results demonstrate that the head-level KV cache compression method outperforms
previous approaches on nearly all tasks. Furthermore, the allocation strategy based on our esti-
mated importance scores—reflecting both retrieval and reasoning abilities—outperforms allocation
strategies based on retrieval ability alone. In challenging scenarios like needle-in-a-Haystack and
reasoning-in-a-Haystack tests, our methods effectively preserve the model’s retrieval and reason-
ing capabilities. Finally, experiments on memory and latency reveal that our approach significantly
reduces memory usage and decoding latency, comparing with the original full KV.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 ATTENTION HEADS

Multi-Head Attention, a fundamental component of Transformer architectures (Vaswani et al.,
2017), has been extensively analyzed to understand the roles of individual attention heads (Voita
et al., 2019; Olsson et al., 2022; Jin et al., 2024; Wu et al., 2024; Zheng et al., 2024), often with
goals such as pruning redundant heads(Shim et al., 2021; Kwon et al., 2022) or enhancing inter-
pretability(Olsson et al., 2022; Jin et al., 2024; Zheng et al., 2024). For example, Voita et al. (2019)
observed that only a small subset of heads plays a key role in machine translation, typically man-
aging positional information, syntactic parsing, or focusing on rare words. Similarly, Olsson et al.
(2022) identified ’induction heads’ that implement a copy-and-paste mechanism, enabling models to
replicate previously encountered sequences. Additionally, Zheng et al. (2024) provided a thorough
overview of recent efforts to characterize the diverse functions of attention heads, categorizing them
into four types: Knowledge Recalling, In-Context Identification, Latent Reasoning, and Expression
Preparation. A closely related study by Wu et al. (2024) discovered “retrieval heads” that play a cru-
cial role in knowledge acquisition, using Needle-in-a-Haystack tests. These insights into head-level
functionality serve as the foundation for our head-level KV cache compression methods, designed
to jointly preserve both retrieval and reasoning capabilities during the compression process.

2.2 KV CACHE COMPRESSION

Improving computational efficiency for LLMs, particularly for extremely long inputs, has attracted
considerable research interest (Shazeer, 2019; Chen et al., 2023; Dao, 2024; Zhou et al., 2024; Ye
et al., 2024), including caching key and value vectors in Multi-Head Attention to improve generation
efficiency (Xiao et al., 2024; Zhang et al., 2023; Li et al., 2024d; Cai et al., 2024). One challenge with
full KV cache approaches is that the memory usage increases linearly with input length, leading to
significant memory management challenges. Various KV cache compression techniques have been
proposed to reduce memory usage and improve inference efficiency. For example, Xiao et al. (2024)
addressed the ‘attention sink’ issue with StreamingLLM, retaining only the first k tokens’ KV cache.
Zhang et al. (2023) applied the Heavy Hitter Oracle strategy to select key cache entries, while Li
et al. (2024d) used the attention scores of the last α tokens to identify relevant entries. Cai et al.
(2024) introduced PyramidKV, assigning smaller cache budgets to higher layers based on attention
matrix patterns.

While these methods have improved performance and efficiency, they largely depend on rigid layer-
level allocation strategies, which may not fully optimize KV cache allocation for downstream tasks.
Feng et al. (2024) proposed dynamic head-level allocation using attention scores but still relied on
layer-level budgeting. Similarly, Tang et al. (2024) employed Retrieval Heads distribution for head-
level allocation but retained a Full KV cache for key heads, limiting true head-level compression.
In contrast, our approach allocates KV cache solely based on head-level importance scores, inde-
pendent of layer constraints, resulting in more effective compression and outperforming baselines
without increasing decoding latency or memory usage.

3 METHOD

This section presents our proposed head-level KV cache compression method, which consists of
three key components: (1) identifying important heads and calculating head-level importance score
distributions (3.1), (2) using these distributions to efficiently allocate KV cache budgets across heads
(3.2), and (3) determining which Key and Value vectors to retain within each head (3.3).

3.1 HEAD-LEVEL IMPORTANCE SCORE ESTIMATION

Accurate budget allocation at the head level requires identifying which heads are most and least
important for the given task. By leveraging this importance distribution, we can assign larger KV
cache budgets to more critical heads and smaller budgets to less significant ones. To achieve this,
we propose a novel importance-score estimation method, inspired by Wu et al. (2024), which allows
us to effectively estimate the importance of each attention head for optimal KV cache allocation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Retrieval Example

Needle:
The best thing to do in Beijing is to

take a walk in Chaoyang Park and have a cup of
Espresso in the evening.

q: What is the best thing to do in Beijing?
q: What is the favorite thing of the younger one

between John and Mary?

Needle:
John is 12 years old. Mary is 13 years old.

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Reasoning-Retrieval Example

Figure 2: Comparison of examples for head identification: Needle-in-a-Haystack test example from
Wu et al. (2024) for identifying Retrieval Heads distribution (left), and our proposed Needle-in-a-
Haystack test example for identifying Retrieval-Reasoning Heads distribution (right).

Retrieval Heads Wu et al. (2024) use the Needle-in-a-Haystack test 2 and custom retrieval ex-
amples, as shown in Figure 2, to estimate the importance score for each head. In these examples,
a question q that cannot be answered using the model’s parametric knowledge is paired with an
answer k (the “Needle”) inserted into a haystack c at different positions pi. The model is required
to retrieve the exact answer k from the combined input (k, c).

During each decoding step t, a head h earns a fraction of the importance score if (1) the token with
the highest attention score argmax(ah) matches the generated token, and (2) the token is part of
the inserted answer k. The final importance score for each head h is calculated accordingly:

Sh =

N∑
t=1

N t, where N t =

{
1
N if argmax(at

h) ∈ k

0 otherwise
(1)

where N is the length of the inserted answer k, and at
h is the attention score on the combined input

from head h at t-sh decoding step. By using various settings of the inserted position pi, they obtain
the head-level Retrieval Heads distribution.

Directly using this distribution poses two issues: (1) it focuses on the retrieval-and-paste mechanism,
lacking consideration for the contextual and reasoning skills needed for complex questions; and (2)
the distribution is too sparse for effective head-level KV cache allocation, with nearly 70% of heads
receiving an importance score of zero due to the strict exact-match requirement (Wu et al., 2024).

Retrieval-Reasoning (R2) Heads To address these issues, we propose a new importance score
estimation method that accounts for both the retrieval and reasoning abilities of the heads, enabling
a more accurate assessment of their significance.

First, we construct retrieval-reasoning examples by adding explicit contextual reasoning steps to
the retrieval examples from Wu et al. (2024), as shown in the Retrieval-Reasoning Example part of
Figure 2. We further modify the inserted needle into three parts: k = (r, c1, c2), where r is the
reasoning step, and c1 and c2 are different answers to the refined question q. The model must reason
with r to retrieve and generate the correct answer c2, avoiding the wrong answer c1.

Secondly, we refine the estimation method by focusing on the entire correct answer c2 (Correct Copy
in Figure 1), since all tokens are relevant to the question q. This approach aligns with Contextual
QA, which requires both retrieval and reasoning abilities. By considering the full correct answer, the
importance score for each head h no longer depends solely on the token with the highest attention
score. The importance score for head h is calculated as follows:

Sh =

N∑
t=1

N∑
i=1

Mt
i, where Mt

i =

{
ai

N if top-i(at
h) ∈ c2

0 otherwise
(2)

2https://github.com/gkamradt/LLMTest NeedleInAHaystack

4

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ai ∈ at
h represents the i-th highest attention score from head h, and top-i(at

h) is the token
with the i-th highest score at t-th decoding step. We compute the importance score by considering
the entire correct answer and increasing the number of tokens evaluated per head (Importance Score
Estimation in Figure 1). Intuitively, heads with higher attention on the correct answer k should
receive higher importance scores. We further refine the score using attention weights, yielding a
more accurate distribution, as shown in Eq. 2.

3.2 HEAD-LEVEL KV CACHE ALLOCATION

With the importance scores estimated for each head, we can identify the key heads and allocate the
KV cache budget accordingly. In this section, we explain how to incorporate these distributions into
head-level KV cache allocation.

Preliminary In Multi-Head Attention, for each head h in layer l, the embedded input X =
{x1, x2, . . . , xn} ∈ Rn×d is mapped into different subspaces using the query W l

Q, key W l
K , and

value W l
V ∈ Rd×dh matrices:

Ql
h = XW l

Q ∈ Rn×dh ; Kl
h = XW l

K ∈ Rn×dh ; V l
h = XW l

V ∈ Rn×dh . (3)

To optimize memory and enhance efficiency, KV cache compression methods (Xiao et al., 2024;
Li et al., 2024d; Cai et al., 2024) are employed to discard unimportant KV cache entries while
preserving performance. For each head h, the compressed KV cache is reduced to Kl

h ∈ Rs×dh and
V l
h ∈ Rs×dh , where s ≪ n, resulting in a significant improvement to computational efficiency.

Head-level Allocation Previous works on KV cache compression during the prefill phase (Xiao
et al., 2024; Li et al., 2024d; Cai et al., 2024; Feng et al., 2024) are limited to layer-level allocation,
using either uniform or dynamic budgets per layer, but treating all heads within a layer equally.
While Feng et al. (2024) incorporate head-level information, their approach still depends on layer-
level allocation as a prerequisite.

Building on the head-level importance distributions, we propose a comprehensive KV cache alloca-
tion strategy. Each head h is initially assigned a fixed KV cache size b with an associated importance
score Sh. To allow dynamic allocation, we create a shared budget pool B by extracting a portion
of the budget from each head, leaving the remainder as the basic budget. This process is illustrated
in the Head-Level Allocation section of Figure 1. The budget pool B is then distributed among the
heads in proportion to their importance scores Sh. The importance score distribution S was L1-
normalized to ensure that the sum of Sh equals to 1. The final head-level KV cache allocation is as
follows:

B =
b

β
× L×H; bh = (b− b

β
) + Sh ×B (4)

where b is the initial fix budget for each head, β is a hyper-parameter to control the size of the
dynamic budget pool, L and H is the numbers of layers and heads of current LLM respectively.

The last α instruct tokens are preserved before forming the dynamic budget pool B to guide the
selection process, as detailed in Section 3.3. The retained KV cache for each head includes: (1) the
basic budget (b− b

β), (2) the dynamic budget Sh ×B, proportional to its importance score, and (3)
the last α instruct tokens.

3.3 KV CACHE SELECTION

After determining the number of KV cache entries to retain using the above algorithm, we apply an
attention-based selection strategy from prior works (Li et al., 2024d; Cai et al., 2024; Feng et al.,
2024) to keep the most relevant entries. Specifically, the last α instruction tokens (local windows)
guide KV cache selection for each head. Attention scores from these local windows to the remaining
tokens are aggregated through a pooling layer, with higher-scoring tokens considered more impor-
tant and retained in the cache.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS AND ANALYSIS

This section outlines the experimental setup, including KV cache baselines and implementation
details. We also conduct additional experiments that: (1) emphasize the importance of enhancing
contextual reasoning in importance score estimation (4.3); (2) use the Needle-in-a-Haystack and
Reasoning-in-a-Haystack tests to demonstrate how our head-level KV cache compression improves
long-context retrieval and reasoning (4.4); and (3) provide a comprehensive comparison with previ-
ous methods, showing our approach delivers superior performance while maintaining computational
efficiency (4.5).

4.1 EXPERIMENT SETTINGS

Models and Datasets We compare our head-level KV cache compression method against strong
baselines using two open-source LLMs: Llama-3-8B-Instruct (Dubey et al., 2024) and Mistral-7B-
Instruct (Jiang et al., 2023a). The evaluation is based on two benchmarks for long-context un-
derstanding: LongBench (Bai et al., 2024) and LooGLE (Li et al., 2024b). For LongBench, we
use datasets from the Single-Doc QA and Multi-Doc QA categories to assess contextual reasoning.
For LooGLE, we focus on the Long Dependency QA task, which includes four QA-related tasks.
Dataset details are in Appendix Table 5.

Baselines and Settings We evaluate three strong KV cache compression methods as baselines,
ensuring all retain the same number of KV cache entries for fair comparison:

1) SnapKV (Li et al., 2024d) uses the last α tokens as local windows to guide KV cache
selection. Attention scores from these windows to the remaining tokens are pooled to
cluster information and guide the selection process.

2) PyramidKV (Cai et al., 2024) follows a pyramid attention pattern, allocating more KV
cache to lower layers to retain key information, while reducing the budget for higher layers
where information is already aggregated.

3) Ada-KV (Feng et al., 2024) dynamically allocates budgets to heads within each layer based
on their concentration degrees, and can be combined with SnapKV or PyramidKV. Ada-
SnapKV is used as the baseline due to its superior performance over Ada-PyramidKV.

Our proposed head-level KV cache compression method also requires a strategy to guide KV cache
selection after allocating the budget. Therefore, we use the SnapKV method to guide the selection
process for each head. We set the size of the local windows α = 8 for both the baselines and our
method. The hyper-parameter β, which controls the size of the shared budget pool, was chosen from
{1.005, 1.01, 1.1, 1.2, 1.5, 2, 5, 10}, and we report the best performance.

4.2 MAIN RESULTS

Table 1 lists the evaluation results for contextual tasks from the LongBench and LooGLE bench-
marks. Our head-level KV cache compression method consistently outperforms strong baselines,
especially with 64 and 128 KV cache configurations. In resource-constrained settings, precise KV
cache allocation is crucial. Layer-level methods allocate a fixed cache size to all heads within a layer,
making it difficult to retain essential information. Ada-SnapKV improves this by allowing dynamic
allocation within layers, but still relies on fixed layer-level budgets. In contrast, our head-level strat-
egy allocates dynamically across individual heads, retaining critical information by adjusting the
budget based on each head’s importance.

We perform head-level allocation using both the standard Retrieval Heads distribution (HeadKV-R)
and our Retrieval-Reasoning Heads distribution (HeadKV-R2) for global KV cache allocation. This
combination leads to superior performance across benchmarks. Notably, integrating the Retrieval-
Reasoning Heads distribution significantly improves results over the standard Retrieval Heads dis-
tribution, highlighting the impact of our approach. Our Retrieval-Reasoning distribution even sur-
passes the Full-KV cache average (32.90), achieving 32.95 with a 1024 KV cache. Overall, both
the head-level allocation strategy and Retrieval-Reasoning distribution are key to these performance
gains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Single-Doc QA Multi-Doc QA Avg. Long dependency QA Avg.
NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Doc.QA Info. Retrieval Timeline Computation

Llama-3-8B-Instruct, KV Size = Full

FullKV 25.56 32.07 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01

Llama-3-8B-Instruct, KV Size = 128

SnapKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43 8.36 9.46 0.79 6.56 6.29
PyramidKV 22.01 17.05 31.52 39.27 28.99 18.34 26.20 8.89 9.63 0.61 6.72 6.46
Ada-SnapKV 22.99 19.95 34.22 42.97 30.82 20.15 28.52 9.07 10.3 0.54 6.59 6.63
HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38 8.87 10.35 0.78 7.52 6.88
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00 9.60 11.13 0.67 7.22 7.16

Llama-3-8B-Instruct, KV Size = 1024

SnapKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65 9.61 11.34 0.53 7.22 7.18
PyramidKV 25.38 26.83 36.90 44.09 34.24 21.49 31.49 8.98 11.41 0.53 6.96 6.97
Ada-SnapKV 25.79 29.24 38.74 43.93 36.34 19.79 32.31 8.65 11.41 0.53 7.71 7.08
HeadKV-R 24.85 30.94 39.82 43.52 36.58 20.37 32.68 9.20 11.67 0.55 7.71 7.28
HeadKV-R2 24.66 30.82 39.56 43.97 36.47 22.24 32.95 9.02 11.51 0.47 7.85 7.21

Mistral-7B-Instruct, KV Size = Full

FullKV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55

Mistral-7B-Instruct, KV Size = 128

SnapKV 21.47 21.95 45.24 33.88 21.83 15.53 26.65 10.86 12.24 0.57 8.81 8.12
PyramidKV 21.76 21.98 43.72 32.76 22.73 15.59 26.42 10.64 11.9 0.47 8.69 7.93
Ada-SnapKV 21.57 24.59 46.70 35.74 25.57 14.37 28.09 11.14 12.37 0.45 9.57 8.38
HeadKV-R 23.97 29.60 48.40 39.66 26.31 18.13 31.01 11.43 13.04 0.53 10.26 8.82
HeadKV-R2 25.04 27.95 48.48 41.28 27.65 18.05 31.41 11.44 13.08 0.63 10.20 8.84

Mistral-7B-Instruct, KV Size = 1024

SnapKV 25.38 30.22 49.29 41.84 26.60 18.08 31.90 11.69 13.89 0.52 10.54 9.16
PyramidKV 24.28 30.05 49.17 40.49 26.43 18.80 31.54 11.77 14.51 0.51 10.19 9.25
Ada-SnapKV 24.82 31.49 48.80 41.18 27.38 18.22 31.98 11.96 13.82 0.53 9.92 9.06
HeadKV-R 25.87 31.44 49.55 41.95 27.09 19.88 32.63 12.21 14.17 0.50 10.58 9.37
HeadKV-R2 25.64 32.54 50.49 41.80 27.88 18.89 32.87 11.94 14.93 0.50 10.49 9.47

Table 1: Performance comparison on the LongBench and LooGLE benchmarks for Llama-3-8B-
Instruct and Mistral-7B-Instruct. Our head-level KV cache compression method outperforms all
baselines, especially in low-resource settings (KV size = 128). It even exceeds the FullKV result
(32.90) on Llama-3-8B-Instruct (KV size = 1024, 32.95), highlighting the benefits of incorporating
contextual reasoning for head selection.

200 400 600 800 1000
KV size

24

26

28

30

32

Av
g.

 S
co

re

Llama-3-8B-Instruct

200 400 600 800 1000
KV size

24

26

28

30

32

Mistral-7B-Instruct

FullKV
SnapKV
PyramidKV
Ada-SnapKV
HeadKV-R
HeadKV-R2

Figure 3: Results for different KV cache sizes (64, 128, 256, 512, 1024), showing average accuracy
across six datasets from the LongBench benchmark with an average input length of 8,683 tokens.
Notably, a KV cache size of 64 retains just 0.7% of the total tokens.

In addition, we present the results for various retained KV cache sizes (64, 128, 256, 512, 1024) in
Figure 3, , with detailed results available in Appendix Table 4.

4.3 RETRIEVAL-REASONING HEADS

As detailed in Section 3.1, we propose to improve the standard Retrieval Heads distribution by in-
corporating retrieval-reasoning examples and refining importance score estimation to better capture

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

s

Retrieval Heads

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Enhanced-Retrieval Heads

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Retrieval-Reasoning Heads

0.00

0.01

0.02

0.03

0.04

0.05

0.002

0.004

0.006

0.008

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 4: Head visualization for Llama-3-8B-Instruct results. The Retrieval Heads distribution is
sparse to effectively differentiate between heads, while our Retrieval-Reasoning Heads has denser
distribution for such differentiation. See Appendix Figure7 for Mistral-7B-Instruct results.

Method
Single-Doc QA Multi-Doc QA Avg.

NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique

Llama-3-8B-Instruct, KV Size=128

HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38
HeadKV-ER 23.33 25.86 40.28 43.25 33.23 20.28 31.04
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00

Mistral-7B-Instruct, KV Size=128

HeadKV-R 23.97 29.60 48.40 39.66 26.31 18.13 31.01
HeadKV-ER 23.23 28.70 48.10 41.39 27.31 17.39 31.02
HeadKV-R2 25.04 27.95 48.48 41.28 27.65 18.05 31.41

Table 2: Ablation study results on the LongBench benchmarks. HeadKV-R leverages the standard
Retrieval Heads distribution. HeadKV-ER uses the retrieval examples from Wu et al. (2024) but
with our proposed importance score estimation method. HeadKV-R2 leverages both our proposed
importance score estimation method and the retrieval-reasoning examples.

contextual reasoning and identify relevant heads. We also conduct an ablation study to evaluate the
impact of these modifications.

Table 2 presents the ablation study results, while Figure 4 provides visualizations for each distribu-
tion. Alongside the standard Retrieval Heads and Retrieval-Reasoning Heads distributions, we intro-
duce the Enhanced-Retrieval Heads distribution, using retrieval examples with our modified impor-
tance score estimation method. Comparing Retrieval Heads (HeadKV-R) and Enhanced-Retrieval
Heads (HeadKV-ER) reveals that focusing on the entire needle, rather than specific tokens, improves
performance. Figure 4 shows that the Retrieval Heads distribution is sparse, while the Enhanced-
Retrieval and Retrieval-Reasoning distributions are much denser. The strict constraints on the Re-
trieval Heads distribution result in most heads receiving a score of zero, leading to a worse results
when incorporating Retrieval Heads distributions.

While the Enhanced-Retrieval Heads distribution improves performance slightly, it remains rely on
retrieval examples and lacks full consideration of contextual reasoning. In contrast, the Retrieval-
Reasoning Heads distribution, reflecting both retrieval and reasoning abilities, consistently outper-
forms other methods, underscoring the value of incorporating retrieval-reasoning examples.

4.4 LONG-CONTEXT RETRIEVAL AND REASONING

We conduct the Needle-in-a-Haystack test to assess the long-context retrieval ability of different KV
cache compression methods. As illustrated in Figure 5, we set the KV size to 128 for all meth-
ods and keep the other hyperparameters consistent with previous experiments. Results from the
Llama-3-8B-Instruct demonstrate that our head-level KV cache compression method effectively re-
tain important information compared with other strong baselines, verifying the superior long-context
retrieval ability of our proposed method. However, these tests only retrieve the inserted needle from
the haystack and paste it into the generation, lacking an assessment of contextual reasoning ability

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PyramidKV Average score: 97.30

HeadKV-R Average score: 98.10

SnapKV Average score: 87.40

Ada-SnapKV Average score: 95.30

HeadKV-R2 Average score: 98.20

Llama-3-8B-Instrcut
FullKV Average score: 100.00

Context Length Context Length

Figure 5: Needle-in-a-Haystack test results on Llama-3-8B-Instruct with KV cache = 128. We
build our head-level KV cache method based on SnapKV and our proposed method significantly
outperform all strong baselines. Moreover, our Retrieval-Reasoning Heads distribution maintains
and improves long context retrieval ability. Results on Mistral-7B-Instruct can be found in Appendix
Figure 8, which are consistent with results on Llama-3-8B-Instruct.

Method 0k 1k 2k 4k 8k Avg. 0k 1k 2k 4k 8k 16k 32k Avg.

FullKV 63.00 59.40 55.80 56.60 50.40 57.04 61.40 55.20 52.40 40.80 40.40 35.00 31.80 45.29

Llama-3-8B-Instruct, KV Size=128 Mistral-7B-Instruct, KV Size=128

SnapKV 60.80 57.00 54.80 52.60 45.60 54.16 56.60 50.60 46.60 34.40 35.40 33.20 29.00 40.83
PyramidKV 61.20 58.00 52.80 52.60 47.60 54.44 58.40 50.60 46.80 36.00 36.20 31.20 28.40 41.09
Ada-SnapKV 61.80 59.20 53.80 53.60 46.60 55.00 58.00 51.20 46.20 35.40 36.40 31.60 28.80 41.09
HeadKV-R 61.60 57.00 52.60 55.00 49.60 55.16 58.40 54.00 50.80 38.00 37.40 31.80 30.20 42.94
HeadKV-R2 62.60 60.40 55.00 55.80 50.40 56.84 60.20 54.20 51.20 37.20 37.40 32.60 28.80 43.09

Table 3: Reasoning-in-a-Haystack test results with KV cache = 128. The final results are averaged
across QA1-QA5 tasks for each length. Unlike the Needle-in-a-Haystack test, this test inserts mul-
tiple needles into the haystack, requiring the model to reason through them to extract the correct
answer.

in long-context scenarios. This long-context contextual reasoning ability is crucial for many tasks,
such as question answering (QA), summarization (Kuratov et al., 2024; Li et al., 2024c). Therefore,
we conduct the Reasoning-in-a-Haystack test to evaluate the long-context reasoning ability of each
KV cache compression method across different scenarios.

We follow the setup from Kuratov et al. (2024) to conduct the Reasoning-in-a-Haystack test. This
test enhances the bAbI benchmark (Weston et al., 2015), designed for reasoning evaluation, by
using text from the PG19 dataset (Rae et al., 2020) as the haystack. Reasoning needles from bAbI
are inserted into the haystack, and the model must retrieve and reason through them to generate the
correct answer. We use the dataset from Kuratov et al. (2024), averaging results across QA1-QA5
tasks for evaluation. Examples of tasks are shown in Figure 12.

As shown in Table 3, our head-level KV cache compression method significantly outperforms strong
baselines, demonstrating its superior long-context reasoning. By incorporating retrieval-reasoning
examples, our method achieves even better accuracy, particularly with the Llama-3-8B-Instruct
model. Notably, combining head-level KV cache allocation with the standard Retrieval Heads distri-
bution also yields improved results over other baselines. This is due to two factors: first, as shown in
Figure 4, there is overlap between Retrieval and Retrieval-Reasoning Heads, indicating heads may
serve multiple roles. Second, since the bAbI benchmark contains the answer within the inserted
needle (see Figure 12), emphasizing retrieval alone helps our method locate the needle.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000
Generation Length

0

50

100

150

200

250

300
Ti

m
es

 (s
)

Decoding Latency
FullKV
SnapKV
PyramidKV
Ada-SnapKV
HeadKV

4k 8k 16k 32k 64k 128k 256k
Context Length

20

30

40

50

60

Pe
ak

 M
em

or
y

(G
B)

Peak Memory Usage

Figure 6: The Decoding Latency and Peak Memory Usage results. Our proposed method maintain
the comparable computational efficiency with other KV cache compression baselines.

4.5 MEMORY & LATENCY

In this section, we evaluate the computational efficiency of our head-level KV cache compression
method using the Mistral-7B-Instruct model with a maximum sequence length of 32K, and FlashAt-
tention (Dao, 2024) as the default setting.

To assess the decoding latency of each method, we use 32K-length data from the Reasoning-in-a-
Haystack test as input and set various generation lengths (1, 512, 1024, 2048, 4096) for comparison.
As shown in the Decoding Latency of Figure 6, our proposed method achieves the same decoding
latency as other KV cache compression methods while maintaining performance closest to the Full
KV cache. Notably, the decoding latency includes both the pre-filling time and the decoding time.
Therefore, we can conclude that the pre-filling time for our method and other baselines (such as
PyramidKV, Ada-SnapKV) is almost negligible, as shown at the starting point (generation length =
1) of Decoding Latency in Figure 6.

In addition to decoding latency, KV cache compression methods also aim to reduce memory usage
during the decoding phase. Therefore, we provide the Peak Memory Usage results, as shown in the
Peak Memory Usage of Figure 6. All results for Peak Memory Usage are averaged over three trials.
Our proposed methods achieve performance comparable to other KV cache compression baselines,
significantly reducing memory usage compared to the Full KV cache.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce HeadKV-R2, a head-level KV cache compression method with two key
components. We propose a strategy for allocating KV cache budgets across attention heads based
on their importance scores and develop a novel approach to estimate these scores by constructing
examples that account for both retrieval and reasoning abilities. By allocating larger KV cache bud-
gets to more important heads and smaller budgets to less important ones, our approach efficiently
retain important KV cache than layer-level KV cache compression methods. We thoroughly evaluate
HeadKV across multiple benchmarks, models, and long-context ability tests, with comprehensive
results demonstrating that our method achieves superior performance while maintaining computa-
tional efficiency.

For future work, further exploration of various types of attention heads could offer valuable in-
sights, such as those involved in in-context learning (Olsson et al., 2022) and truthfulness (Li et al.,
2023). For example, placing greater emphasis on truthfulness heads could help mitigate issues like
hallucination, thereby improving the factual accuracy of model outputs. Additionally, it would be
worthwhile to investigate the development of a general task-specific score estimation algorithm. One
potential direction is to leverage gradients from specific tasks to allocate KV cache budgets more ef-
fectively, enabling tailored compression to enhance model performance across diverse applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, March 2024. URL https://
www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf. Accessed: 2024-07-09.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
uREj4ZuGJE.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a. URL https:
//arxiv.org/abs/2310.06825.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023b. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://aclanthology.org/2024.acl-long.172
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://aclanthology.org/2020.coling-main.580
https://aclanthology.org/2020.coling-main.580
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.91. URL https://aclanthology.org/2024.acl-long.
91.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang,
Kang Liu, and Jun Zhao. Cutting off the head ends the conflict: A mechanism for interpreting
and mitigating knowledge conflicts in language models, 2024. URL https://arxiv.org/
abs/2402.18154.

Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan. An empirical survey on long document sum-
marization: Datasets, models, and metrics. ACM Computing Surveys, 55(8):1–35, December
2022. ISSN 1557-7341. doi: 10.1145/3545176. URL http://dx.doi.org/10.1145/
3545176.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack,
2024. URL https://arxiv.org/abs/2406.10149.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=0GRBKLBjJE.

Jia-Nan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong Wen, and Rui Yan. Streamingdialogue:
Prolonged dialogue learning via long context compression with minimal losses, 2024a. URL
https://arxiv.org/abs/2403.08312.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
models understand long contexts?, 2024b. URL https://arxiv.org/abs/2311.04939.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=aLLuYpn83y.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and
reasoning in 1 million context window?, 2024c. URL https://arxiv.org/abs/2407.
11963.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024d. URL https://arxiv.org/abs/2404.14469.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Guanghui Qin, Corby Rosset, Ethan Chau, Nikhil Rao, and Benjamin Van Durme. Dodo: Dy-
namic contextual compression for decoder-only LMs. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 9961–9975, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.536. URL
https://aclanthology.org/2024.acl-long.536.

12

https://aclanthology.org/2024.acl-long.91
https://aclanthology.org/2024.acl-long.91
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2402.18154
http://dx.doi.org/10.1145/3545176
http://dx.doi.org/10.1145/3545176
https://arxiv.org/abs/2406.10149
https://openreview.net/forum?id=0GRBKLBjJE
https://arxiv.org/abs/2403.08312
https://arxiv.org/abs/2311.04939
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://aclanthology.org/2024.acl-long.536

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SylKikSYDH.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Kyuhong Shim, Iksoo Choi, Wonyong Sung, and Jungwook Choi. Layer-wise pruning of trans-
former attention heads for efficient language modeling, 2021. URL https://arxiv.org/
abs/2110.03252.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
Razorattention: Efficient kv cache compression through retrieval heads, 2024. URL https:
//arxiv.org/abs/2407.15891.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.
org/P19-1580.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks, 2015. URL https://arxiv.org/abs/1502.05698.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mecha-
nistically explains long-context factuality, 2024. URL https://arxiv.org/abs/2404.
15574.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Wen Xiao and Giuseppe Carenini. Extractive summarization of long documents by combining
global and local context. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3011–3021, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1298. URL https://aclanthology.org/D19-1298.

Fangyuan Xu, Yixiao Song, Mohit Iyyer, and Eunsol Choi. A critical evaluation of evaluations for
long-form question answering, 2023. URL https://arxiv.org/abs/2305.18201.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-aware
kv cache and two-phase partition, 2024. URL https://arxiv.org/abs/2402.15220.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems, 2024. URL https://arxiv.org/abs/
2402.18013.

13

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2407.15891
https://arxiv.org/abs/2407.15891
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/P19-1580
https://aclanthology.org/P19-1580
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://openreview.net/forum?id=NG7sS51zVF
https://aclanthology.org/D19-1298
https://arxiv.org/abs/2305.18201
https://arxiv.org/abs/2402.15220
https://arxiv.org/abs/2402.18013
https://arxiv.org/abs/2402.18013

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
Xiong, and Zhiyu Li. Attention heads of large language models: A survey, 2024. URL https:
//arxiv.org/abs/2409.03752.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models, 2024. URL https:
//arxiv.org/abs/2404.14294.

14

https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILE RESULTS

In Table 4, we show the detailed results of Figure 3 in the main paper.

Method Single-Doc QA Multi-Doc QA
Avg.

Long dependency QA
Avg. β

NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Doc.QA Info. Retrieval Timeline Computation
Llama-3-8B-Instruct, KV Size=Full -

FKV 25.56 32.07 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01 -
Llama-3-8B-Instruct, KV Size=64

SKV 20.51 12.80 31.69 37.02 25.91 17.02 24.16 8.84 9.43 0.66 6.18 6.28 -
PyramidKV 21.17 13.66 29.34 34.86 23.46 15.88 23.06 8.27 9.31 0.63 6.86 6.27 -
Ada-SKV 22.26 17.30 33.37 39.82 27.86 17.85 26.41 9.08 9.86 0.55 6.82 6.58 -

Ours. Copy 22.67 23.54 37.51 37.45 29.76 19.01 28.32 8.80 10.51 0.58 6.68 6.64 2
Ours. Mix 23.21 25.33 38.71 40.64 31.33 19.35 29.76 9.46 10.66 0.61 6.92 6.91 1.2

Llama-3-8B-Instruct, KV Size=128
SKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43 8.36 9.46 0.79 6.56 6.29 -

PyramidKV 22.01 17.05 31.52 39.27 28.99 18.34 26.20 8.89 9.63 0.61 6.72 6.46 -
Ada-SKV 22.99 19.95 34.22 42.97 30.82 20.15 28.52 9.07 10.3 0.54 6.59 6.63 -

Ours. Copy 23.49 25.39 38.15 42.45 32.84 19.95 30.38 8.87 10.35 0.78 7.52 6.88 1.5
Ours. Mix 21.80 29.19 41.89 43.73 35.01 20.40 32.00 9.60 11.13 0.67 7.22 7.16 1.01

Llama-3-8B-Instruct, KV Size=256
SKV 23.38 20.18 37.65 42.80 33.23 20.01 29.54 9.04 10.59 0.53 7.53 6.92 -

PyramidKV 23.94 20.27 36.27 42.51 31.44 19.99 29.07 8.66 10.61 0.53 6.98 6.70 -
Ada-SKV 24.20 24.63 37.95 43.64 33.27 20.03 30.62 9.29 11.23 0.62 7.10 7.06 -

Ours. Copy 23.83 29.04 39.90 42.36 33.58 20.57 31.54 9.05 11.15 0.52 7.22 6.99 1.1
Ours. Mix 24.68 30.49 38.59 44.32 36.41 20.54 32.51 9.47 11.56 0.54 7.65 7.31 1.1

Llama-3-8B-Instruct, KV Size=512
SKV 25.47 23.75 38.64 43.66 33.98 19.83 30.89 9.00 11.07 0.63 7.34 7.01 -

PyramidKV 24.69 23.65 35.10 43.25 31.16 20.06 29.65 8.90 10.62 0.74 7.57 6.96 -
Ada-SKV 25.73 25.44 37.84 43.78 33.95 19.83 31.09 9.22 11.18 0.53 7.42 7.09 -

Ours. Copy 23.84 29.21 39.79 44.41 36.09 20.59 32.32 9.13 11.61 0.56 7.12 7.11 1.2
Ours. Mix 24.75 29.75 38.03 44.43 36.45 21.67 32.51 9.34 11.26 0.56 7.54 7.18 1.1

Llama-3-8B-Instruct, KV Size=1024
SKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65 9.61 11.34 0.53 7.22 7.18 -

PyramidKV 25.38 26.83 36.90 44.09 34.24 21.49 31.49 8.98 11.41 0.53 6.96 6.97 -
Ada-SKV 25.79 29.24 38.74 43.93 36.34 19.79 32.31 8.65 11.41 0.53 7.71 7.08 -

Ours. Copy 24.85 30.94 39.82 43.52 36.58 20.37 32.68 9.20 11.67 0.55 7.71 7.28 1.2
Ours. Mix 24.66 30.82 39.56 43.97 36.47 22.24 32.95 9.02 11.51 0.47 7.85 7.21 1.2

Mistral-7B-Instruct, KV Size=Full
FKV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55 -

Mistral-7B-Instruct, KV Size=64
SKV 19.95 18.63 38.16 31.24 21.39 13.81 23.86 10.41 11.49 0.46 9.38 7.94 -

PyramidKV 20.91 19.61 38.05 32.18 22.87 15.26 24.81 10.64 11.69 0.56 9.06 7.99 -
Ada-SKV 22.70 21.28 42.39 34.35 22.40 14.85 26.33 10.56 11.50 0.45 8.72 7.81 -

Ours. Copy 24.23 25.22 46.02 38.82 26.05 17.41 29.63 10.94 13.14 0.63 9.11 8.46 1.5
Ours. Mix 21.77 26.57 48.39 40.12 26.76 16.21 29.97 11.19 13.94 0.48 9.87 8.87 1.2

Mistral-7B-Instruct, KV Size=128
SKV 21.47 21.95 45.24 33.88 21.83 15.53 26.65 10.86 12.24 0.57 8.81 8.12 -

PyramidKV 21.76 21.98 43.72 32.76 22.73 15.59 26.42 10.64 11.9 0.47 8.69 7.93 -
Ada-SKV 21.57 24.59 46.70 35.74 25.57 14.37 28.09 11.14 12.37 0.45 9.57 8.38 -

Ours. Copy 23.97 29.60 48.40 39.66 26.31 18.13 31.01 11.43 13.04 0.53 10.26 8.82 1.5
Ours. Mix 25.04 27.95 48.48 41.28 27.65 18.05 31.41 11.44 13.08 0.63 10.20 8.84 1.1

Mistral-7B-Instruct, KV Size=256
SKV 22.26 24.94 48.30 36.76 25.16 14.93 28.72 11.07 12.39 0.53 9.13 8.28 -

PyramidKV 21.42 25.36 47.94 38.75 25.82 15.30 29.10 11.57 12.35 0.56 9.51 8.50 -
Ada-SKV 23.81 27.04 48.56 38.32 25.34 16.42 29.91 11.67 13.57 0.52 10.53 9.07 -

Ours. Copy 24.98 29.31 49.01 41.36 27.16 17.34 31.53 11.94 13.30 0.63 10.95 9.21 2
Ours. Mix 24.94 31.02 50.76 42.11 26.14 18.47 32.24 12.37 13.88 0.48 9.86 9.15 1.005

Mistral-7B-Instruct, KV Size=512
SKV 24.18 28.87 48.74 38.84 25.48 15.04 30.19 11.96 13.47 0.52 10.50 9.11 -

PyramidKV 23.07 28.97 48.37 39.54 25.63 16.59 30.36 11.34 13.32 0.65 10.81 9.03 -
Ada-SKV 24.22 29.92 48.96 40.08 25.55 17.45 31.03 12.12 14.53 0.52 10.57 9.44 -

Ours. Copy 24.97 30.94 49.45 42.25 26.34 18.54 32.08 12.09 13.88 0.62 10.94 9.38 1.01
Ours. Mix 25.59 31.33 50.26 42.66 27.20 19.37 32.74 11.62 15.61 0.50 9.97 9.43 1.005

Mistral-7B-Instruct, KV Size=1024
SKV 25.38 30.22 49.29 41.84 26.60 18.08 31.90 11.69 13.89 0.52 10.54 9.16 -

PyramidKV 24.28 30.05 49.17 40.49 26.43 18.80 31.54 11.77 14.51 0.51 10.19 9.25 -
Ada-SKV 24.82 31.49 48.80 41.18 27.38 18.22 31.98 11.96 13.82 0.53 9.92 9.06 -

Ours. Copy 25.87 31.44 49.55 41.95 27.09 19.88 32.63 12.21 14.17 0.50 10.58 9.37 1.5
Ours. Mix 25.64 32.54 50.49 41.80 27.88 18.89 32.87 11.94 14.93 0.50 10.49 9.47 1.01

Table 4: Details results for different KV cache (64, 128, 256, 512, 1024) on Llama-3-8B-Instruct
and Mistral-7B-Instruct.

B DATASET DETAILS

Table 5 provides details of the datasets used in our experiments. To evaluate the retrieval and contex-
tual reasoning abilities of different KV cache compression methods, we use six question-answering

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

datasets from LongBench (Bai et al., 2024) and four additional question-answering datasets from
LooGLE (Li et al., 2024b) as benchmarks. For the LooGLE datasets, we randomly selected 100
examples to form the datasets used in this study.

Source Label Task Task Type Eval metric Avg Len Language Nums

LongBench NrtvQA NarrativeQA Single-Doc. QA F1 18,409 EN 200
LongBench Qasper Qasper Single-Doc. QA F1 3,619 EN 200
LongBench MF-en MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
LongBench HotpotQA HotpotQA Multi-Doc. QA F1 9,151 EN 200
LongBench 2WikiMQA 2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
LongBench Musique Musique Multi-Doc. QA F1 11,214 EN 200
LooGLE Doc.QA Comprehension&reasoning Long Dependency QA F1 15,498 EN 100
LooGLE Info.Retrieval Multiple information retrieval Long Dependency QA F1 14,808 EN 100
LooGLE Timeline Timeline reorder Long Dependency QA F1 15,425 EN 100
LooGLE Computation Computation Long Dependency QA F1 17,001 EN 100

Table 5: Details of Datasets.

C LONGBENCH RESULTS

We list the evaluation results on the remaining datasets from LongBench (Bai et al., 2024) in Table 6.
Our head-level KV cache compression method also outperforms the other baselines, particularly on
summarization and Code datasets across Llama-3-8B-Instruct and Mistral-7B-Instruct.

Method
Summarization Few-Shot Learning Synthetic Code

Avg.
GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe LCC RB-P

Llama-3-8B-Instruct, KV Size=Full

FullKV 28.71 23.26 26.64 73.5 90.48 42.33 4.80 69.25 59.29 54.05 47.23

Llama-3-8B-Instruct, KV Size=128

SnapKV 19.83 21.80 21.41 65.50 89.72 38.71 5.75 69.00 58.74 54.57 44.50
Ada-SnapKV 20.89 22.11 21.68 70.50 90.82 39.20 5.91 69.50 59.75 54.86 45.52
HeadKV-R 21.08 22.35 22.50 71.50 89.45 38.40 5.00 69.50 60.89 59.92 46.06
HeadKV-R2 21.76 22.16 23.94 71.50 90.19 38.88 6.60 69.50 61.08 60.21 46.58

Mistral-7B-Instruct, KV Size=Full

FullKV 32.87 24.24 27.10 71.00 86.23 42.79 2.75 86.98 56.93 54.49 48.54

Mistral-7B-Instruct, KV Size=128

SnapKV 20.76 22.72 21.38 67.00 85.06 40.22 3.51 65.06 52.20 47.01 42.49
Ada-SnapKV 21.13 22.76 22.25 68.50 85.60 41.05 3.33 62.54 52.88 49.25 42.93
HeadKV-R 22.19 22.86 22.57 69.50 85.46 41.16 3.56 74.49 54.60 50.89 44.73
HeadKV-R2 24.30 23.48 24.18 70.50 85.54 40.72 4.83 72.63 55.49 51.39 45.31

Table 6: Results on LongBench (KV cache=128).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

s

Retrieval Heads

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Enhanced-Retrieval Heads

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layers

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Retrieval-Reasoning Heads

0.00

0.01

0.02

0.03

0.04

0.05

0.002

0.004

0.006

0.008

0.010

0.012

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Figure 7: Head visualization results on Mistral-7B-Instruct. Our enhanced distribution can also
cover the important retrieval heads.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

PyramidKV Average score: 91.60

HeadKV-R Average score: 94.20

SnapKV Average score: 80.10

Ada-SnapKV Average score: 95.00

HeadKV-R2 Average score: 96.00

Mistral-7B-Instruct
FullKV Average score: 100.00

Context Length Context Length

Figure 8: Needle-in-a-Haystack test results on Mistral-7B-Instruct. The results are consist with
those on Llama-3-8B-Instruct and our Retrieval-Reasoning Heads distribution (HeadKV-R2 still
outperforms other strong baselines.

D REASONING-IN-A-HAYSTACK DETAILS

As shown in Figure 12, we provide examples for each task used in the Reasoning-in-a-Haystack
test3. We use the dataset curated by Kuratov et al. (2024) for the Reason-in-a-Haystack test. Specif-
ically, they use the “Input” listed in Figure 12 as the needle and split it into different sentences using
dot. These sentences are then inserted into various positions within the haystack to form the final
Reason-in-a-Haystack test examples.

As shown in Figure 13, we provide detailed results across different context lengths and tasks. Our
proposed head-level KV cache compression method achieves the best average score among all meth-
ods. Notably, on the Llama-3-8B-Instruct model, our method surpasses the Full KV cache on the
QA3 task, the most challenging task among the five, as indicated in Kuratov et al. (2024). This sug-
gests that our Retrieval-Reasoning Heads distributions are better at capturing semantically relevant
and important content, leading to generating the correct answers.

E CONSTRUCT RETRIEVAL-REASONING EXAMPLES

For guiding head-level KV cache compression, we need to obtain the importance score for each head.
To achieve this, we manually construct specific examples to ensure that the model relies on heads
rather than internal knowledge to answer questions during the Needle-in-a-Haystack experiment.
Therefore, we construct retrieval-reasoning examples based on retrieval examples Wu et al. (2024)
by introducing different reasoning paths into examples to emphasize the contextual reasoning ability.
One constructed Retrieval-Reasoning example is shown in the right of Figure 2. In addition to that
example, we reverse the question to create a total of two Retrieval-Reasoning examples.

Following the setup outlined in Wu et al. (2024), in the Needle-in-a-Haystack experiment, we use
the model’s maximum training length as the maximum haystack length and evenly select 5 different
length values as the actual haystack lengths. For each haystack length, the question is inserted at 10
different depths, uniformly distributed from the start to the end of the current haystack length. In
total, we generate 100 examples per model to collect Retrieval-Reasoning Head distributions.

The addition of reasoning content r and incorrect answers c1 aims to introduce complexity and
context to the reasoning process, which we believe could highlight different heads depending on
whether the head supports accurate reasoning patterns or not. Here’s how we envisioned their role:

3https://huggingface.co/datasets/RMT-team/babilong

17

https://huggingface.co/datasets/RMT-team/babilong

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

q: What is the favorite thing of the younger one
between John and Mary?

Needle:
John is 12 years old. Mary is 13 years old.

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Retrieval-Reasoning Example1

q: What is the favorite thing of the older one between
John and Mary?

Needle:
John is 12 years old. Mary is 13 years old.

Mary's favorite thing is to take a walk in Chaoyang
Park and have a cup of Espresso in the evening.

John's favorite thing is to play basketball at the local
gym and enjoy a smoothie afterward.

Retrieval-Reasoning Example2

Figure 9: Constructed Retrieval-Reasoning examples. They are used to conduct Needle-in-a-
Haystack experiment to obtain the Retrieval-Reasoning Heads distribution.

Aligning with the requirements of contextual reasoning: Based on the in-depth analysis on the
contextual reasoning dataset, we know that the answer to the corresponding question will still appear
in the input but with various distractors. Therefore, the model continues to rely on the retrieval-and-
paste mechanism to obtain the true answer. The original retrieval heads estimation method did not
account for this phenomenon, but we address it by adding logic and simulating incorrect answers to
achieve a more accurate distribution.

Introducing Diverse Reasoning Paths: By incorporating both reasoning content and incorrect
answers, we are simulating two different potential reasoning paths. The incorrect answer acts as a
distractor and we hope to find heads that concentrate on the correct answer even though the incorrect
answer has almost the same structure with the correct answer. We expected the correct answer c2
to be treated as the ground truth in the estimation equation, similar to the original Retrieval Heads
estimation method.

Focusing on the correct reasoning path: The purpose of constructing Retrieval-Reasoning ex-
amples is to obtain the importance score for each head, which then guides the head-level KV cache
budget allocation. Therefore, our goal is to identify the important heads rather than those focused on
incorrect answers. By emphasizing the important heads, the heads that focus on incorrect answers
are naturally ignored, as they share the same shared global budget pool.

Aligning with the standard Retrieval Heads estimation: we followed the setup in Wu et al.
(2024) and determined the Retrieval-Reasoning Heads distributions based on the Needle-in-a-
Haystack experiment. Since Needle-in-a-Haystack experiment only outputs the correct answer, we
choose to focus on the correct answer to ensure that the maximum importance score each head can
achieve in Eq. 2 is 1. Adding additional logic would disrupt this property, potentially affecting the
final distribution.

F PSEUDO CODE

Codes shown in Listing 1 demonstrates the core steps required for head-level KV cache budget
allocation based on the obtained importance score distribution.

• The obtain head budget function dynamically determines the budget for each head based
on the previously obtained importance score distribution as shown in Eq.4. Since the im-
portance score distribution is static and does not change with the input, this function only
needs to be executed once during model initialization.

• The head kv function allocates budgets for different heads. First, we use SnapKV as the
selection strategy to guide the specific selection process. After obtaining the budget and
determining the selection strategy, we perform the selection and obtain the final retained
results based on the budget.

1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2 def obtain_head_budget(...):
3 # Load saved importance score distribution
4 with open(data_path, ’r’) as file:
5 head_list = json.loads(file.readline())
6 # accumulate the importance score and convert to tensor
7 head_score_list = [np.mean(l[1]) for l in head_list.items()]
8 head_score_list = torch.tensor(head_score_list / sum(head_score_list))
9 # Obtain the importance score distribution

10 total_attention = head_score_list.reshape(num_hidden_layers, num_attention_heads)
11 # Construct shared budget pool and define the minimum KV cache budget
12 total_pool_capacity = (base_capacity // beta) * num_hidden_layers * num_attention_heads
13 min_num = (base_capacity - base_capacity // self.beta)
14 # Head-level Allocation based on the importance score
15 head_capacity = torch.round(total_attention * total_pool_capacity + min_num).int()
16
17 def head_kv(...):
18 # calculate attn_score from the observation windows to input. (SnapKV)
19 attn_score = calcul_attn_sore(self, key_states, query_states)
20 # Sorted based on attn_score and obtain indices.
21 _,indices = attn_score.sort(dim=-1,descending=True)
22 # Obtain cached index for each head.
23 for head_idx in range(num_heads):
24 cache_index = indices[head_idx][...,:head_capacity[self.layer_idx][head_idx]]
25 # Expand the indices to match the head dimension for gathering. (Same as SnapKV)
26 cache_index = cache_index.view(1, 1, -1, 1).expand(-1, -1, -1, head_dim)
27 # Gather the compressed past key and value states based on the selected indices. (Same

as SnapKV)
28 top_Kcache = origin_heads_key_states[head_idx].gather(dim=2,index=cache_index)
29 top_Vcache = origin_heads_value_states[head_idx].gather(dim=2,index=cache_index)
30 # Merge with obervation windows
31 selected_k = torch.cat([top_Kcache,origin_heads_key_states[head_idx][:, :, -self.

window_size:, :]],dim=2)
32 selected_v = torch.cat([top_Vcache,origin_heads_value_states[head_idx][:, :, -self.

window_size:, :]],dim=2)
33
34 # Combine together
35 heads_key_states.append(selected_k.view(-1, head_dim))
36 heads_value_states.append(selected_v.view(-1, head_dim))
37 # Merge together
38 heads_key_states = torch.cat(heads_key_states, dim=0)
39 heads_value_states = torch.cat(heads_value_states, dim=0)
40
41 return heads_key_states,heads_value_states

Listing 1: Implementation of HeadKV in Pseudo PyTorch style.

1.005 1.01 1.1 1.2 1.5 2 5 10
Beta

26

27

28

29

30

31

32

33

Av
g.

 S
co

re

Llama-3-8B-Instruct

1.005 1.01 1.1 1.2 1.5 2 5 10
Beta

27

28

29

30

31

32

33
Mistral-7B-Instruct

FullKV
SnapKV
PyramidKV
Ada-SnapKV
HeadKV-R
HeadKV-R2

Figure 10: Results for different β, showing average accuracy across six datasets from the LongBench
benchmark.

G HYPER-PARAMETER ANALYSIS

The only hyper-parameter introduced by our proposed method is β, which defines the size of the
shared global budget pool B. Other hyper-parameters, such as the number of instruction tokens α,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

are kept consistent with the settings provided in the PyramidKV codebase.4 We also ensure that all
other hyper-parameters are consistent across both the baselines and our proposed method. For the
hyper-parameter β, as we said in Section 4.1, it was chosen from 1.005, 1.01, 1.1, 1.2, 1.5, 2, 5,
10 and we report the best performance according the average score results rather than choosing one
beta for each dataset. The details results on Llama-3-8B-Instruct and Mistral-7B-Instruct with KV
cache=128 are shown in Figure 11.

For hyper-parameter β, a smaller value represents a larger shared budget pool B according to Eq. 4,
meaning that KV cache allocation relies more heavily on the importance score distribution for alloca-
tion. The results show that Head-R2 performs better with a smaller β, indicating that our Retrieval-
Reasoning head distribution is more effective in guiding KV cache budget allocation. It is also
worth noting that both Head-R and Head-R2 outperformed Ada-SnapKV, which is current SOTA
method, across the different β values we set for Llama-3-8B-Instruct and Mistral-7B-Instruct. This
demonstrates the stability performance of our proposed head-level KV cache compression method.

H DISCUSSION

In addition to KV cache compression methods, another approach to mitigating the long-context sce-
narios during the pre-filling stage and enhancing the model’s ability to handle long texts is context
compression (Jiang et al., 2023b; 2024; Ge et al., 2024; Qin et al., 2024). Within the field of context
compression, there are also different directions exploring how to compressing prompts. For exam-
ple, Jiang et al. (2023b; 2024) proposed defining an additional module to compress the original
prompt while ensuring that the meaning and coherence of the prompt remain intact before and after
compression. The compressed text will serve as the input for the subsequent LLMs. On the other
hand, Ge et al. (2024) and Qin et al. (2024) adopted a different compression strategy by compressing
original prompt into memory slots instead of text. Ge et al. (2024) proposed ICAE method, which
employs an additional trained in-context autoencoder to compress the input into a fixed-length mem-
ory slots, which are then used as the input to LLMs. They pretrained and fine-tuned the proposed
in-context autoencoder to enable its capacity and generalization. Qin et al. (2024) further utilize the
model’s internal hidden states as the retained content after compression, with an additional scorer
employed for the corresponding selection.

The target of KV cache compression is the KV cache itself, whereas the goal of context compression
is the original input or the corresponding representations derived from the input. From the perspec-
tive of context compression, current KV cache compression methods can be viewed as compressing
the input context using the model’s own knowledge, without relying on trainable modules for selec-
tion. For instance, the SnapKV Li et al. (2024d) method, which our approach builds upon, uses the
last α tokens as the observation window and selectively retained KV cache based on attention from
these tokens. Compared to context compression methods like LLMLingua (Jiang et al., 2023b) and
ICAE (Ge et al., 2024), current KV cache compression methods are simpler, as they do not require
defining or training additional components. They ar also easier to achieve higher computational
efficiency, as these KV cache compression methods avoid relying on external components to obtain
compressed inputs and do not require recomputing the key and value matrices.

4https://github.com/Zefan-Cai/PyramidKV/

20

https://github.com/Zefan-Cai/PyramidKV/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1.005 1.01 1.1 1.2 1.5 2 5 10
Beta

26

27

28

29

30

31

32

Av
g.

 S
co

re

Llama-3-8B-Instruct: KV size=128

1.005 1.01 1.1 1.2 1.5 2 5 10
Beta

31.0

31.5

32.0

32.5

33.0

Llama-3-8B-Instruct: KV size=1024

HeadKV-validation
HeadKV-test

Figure 11: Results for different β. We leverage scikit-learn to extract 15% of each of the six datasets
as a validation set (HeadKV-validation), while the remaining data was used as the test set (HeadKV-
test). The black line represents the optimal β value determined based on the validation set.

qa1

Input: John travelled to the hallway. Mary journeyed to the
bathroom. Daniel went back to the bathroom. John moved to the
bedroom.

Question: Where is Mary?
Target: bathroom

qa4

Input: The hallway is east of the bathroom. The bedroom is west
of the bathroom.

Question: What is the bathroom east of?
Target: bedroom

qa2

Input: Daniel took the milk there. John journeyed to the garden.
Daniel went back to the hallway. Daniel journeyed to the bathroom.
Daniel dropped the milk. Daniel took the milk there. John grabbed
the apple there. Sandra journeyed to the kitchen. John went to the
hallway. Sandra went back to the garden.

Question: Where is the apple?
Target: hallway

qa3

Input: Mary picked up the apple. John went to the garden. Sandra
travelled to the office. Sandra took the milk. John went to the
bedroom. Sandra went to the kitchen. John journeyed to the office.
Mary left the apple. Mary travelled to the office. Sandra went to the
office. Daniel went to the hallway. Sandra discarded the milk.

Question: Where was the milk before the office?
Target: kitchen

qa5

Input: Fred picked up the football there. Fred gave the football to
Jeff. Bill went back to the bathroom. Jeff grabbed the milk there.
Jeff gave the football to Fred. Fred handed the football to Jeff.
Jeff handed the football to Fred. Fred gave the football to Jeff.

Question:Who did Fred give the football to?
Target: Jeff

Figure 12: Examples for each task used in Reasoning-in-a-Haystack test.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0k 1k 2k 4k 8k

qa
1

qa
2

qa
3

qa
4

qa
5

98 91 90 85 68

45 42 47 43 35

31 29 28 29 24

65 61 52 57 64

76 74 62 69 61

Llama-3-8B-Instruct
FullKV. Average Score: 57.04

0k 1k 2k 4k 8k 16k 32k

qa
1

qa
2

qa
3

qa
4

qa
5

93 84 73 63 67 59 42

49 35 28 19 10 6 10

41 30 30 24 30 23 20

40 48 56 49 51 46 47

84 79 75 49 44 41 40

Mistral-7B-Instruct
FullKV. Average Score: 45.29

0k 1k 2k 4k 8k

qa
1

qa
2

qa
3

qa
4

qa
5

97 91 92 78 61

38 34 38 33 26

28 25 30 26 20

65 61 52 57 64

76 74 62 69 57

SnapKV. Average Score: 54.16

0k 1k 2k 4k 8k 16k 32k

qa
1

qa
2

qa
3

qa
4

qa
5

93 80 66 46 60 54 43

44 25 20 10 3 2 1

22 19 20 21 17 20 17

40 49 54 47 51 47 44

84 80 73 48 46 43 40

SnapKV. Average Score: 41.09

0k 1k 2k 4k 8k

qa
1

qa
2

qa
3

qa
4

qa
5

98 90 91 78 62

40 35 34 33 30

27 29 25 26 23

65 62 52 57 63

76 74 62 69 60

PyramidKV. Average Score: 54.44

0k 1k 2k 4k 8k 16k 32k

qa
1

qa
2

qa
3

qa
4

qa
5

93 83 60 51 59 46 40

47 20 22 11 6 2 1

28 22 24 23 19 18 14

40 49 54 48 52 48 44

84 79 74 47 45 42 43

PyramidKV. Average Score: 41.09

0k 1k 2k 4k 8k

qa
1

qa
2

qa
3

qa
4

qa
5

98 92 90 78 63

37 41 44 39 28

33 28 21 25 19

65 61 52 57 64

76 74 62 69 59

Ada-KV. Average Score: 55.00

0k 1k 2k 4k 8k 16k 32k

qa
1

qa
2

qa
3

qa
4

qa
5

93 80 65 49 58 52 45

44 24 21 14 6 4 5

28 24 19 20 22 13 12

40 49 54 46 52 47 44

85 79 72 48 44 42 38

Ada-SnapKV. Average Score: 42.94

0k 1k 2k 4k 8k

qa
1

qa
2

qa
3

qa
4

qa
5

98 91 91 77 63

39 35 35 41 32

30 24 23 31 27

65 61 52 57 65

76 74 62 69 61

Ours.Retrieval. Average Score: 55.16

0k 1k 2k 4k 8k 16k 32k

qa
1

qa
2

qa
3

qa
4

qa
5

92 80 65 56 60 54 45

47 30 28 14 9 5 6

29 33 34 27 25 15 16

40 48 54 45 49 45 43

84 79 73 48 44 40 41

Ours.Retrieval. Average Score: 42.94

0k 1k 2k 4k 8k
Context Length

qa
1

qa
2

qa
3

qa
4

qa
5

97 93 92 84 67

39 38 36 39 33

36 36 33 30 28

65 61 52 57 67

76 74 62 69 57

Ours.R-Retrieval. Average Score: 56.84

0k 1k 2k 4k 8k 16k 32k
Context Length

qa
1

qa
2

qa
3

qa
4

qa
5

93 85 74 53 62 57 43

49 33 23 16 7 6 4

35 28 32 25 26 17 13

40 46 55 44 49 43 42

84 79 72 48 43 40 42

Ours.R-Retrieval. Average Score: 43.09

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 13: Detail results for Reasoning-in-a-Haystack test on five datasets.

22

	Introduction
	Related Work
	Attention Heads
	KV cache compression

	Method
	Head-level Importance Score Estimation
	Head-Level KV Cache Allocation
	KV Cache Selection

	Experiments And Analysis
	Experiment settings
	Main Results
	Retrieval-Reasoning Heads
	Long-Context Retrieval and Reasoning
	Memory & Latency

	Conclusion and Future Work
	Detaile Results
	Dataset Details
	LongBench Results
	Reasoning-in-a-Haystack details
	Construct Retrieval-Reasoning Examples
	Pseudo Code
	Hyper-parameter Analysis
	Discussion

