
Published as a conference paper at ICLR 2023

TOWARDS UNDERSTANDING GD WITH HARD AND CON-
JUGATE PSEUDO-LABELS FOR TEST-TIME ADAPTATION

Jun-Kun Wang and Andre Wibisono
Department of Computer Science, Yale University
{jun-kun.wang,andre.wibisono}@yale.edu

ABSTRACT

We consider a setting that a model needs to adapt to a new domain under distribution
shifts, given that only unlabeled test samples from the new domain are accessible
at test time. A common idea in most of the related works is constructing pseudo-
labels for the unlabeled test samples and applying gradient descent (GD) to a loss
function with the pseudo-labels. Recently, Goyal et al. (2022) propose conjugate
labels, which is a new kind of pseudo-labels for self-training at test time. They
empirically show that the conjugate label outperforms other ways of pseudo-
labeling on many domain adaptation benchmarks. However, provably showing that
GD with conjugate labels learns a good classifier for test-time adaptation remains
open. In this work, we aim at theoretically understanding GD with hard and
conjugate labels for a binary classification problem. We show that for square loss,
GD with conjugate labels converges to an ε-optimal predictor under a Gaussian
model for any arbitrarily small ε, while GD with hard pseudo-labels fails in this
task. We also analyze them under different loss functions for the update. Our results
shed lights on understanding when and why GD with hard labels or conjugate
labels works in test-time adaptation.

1 INTRODUCTION

Fully test-time adaptation is the task of adapting a model from a source domain so that it fits to a
new domain at test time, without accessing the true labels of samples from the new domain nor the
data from the source domain (Goyal et al., 2022; Wang et al., 2021a; Li et al., 2020; Rusak et al.,
2021; Zhang et al., 2021a; S & Fleuret, 2021; Mummadi et al., 2021; Iwasawa & Matsuo, 2021;
Liang et al., 2020; Niu et al., 2022; Thopalli et al., 2022; Wang et al., 2022b; Kurmi et al., 2021). Its
setting is different from many works in domain adaptation or test-time training, where the source
data or statistics of the source data are available, e.g., Xie et al. (2021); Liu et al. (2021a); Prabhu
et al. (2021); Sun et al. (2020); Chen et al. (2022); Hoffman et al. (2018); Eastwood et al. (2022);
Kundu et al. (2020); Liu et al. (2021b); Schneider et al. (2020); Gandelsman et al. (2022); Zhang et al.
(2021b); Morerio et al. (2020); Su et al. (2022). Test-time adaptation has drawn growing interest
recently, thanks to its potential in real-world applications where annotating test data from a new
domain is costly and distribution shifts arise at test time due to some natural factors, e.g., sensor
degradation (Wang et al., 2021a), evolving road conditions (Gong et al., 2022; Kumar et al., 2020),
weather conditions (Bobu et al., 2018), or change in demographics, users, and time periods (Koh
et al., 2021).

The central idea in many related works is the construction of the pseudo-labels or the proposal
of the self-training loss functions for the unlabeled samples, see e.g., Wang et al. (2021a); Goyal
et al. (2022). More precisely, at each test time t, one receives some unlabeled samples from a new
domain, and then one constructs some pseudo-labels and applies a GD step to the corresponding
self-training loss function, as summarized in Algorithm 1. Recently, Goyal et al. (2022) propose
a new type of pseudo-labels called conjugate labels, which is based on an observation that certain
loss functions can be naturally connected to conjugate functions, and the pseudo-labels are obtained
by exploiting a property of conjugate functions (to be elaborated soon). They provide a modular
approach of constructing conjugate labels for some loss functions, e.g., square loss, cross-entropy loss,
exponential loss. An interesting finding of Goyal et al. (2022) is that a recently proposed self-training
loss for test-time adaptation of Wang et al. (2021a) can be recovered from their conjugate-label

1

Published as a conference paper at ICLR 2023

Algorithm 1: Test-time adaptation via pseudo-labeling
1: Init: w1 = wS , where wS is the model learned from a source domain.
2: Given: Access to samples from the data distribution Dtest of a new domain.
3: for t = 1, 2, . . . , T do
4: Get a sample xt ∼ Dtest from the new domain.
5: Construct a pseudo-label ypseudowt

(xt) and consequently a self-training loss function `self(wt;xt).
6: Apply gradient descent (GD): wt+1 = wt − η∇w`self(wt;xt).
7: end for

framework. They also show that GD with conjugate labels empirically outperforms that of other
pseudo-labels like hard labels and robust pseudo-labels (Rusak et al., 2021) across many benchmarks,
e.g., ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021), VISDA-C
(Peng et al., 2017), MNISTM (Ganin & Lempitsky, 2015). However, certain questions are left open
in their work. For example, why does GD with conjugate labels work? Why can it dominate GD with
other pseudo-labels? To our knowledge, while pseudo-labels are quite indispensable for self-training
in the literature (Li et al., 2019; Zou et al., 2019), works that theoretically understand the dynamic of
GD with pseudo-labels are very sparse, and the only work that we are aware is of Chen et al. (2020).
Chen et al. (2020) show that when data have spurious features, if projected GD is initialized with
sufficiently high accuracy in a new domain, then by minimizing the exponential loss with hard labels,
projected GD converges to an approximately Bayes-optimal solution under certain conditions. In this
work, we study vanilla GD (without projection) for minimizing the self-training loss derived from
square loss, logistic loss, and exponential loss under hard labels and conjugate labels.

We prove a performance gap between GD with conjugate labels and GD with hard labels under a
simple Gaussian model (Schmidt et al., 2018; Carmon et al., 2019). Specifically, we show that GD
with hard labels for minimizing square loss can not converge to an ε-optimal predictor (see (8) for
the definition) for any arbitrarily small ε, while GD with conjugate labels converge to an ε-optimal
predictor exponentially fast. Our theoretical result champions the work of conjugate labels of Goyal
et al. (2022). We then analyze GD with hard and conjugate labels under logistic loss and exponential
loss, and we show that under these scenarios, they converge to an optimal solution at a log(t) rate,
where t is the number of test-time iterations. Our results suggest that the performance of GD in
test-time adaptation depends crucially on the choice of pseudo-labels and loss functions. Interestingly,
the problems of minimizing the associated self-training losses of conjugate labels in this work are
non-convex optimization problems. Hence, our theoretical results find an application in non-convex
optimization where GD can enjoy some provable guarantees.

2 PRELIMINARIES

We now give an overview of hard labels and conjugate labels. But we note that there are other
proposals of pseudo-labels in the literature. We refer the reader to Li et al. (2019); Zou et al. (2019);
Rusak et al. (2021) and the references therein for details.

Hard labels: Suppose that a model w outputs hw(x) ∈ RK and that each element of hw(x) could be
viewed as the predicted score of each class for a multi-class classification problem with K classes.
A hard pseudo-label yhard

w (x) is a one-hot vector which is 1 on dimension k (and 0 elsewhere) if
k = arg maxk hw(x)[k], i.e., class k has the largest predicted score by the model w for a sample x
(Goyal et al., 2022). On the other hand, for a binary classification problem by a linear predictor, i.e.,
hw(x) = w>x, a hard pseudo-label is simply defined as:

yhard
w (x) := sign(w>x), (1)

see, e.g., Kumar et al. (2020), Chen et al. (2020). GD with hard labels is the case when Algorithm 1
uses a hard label to construct a gradient∇w`self(wt;xt) and update the model w.

Conjugate labels (Goyal et al., 2022): The approach of using conjugate labels as pseudo-labels
crucially relies on the assumption that the original loss function is of the following form:

`(w; (y, x)) := f(hw(x))− y>hw(x), (2)
where f(·) : RK → R is a scalar-value function, and y ∈ RK is the label of x, which could be
a one-hot encoding vector in multi-class classification. Since the true label y of a sample x is not

2

Published as a conference paper at ICLR 2023

Table 1: Summary of {Hard, Conjugate} pseudo-labels and the resulting self-training loss functions
using square loss, logistic loss, and exponential loss.

Square loss: `exp(w; (x, y)) := 1
2
(y − w>x)2.

Hard yhardw (x) = sign(w>x) `hard(w;x) = 1
2
(sign(w>x)− w>x)2

Conjugate yconjw (x) = w>x `conj(w;x) = − 1
2
(w>x)2

Logistic loss: `logit(w; (x, y)) := log
(
cosh

(
w>x

))
− y(w>x), where y = {+1,−1}.

Hard yhardw (x) = sign(w>x) `hard(w;x) = log
(
cosh

(
w>x

))
− |w>x|

Conjugate yconjw (x) = tanh
(
w>x

)
`conj(w;x) = log

(
cosh

(
w>x

))
− tanh

(
w>x

)
w>x

Exponential loss: `exp(w; (x, y)) := exp(−yw>x), where y = {+1,−1}.
Hard yhardw (x) = sign(w>x) `hard(w;x) = exp(−|w>x|)
Conjugate yconjw (x) = tanh

(
w>x

)
`conj(w;x) = sech

(
w>x

)

available in test-time adaptation, it is natural to construct a pseudo-label ypseudo
w (x) and consequently

a self-training loss function by replacing y with ypseudo
w (x) in (2),

`conj(w;x) := f(hw(x))− ypseudo
w (x)>hw(x). (3)

One can then compute the gradient∇`conj(w; (y, x)) and use GD to adapt the model w at test time.

Define h∗ ∈ RK as h∗ ← arg minh∈RK f(h) − y>h, where −f∗(y) = minh∈RK f(h) − y>h
is the conjugate function, see e.g, Chapter 3.3 in Boyd et al. (2004). It turns out that h∗ satisfies
y = ∇f(h∗). From the similarity, Goyal et al. (2022) propose conjugate labels:

yconj
w (x) := ∇f(hw(x)), (4)

where yconj
w (x) is possibly a real-value vector instead of a one-hot encoding vector. Let ypseudo

w (x)←
yconj
w (x) in (3). Then, we get the self-training loss function using the conjugate label:

`conj(w;x) := f(hw(x))−∇f(hw(x))>hw(x). (5)

We note that GD with conjugate labels is an instance of Algorithm 1 when we let ∇w`self(wt;xt)←
∇w`conj(wt;xt) at each test time t.

Table 1 summarizes conjugate labels and hard labels as well as their self-training loss functions using
square loss, logistic loss, and exponential loss. We provide the derivation of the case using square
loss below, while the rest of them are available in Appendix A.
(Square loss) Example of a conjugate label yconj

w (x) and its self-training function `conj(w;x):
Observe that square loss `(w; (x, y)) := 1

2 (y − w>x)2 is in the form of (2) up to a constant, where
f(·) = 1

2 (·)2 : R→ R+. Substituting f(·) = 1
2 (·)2 and h(w) = w>x in (4) and (5), we get

yconj
w (x) = w>x, and `conj(w;x) = −1

2
(w>x)2. (6)

3 THEORETICAL FRAMEWORK: GAUSSIAN MODEL

Our theoretical analysis considers a binary classification setting in which samples from the new
domain are generated as x ∼ N (yµ, σ2Id) ∈ Rd, where µ ∈ Rd is the mean and σ2 > 0 is the
magnitude of the covariance. The label y is assumed to be uniform on {−1, 1}. Therefore, we have
P (X|Y = y) = N (yµ, σId) and P (y = −1) = P (y = 1) = 1

2 under Gaussian model (Schmidt
et al., 2018; Carmon et al., 2019; Kumar et al., 2020).

Given a test sample x, a linear predictor w ∈ Rd makes a prediction of the label ŷw(x) as ŷw(x) =
sign(w>x). While a model could be self-trained under various loss functions, the natural metric to
evaluate a model for classification is the expected 0-1 loss. Under Gaussian model, the expected 0-1
loss enjoys a simple closed-form expression:

`0−1(w) := E(x,y)[1{yŷw(x) 6= 0}] = P [yw>x < 0] = P

(
N

(
µ>w

σ‖w‖
, 1

)
< 0

)
= Φ

(
µ>w

σ‖w‖

)
,

(7)

3

Published as a conference paper at ICLR 2023

where Φ(u) := 1√
2π

∫∞
u

exp(−z2/2)dz is the Gaussian error function. From (7), one can see that the
predictors that minimize the 0−1 loss are those that align with µ in direction and the minimum error is
Φ
(
‖µ‖
σ

)
. In other words, an optimal linear predictors w∗ ∈ Rd has to satisfy cos

(
w∗
‖w∗‖ ,

µ
‖µ‖

)
= 1.

In our theoretical analysis, we let µ = [‖µ‖, 0, . . . , 0]> ∈ Rd; namely, the first element is the only
non-zero entry. Our treatment is without loss of generality, since we can rotate and change a coordinate
system if necessary. For any vector w ∈ Rd, its orthogonal component to µ is

(
Id − µ

|µ|
µ>

|µ|

)
w.

Thanks to the assumption of µ, the orthogonal space (to µ) is the subspace of dimension 2 to d.
Indeed, for any vector w, its orthogonal component (to µ)

(
Id − µ

|µ|
µ>

|µ|

)
w is always 0 in its first

entry. Therefore, we can represent an orthogonal component of w as [w[2], . . . , w[d]] ∈ Rd−1.

We call a model w ∈ Rd an ε-optimal predictor under Gaussian model if it satisfies two
conditions:

Condition 1:
〈
w,

µ

‖µ‖

〉
= w[1] > 0 and Condition 2: cos2

(
w

‖w‖
,
µ

‖µ‖

)
≥ 1− ε.

(8)

Using (7), the expected 0−1 loss of an ε-optimal predictor is `0−1(w) = Φ
(
‖µ‖
σ

√
1− ε

)
. To get an

ε-optimal predictor, we need to satisfy 〈w, µ〉 > 0 and also need that the ratio of the projection onto µ
to the size of the orthogonal component to µ is as large as possible, i.e., w[1]2∑d

i6=1 w
2[i]

is large, which can

be seen from the following equalities: cos2
(

w
‖w‖ ,

µ
‖µ‖

)
= 〈w,µ〉2
‖w‖2‖µ‖2 = w[1]2∑d

i=1 w[i]2
= 1

1+

∑d
i6=1

w[i]2

w[1]2

.

The projection of w onto µ has to be positive and large when the size of the orthogonal component is
non-zero to get an ε-optimal predictor, i.e., w[1]� 0.

Finally, in our analysis we will assume that the initial point satisfies Condition 1 on (8), which means
that the initial point forms an acute angle with µ. This is a mild assumption, as it means that the
source model is better than the random guessing in the new domain.

Related works of Gaussian model: In recent years, there are some works that adopt the framework
of Gaussian model to show some provable guarantees under various topics. For example, Schmidt
et al. (2018) and Carmon et al. (2019) studying it for adversarial robustness. For another example,
Kumar et al. (2020) recently show that self-training with hard labels can learn a good classifier when
infinite unlabeled data are available and that the distributions shifts are mild. Their theoretical result
perhaps is the most relevant one to ours in the literature, in addition to Chen et al. (2020) that we have
discussed in the introduction. Kumar et al. (2020) consider the setting of gradual distribution shifts
so that the data distribution in each iteration t is different and that the update in each t is a minimizer
of a constrained optimization:

wt ← arg minw∈Θ Ex∼Dt

[
L
(
yhard
w (x)w>x

)]
, where Θ :=

{
w : ‖w‖ ≤ 1, ‖w − wt−1‖ ≤ 1

2

}
.

(9)
On (9), L(·) : R→ R+ is a continuous decreasing function, Dt represents the data distribution at t,
and yhard

w (x) := sign(w>x) is the hard label for an unlabeled sample x. The main message of their
result is that even though the data distribution of the target domain could be very different from that
of the source domain, by using data from the intermediate distributions that change gradually, a good
classifier for the target domain can be obtained in the end. On the other hand, we consider analyzing
GD with pseudo-labels at test-time iterations, and we do not assume that there are intermediate
distributions. Our goal is to provably show that GD with pseudo-labels can learn an optimal classifier
in a new domain when only unlabeled samples are available at test time, which is different from the
setup of Kumar et al. (2020) that simply assumes the access to a minimizer of a certain objective.

4 (A NEGATIVE EXAMPLE) GD WITH HARD LABELS UNDER SQUARE LOSS

One of the common loss function is square loss. Recent works have shown that even for the task of
classification, a model trained under square loss can achieve competitive performance for classification

4

Published as a conference paper at ICLR 2023

as compared to that of a model trained under certain classification losses like cross-entropy loss
(Demirkaya et al., 2020; Han et al., 2022; Hui & Belkin, 2020). In this section, we analyze test-time
adaptation by GD with hard pseudo-labels under square loss. Recall the definition of square loss:
`(w; (x, y)) = 1

2 (y − w>x)2. By using hard labels as (1), the self-training loss function becomes

`hard(w;x) :=
1

2

(
yhard
w (x)− w>x

)2
=

1

2

(
sign(w>x)− w>x

)2
. (10)

It is noted that the derivative of sign(·) is 0 everywhere except at the origin. Furthermore, sign(·) is
not differentiable at the origin. Define sign(0) = 0. Then, sign(w>x)− w>x = 0 when w>x = 0,
which allows us to avoid the issue of the non-differentiability. Specifically, we can write the gradient
as∇`hard(w;x) = −

(
sign(w>x)− w>x

)
x. Using the gradient expression, we obtain the dynamic

of GD with hard labels under square loss,

wt+1 = wt − η∇`hard(wt;xt) = wt + η
(
sign(w>t xt)− w>t xt

)
xt. (11)

What we show in the following proposition is that the update wt of (11) does not converge to the
class mean µ in direction. However, it should be noted that a perfect classifier (i.e., one that has the
zero 0-1 loss) does not necessarily need to align with the class mean µ depending on the setup.
Proposition 1. GD with hard labels using square loss fails to converge to an ε-optimal predictor
for any arbitrarily small ε > 0 even under the noiseless setting of Gaussian model (σ = 0). More

precisely, we have cos
(

wt

‖wt‖ ,
µ
‖µ‖

)
≤ 1− ε̄, for some ε̄ > 0 as t→∞ if w∞ exists.

Proof. In this proof, we denote āt := wt[1] =
〈
wt,

µ
‖µ‖

〉
. From (11), we have

āt+1 = āt + η
(
sign(w>t xt)− w>t xt

) 〈
xt,

µ
‖µ‖

〉
. (12)

Let us consider the simple noiseless setting of Gaussian model, i.e., σ = 0, as we aim at giving a
non-convergence example. Then, we have xt = ytµ and the dynamic (12) becomes

āt+1 = (1− η‖µ‖2)āt + η sign(āt‖µ‖)‖µ‖, (13)

where we used y2
t = 1 and yt sign(yt·) = sign(·) because yt = {−1,+1}.

Case: η ≤ 1
‖µ‖2 : Given the initial condition ā1 > 0, we have āt > 0,∀t from (13), and

sign(āt‖µ‖) = 1,∀t. Then, we can recursively expand (13) from time t + 1 back to time 1 and
obtain

āt+1 = (1− η‖µ‖2)tā1 + η‖µ‖
∑t
s=0(1− η‖µ‖2)s. (14)

From (14), we know that āt → 1
‖µ‖ , as t → ∞, where we used that

∑∞
s=0(1 − η‖µ‖2)s = 1

η‖µ‖2 .
On the other hand, the dynamic of the orthogonal component i 6= 1 ∈ [d] is

wt+1[i] = wt[i] + η
(
sign(w>t xt)− w>xt

)
x[i] = wt[i], (15)

where in the last equality we used that xt = ytµ and µ = [‖µ‖, 0, . . . , 0]> ∈ Rd so that x[i] =

0,∀i 6= 1. By (14) and (15), we get
∑d

i6=1 w∞[i]2

w∞[1]2 =
∑d

i6=1 w1[i]2

1/‖µ‖2 . That is, the ratio converges to a
non-zero value, which implies that GD with hard labels fails to converge to an ε-optimal predictor for
any arbitrarily small ε, i.e., cos

(
w∞
‖w∞‖ ,

µ
‖µ‖

)
≤ 1− ε̄ for some ε̄ > 0.

Case: η > 1
‖µ‖2 : Suppose āt > 0. Then, the condition that āt+1 ≥ āt is 1

‖µ‖ ≥ āt from (13), which
means that the projection to µ is bounded and hence the model wt cannot be an ε-optimal classifier
for any arbitrarily small ε. On the other hand, if āt > 1

‖µ‖ , then āt+1 < āt, and āt+1 could even

be negative when āt > 1
‖µ‖−1/(η‖µ‖) . Moreover, if η > 2

‖µ‖2 and |āt| > η‖µ‖
η‖µ‖2−2 = 1

‖µ‖−2/(η‖µ‖) ,
then the magnitude |āt| is increasing and the sign of āt is oscillating; more precisely, we will have
|āt+1| ≥ |āt| and sign(āt+1) = − sign(āt). Consequently, the model wt is not better than the
random guessing at every other iteration (recall (7)), which is not desirable for test-time adaptation.

In the next section, we will provably show that GD with conjugate labels under square loss can learn
an ε-optimal predictor for any arbitrary ε, which is the first theoretical result in the literature that
shows the advantage of conjugate labels over hard labels, to the best of our knowledge.

5

Published as a conference paper at ICLR 2023

(a) Small step size η = 1 (b) Large step size η = 100

Figure 1: Expected 0−1 loss vs. test-time iteration of GD. GD with hard labels under square loss (blue solid
line) can not converge to the class mean µ in direction, while GD with conjugate labels under square loss (green
dash dot line) learns an ε-optimal predictor. Here, “no-adaptation” means simply predicting according to the
initial model without any updates. The detailed setup is described in Appendix B.

5 CONVERGENCE RESULTS OF GD WITH PSEUDO-LABELS

Recall that we have `self(w;x) = ψ(w>x) for some scalar function ψ(·) : R→ R under the scenario
of linear predictors. If ψ(·) is an even function, i.e., ψ(u) = ψ(−u) for all u ∈ R, then

`self(w;x) = ψ(w>x) = ψ
(
yw>(µ+ σξ)

)
= ψ

(
w>(µ+ σξ)

)
, (16)

where the second equality uses x = y(µ+ σξ) under Gaussian model, and the last equality uses the
assumption that ψ(·) is an even function. We emphasize that the underlying algorithm itself does not
have the knowledge of µ, σ, or ξ, and the last expression simply arises from our analysis.

From (16), we know that the gradient is

∇`self(w;x) = ∇ψ(w>x) = ψ′
(
w>(µ+ σξ)

)
(µ+ σξ). (17)

Hence, the dynamic of GD with pseudo-labels is

wt+1 = wt − η∇`self(wt;xt) = wt − ηψ′
(
w>t (µ+ σξ)

)
(µ+ σξ). (18)

Now let us analyze the population dynamics, which means that we observe infinitely many unlabeled
samples, so we can take expectation on the r.h.s. of (18). We get

wt+1 = wt − ηEξ
[
ψ′
(
w>t (µ+ σξ)

)]
µ− ηEξ

[
ψ′
(
w>t (µ+ σξ)

)
σξ
]

(19)

= wt − ηEξ
[
ψ′
(
w>t (µ+ σξ)

)]
µ− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)]
wt

=
(
1− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)])
wt − ηEξ

[
ψ′
(
w>t (µ+ σξ)

)]
µ, (20)

where the second to last equality uses Stein’s identity (Stein, 1981): for any function ψ : Rd → R
and ξ ∼ N (0, Id), it holds that Eξ[ξψ(ξ)] = Eξ[∇ξψ(ξ)].

Denote at := 〈wt, µ〉 the dynamic of the component of wt along µ. Given the dynamic (20), it is
clear that the component along µ evolves as:

at+1 =
(
1− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)])
at − ηEξ

[
ψ′
(
w>t (µ+ σξ)

)]
‖µ‖2. (21)

On the other hand, denote bt := ‖[wt[2], . . . , wt[d]]>‖ the size of the component orthogonal to µ.
Then, its population dynamic evolves as:

bt+1 =
∣∣1− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)]∣∣ bt. (22)

We further define the ratio rt := at
bt

. By (21) and (22), we have

rt+1 = sign
(
1− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)])
rt +

ηEξ
[
−ψ′

(
w>t (µ+ σξ)

)]
‖µ‖2∣∣1− ησ2Eξ

[
ψ′′
(
w>t (µ+ σξ)

)]∣∣ bt . (23)

It turns out that cos
(

wt

‖wt‖ ,
µ
‖µ‖

)
is an increasing function of rt, Indeed,

cos

(
wt
‖wt‖

,
µ

‖µ‖

)
=
〈wt, µ〉
‖wt‖‖µ‖

=
〈wt, µ〉

bt
√
‖µ‖2 + 〈wt, µ〉2/b2t

= sign(rt)
1√

1 + ‖µ‖2/r2
t

, (24)

6

Published as a conference paper at ICLR 2023

(a) Hard+Exp. (b) Conj+Exp. (c) Hard+Logistic. (d) Conj+Logistic.

Figure 2: Plots of some self-training loss functions that satisfy the set of properties ♣.

where we used ‖wt‖ =
√

(w>t µ/‖µ‖)2 + b2t . A successful recovery (cos→ 1) means that we would
like rt →∞.

In the rest of this paper, we will use the notations ♦+♥ or GD +♦+♥, where ♦ = {conj,hard} and
♥ = {square, logistic, exp} for brevity. For example, hard + exp represents the self-training loss
based on hard labels under exponential loss, i.e., `hard(w;x) = exp(−|w>x|),while GD + conj +
square stands for GD with conjugate labels under square loss in test-time adaptation.

5.1 (EXPONENTIAL-RATE CONVERGENCE) GD + conj + square

Proposition 2. (GD + conj + square) The ratio of the projection onto µ to the size of the orthogonal
component grows as

rt+1 = r1

(
1 +

η‖µ‖2

1 + ησ2

)t
.

Furthermore, GD learns an ε-optimal predictor after t ≥ 1
2

log(‖µ‖2/(εr21))
log(1+η‖µ‖2/(1+ησ2)) iterations.

Proof. For GD + conj + square, the self-training loss is `conj(w;x) = − 1
2 (w>x)2 from (6). Hence,

ψ(·) = − 1
2 (·)2 in (16); moreover, ψ′(·) = −(·) and ψ′′(·) = −1 in (23). Therefore, we have

Eξ
[
−ψ′

(
w>t (µ+ σξ)

)]
= Eξ

[
w>t (µ+ σξ)

]
= w>t µ since Eξ[w>t ξ] = 0, and we also have

Eξ
[
ψ′′
(
w>t (µ+ σξ)

)]
= Eξ [−1] = −1 in (23).

Consequently, the dynamic of the ratio is

rt+1 = rt +
ηw>t µ‖µ‖2

(1 + ησ2)bt
= rt

(
1 +

η‖µ‖2

1 + ησ2

)
= r1

(
1 +

η‖µ‖2

1 + ησ2

)t
. (25)

From (24) and (25), the cosine between wt and µ is positive and increasing, given the initial condition
a1 > 0 (or equivalently, r1 > 0). Hence, Condition 1 on (8) holds for all t. By using (24), we see

that to get an ε-optimal predictor at test time t, we need to satisfy ‖µ‖2/
(
r2
1

(
1 + η‖µ‖2

1+ησ2

)2t
)
≤ ε.

Simple calculation shows that t ≥ 1
2

log(‖µ‖2/(εr21))
log(1+η‖µ‖2/(1+ησ2)) .

Proposition 1 and 2 together provably show a performance gap between GD + conj + square and
GD + hard + square. Using conjugate labels, GD converges to the class mean µ in direction
exponentially fast, while GD with hard labels fails in this task.

5.2 log(t)-RATE CONVERGENCE OF GD

In this subsection, we consider self-training loss functions, `self(w;x) = ψ(w>x), that satisfy the
following set of properties ♣ with parameter (L, amin): (i) Even: ψ(−a) = ψ(a) for all a ∈ R. (ii)
There exists 0 < L <∞ such that −ψ′(a) ≥ e−La for all a ≥ amin.

Lemma 1. The following self-training loss functions `self(w;x) = ψ(w>x) satisfy♣. More precisely,
we have:

1. hard + exp: ψ(u) = exp(−|u|) satisfies ♣ with (L = 1, amin = 0).

7

Published as a conference paper at ICLR 2023

2. hard + logistic: ψ(u) = log (cosh (u))− |u| satisfies ♣ with (L = 2, amin = 0).

3. conj + exp: ψ(u) = sech(u) satisfies ♣ with (L = 1, amin = 0.75).

4. conj + logistic: ψ(u) = log (cosh (u))− tanh (u)u satisfies ♣ with (L = 2, amin = 0.5).

The proof of Lemma 1 is available in Appendix C. Figure 2 plots the self-training losses listed in
Lemma 1. From the figure, one might find that Property ♣ is evident for these self-training losses.

We will also need the following supporting lemma to get a convergence rate.

Lemma 2. Consider the dynamic: rt+1 ≥ rt + ce−Lrt , for some L > 0 and c ≥ 0. Suppose that
initially r1 > 0. Then, rt−τ∗ ≥ 1

2L log c(t − 1), for all t > τ∗, where τ∗ = 0 if ν ≤ eLν ,∀ν ≥ 0;
otherwise, τ∗ = ν2

∗(L)/c, where ν∗(L) is the unique fixed point of ν∗ = eLν∗ if it exits.

Proof. From the dynamic, it is clear that rt+1 ≥ rt since c ≥ 0. Then,

eLrt+1rt+1 ≥ eLrt+1rt + ceL(rt+1−rt) ≥ eLrtrt + c ≥ eLr0r0 + ct ≥ ct, (26)

where the last step follows from unrolling the recursion t times.

We first analyze the case that rt ≤ eLrt . Since rt ≤ eLrt , we have e2Lrt ≥ c(t − 1) from (26).
Hence, rt ≥ 1

2L log c(t− 1).

Now let us switch to the case that rt ≥ eLrt . Let ν∗(L) the unique point of ν∗ such that ν∗ = eLν∗ .

If rt ≤ ν∗(L), then rt ≥ eLrt . Hence, we have r2
t ≥ rteLrt

(26)

≥ c(t− 1). So rt ≥
√
c(t− 1). Note

this possibility cannot happen more than τ∗ := ν2
∗(L)/c times, since we need rt ≤ r∗ to stay in this

regime. So eventually we get out of this regime after a constant number τ∗ iterations.

Now we are ready to state another main result in this paper. Proposition 3 below shows a log(t)-
convergence rate of GD with pseudo-labels in the noiseless setting σ2 = 0 if the underlying self-
training loss function satisfies ♣. The gap between the exponential rate of GD with conjugate labels
using square loss shown in Proposition 2 and the logarithmic rate in Proposition 3 suggests that the
performance of GD in test-time adaptation also crucially depends on the choice of loss functions, in
addition to the choice of pseudo-labels.

Proposition 3. (Noiseless setting) Apply GD to minimizing `self(w;x) = ψ(w>x), where ψ(·)
satisfies ♣. If the initial point satisfies a1 > amin, then the ratio of w′ts component along µ to the
size of its orthogonal component to µ at test time t, i.e., rt in (23), satisfies

rt−τ∗ = Ω

(
1

Lb1
log

(
η‖µ‖2

b1
t

))
, for all t > τ∗,

where τ∗ is a constant defined in Lemma 2.

Proof. From (19) or (22), we know that the size of the orthogonal component does not change
throughout the iterations when σ2 = 0, i.e., bt+1 = bt,∀t. On the other hand, the component along µ
in the noiseless setting has the dynamic,

at+1
(21)
= at + η (−ψ′ (at)) ‖µ‖2 ≥ at + ηe−Lat‖µ‖2,∀at ≥ amin, (27)

where we recall at := 〈wt, µ〉 and the inequality uses the property regarding −ψ′(·) as stated in ♣. It
is noted that (27) implies that at is non-decreasing, and hence the condition about the initial point,
i.e., a1 ≥ amin, guarantees at ≥ amin for all test time t.

By using the above results, we deduce that the dynamic of the ratio rt := at
bt

satisfies rt+1 ≥
rt + ηe−Lat‖µ‖2

b1
= rt + ηe−Lrtb1‖µ‖2

b1
, where we used that bt+1 = bt = b1,∀t. Invoking Lemma 2

leads to the result.

8

Published as a conference paper at ICLR 2023

Figure 3: We plot L(z) :=
log(−ψ′(z))

z
vs. z, where ψ′(·) is the first derivative of the underlying self-training

loss. Left: L(z) vs. z of hard + exp and conj + exp. Right: L(z) vs. z of hard + logistic and conj + logistic.

Figure 4: Expected 0-1 loss Φ
(
µ>wt
σ‖wt‖

)
vs. test-time t. Left: GD + hard + exp and GD + conj + exp. Right:

GD + hard + logistic and GD + conj + logistic. Here “best minimal error” is Φ
(
‖µ‖
σ

)
(recall the discussion

in Section 3). Both figures show that GD with conjugate labels outperforms GD with hard labels.

Proposition 3 implies that GD for minimizing a self-training loss with a smaller constant L can result
in a faster growth of the ratio r and consequently a faster convergence rate. Recall the definition of
L in Property ♣: a smaller constant L means that the (minus) derivative −ψ′(·) of the self-training
loss has a heavier tail. We therefore compare the tails of the self-training loss functions by plotting

L(z) :=
log(−ψ′(z))

z of each on Figure 3, which shows that there exists a threshold zmin such that for
all z ≥ zmin, the number L(z) that corresponds to the loss function with the conjugate label is smaller
than that of the hard label. This implies that the self-training loss derived from conjugate labels can
have a smaller constant L (for a finite z) compared to that of hard labels, which in turn might hint
at a faster convergence of GD + conj compared to GD + hard for exponential loss and logistic loss.
Figure 4 shows the experimental results under Gaussian model, where GD uses a received mini-batch
of samples to conduct the update at each test time. The detailed setup is available in Appendix B. We
find that GD with conjugate labels dominates GD with hard labels empirically, which is aligned with
our theoretical result. It is noted that for the case of exponential loss, Goyal et al. (2022) report a
similar experimental result under Gaussian model — GD + conj+exp outperforms GD + hard+exp.

6 LIMITATIONS AND OUTLOOKS

In this paper, we analyze GD with hard and conjugate pseudo-labels for test-time adaptation under
different loss functions. We study the performance of each of them under a binary classification
framework, identify a scenario when GD with hard labels cannot converge to an ε-optimal predictor
for any small ε while GD with conjugate labels does, and obtain some convergence results of GD with
pseudo-labels. However, there are still many directions worth exploring. First of all, while our current
analysis in the binary classification setting might be viewed as a first step towards systematically
studying GD with pseudo-labels, analyzing GD with pseudo-labels in multi-class classification is
left open in this work and could be a potential direction. Second, while analyzing the population
dynamics has already given us some insights about GD with pseudo labels, it might be useful to
study their finite-sample dynamics. Third, theoretically understanding GD with other pseudo-labels
or combined with other domain adaptation techniques like ensembling (e.g., Wortsman et al. (2022))
or others (e.g., Li et al. (2019); Schneider et al. (2020); Eastwood et al. (2022)) might be promising.
Finally, analyzing momentum methods (e.g., Nesterov (2013); Wibisono et al. (2016); Wang &
Abernethy (2018); Wang et al. (2022a; 2021b;c)) with pseudo-labels is another interesting direction,
and one of the open questions is whether they enjoy provable guarantees of faster test-time adaptation
compared to GD. Overall, we believe that the connection between optimization, domain adaptation,
and machine learning under distribution shifts can be strengthened.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The authors appreciate Shikhar Jaiswal spotting a minor error in our previous version of the proof of
Proposition 1, which has been corrected in this version. The authors thank the constructive feedback
from the reviewers and comments from Sachin Goyal, which helps improve the quality of this paper.
The authors also thank Chi-Heng Lin for valuable discussions.

REFERENCES

Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously shifting
domains. ICLR Workshop Track, 2018.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. NeurIPS, 2019.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
CVPR, 2022.

Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma. Self-training avoids using spurious features
under domain shift. NeurIPS, 2020.

Ahmet Demirkaya, Jiasi Chen, and Samet Oymak. Exploring the role of loss functions in multiclass
classification. 2020 54th annual conference on information sciences and systems CISS, pp. 1–5,
2020.

Cian Eastwood, Ian Mason, Christopher KI Williams, and Bernhard Schölkopf. Source-free adaptation
to measurement shift via bottom-up feature restoration. ICLR, 2022.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A. Efros. Test-time training with masked
autoencoders. NeurIPS, 2022.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. ICML,
2015.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Robust
continual test-time adaptation: Instance-aware bn and prediction-balanced memory. NeurIPS,
2022.

Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and Zico Kolter. Test-Time Adaptation via Conjugate
Pseudo-labels. NeurIPS, 2022.

XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. ICLR, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. ICCV, 2021.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and
Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In ICML, 2018.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. NeurIPS, 2021.

10

Published as a conference paper at ICLR 2023

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. ICML, 2021.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding Self-Training for Gradual Domain
Adaptation. ICML, 2020.

Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain
adaptation. In CVPR, 2020.

Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P Namboodiri. Domain impression: A source
data free domain adaptation method. WACV, 2021.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsupervised
domain adaptation without source data. CVPR, 2020.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt Schiele.
Learning to self-train for semi-supervised few-shot classification. NeurIPS, 32, 2019.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. ICML, 2020.

Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. Advances
in Neural Information Processing Systems, 34:22968–22981, 2021a.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre
Alahi. Ttt++: When does self-supervised test-time training fail or thrive? NeurIPS, 2021b.

Pietro Morerio, Riccardo Volpi, Ruggero Ragonesi, and Vittorio Murino. Generative pseudo-label re-
finement for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2020.

Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox,
and Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maximization
and input transformation. arXiv preprint arXiv:2106.14999, 2021.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Springer, 2013.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. ICML, 2022.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda:
The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Viraj Prabhu, Shivam Khare, Deeksha Kartik, and Judy Hoffman. Sentry: Selective entropy optimiza-
tion via committee consistency for unsupervised domain adaptation. ICCV, 2021.

Evgenia Rusak, Steffen Schneider, George Pachitariu, Luisa Eck, Peter Vincent Gehler, Oliver
Bringmann, Wieland Brendel, and Matthias Bethge. If your data distribution shifts, use self-
learning. 2021.

Prabhu Teja S and Francois Fleuret. Test time adaptation through perturbation robustness. NeurIPS
2021 Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adver-
sarially Robust Generalization Requires More Data. NeurIPS, 2018.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. NeurIPS,
2020.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of Statistics,
1981.

11

Published as a conference paper at ICLR 2023

Yongyi Su, Xun Xu, and Kui Jia. Revisiting realistic test-time training: Sequential inference and
adaptation by anchored clustering. In NeurIPS, 2022.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. ICML, 2020.

K Thopalli, P Turaga, and JJ Thiagarajan. Geometric alignment improves fully test timeadaptation.
Technical report, Lawrence Livermore National Lab., 2022.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. ICLR, 2021a.

Jun-Kun Wang and Jacob D Abernethy. Acceleration through optimistic no-regret dynamics. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Jun-Kun Wang, Jacob Abernethy, and Kfir Y. Levy. No-regret dynamics in the fenchel game: A
unified framework for algorithmic convex optimization. arXiv:2111.11309, 2021b.

Jun-Kun Wang, Chi-Heng Lin, and Jacob Abernethy. A modular analysis of provable acceleration
via Polyak’s momentum: Training a wide ReLU network and a deep linear network. ICML, 2021c.

Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, and Bin Hu. Provable Acceleration of Heavy
Ball beyond Quadratics for a class of Polyak-Lojasiewicz Functions when the Non-Convexity is
Averaged-Out. In ICML, 2022a.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
CVPR, 2022b.

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–E7358,
2016.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning. PMLR, 2022.

Sang Michael Xie, Ananya Kumar, Robbie Jones, Fereshte Khani, Tengyu Ma, and Percy Liang. In-
n-out: Pre-training and self-training using auxiliary information for out-of-distribution robustness.
ICLR, 2021.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. arXiv preprint arXiv:2110.09506, 2021a.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
Adaptive risk minimization: Learning to adapt to domain shift. NeurIPS, 2021b.

Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
self-training. ICCV, 2019.

A DERIVATIONS OF CONJUGATE LABELS AND THE ASSOCIATED
SELF-TRAINING LOSSES ON TABLE 1

1. (Square loss): Square loss `(w; (x, y)) := 1
2 (y−w>x)2 is in the form of (2), where f(·) = 1

2 (·)2 :

R→ R+. Substituting f(·) = 1
2 (·)2 and h(w) = w>x into (4) and (5), we get

yconj
w (x) = w>x, and `conj(w;x) = −1

2
(w>x)2. (28)

On the other hand, let y ← sign(w>x). we have

yhard
w (x) = sign(w>x), and `hard(w;x) =

1

2

(
sign

(
w>x

)
− w>x

)2
. (29)

12

Published as a conference paper at ICLR 2023

2. (Logistic loss): Recall that logistic regression predicts P (ŷ = 1) = exp(w>x)
1+exp(w>x)

and P (ŷ = 0) =

1− P (ŷ = 1), and the loss function is:

`logit(w; (x, ŷ)) := − (ŷ log(P (ŷ = 1)) + (1− ŷ) log (P (y = 0)))

:= log
(
1 + exp(w>x)

)
− ŷ(w>x),

(30)

where ŷ = {0, 1}. Let y = 2ŷ− 1 ∈ {−1, 1}. Then, substituting ŷ = 1
2 + y

2 back into (30) and using
the equation cosh(z) = exp(z)+exp(−z)

2 for any z ∈ R, we obtain an equivalent objective:

`logit(w; (x, y)) = log(1 + exp(w>x))− ŷ(w>x)

= log(1 + exp(w>x))−
(

1

2
+
y

2

)
(w>x)

= log

(
exp

(
w>x

2

)
+ exp

(
−w

>x

2

))
− yw

>x

2

= log

(
cosh

(
w>x

2

))
− yw

>x

2
+ log 2.

(31)

Now by renaming w
2 ← w, we get

`logit(w; (x, y)) = log
(
cosh

(
w>x

))
− yw>x+ C, (32)

where the last term is a constant and can be dropped without affecting the training.

Observe that (32) is in the form of (2), where f(·) = log (cosh (·)) and hw(x) = w>x. Using (4)
and (5), we get

yconj
w (x) = tanh

(
w>x

)
, and `conj(w;x) = log

(
cosh

(
w>x

))
− tanh

(
w>x

)
w>x. (33)

On the other hand, let y ← sign(w>x) in (32). we have

yhard
w (x) = sign(w>x), and `hard(w;x) = log

(
cosh

(
w>x

))
− |w>x|. (34)

3. (Exponential loss): Recall that exponential loss is `exp(w; (x, y)) := exp(−yhw(x)) =
exp(−yw>x), where y = {+1,−1}, which can be rewritten as

`exp(w; (x, y)) =
1

2

(
exp(w>x) + exp(−w>x

)
− 1

2
y
(
exp(w>x)− exp(−w>x)

)
,

= cosh(w>x)− y sinh(w>x). (35)

The above function is in an expanded conjugate form (Goyal et al., 2022):

f(hw(x))− yg(hw(x)),

where f(·) = cosh(·), g(·) = sinh(·), and hw(x) = w>x. Let h∗ ← arg minh f(h)− yg(h). Then,
h∗ satisfies ∇f(h∗) = ∇g(h∗)y. Goyal et al. (2022) define the conjugate label yconj

w (x) via the
equality

∇f(hw(x)) = ∇g(hw(x))yconj
w (x)

for this case. Therefore, we have yconj
w (x) = tanh(w>x). By substituting y ← yconj

w (x) in (35), we
get the self-training loss function using the conjugate label: `conj(w) = sech(w>x). To conclude,
we have:

yconj
w (x) = tanh(w>x), and `conj(w;x) = sech(w>x). (36)

On the other hand, let y ← sign(w>x) in `exp(w; (x, y)) := exp(−yhw(x)), we have

yhard
w (x) = sign(w>x), and `hard(w;x) = exp(−|w>x|). (37)

13

Published as a conference paper at ICLR 2023

B SETUP OF THE SIMULATION IN FIGURE 1 AND FIGURE 4

Below we describe how to reproduce Figure 1 and Figure 4. We first specify the mean and covariance
µS , µT , ΣS = σSId, ΣT = σT Id as follows, where the subscript S stands for the source domain,
and the subscript T is the target domain.

We set µS = e1 and then set set µT [1] = 0.6567, and the remaining elements of µT is set randomly
from a normal distribution and were normalized to ensure that µT is a unit norm vector. Then, we set
σT = 0.6567/0.8416. This way we have µ>T µS

σT ‖µS‖ = 0.8416 so that Φ
(

µ>T µS
σT ‖µS‖

)
= Φ(0.8416) =

0.2, i.e., the initial model w1 = wS has 20% expected 0−1 loss in the new domain T . Also, the best
minimal error in the new domain T is Φ

(
‖µT ‖
σT

)
= Φ

(
1

0.6567/0.8416

)
= 0.1.

In the simulation result depicted in Figure 1, a sample of (x = µ) arrives when the test time t is an
odd number and a sample of (x = −µ) arrives when the test time t is an even number. Note that the
algorithms do not know the labels.

In the simulation result depicted in Figure 4, we consider the setting of noisy data, i.e., xt ∈ Rd
is sampled as xt ∼ N (µT , σ

2
T Id) instead of xt = yµT . We search the step size η over the

grid {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1, 100, 5 × 100, 101, 5 × 101, 102} for each
GD + hard + exp, GD + conj + exp, GD + hard + logistic, or GD + conj + logistic, and report
the best result of each one.

C PROOF OF LEMMA 1

Lemma 1: The following self-training loss functions `self(w;x) = ψ(w>x) satisfy the set of
properties ♣. More precisely, we have

1. hard + exp: ψ(u) = exp(−|u|) satisfies ♣ with (L = 1, amin = 0).

2. hard + logistic: ψ(u) = log (cosh (u))− |u| satisfies ♣ with (L = 2, amin = 0).

3. conj + exp: ψ(u) = sech(u) satisfies ♣ with (L = 1, amin = 0.75).

4. conj + logistic: ψ(u) = log (cosh (u))− tanh (u)u satisfies ♣ with (L = 2, amin = 0.5).

Proof.

• For hard + exp, we have ψ(u) = exp(−|u|), ψ′(u) = − sign(u) exp(−|u|), and ψ′′(u) =
exp(−|u|) + δ0(u).

It is evident that ψ(u) = exp(−|u|) is an even function and that it is differentiable every-
where except at the origin. We also have | − ψ′(u)| ≤ 1 and −ψ′(u) ≥ exp(−u) for all
u ≥ 0. We conclude that ψ(u) = exp(−|u|) satisfies ♣ with parameter (L = 1, amin = 0).

• For hard + logistic, we have ψ(u) = log (cosh (u)) − |u|, ψ′(u) = tanh(u) − sign(u),
and ψ′′(u) = sech2(u)− δ0(u).

It is evident that ψ(u) = log (cosh (u))− |u| is an even function and that it is differentiable
everywhere except at the origin. We also have | − ψ′(u)| ≤ 1. Furthermore,

tanh(u)− 1 =
exp(u)− exp(−u)

exp(u) + exp(−u)
− 1 = − 2 exp(−u)

exp(u) + exp(−u)
.

Hence, for u > 0, −φ′(u) = 1− tanh(u) = 2 exp(−u)
exp(u)+exp(−u) ≥ exp(−2u), since

2 exp(−u)

exp(u) + exp(−u)
≥ exp(−2u) ⇐⇒ 2 exp(−u) ≥ exp(−u) + exp(−3u),

and the later is evident for u ≥ 0.

We conclude that ψ(u) = log (cosh (u))−|u| satisfies♣ with parameter (L = 2, amin = 0).

14

Published as a conference paper at ICLR 2023

• For conj + exp, we have ψ(u) = sech(u), ψ′(u) = − tanh(u)sech(u), and ψ′′(u) =
−sech(u)3 + tanh2(u)sech(u).

It is evident that ψ(u) = sech(u) is an even function and that it is differentiable everywhere.
We also have | − ψ′(u)| ≤ 1, as | tanh(u)| ≤ 1 and sech(u) ≤ 1.

Note that −ψ′(u) = tanh(u)sech(u) = 2(exp(u)−exp(−u))
(exp(u)+exp(−u))2 . Moreover,

2(exp(u)− exp(−u))

(exp(u) + exp(−u))2
≥ exp(−u) ⇐⇒ 2(exp(2u)− 1) ≥ exp(2u) + 2 + exp(−2u)

⇐⇒ exp(2u) ≥ exp(−2u) + 4,
(38)

which holds when u ≥ 0.75. That is, −ψ′(u) ≥ exp(−u) for all u ≥ 0.75.

We conclude that ψ(u) = sech(u) satisfies ♣ with parameter (L = 1, amin = 0.75).

• For conj + logistic, we have ψ(u) = log (cosh (u)) − tanh (u)u, ψ′(u) = −sech2(u)u,
and ψ′′(u) = −sech(u)2 + 2u tanh(u)sech2(u).

It is evident that ψ(u) = log (cosh (u)) − tanh (u)u is an even function and that it is
differentiable everywhere. We also have |−ψ′(u)| =

∣∣∣ 4u
(exp(u)+exp(−u))2

∣∣∣ ≤ 1.

Note that −ψ′(u) = sech2(u)u = 4u
(exp(u)+exp(−u))2 . Moreover,

4u

(exp(u) + exp(−u))2
≥ exp(−2u) ⇐⇒ 4u ≥ 1 + 2 exp(−2u) + exp(−4u), (39)

which holds when u ≥ 0.5. That is, −ψ′(u) ≥ exp(−2u) for all u ≥ 0.5.

We conclude that ψ(u) = log (cosh (u)) − tanh (u)u satisfies ♣ with parameter
(L = 2, amin = 0.5).

15

	Introduction
	Preliminaries
	Theoretical framework: Gaussian model
	(A negative example) GD with hard labels under square loss
	Convergence results of GD with pseudo-labels
	(Exponential-rate convergence) GD+conj+square
	log(t)-rate convergence of GD

	Limitations and outlooks
	Derivations of conjugate labels and the associated self-training losses on Table 1
	Setup of the simulation in Figure 1 and Figure 4
	Proof of Lemma 1

