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Abstract

Large language models (LLMs) have exhib-
ited remarkable performance in various natural
language processing tasks. Techniques like in-
struction tuning have effectively enhanced the
proficiency of LLMs in the downstream task
of machine translation. However, the existing
approaches fail to yield satisfactory translation
outputs that match the quality of supervised
neural machine translation (NMT) systems.
One plausible explanation for this discrepancy
is that the straightforward prompts employed in
these methodologies are not able to fully lever-
age the acquired instruction-following capabili-
ties. To this end, we propose the TASTE frame-
work, which stands for translating through self-
reflection. The self-reflection process includes
two stages of inference. In the first stage,
LLMs are instructed to generate preliminary
translations and conduct self-assessments on
these translations simultaneously. In the second
stage, LL.Ms are tasked to refine these prelim-
inary translations according to the assessment
results. The evaluation results across four lan-
guage directions on the WMT22 benchmark
reveal the effectiveness of our approach when
compared to the existing methods. Our work
presents a promising approach to unleash the
potential of LLMs and enhance their capabili-
ties in machine translation.

1 Introduction

Large language models (LLMs) like GPT-4 (Ope-
nAl, 2023) have recently demonstrated dramatic
performance across a wide range of natural lan-
guage processing tasks (Bubeck et al., 2023; Liang
et al., 2022). Their outstanding grasp of under-
standing of syntactic and semantic knowledge po-
sitions them as potent instruments for the enhance-
ment of machine translation, capable of producing
translations of superior quality (Hendy et al., 2023;
Zhang et al., 2023a; Garcia and Firat, 2022). This
substantial progress represents an evolution of the

H 7K 38/Poached Chicken in Chili Sauce
i /whole box  F&/is A= [H/row meat, X7}
VE/cannot WZ/eat, +& 75/whether F] Dl/can
JE#/refund?

But the Poached Chicken in Chili Sauce is just
a box of inedible raw chicken, and can I get a
refund for it?

SRC {H/But

REF

But the whole box of chicken is raw meat, so you
can’t eat it, can you refund?

But the-whele-box—is—meat, can’t eat, can you
refund \n [Bad]

But the whole box of spicy chicken is raw meat,
so [ can’t eat it. Can I get a refund?

Table 1: An example of the TASTE approach. “Normal”
denotes the output of the baseline model fine-tuned on a
normal parallel corpus. “Stage 1” and “Stage 2” denote
the outputs of the first and second inference stages of
the proposed self-reflection process, respectively. The

translation errors are marked by red-strikethrough, and
the highlight denote the predicted quality label.

paradigm in machine translation, serving as the
foundation of novel translation systems character-
ized by enhanced quality and reliability.

Numerous studies are underway to unlock
the vast potential of machine translation within
LLMs. Prompt engineering aims to design effective
prompt templates to guide LLMs in accomplishing
specific language tasks. Some approaches attempt
to integrate supplementary information pertinent to
the translation task to enhance the performance of
LLMs (Ghazvininejad et al., 2023; Lu et al., 2023;
He et al., 2023). Studies in In-context Learning
(ICL, Brown et al., 2020) seek to provide LLMs
with more relevant and high-quality translation ex-
emplars, which assists LLMs in retrieving bilingual
knowledge, facilitating the generation of transla-
tions of the highest possible quality (Vilar et al.,
2022; Agrawal et al., 2022). However, assessments
of LLMs reveal that, in most translation directions,
their performance falls short of that exhibited by



robust supervised baselines (Zhu et al., 2023). This
shortfall is due to the fact that these approaches
often treat the machine translation task of LLMs as
a simple text generation task, focusing on adjust-
ing prompts to enhance the outcomes. However,
the intrinsic features of the machine translation
task, such as the necessity for diverse multilingual
knowledge, are often overlooked.

Some studies recommend the tuning of relatively
smaller LLMs for translation, guided by a lim-
ited number of high-quality supervised instructions
(Zhu et al., 2023). The adoption of instruction
tuning in machine translation tasks yields remark-
able results in some instances (Zeng et al., 2023;
Jiao et al., 2023; Zhu et al., 2023; Hendy et al.,
2023). Despite these achievements, these attempts
still fail to fully leverage the capacity of LLMs due
to their overly straightforward inference process.
Unlike supervised translation models, LLMs gener-
ate translations through language modeling, which
contains a more complicated inference process and
relies more on inherent linguistic knowledge. Stud-
ies such as chain-of-thought (CoT) reveal that in-
troducing intermediate reasoning steps in the infer-
ence process significantly augments the reasoning
capabilities of language models (Wei et al., 2022;
Kojima et al., 2022).

In this paper, we introduce TASTE, a method
aiming at improving the translation performance
of large language models (LLMs) by instilling the
ability to self-reflect on their own outputs. Specifi-
cally, we segment the translation process of LLMs
into two stages of inference. In the first stage,
LLMs are prompted to generate preliminary trans-
lations while simultaneously making quality pre-
dictions for these translations. In the second stage,
we instruct LLMs to refine these preliminary trans-
lations based on the predicted quality levels to pro-
duce final candidates. An example of the proposed
process can be found in Table 1. This entire pro-
cess can be regarded as a form of reflection, mir-
roring the common approach employed by humans
to carry out tasks more effectively and impeccably.
In order to establish a sufficient multitask capabil-
ity for executing the entire reflective translation
process, we conduct supervised fine-tuning (SFT)
on LLMs using a hybrid training dataset. This
method demonstrates a remarkable stimulation of
the potential of LLMs, providing a novel approach
to enhance the translation performance of these
models.

Our contributions are summarized as follows:

* We present the TASTE method, which guides
LLMs through a two-stage inference process,
allowing them to initially generate prelim-
inary results and subsequently refine them
into improved candidates based on their self-
assessment results.

* We create a multi-task training set compro-
mising tasks that are closely aligned with the
TASTE process to equip LLMs with the capa-
bility to successfully execute the whole infer-
ence process.

* We find that by employing the TASTE method,
LLMs proficiently refine their initial transla-
tion candidates, resulting in superior final out-
comes, which in turn contributes to an en-
hancement in their translation capabilities.

2 Related Work

Efforts to enhance the translation performance of
LLMs can be categorized into two research lines:
prompt engineering and instruction tuning.

Prompt Engineering aims to design proper
prompt templates and introduce prior knowledge or
supplementary information to support the inference
process of LLMs. Dictionary-based approaches in-
corporate control hints in the prompt by bilingual
or multilingual dictionaries to deal with source
sentences containing rare words (Ghazvininejad
et al., 2023; Lu et al., 2023). He et al. (2023) ex-
tracts translation-related knowledge, such as topics,
through self-prompting and employ this informa-
tion to guide the translation process. Studies in in-
context learning (ICL, Brown et al., 2020) aim to
provide LLMs with more relevant and high-quality
translation exemplars. This approach serves to as-
sist LLMs in retrieving bilingual knowledge, facili-
tating the generation of translations of the highest
possible quality (Vilar et al., 2022; Agrawal et al.,
2022).

Instruction tuning represents an efficient method
to enhance the ability of LLMs to follow natural
language instructions and yield outputs that align
more closely with human preference in downstream
zero-shot tasks (Wei et al., 2021; Ouyang et al.,
2022; Chung et al., 2022). Jiao et al. (2023) ex-
plore several translation instructions to improve
the translation performance of LLMs. Zeng et al.
(2023) employ examples in comparison to instruct
LLMs and calculate the additional loss. Zhang et al.



Basic Translation |

Translate from Chinese to English.
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### Note: A translation with no errors could be ### Response:

Quality Prediction |
Translate from German to English, and label the
translation quality as “Good”, “Medium” or “Bad”.

Eine gewisse Lautstéike geh&t [...] bei etwa 98 Dezibel.
##H# Response:

Draft Refinement |
Translate from English to Chinese.

Owning a dog brings with [...] respond to our consultation.
### Hint: Draft with quality label:

[Medium] Der Besitz eines [...] Beratung zu reagieren.

### Response:

Multi-task Instruction Tuning
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Inference Stage 1
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### Hint: Draft with quality label:

[medium] Why can the island’s flying [...] seal the road?
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Der Besitz eines Hundes bringt bestimmte
Verantwortlichkeiten [...] auf unsere
Konsultation zu reagieren.
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Why can the island’s flying car party
easily do a mountain road to seal the road?
[medium]

Why can the biker gang on the island
easily seal off a mountain road?

Figure 1: The framework of our proposed TASTE.

(2023b) enhances the multilingual language genera-
tion and instruction following capabilities of LLMs
through interactive translation tasks. Our work rep-
resents a fusion of instruction tuning and the chain-
of-thought (CoT) methodology. In our approach,
we introduce a multi-step inference translation pro-
cess in imitation of the self-reflection mechanism
observed in humans. This capability is substanti-
ated through the utilization of the multitask training
data, comprising Basic Translation, Quality Predic-
tion, and Draft Refinement.

3 TASTE: Translate through Reflection

3.1 Overall Framework

In this work, we aim to enhance the translation ca-
pabilities of LLMs by instructing them to engage
in self-reflect on their translation candidates, ulti-
mately producing carefully refined outputs. This
process is achieved through a two-stage inference.

In the first stage, we task the models with gener-
ating preliminary translations. Different from the
conventional machine translation process, we also
require the models to predict the quality of their
own outputs simultaneously. These generated pre-
liminary translations are referred to as “drafts”, and
their corresponding quality predictions can take the
form of either approximate labels or precise scores.
This stage of inference can be formalized into the

following formula:
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where 0 represents the parameters of the LLM, z
and w denote the source sentence and the rest of
the prompt (including the instruction), respectively.
The preliminary translation y;.,, is generated first,
and the quality label (score) ¢ is generated later
according to yi.,,. The corresponding prompts
of the first inference stage are illustrated in the
"Inference Stage 1" box of Figure 1.

In the second stage, we guide the models to re-
fine their drafts based on the quality predictions.
Both the drafts and quality labels (scores) are for-
matted into the input field of the prompts for LLMs.
The models proceed to make appropriate adjust-
ments to the drafts according to the predicted labels
(scores), yielding the final translation candidates
in a refined form. This stage of inference can be
formalized into the following formula:

Yy ~ Py |y qu, z;0) 3)
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where w’ denotes the new prompt employed in the
second stage. The refined translation v} ., is gener-
ated according to the preliminary translation y with
its predicted quality level q. The corresponding
prompts of the second inference stage are illus-
trated in the "Inference Stage 2" box of Figure 1.

3.2 Multitask Supervised Fine-tuning

To ensure that LLMs acquire the requisite knowl-
edge and achieve a comprehensive understanding
of the task instructions, we conduct multitask su-
pervised fine-tuning (SFT) on the models. The mul-
titasking approach consists of three components:
Basic Translation, Quality Prediction and Draft
Refinement.

Quality Prediction We utilize translation results
generated by multiple systems, paired with their
evaluated quality scores, to construct fine-tuning
instances. These instances are designed to teach
LLMs to make quality predictions on the given in-
puts. Specifically, we employ the COMET score
as a proxy for translation quality. The quality pre-
diction task consists of two forms: quality esti-
mation (QE) and text classification (TC). Please
refer to Appendix A for detailed information. The
ground truth of the training data would be trans-
lations with gold quality labels (either scores or
categories) placed in the front. An example can be
found in the corresponding block in Figure 1.

Basic Translation We utilize parallel data com-
bined with a standardized instruction to conduct
fine-tuning of LLMs for multilingual translation
tasks, including German< English and Chinese
< English language pairs. The instruction is for-
mulated straightforwardly as “Translate from
[SRC] to [TGT]”. As shown in Figure 1, the Ba-
sic Translation instructions exhibit a high degree
of similarity to their Quality Prediction counter-
parts, but they belong to two completely differ-
ent tasks. In order to disambiguate instructions
between these two tasks and prevent LLMs from
obtaining low-quality translation knowledge, we
adopt the approach proposed by Zeng et al. (2023),
which appends a distinguishing note, “### Note:
A translation with no errors could be.” at
the end of the Basic Translation input. This note is

also incorporated into the instruction of the second
inference stage to minimize errors in the models’
output candidates to the greatest extent possible.

Draft Refinement In the second stage of the re-
flective process, LLMs are tasked with refining
drafts based on quality labels (scores) to produce
final outputs. For a given source sentence, among
the outputs from multiple translation systems, we
designate the highest-scored output as the reference
while selecting the lowest-scored one as the draft.
To facilitate this process, We incorporate a new
field named “Hint” within the translation prompt.
This field provides LLMs with translation drafts
of the source sentence, with quality labels placed
in front of the draft in the following format: “###
Hint: Draft with quality label: [LABEL]
[Draft]”. The complete prompt template is shown
in Figure 1.

4 Experimental Setups

4.1 Data

Training Data We combined two parts of
datasets to build our training set, including the
WMT validation set and MTME multi-candidate
dataset. Data set introduction and data size can be
found in Appendix B.

Test Data To avoid possible data leakage in the
training data, we evaluate the translation perfor-
mance on the test sets from WMT22 competition
(Kocmi et al., 2022), which covers diverse do-
mains such as news, social, e-commerce and con-
versation. We mainly report the results of trans-
lations in German< English and Chinese < En-
glish directions. We report the BLEU scores by
SacreBLEU (Post, 2018) and COMET scores by
wmt22-comet-da (Rei et al., 2022).

4.2 Model Training

We employ BLOOMZ-7b-mt! and LLaMA-2-7b?
(Touvron et al., 2023) as our backbone models.
The fine-tuning strategy encompasses the follow-
ing approaches:

Full-Parameter Tuning (Full) In this method,
all the parameters in LLMs are involved in the train-
ing process. In comparison to methods that focus
on training only a small set of parameters (such
as Prefix Tuning and Low-Rank Adaption), full-
parameter tuning is less susceptible to overfitting

'https://huggingface.co/bigscience/bloomz-7b1-mt
*https://huggingface.co/meta-llama/Llama-2-7b
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System Zh=En En=-7h De=En En=-De
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
WMT22 Winners 33.50 81.00 54.30 86.80 33.70 85.00 38.40 87.40
NLLB-3.3b 21.07 76.92 32.52 81.56 29.54 83.42 33.98 86.23
BayLing-7b 21.54 79.45 41.96 85.15 26.80 83.96 28.23 84.26
CMT-Full 2281 7925 3549 8501 2405 7761 1884 7131
MT-FixEmb 23.43 79.84 36.68 85.20 25.07 78.27 19.41 72.06
"TAsTE
Full-QF 23.56 79.26 37.73 85.00 25.17 77.84 21.03 74.30
Full-TC 23.52 79.24 3791 84.99 24.92 78.04 20.84 74.24
FixEmb-QE 24.56 80.09 39.73 85.42 26.35 78.63 21.56 75.07
FixEmb-TC 24.32 80.09 39.76 85.45 26.25 78.67 21.61 75.26
FixEmb-QE+TC  24.62 80.17 39.97 85.62 26.60 79.03 21.89 75.76

Table 2: Main results of TASTE. BLOOMZ-7b-mt is chosen as the backbone model. QF and TC signify that the
Quality Prediction subtask takes the form of quality estimation and text classification, respectively. QE+TC denotes
a fusion of these two approaches, combining two segments of the training data. The best results of our work are

labeled using bold font.

due to the larger parameter space. However, the
main issue with this approach is excessive memory
consumption and runtime demands.

Tuning with Fixed Embedding Layer (FixEmb)
The embedding layer is trained on large-scale cor-
pus during pre-training and reflects the general dis-
tribution of word embeddings. Further tuning, es-
pecially when the number of trainable parameters
is limited or the training corpus is not abundant
enough, will introduce disturbances into these dis-
tributions, leading to a decline in the model’s ex-
pressive capacity. To overcome this problem, we
freeze the embedding layers of LLMs and fine-tune
the rest of the parameters. This can help LLMs
maintain correctness and diversity in their expres-
sions.

4.3 Baselines

The baseline models are fine-tuned on the
Basic Translation data set which contains
German&English and Chinese<English direc-
tions. We represent these baselines as MT-(-).

Additionally, we report the results of WMT22
winners, NLLB-3.3B (Costa-jussa et al., 2022),
which is a multilingual translation model trained
in over 200 languages and Bayling (Zhang et al.,
2023b), an LLM tuned for machine translation with
LLaMA-7b as the backbone model.

5 Results

Our main results are shown in Table 2. Almost
all of our methods outperform the MT baseline

across both metrics, providing evidence of the
effectiveness of our approach in enhancing the
translation capabilities of LLMs. When employ-
ing the QE+TC approach, which combines the
training data of both quality estimation and text
classification styles, the models consistently at-
tain the highest scores across nearly all directions.
When choosing BLOOMZ-7b-mt as the backbone
model, our approach achieves favorable results in
Zh& En directions, which surpasses NLLB-3.3b
and Bayling-7b, approaching the performance of
WMT?22 winners in COMET scores (80.17 vs. 81.0
and 85.62 vs. 86.80). LLaMA-7b also achieves per-
formance enhancement in Zh< En directions, the
details are shown in Table 3.

The models trained with fixed embedding layers
consistently outperform their counterparts trained
with full parameters across all language pairs and
both evaluation metrics. We argue that this is be-
cause fixing embedding layers during fine-tuning
effectively preserves the expressive capability of
LLMs against word distribution biases within the
training data. This facilitates the generalization of
LLMs across the word domain, mitigating over-
fitting and thereby enhancing their capacity to pro-
duce robust and diverse translations.

We can also observe inconsistencies in both the
trajectory and magnitude of changes when exam-
ining BLEU and COMET scores. For instance,
our approach, referred to as TASTE-FixEmb-TC,
slightly lags behind BayLing in terms of BLEU
scores (39.76 vs. 41.96), yet it achieves a higher



Zh=-En En=Zh
System
BLEU COMET BLEU COMET
MT-FixEmb 24.30 79.02 33.33 83.62
TASTE
FixEmb-QE 24.36 79.14 34.68 83.76
FixEmb-QE+TC  24.84 79.30 34.94 83.90

Table 3: The results of TASTE while taking LLaMA-7b
as the backbone model. Our approach gains translation
performance enhancement in both Zh=- En and EN=
Zh directions.

Model PPL Predt Pt Rt FIt
BLOOMZ 42 853 787 782 78.1
LLaMA-2 -39.1 913 80.5 80.2 80.1

Table 4: Evaluation results on quality prediction task.
PPL/Pred. represents Pearson’s r between the perplexity
values/predicted scores and the COMET scores. Preci-
sion, recall, and F1 values are calculated as weighted
averages across three translation quality categories.

COMET score (85.45 vs. 85.15). The limitations
of BLEU have been widely discussed in recent
times, primarily due to its limited correlation with
human evaluation results, as highlighted by Freitag
et al. (2022). It is pointed out that neural-based
metrics offer a more qualified and robust means of
evaluating translation quality. The observed incon-
sistencies in our results align with this viewpoint,
emphasizing the need to prioritize the more reliable
COMET scores in our assessments.

6 Analysis

6.1 How Good Are LLMs at Quality
Prediction?

Quality Prediction constitutes an end-to-end pro-
cess, where LLMs are instructed to predict quality
labels or scores while generating translations. To
validate the assertion that LLMs have genuinely
acquired the capability to predict the quality of
candidates, we evaluated the prediction outputs.
This evaluation is executed using a validation set
containing all four translation directions extracted
from the MTME multi-candidate data set, which
does not overlap with the training data. For quality
estimation, we assessed Pearson’s correlation coef-
ficient between the predicted quality scores and the
gold COMET scores. Additionally, we present the
Pearson’s correlation coefficient between the per-
plexity values (PPL) of the candidates and the gold
COMET scores for comparison. For text classifi-
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Figure 2: Comparison between the COMET scores of
the preliminary and refined translations.We report the
scores in Zh=-En direction achieved by BLOOMZ-7b-mt.

cation, we construct gold labels for the instances
according to their COMET scores following the
same principle mentioned in §3.2 and we report
precision, recall, and F1 values.

The results are shown in Table 4. In the quality
estimation task, our models produce scores with a
satisfactory correlation with COMET scores (the p-
values are all smaller than 0.01), while the perplex-
ity values demonstrate a relatively poor correlation
with COMET scores. And for the text classification
approach, the model also exhibits a commendable
level of accuracy in assigning quality labels to their
translations, as evidenced by F1 values surpassing
78.1. These statistics demonstrate that our mod-
els are able to make precise quality predictions for
their own generated translations, thereby providing
a dependable reference for the Draft Refinement
task. We can also discover from the results that
LLaMA-2 outperforms BLOOMZ in terms of accuracy
for both quality estimation and text classification
tasks, suggesting that LLaMA-2 possesses a more
extensive bilingual knowledge base.

6.2 Effect of Draft Refinement

To analyze the influence of the Draft Refinement
process (i.e. the second stage of inference), we
perform the following two comparisons between
the candidates obtained after the first and second
inference stages, respectively.

Translation Quality We evaluate the COMET
scores of the preliminary and refined translations.
The results are shown in Figure 2. In the plot,
each point located above the diagonal line repre-
sents an instance in which a quality improvement
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Figure 3: Comparison between the unaligned transla-
tion words percentages of the preliminary and refined
translations.

is achieved through the refinement process. As the
plot demonstrates, a majority of the final candi-
dates exhibit higher quality levels than their initial
counterparts. In many cases, the candidates gain
an enhancement in their COMET score of over
0.05. Furthermore, it is worth noting that the Draft
Refinement process helps rectify the generation
failures that may occur during the initial inference
stage (instances located in the top-left region of the
plot). These observations indicate the capacity of
the Draft Refinement process to effectively refine
the preliminary translations generated after the first
inference stage and its ability to handle instances
of generation failure.

Unaligned Translation Words (UTW) We mea-
sure the number of target-side words that remain un-
aligned in a word-to-word alignment between the
source sentences and translations obtained after the
first and second inference stages, respectively. The
alignments are extracted using the tool developed
by Dou and Neubig (2021). This measurement
is also used by Hendy et al. (2023) to investigate
the presence of words that have no support in the
source sentences. The results are shown in Figure
3. We can observe that the amount of unaligned
translation words is reduced significantly during
the Draft Refinement process, with a decrease of
approximately 15 percentage points. This obser-
vation suggests that the Draft Refinement process
contributes to a reduction in hallucinations within
the candidates, leading to a higher level of trans-
lation precision and mitigation of potential risks
within the translation systems.

6.3 Ablation Study

In order to emphasize the necessity of our multi-
task training set and prompt design, we conduct

Method BLEU COMET

MT 23.43 79.84

TASTE 24.65 80.28
w/ ConstDrafts 22.39 77.10
w/o BasicTrans 21.29 70.70
w/o QualityPred  24.29 80.06
w/o DraftRefine  22.96 76.36

Table 5: Ablation Study. We report the BLEU
and COMET scores in Zh=-En direction achieved by
BLOOMZ-7b-mt.

System  Zh=En En=7Zh De=En En=-De
Ours 79.30 83.90 83.87 83.47
ICL-7b 74.50 73.79 79.63 74.37
ICL-13b  75.21 75.32 80.10 73.55

Table 6: COMET scores gained by our approach and
the In-context Learning method.

an ablation study. We choose BLOOMZ-7b-mt as
the backbone model and fine-tune it using various
training sets with FixEmb-TC method. BLEU and
COMET scores evaluated in Zh=-En direction are
reported in Table 5.

Contrastive Drafts In the Draft Refinement sub-
set of the multitask training data, we choose
one low-quality candidate from the MTME multi-
candidate data set as a draft to be refined. Here, we
add one more candidate with the second-highest
COMET score to form a pair of contrastive drafts.
The task for LLMs is to generate refined transla-
tions based on the contrastive drafts with their re-
spective quality labels. The results in the third line
of Table 5 show that this approach brings no pos-
itive effects. This indicates that during the refine-
ment stage, extra drafts are not needed by LLMs to
generate higher-quality translations.

Multitask Training Set Our multitask training
set contrains three parts: Basic Translation, Qual-
ity Prediction and Draft Refinement. Each task
serves for the whole reflection process we propose.
To demonstrate the rationality of this task combi-
nation, we remove a specific section of the training
set separately, and the consequences are shown in
the last three rows of Table 5. The performance of
the model decreases when any subset of the train-
ing date is removed. This result implies that each
of the sub-tasks is essential for our approach.
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Figure 4: COMET scores obtained from BLOOMZ (Line 1) and LLaMA-2 (Line 2) across different model sizes.

6.4 Comparison with In-context Learning

Our approach is based on a two-stage infer-
ence, which is similar to the thought of ICL
(In-context Learning). To certify the superior-
ity of our proposal, we perform a comparison
with the ICL method. We apply the same two-
stage inference procedures used in our approach to
LLaMA-2-chat-7b and LLaMA-2-chat-13b, both
of which undergo no training process. The results
are shown in Table 6. In many-to-English transla-
tion directions, the ICL method gains reasonable
performance, yet our approach outperforms it sig-
nificantly. And in English-to-many directions, sub-
stantial performance gaps are observed between the
ICL method and our approach. The ICL method
failed to generate stable outcomes by the inference
chain, primarily due to a severe off-target issue
which keeps the models from producing transla-
tions in correct target languages.

6.5 Effect of Model Size

We report COMET scores yielded by LLMs of
various sizes, with BLOOMZ and LLaMA-2 trained by
FixEmb-QF method as backbone models.

As shown in Figure 4, with the increase in the
number of model parameters, both the median and
mean scores are consistently rising. This indicates
that our proposed method is robust in terms of
model parameter scaling. As mentioned in §5,
LLMs depend on large amounts of parameters
to memorize task-specific knowledge to perform
multi-tasking. In addition, the instructions we de-
signed for different tasks are highly similar, which
makes it more challenging but essential for LLMs

to grasp different type of knowledge.

Another observation is that the distribution of
scores achieved by larger models tends to be more
concentrated than that obtained by smaller ones.
This indicates that as the number of model param-
eters increases, the performance of LLMs is not
only enhanced but also stabilized, which means
bad cases occur less frequently, guaranteeing the
lower bound of the capacity. Regarding LLaMA-2,
the observed improvement is more substantial in
many-to-English directions. However, the under-
lying reasons for this phenomenon remain unex-
plored and will be focused on in future works.

7 Conclusion

We introduce TASTE, a novel approach that enables
LLMs to translate through the self-reflection pro-
cess. Our approach allows LLMs to initially gen-
erate a preliminary translation and autonomously
assess its quality. Subsequently, the translation is
refined based on the evaluation results, resulting in
the final candidate. Our experiments and analyses
provide evidence of the effectiveness of TASTE,
as it successfully enhance the translation quality
through the refinement process, consistently pro-
ducing high-quality candidates across various trans-
lation directions. Moreover, our findings demon-
strate that performance improves with model scal-
ing, suggesting that our methodology can be ex-
tended to larger LLMs, potentially yielding even
more promising results and providing a valuable
approach for machine translation using large lan-
guage models.



Limitations

The performance enhancement introduced by our
approach exhibits inconsistency across different
translation directions. The improvement in cer-
tain directions is more substantial than in others,
and this observation persists even when employing
model scaling. We assume that this phenomenon is
caused by the inherent uneven multilingual knowl-
edge within the model, which is strongly influenced
by the data distribution during the pretraining pro-
cess of LLMs. A more in-depth exploration of the
underlying principles of this phenomenon is essen-
tial, and further experiments involving additional
language pairs are warranted.
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Task Size Source
Basic Translation 45.4k WMT Dev
Draft Refinement 18.6k MTME
Quality Prediction 45.0k  MTME

Table 7: Data sizes and sources of the training sets.

A Quality Prediction Task Designs

The quality prediction task is designed in two
forms: quality estimation (QE) and text classifi-
cation (TC).

Quality Estimation (QE) We request LLMs to
simultaneously predict quality scores on a scale
from 0 to 100 while generating translations by the
following instruction: “Translate from [SRC]
to [TGT], and score the translation
quality from @ to 100.” Here, the placeholders
“[SRCI” and “[TGT]” denote the source and target
language, respectively. We amplify the COMET
scores by a factor of one hundred and round it to
use as gold scores.

Text Classification (TC) We instruct LLMs to
categorize translations into three classes by the in-
struction “Translate from [SRC] to [TGT],
and label the translation quality as
“Good”, “Medium” or “Bad”.” Translations with
COMET scores greater than 0.85 are expected to
be classified as Good, those less than 0.65 as Bad,
and the remainder as Medium.

The quality estimation task can be regarded as
a more precise version of the text classification
task, which is perceived as more challenging for
generative language models. The methodologies
employed during the training and test phase will
remain consistent.

B Data Details

WMT Development Data We use human-
written validation data from previous WMT compe-
titions as the basic MT training data to align LLMs
on the machine translation task. Specifically, we
choose the newstest2017-2021 of German < En-
glish and Chinese < English as our MT training
set. Source and target sentences in this training set
are formed into the MT Prompt.

MTME Multi-Candidate Data This is a data set
containing source sentences and outputs of multi-
ple MT systems on the WMT metrics shared tasks
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built by Google Research®. We use the outputs on
newstest2019-2021 MT task of German <> English
and Chinese < English to build training data for
the Translation Classification and Draft Refinement
task. We decide the quality labels of each output
by calculating the COMET score with the wmt-
22-comet-da model. Candidates with scores above
0.85 are labeled as [Good], while those with scores
below 0.6 are labeled as [Bad], and the rest of them
are labeled as [Medium]. The Translation Clas-
sification and Draft Refinement data are formed
into the Classification Prompt and Refinement
Prompt, respectively.

The sizes and sources of the training data for the
three tasks are represented in Table 7.

3https://github.com/google-research/mt-metrics-eval
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