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Abstract

Large language models (LLMs) have exhib-001
ited remarkable performance in various natural002
language processing tasks. Techniques like in-003
struction tuning have effectively enhanced the004
proficiency of LLMs in the downstream task005
of machine translation. However, the existing006
approaches fail to yield satisfactory translation007
outputs that match the quality of supervised008
neural machine translation (NMT) systems.009
One plausible explanation for this discrepancy010
is that the straightforward prompts employed in011
these methodologies are not able to fully lever-012
age the acquired instruction-following capabili-013
ties. To this end, we propose the TASTE frame-014
work, which stands for translating through self-015
reflection. The self-reflection process includes016
two stages of inference. In the first stage,017
LLMs are instructed to generate preliminary018
translations and conduct self-assessments on019
these translations simultaneously. In the second020
stage, LLMs are tasked to refine these prelim-021
inary translations according to the assessment022
results. The evaluation results across four lan-023
guage directions on the WMT22 benchmark024
reveal the effectiveness of our approach when025
compared to the existing methods. Our work026
presents a promising approach to unleash the027
potential of LLMs and enhance their capabili-028
ties in machine translation.029

1 Introduction030

Large language models (LLMs) like GPT-4 (Ope-031

nAI, 2023) have recently demonstrated dramatic032

performance across a wide range of natural lan-033

guage processing tasks (Bubeck et al., 2023; Liang034

et al., 2022). Their outstanding grasp of under-035

standing of syntactic and semantic knowledge po-036

sitions them as potent instruments for the enhance-037

ment of machine translation, capable of producing038

translations of superior quality (Hendy et al., 2023;039

Zhang et al., 2023a; Garcia and Firat, 2022). This040

substantial progress represents an evolution of the041

SRC 但/But 口水鸡/Poached Chicken in Chili Sauce
整盒/whole box 是/is 生肉/row meat，没办
法/cannot 吃/eat，是否/whether 可以/can
退款/refund?

REF But the Poached Chicken in Chili Sauce is just
a box of inedible raw chicken, and can I get a
refund for it?

Normal But the whole box of chicken is raw meat, so you
can’t eat it, can you refund?

Stage 1 But the whole box is meat, can’t eat, can you
refund \n [Bad]

Stage 2 But the whole box of spicy chicken is raw meat,
so I can’t eat it. Can I get a refund?

Table 1: An example of the TASTE approach. “Normal”
denotes the output of the baseline model fine-tuned on a
normal parallel corpus. “Stage 1” and “Stage 2” denote
the outputs of the first and second inference stages of
the proposed self-reflection process, respectively. The
translation errors are marked by red strikethrough, and
the highlight denote the predicted quality label.

paradigm in machine translation, serving as the 042

foundation of novel translation systems character- 043

ized by enhanced quality and reliability. 044

Numerous studies are underway to unlock 045

the vast potential of machine translation within 046

LLMs. Prompt engineering aims to design effective 047

prompt templates to guide LLMs in accomplishing 048

specific language tasks. Some approaches attempt 049

to integrate supplementary information pertinent to 050

the translation task to enhance the performance of 051

LLMs (Ghazvininejad et al., 2023; Lu et al., 2023; 052

He et al., 2023). Studies in In-context Learning 053

(ICL, Brown et al., 2020) seek to provide LLMs 054

with more relevant and high-quality translation ex- 055

emplars, which assists LLMs in retrieving bilingual 056

knowledge, facilitating the generation of transla- 057

tions of the highest possible quality (Vilar et al., 058

2022; Agrawal et al., 2022). However, assessments 059

of LLMs reveal that, in most translation directions, 060

their performance falls short of that exhibited by 061
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robust supervised baselines (Zhu et al., 2023). This062

shortfall is due to the fact that these approaches063

often treat the machine translation task of LLMs as064

a simple text generation task, focusing on adjust-065

ing prompts to enhance the outcomes. However,066

the intrinsic features of the machine translation067

task, such as the necessity for diverse multilingual068

knowledge, are often overlooked.069

Some studies recommend the tuning of relatively070

smaller LLMs for translation, guided by a lim-071

ited number of high-quality supervised instructions072

(Zhu et al., 2023). The adoption of instruction073

tuning in machine translation tasks yields remark-074

able results in some instances (Zeng et al., 2023;075

Jiao et al., 2023; Zhu et al., 2023; Hendy et al.,076

2023). Despite these achievements, these attempts077

still fail to fully leverage the capacity of LLMs due078

to their overly straightforward inference process.079

Unlike supervised translation models, LLMs gener-080

ate translations through language modeling, which081

contains a more complicated inference process and082

relies more on inherent linguistic knowledge. Stud-083

ies such as chain-of-thought (CoT) reveal that in-084

troducing intermediate reasoning steps in the infer-085

ence process significantly augments the reasoning086

capabilities of language models (Wei et al., 2022;087

Kojima et al., 2022).088

In this paper, we introduce TASTE, a method089

aiming at improving the translation performance090

of large language models (LLMs) by instilling the091

ability to self-reflect on their own outputs. Specifi-092

cally, we segment the translation process of LLMs093

into two stages of inference. In the first stage,094

LLMs are prompted to generate preliminary trans-095

lations while simultaneously making quality pre-096

dictions for these translations. In the second stage,097

we instruct LLMs to refine these preliminary trans-098

lations based on the predicted quality levels to pro-099

duce final candidates. An example of the proposed100

process can be found in Table 1. This entire pro-101

cess can be regarded as a form of reflection, mir-102

roring the common approach employed by humans103

to carry out tasks more effectively and impeccably.104

In order to establish a sufficient multitask capabil-105

ity for executing the entire reflective translation106

process, we conduct supervised fine-tuning (SFT)107

on LLMs using a hybrid training dataset. This108

method demonstrates a remarkable stimulation of109

the potential of LLMs, providing a novel approach110

to enhance the translation performance of these111

models.112

Our contributions are summarized as follows:113

• We present the TASTE method, which guides 114

LLMs through a two-stage inference process, 115

allowing them to initially generate prelim- 116

inary results and subsequently refine them 117

into improved candidates based on their self- 118

assessment results. 119

• We create a multi-task training set compro- 120

mising tasks that are closely aligned with the 121

TASTE process to equip LLMs with the capa- 122

bility to successfully execute the whole infer- 123

ence process. 124

• We find that by employing the TASTE method, 125

LLMs proficiently refine their initial transla- 126

tion candidates, resulting in superior final out- 127

comes, which in turn contributes to an en- 128

hancement in their translation capabilities. 129

2 Related Work 130

Efforts to enhance the translation performance of 131

LLMs can be categorized into two research lines: 132

prompt engineering and instruction tuning. 133

Prompt Engineering aims to design proper 134

prompt templates and introduce prior knowledge or 135

supplementary information to support the inference 136

process of LLMs. Dictionary-based approaches in- 137

corporate control hints in the prompt by bilingual 138

or multilingual dictionaries to deal with source 139

sentences containing rare words (Ghazvininejad 140

et al., 2023; Lu et al., 2023). He et al. (2023) ex- 141

tracts translation-related knowledge, such as topics, 142

through self-prompting and employ this informa- 143

tion to guide the translation process. Studies in in- 144

context learning (ICL, Brown et al., 2020) aim to 145

provide LLMs with more relevant and high-quality 146

translation exemplars. This approach serves to as- 147

sist LLMs in retrieving bilingual knowledge, facili- 148

tating the generation of translations of the highest 149

possible quality (Vilar et al., 2022; Agrawal et al., 150

2022). 151

Instruction tuning represents an efficient method 152

to enhance the ability of LLMs to follow natural 153

language instructions and yield outputs that align 154

more closely with human preference in downstream 155

zero-shot tasks (Wei et al., 2021; Ouyang et al., 156

2022; Chung et al., 2022). Jiao et al. (2023) ex- 157

plore several translation instructions to improve 158

the translation performance of LLMs. Zeng et al. 159

(2023) employ examples in comparison to instruct 160

LLMs and calculate the additional loss. Zhang et al. 161
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Translate from Chinese to English.

另据塔斯社1月16日 […] 各种配置的车型都能买到。
### Note: A translation with no errors could be ### Response:

Basic Translation

Translate from German to English, and label the

translation quality as “Good”, “Medium” or “Bad”.

Eine gewisse Lautstärke gehört [...] bei etwa 98 Dezibel.

### Response:

Quality Prediction

Translate from English to Chinese.

Owning a dog brings with […] respond to our consultation.

### Hint: Draft with quality label:

[Medium] Der Besitz eines [...] Beratung zu reagieren.

### Response:

Draft Refinement

Elsewhere, according to reports by TASS  

[…] externally from 2019. All configured 

models will be available.

At the “Mint Mosquito” - Rocknacht, 

according to information […] and “the 

Ignition” is about 98 decibels.

[Bad]

Der Besitz eines Hundes bringt bestimmte 

Verantwortlichkeiten [...] auf unsere 

Konsultation zu reagieren.

Why can the island’s flying car party 

easily do a mountain road to seal the road? 

[medium]

Translate from Chinese to English.

岛上飞车党为什么能轻轻松松就把一段山路做到封路?
### Hint: Draft with quality label:

[medium] Why can the island’s flying […] seal the road?

### Note: A translation with no errors could be ### Response:

Why can the biker gang on the island 

easily seal off a mountain road?

Large
 Lan

gu
age

M
o

d
e

l

Translate from Chinese to English, and label the translation 

quality as “Good”, “Medium” or “Bad”.

岛上飞车党为什么能轻轻松松就把一段山路做到封路?
### Response:

Inference Stage 1

Inference Stage 2

Multi-task Instruction Tuning

Two-stage Inference (Self-reflection)

Figure 1: The framework of our proposed TASTE.

(2023b) enhances the multilingual language genera-162

tion and instruction following capabilities of LLMs163

through interactive translation tasks. Our work rep-164

resents a fusion of instruction tuning and the chain-165

of-thought (CoT) methodology. In our approach,166

we introduce a multi-step inference translation pro-167

cess in imitation of the self-reflection mechanism168

observed in humans. This capability is substanti-169

ated through the utilization of the multitask training170

data, comprising Basic Translation, Quality Predic-171

tion, and Draft Refinement.172

3 TASTE: Translate through Reflection173

3.1 Overall Framework174

In this work, we aim to enhance the translation ca-175

pabilities of LLMs by instructing them to engage176

in self-reflect on their translation candidates, ulti-177

mately producing carefully refined outputs. This178

process is achieved through a two-stage inference.179

In the first stage, we task the models with gener-180

ating preliminary translations. Different from the181

conventional machine translation process, we also182

require the models to predict the quality of their183

own outputs simultaneously. These generated pre-184

liminary translations are referred to as “drafts”, and185

their corresponding quality predictions can take the186

form of either approximate labels or precise scores.187

This stage of inference can be formalized into the188

following formula: 189

(y, q) ∼ P (y, q | w, x; θ) (1) 190

191
P (y1:m, q | w, x; θ)

=P (q | y1:m, w, x; θ)P (y1:m | w, x; θ)

=P (q | y1:m, w, x; θ)
m∏
t=1

P (yi | y1:t−1, w, x; θ)

(2)

192

where θ represents the parameters of the LLM, x 193

and w denote the source sentence and the rest of 194

the prompt (including the instruction), respectively. 195

The preliminary translation y1:m is generated first, 196

and the quality label (score) q is generated later 197

according to y1:m. The corresponding prompts 198

of the first inference stage are illustrated in the 199

"Inference Stage 1" box of Figure 1. 200

In the second stage, we guide the models to re- 201

fine their drafts based on the quality predictions. 202

Both the drafts and quality labels (scores) are for- 203

matted into the input field of the prompts for LLMs. 204

The models proceed to make appropriate adjust- 205

ments to the drafts according to the predicted labels 206

(scores), yielding the final translation candidates 207

in a refined form. This stage of inference can be 208

formalized into the following formula: 209

y′ ∼ P (y′ | y, q, w′, x; θ) (3) 210
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211
P (y′1:n | y, q, w′, x; θ)

=
n∏

t=1

P (y′i | y′1:t−1, y, q, w
′, x; θ)

(4)212

where w′ denotes the new prompt employed in the213

second stage. The refined translation y′1:n is gener-214

ated according to the preliminary translation y with215

its predicted quality level q. The corresponding216

prompts of the second inference stage are illus-217

trated in the "Inference Stage 2" box of Figure 1.218

3.2 Multitask Supervised Fine-tuning219

To ensure that LLMs acquire the requisite knowl-220

edge and achieve a comprehensive understanding221

of the task instructions, we conduct multitask su-222

pervised fine-tuning (SFT) on the models. The mul-223

titasking approach consists of three components:224

Basic Translation, Quality Prediction and Draft225

Refinement.226

Quality Prediction We utilize translation results227

generated by multiple systems, paired with their228

evaluated quality scores, to construct fine-tuning229

instances. These instances are designed to teach230

LLMs to make quality predictions on the given in-231

puts. Specifically, we employ the COMET score232

as a proxy for translation quality. The quality pre-233

diction task consists of two forms: quality esti-234

mation (QE) and text classification (TC). Please235

refer to Appendix A for detailed information. The236

ground truth of the training data would be trans-237

lations with gold quality labels (either scores or238

categories) placed in the front. An example can be239

found in the corresponding block in Figure 1.240

Basic Translation We utilize parallel data com-241

bined with a standardized instruction to conduct242

fine-tuning of LLMs for multilingual translation243

tasks, including German⇔ English and Chinese244

⇔ English language pairs. The instruction is for-245

mulated straightforwardly as “Translate from246

[SRC] to [TGT]”. As shown in Figure 1, the Ba-247

sic Translation instructions exhibit a high degree248

of similarity to their Quality Prediction counter-249

parts, but they belong to two completely differ-250

ent tasks. In order to disambiguate instructions251

between these two tasks and prevent LLMs from252

obtaining low-quality translation knowledge, we253

adopt the approach proposed by Zeng et al. (2023),254

which appends a distinguishing note, “### Note:255

A translation with no errors could be.” at256

the end of the Basic Translation input. This note is257

also incorporated into the instruction of the second 258

inference stage to minimize errors in the models’ 259

output candidates to the greatest extent possible. 260

Draft Refinement In the second stage of the re- 261

flective process, LLMs are tasked with refining 262

drafts based on quality labels (scores) to produce 263

final outputs. For a given source sentence, among 264

the outputs from multiple translation systems, we 265

designate the highest-scored output as the reference 266

while selecting the lowest-scored one as the draft. 267

To facilitate this process, We incorporate a new 268

field named “Hint” within the translation prompt. 269

This field provides LLMs with translation drafts 270

of the source sentence, with quality labels placed 271

in front of the draft in the following format: “### 272

Hint: Draft with quality label: [LABEL] 273

[Draft]”. The complete prompt template is shown 274

in Figure 1. 275

4 Experimental Setups 276

4.1 Data 277

Training Data We combined two parts of 278

datasets to build our training set, including the 279

WMT validation set and MTME multi-candidate 280

dataset. Data set introduction and data size can be 281

found in Appendix B. 282

Test Data To avoid possible data leakage in the 283

training data, we evaluate the translation perfor- 284

mance on the test sets from WMT22 competition 285

(Kocmi et al., 2022), which covers diverse do- 286

mains such as news, social, e-commerce and con- 287

versation. We mainly report the results of trans- 288

lations in German⇔ English and Chinese ⇔ En- 289

glish directions. We report the BLEU scores by 290

SacreBLEU (Post, 2018) and COMET scores by 291

wmt22-comet-da (Rei et al., 2022). 292

4.2 Model Training 293

We employ BLOOMZ-7b-mt1 and LLaMA-2-7b2 294

(Touvron et al., 2023) as our backbone models. 295

The fine-tuning strategy encompasses the follow- 296

ing approaches: 297

Full-Parameter Tuning (Full) In this method, 298

all the parameters in LLMs are involved in the train- 299

ing process. In comparison to methods that focus 300

on training only a small set of parameters (such 301

as Prefix Tuning and Low-Rank Adaption), full- 302

parameter tuning is less susceptible to overfitting 303

1https://huggingface.co/bigscience/bloomz-7b1-mt
2https://huggingface.co/meta-llama/Llama-2-7b
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System Zh⇒En En⇒Zh De⇒En En⇒De

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

WMT22 Winners 33.50 81.00 54.30 86.80 33.70 85.00 38.40 87.40
NLLB-3.3b 21.07 76.92 32.52 81.56 29.54 83.42 33.98 86.23
BayLing-7b 21.54 79.45 41.96 85.15 26.80 83.96 28.23 84.26
MT-Full 22.81 79.25 35.49 85.01 24.05 77.61 18.84 71.31
MT-FixEmb 23.43 79.84 36.68 85.20 25.07 78.27 19.41 72.06
TASTE

Full-QE 23.56 79.26 37.73 85.00 25.17 77.84 21.03 74.30
Full-TC 23.52 79.24 37.91 84.99 24.92 78.04 20.84 74.24
FixEmb-QE 24.56 80.09 39.73 85.42 26.35 78.63 21.56 75.07
FixEmb-TC 24.32 80.09 39.76 85.45 26.25 78.67 21.61 75.26
FixEmb-QE+TC 24.62 80.17 39.97 85.62 26.60 79.03 21.89 75.76

Table 2: Main results of TASTE. BLOOMZ-7b-mt is chosen as the backbone model. QE and TC signify that the
Quality Prediction subtask takes the form of quality estimation and text classification, respectively. QE+TC denotes
a fusion of these two approaches, combining two segments of the training data. The best results of our work are
labeled using bold font.

due to the larger parameter space. However, the304

main issue with this approach is excessive memory305

consumption and runtime demands.306

Tuning with Fixed Embedding Layer (FixEmb)307

The embedding layer is trained on large-scale cor-308

pus during pre-training and reflects the general dis-309

tribution of word embeddings. Further tuning, es-310

pecially when the number of trainable parameters311

is limited or the training corpus is not abundant312

enough, will introduce disturbances into these dis-313

tributions, leading to a decline in the model’s ex-314

pressive capacity. To overcome this problem, we315

freeze the embedding layers of LLMs and fine-tune316

the rest of the parameters. This can help LLMs317

maintain correctness and diversity in their expres-318

sions.319

4.3 Baselines320

The baseline models are fine-tuned on the321

Basic Translation data set which contains322

German⇔English and Chinese⇔English direc-323

tions. We represent these baselines as MT-(·).324

Additionally, we report the results of WMT22325

winners, NLLB-3.3B (Costa-jussà et al., 2022),326

which is a multilingual translation model trained327

in over 200 languages and Bayling (Zhang et al.,328

2023b), an LLM tuned for machine translation with329

LLaMA-7b as the backbone model.330

5 Results331

Our main results are shown in Table 2. Almost332

all of our methods outperform the MT baseline333

across both metrics, providing evidence of the 334

effectiveness of our approach in enhancing the 335

translation capabilities of LLMs. When employ- 336

ing the QE+TC approach, which combines the 337

training data of both quality estimation and text 338

classification styles, the models consistently at- 339

tain the highest scores across nearly all directions. 340

When choosing BLOOMZ-7b-mt as the backbone 341

model, our approach achieves favorable results in 342

Zh⇔ En directions, which surpasses NLLB-3.3b 343

and Bayling-7b, approaching the performance of 344

WMT22 winners in COMET scores (80.17 vs. 81.0 345

and 85.62 vs. 86.80). LLaMA-7b also achieves per- 346

formance enhancement in Zh⇔ En directions, the 347

details are shown in Table 3. 348

The models trained with fixed embedding layers 349

consistently outperform their counterparts trained 350

with full parameters across all language pairs and 351

both evaluation metrics. We argue that this is be- 352

cause fixing embedding layers during fine-tuning 353

effectively preserves the expressive capability of 354

LLMs against word distribution biases within the 355

training data. This facilitates the generalization of 356

LLMs across the word domain, mitigating over- 357

fitting and thereby enhancing their capacity to pro- 358

duce robust and diverse translations. 359

We can also observe inconsistencies in both the 360

trajectory and magnitude of changes when exam- 361

ining BLEU and COMET scores. For instance, 362

our approach, referred to as TASTE-FixEmb-TC, 363

slightly lags behind BayLing in terms of BLEU 364

scores (39.76 vs. 41.96), yet it achieves a higher 365
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System
Zh⇒En En⇒Zh

BLEU COMET BLEU COMET

MT-FixEmb 24.30 79.02 33.33 83.62
TASTE

FixEmb-QE 24.36 79.14 34.68 83.76
FixEmb-QE+TC 24.84 79.30 34.94 83.90

Table 3: The results of TASTE while taking LLaMA-7b
as the backbone model. Our approach gains translation
performance enhancement in both Zh⇒ En and EN⇒
Zh directions.

Model PPL Pred.↑ P↑ R↑ F1↑

BLOOMZ 4.2 85.3 78.7 78.2 78.1
LLaMA-2 -39.1 91.3 80.5 80.2 80.1

Table 4: Evaluation results on quality prediction task.
PPL/Pred. represents Pearson’s r between the perplexity
values/predicted scores and the COMET scores. Preci-
sion, recall, and F1 values are calculated as weighted
averages across three translation quality categories.

COMET score (85.45 vs. 85.15). The limitations366

of BLEU have been widely discussed in recent367

times, primarily due to its limited correlation with368

human evaluation results, as highlighted by Freitag369

et al. (2022). It is pointed out that neural-based370

metrics offer a more qualified and robust means of371

evaluating translation quality. The observed incon-372

sistencies in our results align with this viewpoint,373

emphasizing the need to prioritize the more reliable374

COMET scores in our assessments.375

6 Analysis376

6.1 How Good Are LLMs at Quality377

Prediction?378

Quality Prediction constitutes an end-to-end pro-379

cess, where LLMs are instructed to predict quality380

labels or scores while generating translations. To381

validate the assertion that LLMs have genuinely382

acquired the capability to predict the quality of383

candidates, we evaluated the prediction outputs.384

This evaluation is executed using a validation set385

containing all four translation directions extracted386

from the MTME multi-candidate data set, which387

does not overlap with the training data. For quality388

estimation, we assessed Pearson’s correlation coef-389

ficient between the predicted quality scores and the390

gold COMET scores. Additionally, we present the391

Pearson’s correlation coefficient between the per-392

plexity values (PPL) of the candidates and the gold393

COMET scores for comparison. For text classifi-394
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Figure 2: Comparison between the COMET scores of
the preliminary and refined translations.We report the
scores in Zh⇒En direction achieved by BLOOMZ-7b-mt.

cation, we construct gold labels for the instances 395

according to their COMET scores following the 396

same principle mentioned in §3.2 and we report 397

precision, recall, and F1 values. 398

The results are shown in Table 4. In the quality 399

estimation task, our models produce scores with a 400

satisfactory correlation with COMET scores (the p- 401

values are all smaller than 0.01), while the perplex- 402

ity values demonstrate a relatively poor correlation 403

with COMET scores. And for the text classification 404

approach, the model also exhibits a commendable 405

level of accuracy in assigning quality labels to their 406

translations, as evidenced by F1 values surpassing 407

78.1. These statistics demonstrate that our mod- 408

els are able to make precise quality predictions for 409

their own generated translations, thereby providing 410

a dependable reference for the Draft Refinement 411

task. We can also discover from the results that 412

LLaMA-2 outperforms BLOOMZ in terms of accuracy 413

for both quality estimation and text classification 414

tasks, suggesting that LLaMA-2 possesses a more 415

extensive bilingual knowledge base. 416

6.2 Effect of Draft Refinement 417

To analyze the influence of the Draft Refinement 418

process (i.e. the second stage of inference), we 419

perform the following two comparisons between 420

the candidates obtained after the first and second 421

inference stages, respectively. 422

Translation Quality We evaluate the COMET 423

scores of the preliminary and refined translations. 424

The results are shown in Figure 2. In the plot, 425

each point located above the diagonal line repre- 426

sents an instance in which a quality improvement 427
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Refined

Figure 3: Comparison between the unaligned transla-
tion words percentages of the preliminary and refined
translations.

is achieved through the refinement process. As the428

plot demonstrates, a majority of the final candi-429

dates exhibit higher quality levels than their initial430

counterparts. In many cases, the candidates gain431

an enhancement in their COMET score of over432

0.05. Furthermore, it is worth noting that the Draft433

Refinement process helps rectify the generation434

failures that may occur during the initial inference435

stage (instances located in the top-left region of the436

plot). These observations indicate the capacity of437

the Draft Refinement process to effectively refine438

the preliminary translations generated after the first439

inference stage and its ability to handle instances440

of generation failure.441

Unaligned Translation Words (UTW) We mea-442

sure the number of target-side words that remain un-443

aligned in a word-to-word alignment between the444

source sentences and translations obtained after the445

first and second inference stages, respectively. The446

alignments are extracted using the tool developed447

by Dou and Neubig (2021). This measurement448

is also used by Hendy et al. (2023) to investigate449

the presence of words that have no support in the450

source sentences. The results are shown in Figure451

3. We can observe that the amount of unaligned452

translation words is reduced significantly during453

the Draft Refinement process, with a decrease of454

approximately 15 percentage points. This obser-455

vation suggests that the Draft Refinement process456

contributes to a reduction in hallucinations within457

the candidates, leading to a higher level of trans-458

lation precision and mitigation of potential risks459

within the translation systems.460

6.3 Ablation Study461

In order to emphasize the necessity of our multi-462

task training set and prompt design, we conduct463

Method BLEU COMET

MT 23.43 79.84
TASTE 24.65 80.28

w/ ConstDrafts 22.39 77.10
w/o BasicTrans 21.29 70.70
w/o QualityPred 24.29 80.06
w/o DraftRefine 22.96 76.36

Table 5: Ablation Study. We report the BLEU
and COMET scores in Zh⇒En direction achieved by
BLOOMZ-7b-mt.

System Zh⇒En En⇒Zh De⇒En En⇒De

Ours 79.30 83.90 83.87 83.47
ICL-7b 74.50 73.79 79.63 74.37
ICL-13b 75.21 75.32 80.10 73.55

Table 6: COMET scores gained by our approach and
the In-context Learning method.

an ablation study. We choose BLOOMZ-7b-mt as 464

the backbone model and fine-tune it using various 465

training sets with FixEmb-TC method. BLEU and 466

COMET scores evaluated in Zh⇒En direction are 467

reported in Table 5. 468

Contrastive Drafts In the Draft Refinement sub- 469

set of the multitask training data, we choose 470

one low-quality candidate from the MTME multi- 471

candidate data set as a draft to be refined. Here, we 472

add one more candidate with the second-highest 473

COMET score to form a pair of contrastive drafts. 474

The task for LLMs is to generate refined transla- 475

tions based on the contrastive drafts with their re- 476

spective quality labels. The results in the third line 477

of Table 5 show that this approach brings no pos- 478

itive effects. This indicates that during the refine- 479

ment stage, extra drafts are not needed by LLMs to 480

generate higher-quality translations. 481

Multitask Training Set Our multitask training 482

set contrains three parts: Basic Translation, Qual- 483

ity Prediction and Draft Refinement. Each task 484

serves for the whole reflection process we propose. 485

To demonstrate the rationality of this task combi- 486

nation, we remove a specific section of the training 487

set separately, and the consequences are shown in 488

the last three rows of Table 5. The performance of 489

the model decreases when any subset of the train- 490

ing date is removed. This result implies that each 491

of the sub-tasks is essential for our approach. 492
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Figure 4: COMET scores obtained from BLOOMZ (Line 1) and LLaMA-2 (Line 2) across different model sizes.

6.4 Comparison with In-context Learning493

Our approach is based on a two-stage infer-494

ence, which is similar to the thought of ICL495

(In-context Learning). To certify the superior-496

ity of our proposal, we perform a comparison497

with the ICL method. We apply the same two-498

stage inference procedures used in our approach to499

LLaMA-2-chat-7b and LLaMA-2-chat-13b, both500

of which undergo no training process. The results501

are shown in Table 6. In many-to-English transla-502

tion directions, the ICL method gains reasonable503

performance, yet our approach outperforms it sig-504

nificantly. And in English-to-many directions, sub-505

stantial performance gaps are observed between the506

ICL method and our approach. The ICL method507

failed to generate stable outcomes by the inference508

chain, primarily due to a severe off-target issue509

which keeps the models from producing transla-510

tions in correct target languages.511

6.5 Effect of Model Size512

We report COMET scores yielded by LLMs of513

various sizes, with BLOOMZ and LLaMA-2 trained by514

FixEmb-QE method as backbone models.515

As shown in Figure 4, with the increase in the516

number of model parameters, both the median and517

mean scores are consistently rising. This indicates518

that our proposed method is robust in terms of519

model parameter scaling. As mentioned in §5,520

LLMs depend on large amounts of parameters521

to memorize task-specific knowledge to perform522

multi-tasking. In addition, the instructions we de-523

signed for different tasks are highly similar, which524

makes it more challenging but essential for LLMs525

to grasp different type of knowledge. 526

Another observation is that the distribution of 527

scores achieved by larger models tends to be more 528

concentrated than that obtained by smaller ones. 529

This indicates that as the number of model param- 530

eters increases, the performance of LLMs is not 531

only enhanced but also stabilized, which means 532

bad cases occur less frequently, guaranteeing the 533

lower bound of the capacity. Regarding LLaMA-2, 534

the observed improvement is more substantial in 535

many-to-English directions. However, the under- 536

lying reasons for this phenomenon remain unex- 537

plored and will be focused on in future works. 538

7 Conclusion 539

We introduce TASTE, a novel approach that enables 540

LLMs to translate through the self-reflection pro- 541

cess. Our approach allows LLMs to initially gen- 542

erate a preliminary translation and autonomously 543

assess its quality. Subsequently, the translation is 544

refined based on the evaluation results, resulting in 545

the final candidate. Our experiments and analyses 546

provide evidence of the effectiveness of TASTE, 547

as it successfully enhance the translation quality 548

through the refinement process, consistently pro- 549

ducing high-quality candidates across various trans- 550

lation directions. Moreover, our findings demon- 551

strate that performance improves with model scal- 552

ing, suggesting that our methodology can be ex- 553

tended to larger LLMs, potentially yielding even 554

more promising results and providing a valuable 555

approach for machine translation using large lan- 556

guage models. 557
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Limitations558

The performance enhancement introduced by our559

approach exhibits inconsistency across different560

translation directions. The improvement in cer-561

tain directions is more substantial than in others,562

and this observation persists even when employing563

model scaling. We assume that this phenomenon is564

caused by the inherent uneven multilingual knowl-565

edge within the model, which is strongly influenced566

by the data distribution during the pretraining pro-567

cess of LLMs. A more in-depth exploration of the568

underlying principles of this phenomenon is essen-569

tial, and further experiments involving additional570

language pairs are warranted.571
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Task Size Source

Basic Translation 45.4k WMT Dev
Draft Refinement 18.6k MTME
Quality Prediction 45.0k MTME

Table 7: Data sizes and sources of the training sets.

A Quality Prediction Task Designs 722

The quality prediction task is designed in two 723

forms: quality estimation (QE) and text classifi- 724

cation (TC). 725

Quality Estimation (QE) We request LLMs to 726

simultaneously predict quality scores on a scale 727

from 0 to 100 while generating translations by the 728

following instruction: “Translate from [SRC] 729

to [TGT], and score the translation 730

quality from 0 to 100.” Here, the placeholders 731

“[SRC]” and “[TGT]” denote the source and target 732

language, respectively. We amplify the COMET 733

scores by a factor of one hundred and round it to 734

use as gold scores. 735

Text Classification (TC) We instruct LLMs to 736

categorize translations into three classes by the in- 737

struction “Translate from [SRC] to [TGT], 738

and label the translation quality as 739

“Good”, “Medium” or “Bad”.” Translations with 740

COMET scores greater than 0.85 are expected to 741

be classified as Good, those less than 0.65 as Bad, 742

and the remainder as Medium. 743

The quality estimation task can be regarded as 744

a more precise version of the text classification 745

task, which is perceived as more challenging for 746

generative language models. The methodologies 747

employed during the training and test phase will 748

remain consistent. 749

B Data Details 750

WMT Development Data We use human- 751

written validation data from previous WMT compe- 752

titions as the basic MT training data to align LLMs 753

on the machine translation task. Specifically, we 754

choose the newstest2017-2021 of German ⇔ En- 755

glish and Chinese ⇔ English as our MT training 756

set. Source and target sentences in this training set 757

are formed into the MT Prompt. 758

MTME Multi-Candidate Data This is a data set 759

containing source sentences and outputs of multi- 760

ple MT systems on the WMT metrics shared tasks 761
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built by Google Research3. We use the outputs on762

newstest2019-2021 MT task of German ⇔ English763

and Chinese ⇔ English to build training data for764

the Translation Classification and Draft Refinement765

task. We decide the quality labels of each output766

by calculating the COMET score with the wmt-767

22-comet-da model. Candidates with scores above768

0.85 are labeled as [Good], while those with scores769

below 0.6 are labeled as [Bad], and the rest of them770

are labeled as [Medium]. The Translation Clas-771

sification and Draft Refinement data are formed772

into the Classification Prompt and Refinement773

Prompt, respectively.774

The sizes and sources of the training data for the775

three tasks are represented in Table 7.776

3https://github.com/google-research/mt-metrics-eval
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