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ABSTRACT

Algorithms which minimize the averaged loss have been widely designed for deal-
ing with noisy labels. Intuitively, when there is a finite training sample, penalizing
the variance of losses will improve the stability and generalization of the algo-
rithms. Interestingly, we found that the variance of losses sometimes needs to be
increased for the problem of learning with noisy labels. Specifically, increasing
the variance of losses would boost the memorization effect and reduce the harm-
fulness of incorrect labels. Regularizers can be easily designed to increase the
variance of losses and be plugged in many existing algorithms. Empirically, the
proposed method by increasing the variance of losses could improve the general-
ization ability of baselines on both synthetic and real-world datasets.

1 INTRODUCTION

Learning with noisy labels can be dated back to 1980s (Angluin & Laird, 1988). It has recently
drawn a lot of attention (Liu & Tao, 2015; Nguyen et al., 2019; Li et al., 2020; 2021) because large-
scale datasets used in training modern deep learning models can easily contain label noise, e.g.,
ImageNet (Deng et al., 2009) and Clothing1M (Xiao et al., 2015). The reason is that it is expensive
and sometimes infeasible to accurately annotate large-scale datasets. Meanwhile, many cheap but
imperfect surrogates such as crowdsourcing and web crawling are widely used to build large-scale
datasets. Training with such data can lead to poor generalization abilities of modern deep learning
models because they will overfit noisy labels (Han et al., 2018b; Zhang et al., 2021).

Generally, the algorithms of learning with noisy labels can be divided into two categories: statisti-
cally inconsistent algorithms and statistically consistent algorithms. Methods in the first category
are heuristic, such as selecting reliable examples to train model (Han et al., 2018b; Malach & Shalev-
Shwartz, 2017; Ren et al., 2018; Jiang et al., 2018), correcting labels (Ma et al., 2018; Kremer et al.,
2018; Tanaka et al., 2018; Reed et al., 2014), and adding regularization (Han et al., 2018a; Guo et al.,
2018; Veit et al., 2017; Liu et al., 2020). Those methods empirically perform well. However, it is
not guaranteed that the classifiers learned from noisy data are statistically consistent and often need
extensive hyper-parameter tuning on clean data.

To address this problem, many researchers explore algorithms in the second category. Those algo-
rithms aim to learn statically consistent classifiers (Liu & Tao, 2015; Patrini et al., 2017; Liu et al.,
2020; Xia et al., 2020). Specifically, their objective functions are specially designed to ensure that
minimizing their expected risks on the noise domain is equivalent to minimizing the expected risk
on the clean domain. In practice, it is infeasible to calculate the expected risk. To approximate the
expected risk, existing methods minimize the empirical risks, i.e., the averaged loss over the noisy
training examples, which is an unbiased estimator to the expected risk (Xia et al., 2019; Li et al.,
2021) because their difference will vanish when the training sample size goes to infinity. However,
when the number of examples is limited, the variance of the empirical risk could be high, which
leads to a large estimation error.

However, we report that penalizing the variance of losses is not always helpful for the problem of
learning with noisy labels. By contrast, in most cases, we need to increase the variance of losses,
which will boost the memorization effect (Bai & Liu, 2021) and reduce the harmfulness of incorrect
labels. This is because deep neural networks tend to learn easy and majority patterns first due to
the memorization effect (Bai & Liu, 2021; Zhang et al., 2021). The incorrectly labeled data is of
minority and has a more complex relationship between instances and labels compared with correctly
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Figure 1: We visualize the averaged training loss of instances with correct labels (blue dashed lines)
and instances with incorrect labels (yellow solid lines) obtained by penalizing the variance of losses,
employing original loss, and increasing the variance of losses in (a)-(c), respectively. The dataset is
CIFAR-10 with symmetry-flipping noise, and the noise rate is 0.2. The neural network ResNet-18
and the baseline Forward (Patrini et al., 2017) are employed. The transition matrix T is given and
does not need to be estimated.

labeled data, then incorrectly labeled data is harder for neural networks to remember. Therefore, the
losses of instances with incorrect labels are likely to be larger than those of correct instances (Han
et al., 2018b). Penalizing the variance of losses could force the model to reduce the loss of the
instances with incorrect labels because the correct labels are of majority and their losses are smaller,
making it hard to distinguish correctly and incorrectly labeled data and will lead to performance
degeneration. In contrast, increasing the variance of losses could efficiently prevent large losses
from decreasing, then the model may not overfit instances with incorrect labels. In Section 3, we
further show that increasing the variance of losses can be seen as a weighting method that assigns
small weights to the gradients of large losses and large weights to the gradients of small losses,
which could reduce the effect of instances with incorrect labels when updating model’s parameters.
More discussions about the memorization effect can be found in the Appendix.

Intuitively, as illustrated in Fig. 1, change of the variance of losses does not have much influence
on the averaged training loss of instances with correct labels, but makes the averaged training loss
of instances with incorrect labels very different. Specifically, penalizing the variance of losses leads
to the averaged training loss of instances with incorrect labels decreasing fast, which will encourage
the model to overfit instances with incorrect labels. On the contrary, increasing variance of losses
can prevent the averaged training loss of instances with incorrect labels from decreasing as shown in
Fig. 1c. Therefore, the memorization effect are boosted. As a result, the test accuracy is improved
significantly by encouraging the variance of losses.

From the empirical risk minimization perspective, we are encouraged to reduce the variance of losses
to increase algorithmic stability. However, to handle label noise, as explained, we may need to boost
the variance of losses. This implies that the label noise issue should be carefully considered when
designing the loss variance part of learning algorithms. We empirically report that the variance of
losses should be boosted in most settings of learning with noisy labels studied in the literature.

The rest of this paper is organized as follows. In Section 2, we introduce related work. In Section 3,
we propose our method and its advantages. Experimental results on both synthetic and real-world
datasets are provided in Section 4. Finally, we conclude the paper in Section 5.

2 RELATED WORK

Some methods proposed to reduce the side-effect of noisy labels using heuristics, For example,
many methods utilize the memorization effect to select reliable examples (Han et al., 2020; Yao
et al., 2020a; Yu et al., 2019; Jiang et al., 2018) or to correct labels (Ma et al., 2018; Kremer et al.,
2018; Tanaka et al., 2018; Reed et al., 2014). Those methods empirically perform well. However,
most of them do not provide statistical guarantees for the learned classifiers on noisy data. Some
methods treat incorrect labels as outliers and focus on designing bounded loss functions (Ghosh
et al., 2017; Gong et al., 2018; Wang et al., 2019; Shu et al., 2020). For example, a symmetric cross-
entropy loss has been proposed which has proven to be robust to label noise asymptotically (Wang
et al., 2019). These methods focus on the numerical property of loss functions, and the designed
loss function can be proved to be noise-tolerant if the noise rate is not large.

The label noise transition matrix T (x) ∈ [0, 1]C×C (Patrini et al., 2017; Liu & Tao, 2015; Li et al.,
2021), where C is the number of classes, has been widely employed to design statistically consistent

2



Under review as a conference paper at ICLR 2023

classifiers (Liu & Tao, 2015; Patrini et al., 2017; Xia et al., 2020; Li et al., 2021). Let the clean class
posterior P (Y |X = x) := [P (Y = 1|X = x), . . . , P (Y = C|X = x)]⊤. It can be inferred by
utilizing the noisy class posterior P (Ỹ |X = x) and the transition matrix T (x), where Tij(x) =

P (Ỹ = i|Y = j,X), i.e., P (Y |X = x) = [T (x)]−1P (Ỹ |X = x). Then, the expected risk of a
function f(X,Y ) modeling P (Y |X) can be formulated as the expected risk of a function g(X, Ỹ )

modeling P (Ỹ |X) multiplied by T (X), i.e., R(f(X,Y )) = R([T (X)]−1g(X, Ỹ )). In practice,
the expected risk R([T (X)]−1g(X, Ỹ )) can not be calculated, existing methods approximate the
expected risk with the averaged loss over the noisy training examples. Normally, when the number
of examples is limited, the variance of the losses or the empirical risk could be high, which could
make the algorithm unstable and lead to a large estimation error.

Different variance reduction methods have been developed in many fields. For example, Trun-
cated Importance Sampling (Ionides, 2008) limits the maximum importance weight, which solves
the problem of infinite variance and decreases the mean squared estimation error of the standard
importance sampling. Anschel et al. (2017) proposed to stabilize training procedure and improve
performance by reducing approximation error variance in target rewards. Achab et al. (2015) pro-
posed to use stochastic gradient descent (SGD) with variance reduction for optimizing a finite aver-
age of smooth convex functions, and a linear rate of convergence under strong convexity is proved.
Similarly, Allen-Zhu & Hazan (2016) proved that a fast convergence rate can be achieved by using
variance reduction on the non-convex optimization problem. Although the definitions of variance
are different, those works motivate us to explore the role of variance of losses in learning with noisy
labels because it is natural to consider that penalizing the variance of losses will have some benefits
similar to previous works.

3 ENHANCING VARIANCE OF LOSSES FOR LEARNING WITH NOISY LABEL

In this section, we propose our method, i.e., losses Variance Regularization for label-Noise Learning
(VRNL). We reveal how the proposed method reduces the negative effects of incorrect labels. We
also illustrate the advantage of our regularizer when working with existing methods.

3.1 METHODOLOGY

We show that the proposed method can efficiently prevent the model from learning incorrect labels.
Intuitively, encouraging the variance of losses can prevent losses of instances with incorrect labels
from decreasing, and promote the reduction of losses of instances with correct labels. Theoretically,
the gradients of large-loss examples will be assigned with small weights, and gradients of small-loss
examples will be assigned with large weights. As a result, the model puts more trust on small-loss
examples; and small-loss examples will contribute more to the update of parameters, which could
reduce the harmfulness of instances with incorrect labels.

To analyze the regularization effect in our method, we have to define some notations here. Let
Var[.] denote variance of a distribution. For a random variable X , Var[X] = E[X2]−E2[X]. Let C
denote the number of classes. Let fθ : X → ∆C−1 be a mapping parameterized by θ (e.g., a neural
network), where ∆C−1 denotes a probability simplex. Generally, the expected risk w.r.t. noisy
data is formulated as E(X,Ỹ )[ℓ(fθ(X), Ỹ )], where ℓ(·) is the loss function employed. Following
analysis can be applied to all methods which can be formulated as E(X,Ỹ )[ℓ(fθ(X), Ỹ )], where ℓ(·),
including statistically-consistent methods and cross-entropy loss-based methods. We propose to add
a variance regularizer to the losses. Specifically, the objective function of our method is

RG(fθ) = E(X,Ỹ )[ℓ(fθ(X), Ỹ )]− αVar(X,Ỹ )[ℓ(fθ(X), Ỹ )], (1)

where Var(X,Ỹ )[ℓ(fθ(X), Ỹ )] is a regularization term, and α is an adjustable hyper-parameter to
control the strength of the regularization effect. To encourage the variance of losses, α is chosen to
be a positive value. Usually, the strength of the regularization effect should not be too large, and α
is much smaller than 1. A suitable α can be obtained by utilizing validation sets. More details and
discussions can be found in Appendix.
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To exploit the influence of our designed regularizer with respect to the update of parameter θ, we
first illustrate the derivative of the objective function to θ, i.e.,

RG(fθ)

∂θ
=

∂E(X,Ỹ )[ℓ(fθ(X), Ỹ )]

∂θ
− α

∂Var(X,Ỹ )[ℓ(fθ(X), Ỹ )]

∂θ
= E(X,Ỹ )

[
W

∂ℓ(fθ(X), Ỹ )

∂θ

]
, (2)

where W = 1 + 2α
(
E(X,Ỹ )[ℓ(fθ(X), Ỹ )]− ℓ(fθ(X), Ỹ )

)
. For a specific example (x, ỹ), its

corresponding gradient is w ∂ℓ(fθ(x),ỹ)
∂θ , where the weight w is w = 1 + 2α(E(X,Ỹ )[ℓ(fθ(X), Ỹ )]−

ℓ(fθ(x), ỹ)). As aforementioned, α is chosen to be small such that w should be positive. The above
equation shows that 1) if the loss of the example (x, ỹ) is smaller than the expectation of the losses,(
E(X,Ỹ )[ℓ(fθ(X), Ỹ )]− ℓ(fθ(x), ỹ)

)
will be positive, and the weight associated with its gradient

is larger than 1. Then the example contributes more to the update of the parameter θ. 2) If the loss of
the example (x, ỹ) is larger than the expectation of the losses,

(
E(X,Ỹ )[ℓ(fθ(X), Ỹ )]− ℓ(fθ(x), ỹ)

)
will be negative. The weight associated with its gradient is small. Then the example contributes less
to the update of parameter θ.

Due to the memorization effect, deep neural networks tend to learn easy examples first and gradually
learn hard examples (Han et al., 2018b; Arpit et al., 2017). In learning with noisy labels, large-loss
examples are more likely to have incorrect labels and should not be trusted (Bai et al., 2021). By
employing the proposed method, the gradients of examples with incorrect labels are assigned with
small weights. In such a way, incorrectly-labeled examples would have less contribution to update
the parameter θ, which prevents the model from overfitting incorrect labels.

Additionally, compared with existing small-loss based methods, our method can sufficiently ex-
ploit the information contained in the whole training dataset. Existing learning with noisy labels
methods (Han et al., 2018b; Nguyen et al., 2019) usually divide the training sample into confi-
dent examples and unconfident examples based on the small-loss trick (Jiang et al., 2018; Malach &
Shalev-Shwartz, 2017; Li et al., 2020). To be specific, the examples with large losses are unconfident
examples, and their labels are ignored. However, some of the unconfident examples are hard-clean
examples that contain useful information for learning noise-robust classifiers (Bai & Liu, 2021). In
contrast, our method does not ignore unconfident examples but assign them with small weights such
that all the label information of the training dataset has been carefully exploited.

3.2 PRACTICAL IMPLEMENTATION

In practice, the expected risk RG(fθ) in Eq. 1 can not be calculated, the empirical risk is employed
as an approximation. Let n be the number of training examples, generally, the empirical risk of our
method is as follows:

R̂(fθ) =
1

n

n∑
i=1

ℓ(fθ(xi), ỹi)− α

(
1

n

n∑
i=1

ℓ(fθ(xi), ỹi)
2 −

(
1

N

n∑
i=1

ℓ(fθ(xi), ỹi)

)2)
. (3)

We further illustrate specific forms and settings of our designed regularization working with exist-
ing methods, i.e., Importance Reweighting (Liu & Tao, 2015), Forward (Patrini et al., 2017), and
VolMinNet (Li et al., 2021). Empirically, our method improves their classification accuracy.

Work with Forward. Forward correction (Patrini et al., 2017) exploits the noise transition matrix
T to estimate the clean class posterior distribution. We use the same method in the original paper
(Patrini et al., 2017) to estimate the transition matrix.

The objective loss function by combining our method with Forward can be formulated as follows:

R̂Forward(θ, T̂ ) =
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi)

− α

(
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi)
2 −

(
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi)

)2)
,

where ℓCE is the cross-entropy loss, T̂ is the estimated transition matrix, fθ models the clean class-
posterior distribution, T̂ fθ models the noisy class-posterior distribution.
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Work with Importance Reweighting. Importance Reweighting uses the weighted empirical risk
to estimate the empirical risk with respect to clean class-posterior distribution (Liu & Tao, 2015).
To calculate the weight of the empirical risk, both noisy class-posterior distribution and clean class-
posterior distribution need to be estimated. The objective loss function by combining our method
with Important Reweighting can be formulated as follows:

R̂IR(fθ) =
1

n

n∑
i=1

β̂iℓCE(fθ(xi), ỹi)− α

(
1

n

n∑
i=1

β̂2
i ℓCE(fθ(xi), ỹi)

2 −

(
1

n

n∑
i=1

β̂iℓCE(fθ(xi), ỹi)

)2)
,

where β̂i = P̂D(yi|xi)

P̂Dρ (ỹi|xi)
, D is the clean distribution, Dρ is the noisy distribution. The gradient of

R̂IR w.r.t. an example (xi, ỹi) is as follows:

∇R̂IR(fθ, (x, ỹ)) =
1

n

n∑
i=1

ŵi

(
ℓCE(fθ(xi), ỹi)

∂β̂i

∂θ
+ β̂i

∂ℓCE(fθ(xi), ỹi)

∂θ

)
,

where ŵi = 1 + 2α
(

1
n

∑n
j=1 β̂jℓCE(fθ(xj), ỹj)− β̂iℓCE(fθ(xi), ỹi)

)
. The ℓCE(fθ(x), ỹ)

∂β̂i

∂θ +

β̂i
∂ℓCE(fθ(x),ỹ)

∂θ is the gradient of the original Importance Reweighting loss. When the label
ỹi is incorrect, the reweighted loss β̂iℓCE(fθ(xi), ỹi) is usually larger than the averaged loss
1
n

∑n
j=1 β̂jℓCE(fθ(xj), ỹj). Then their difference is negative, which lead the weight ŵi to be small

because the hyper-parameter α is positive. As a result, the instance with an incorrect label has a
small contribution to the update of parameter θ, the proposed method can prevent the model from
memorizing the incorrect labels.

In the implementation, the early stopping technique is used for the approximation of the clean class-
posterior distribution. Specifically, the model fθ is trained on noisy data with 20 epochs, and we
feed the model output to a softmax function, then use the output of the softmax function g(x) to
approximate the clean class-posterior distribution. The noise transition matrix T has also been esti-
mated by using the same approach as in Forward correction. Then the model fθ is further optimized
by both weighted empirical risk and regularization for the variance of losses as follows:

R̂IR(θ) =
1

n

n∑
i=1

[
ℓCE(fθ(xi), ỹi)

gỹ(xi)

(T̂ g)ỹ(xi)

]
− ασ̂2

θ ,

where

σ̂2
θ =

(
1

n

n∑
i=1

(
ℓCE(fθ(xi), ỹi)

gỹ(xi)

(T̂ g)ỹ(xi)

)2

−

(
1

n

n∑
i=1

ℓCE(fθ(xi), ỹi)
gỹ(xi)

(T̂ g)ỹ(xi)

)2)
.

Work with VolMinNet. VolMinNet is an end-to-end label-noise learning method that learns the
transition matrix and the clean class-posterior distribution simultaneously (Li et al., 2021). It opti-
mizes two objectives: 1) a trainable diagonally dominant column stochastic matrix T̂ by minimizing
the determinate log det(T̂ ); 2) the parameter θ of the model by the cross-entropy loss between the
noisy label and the predicted probability by the neural network. In experiments, our VRNL only
regularizes the parameter θ by calculating the variance of cross-entropy losses. The objective by
combining our method with VolMinNet can be formulated as follows:

R̂vol(θ, T̂ ) =
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi) + λ log det(T̂ )

− α

(
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi)
2 −

(
1

n

n∑
i=1

ℓCE(T̂ fθ(xi), ỹi)

)2)
,

where λ > 0 is an adjustable hyper-parameter, we set λ = 0.0001 in all experiments. The transition
matrix T̂ should be differentiable, diagonally dominant and column stochastic.

Our method could help the state-of-the-art method VolMinNet (Li et al., 2021) to better estimate
the transition matrix and the clean class-posterior distribution. Specifically, VolMinNet requires the
clean class-posteriors to be diverse, which is called the sufficiently scattered assumption (Li et al.,
2021). By increasing the variance of the loss, the diversity of the estimated noisy class posteriors is
encouraged, so the estimated clean class-posteriors are also encouraged. Then transition matrix can
be better learned, which leads to the clean class-posterior distribution being better estimated.
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Figure 2: The change of losses with the increasing of training epochs for Reweighting. (a) and (b)
illustrate CE losses of P (Y |X) without or with increasing variance of losses, respectively. (c) and
(d) illustrate CE losses of P (Ỹ |X) without or with increasing variance of losses, respectively.
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Figure 3: The change of losses with the increasing of training epochs for VolMinNet. (a) and (b)
illustrate CE losses of P (Y |X) without or with increasing variance of losses, respectively. (c) and
(d) illustrate CE losses of P (Ỹ |X) without or with increasing variance of losses, respectively.

4 EXPERIMENTS

In this section, we first illustrate the empirical results of VRNL and other baselines on both synthetic
and real-world noisy datasets. What is more, we will delve into the different effects of the proposed
method on correct and incorrect examples to verify its effectiveness on Sec. 3. Finally, we will
illustrate the robustness of the proposed method when the estimated transition matrix is biased.

Datasets. We verify the performance of proposed method on the manually corrupted version of
three datasets, i.e., MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2009), and one real-world noisy dataset, i.e., Clothing1M (Xiao et al., 2015).
We leave out 10% of training data as validation sets. The experiments are repeated five times on
the synthetic noisy datasets. Clothing1M (Xiao et al., 2015) contains 1M images with real-world
noisy labels, it also contains 50k, 14k, and 10k images with clean labels for training, validation, and
testing, respectively. Existing methods like Forward (Patrini et al., 2017) and T-revision (Xia et al.,
2019) use the 50k clean data to initialize the transition matrix and validate on 14k clean data. We
assume that the clean data is not accessible, therefore, the clean data are not used for training and
validation. We leave out 10% of examples from 1M noisy data for validation.

Baselines. The baselines used in our experiments: 1). CE, standard cross-entropy loss; 2). Decou-
pling (Malach & Shalev-Shwartz, 2017) trains two models at the same time, and only the instances
which have different predictions from two networks are used to update the parameter; 3). Men-
torNet (Jiang et al., 2018) pre-trains an extra model which is used to select clean examples for the
main model training; 4). Co-teaching (Han et al., 2018b) trains two networks simultaneously, and
each network is used to select small-loss examples as trust examples to its peer network for further
training; 5). Forward (Patrini et al., 2017) estimates the transition matrix in advance, then uses it
to approximate the clean class posteriors; 6). T-Revision (Xia et al., 2019) proposes a method to
fine-tune the estimated transition matrix to improve the classification performance; 7). Dual T (Yao
et al., 2020b) improves the estimation of the transition matrix by introducing an intermediate class,
and then factorizes the transition matrix into the product of two easy-to-estimate transition matrices;
8). VolMinNet (Li et al., 2021) is an end-to-end label-noise learning method, which can learn the
transition matrix and the classifier simultaneously; 9). Reweight (Liu & Tao, 2015) uses the impor-
tance reweighting technique to estimate the expected risk on the clean domain by using noisy data.
Note that the aim of this paper is not to design a state-of-the-art noisy-label learning algorithm, we
want to explore whether the variance of losses should be always penalized when learning with noisy
labels. Therefore, we do not make comparisons with some methods which use the semi-supervised
methods, such as DevideMix (Li et al., 2020) and PES (Bai et al., 2021).
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Table 1: Means and standard deviations (percentage) of classification accuracy. Results with “*”
mean that they are the highest accuracy.

MNIST CIFAR-10 CIFAR-100
Sym-20% Sym-50% Sym-20% Sym-50% Sym-20% Sym-50%

Decoupling 97.04 ± 0.06 94.58 ± 0.08 77.32 ± 0.35 54.07 ± 0.46 41.92 ± 0.49 22.63 ± 0.44
MentorNet 97.21 ± 0.06 95.56 ± 0.15 81.35 ± 0.23 73.47 ± 0.15 42.88 ± 0.41 32.66 ± 0.40
Co-teaching 97.07 ± 0.10 95.20 ± 0.23 82.27 ± 0.07 75.55 ± 0.07 48.48 ± 0.66 36.77 ± 0.52
T-Revision 98.72 ± 0.10 98.23 ± 0.10 87.95 ± 0.36 80.01 ± 0.62 62.72 ± 0.69 49.12 ± 0.22

Dual T 98.43 ± 0.05 98.15 ± 0.12 88.35 ± 0.33 82.54 ± 0.19 62.16 ± 0.58 52.49 ± 0.37

CE 98.65 ± 0.05 97.94 ± 0.17 86.86 ± 0.26 78.93 ± 0.47 60.15 ± 0.46 45.66 ± 0.68
CE-VRNL 98.71 ± 0.06 97.96 ± 0.06 87.49 ± 0.25 79.31 ± 0.52 60.38 ± 0.61 47.79 ± 0.52
Forward 97.47 ± 0.15 97.93± 0.22 87.29± 0.63 77.58± 1.05 59.71± 0.40 44.53± 1.11

Forward-VRNL 98.89 ± 0.04∗ 98.14 ± 0.27 89.81 ± 0.29∗ 81.16 ± 0.55 68.19 ± 0.31∗ 54.10 ± 1.2
Reweight 98.20± 0.24 97.93± 0.20 88.42± 0.18 82.13± 0.56 60.52± 0.52 47.69± 0.78

Reweight-VRNL 98.61 ± 0.21 98.27 ± 0.15∗ 89.68 ± 0.24 83.99 ± 0.28∗ 66.52 ± 0.25 50.26 ± 0.14
VolMinNet 98.66± 0.14 97.83± 0.15 89.27± 0.30 82.17± 0.19 65.65± 0.62 54.40± 0.62

VolMinNet-VRNL 98.78 ± 0.08 97.93 ± 0.20 89.42 ± 0.12 82.92 ± 0.24 66.40 ± 0.66 55.94 ± 0.64∗

Asym-20% Asym-50% Asym-20% Asym-50% Asym-20% Asym-50%

Decoupling 96.79 ± 0.01 94.71 ± 0.08 78.63 ± 0.27 71.01 ± 3.72 39.42 ± 0.48 21.64 ± 0.23
MentorNet 97.03 ± 0.05 94.66 ± 0.11 78.99 ± 0.34 68.00 ± 2.09 10.03 ± 0.33 11.14 ± 0.25
Co-teaching 97.02 ± 0.03 95.15 ± 0.09 83.96 ± 0.28 76.58 ± 0.84 13.36 ± 0.44 13.10 ± 0.66
T-Revision 98.90 ± 0.11 98.35 ± 0.13∗ 88.38 ± 0.56 81.51 ± 0.74 59.52 ± 0.43 45.56 ± 1.86

Dual T 95.46 ± 0.14 91.46 ± 0.29 70.31 ± 1.06 53.04 ± 2.76 05.80 ± 0.78 02.38 ± 0.94

CE 98.76 ± 0.07 97.91 ± 0.23 87.31 ± 0.32 79.47 ± 0.47 59.83 ± 0.69 45.08 ± 0.71
CE-VRNL 98.77 ± 0.12 97.98 ± 0.20 87.38 ± 0.31 79.61 ± 0.40 60.69 ± 0.51 45.44 ± 0.10
Forward 98.42 ± 0.06 97.92± 0.04 87.70± 0.29 79.25± 1.61 60.24± 0.42 43.39± 1.15

Forward-VRNL 98.92 ± 0.06∗ 98.13 ± 0.21 89.98 ± 0.11∗ 82.35 ± 0.88 67.89 ± 0.30∗ 53.67 ± 0.52
Reweight 98.50± 0.07 98.09± 0.08 88.55± 0.32 82.72± 0.38 60.81± 0.70 46.36± 0.18

Reweight-VRNL 98.77 ± 0.21 98.10 ± 0.16 89.80 ± 0.11 84.20 ± 0.25∗ 66.62 ± 0.45 49.71 ± 0.64
VolMinNet 98.62 ± 0.10 98.03 ± 0.12 89.50 ± 0.18 83.15 ± 0.56 66.02 ± 0.73 55.17 ± 0.46

VolMinNet-VRNL 98.76 ± 0.13 98.08 ± 0.08 89.64 ± 0.19 83.65 ± 0.32 66.24 ± 0.95 55.85 ± 0.73∗

Pair-20% Pair-45% Pair-20% Pair-45% Pair-20% Pair-45%

Decoupling 96.93 ± 0.07 94.34 ± 0.54 77.12 ± 0.30 53.71 ± 0.99 40.12 ± 0.26 27.97 ± 0.12
MentorNet 96.89 ± 0.04 91.98 ± 0.46 77.42 ± 0.23 61.03 ± 0.20 39.22 ± 0.47 26.48 ± 0.37
Co-teaching 97.00 ± 0.06 96.25 ± 0.01 80.65 ± 0.20 73.02 ± 0.23 42.79 ± 0.79 27.97 ± 0.20
T-Revision 98.89 ± 0.08 84.56 ± 8.18 90.33 ± 0.52 78.94 ± 2.58 64.33 ± 0.49 41.55 ± 0.95

Dual T 98.86 ± 0.04 96.71 ± 0.12 89.77 ± 0.25 76.53 ± 2.51 67.21 ± 0.43 47.60 ± 0.43

CE 98.71 ± 0.08 83.49 ± 3.77 88.63 ± 0.26 66.32 ± 2.44 61.04 ± 0.31 39.78 ± 0.30
CE-VRNL 98.80 ± 0.10 84.00 ± 3.65 88.71 ± 0.30 67.71 ± 2.04 61.00 ± 0.32 39.91 ± 0.20
Forward 98.85 ± 0.09 96.45 ± 4.03 90.88 ± 0.23∗ 83.27 ± 9.47 62.54 ± 0.42 41.96 ± 1.45

Forward-VRNL 98.88 ± 0.08 96.55 ± 3.88 90.88 ± 0.29∗ 83.54 ± 9.29 62.78 ± 0.32 42.29 ± 1.23
Reweight 98.64 ± 0.07 95.52 ± 3.58 89.68 ± 0.30 76.03 ± 5.02 61.35 ± 0.66 40.10 ± 0.46

Reweight-VRNL 98.68 ± 0.14 95.97 ± 3.52 89.83 ± 0.30 76.75 ± 6.15 61.37 ± 0.42 40.30 ± 0.57
VolMinNet 99.05 ± 0.05∗ 99.08 ± 0.06 90.73 ± 0.23 88.47 ± 0.61 69.96 ± 1.18 61.85 ± 1.41

VolMinNet-VRNL 99.02 ± 0.08 99.10 ± 0.08∗ 90.86 ± 0.27 88.77 ± 0.51∗ 70.18 ± 0.50∗ 63.38 ± 1.72∗

Table 2: Classification accuracy(percentage) on Clothing1M. Only noisy data are exploited for train-
ing and validation.

Decoupling MentorNet Co-teaching T-Revision Dual T PTD

54.53 56.79 60.15 70.97 70.17 71.67

Forward Forward-VRNL Reweight Reweight-VRNL VolMinNet VolMinNet-VRNL
71.27 72.43 71.62 72.14 72.29 72.66

Noise Types. To generate a noisy dataset, we corrupted the training and validation sets manually
according to a special transition matrix T . Specifically, we conduct experiments on synthetic noisy
datasets with three widely used types of noise: 1). Symmetry flipping (Sym-ϵ) (Patrini et al., 2017);
2). Asymmetry flipping (Asym-ϵ); 3). Pair flipping (Pair-ϵ) (Han et al., 2018b). We manually
corrupt the labels of instances according to the transition matrix T .

Network structure and optimization. We implement the proposed methods and baseline using
Pytorch 1.9.1 and train the models on TITAN Xp. The model structure and optimizer are as same
as the state-of-the-art method (Li et al., 2021). Specifically, we use a LeNet-5 network (LeCun
et al., 1998) for MNIST, a ResNet-18 network for CIFAR-10, a ResNet-32 network (He et al., 2016)
for CIFAR-100, a ResNet-50 pretrained on ImageNet for Clothing 1M. On synthetic noise datasets,
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(c) VolMinNet with VRNL
Figure 4: Test accuracies of the models trained on CIFAR10 with symmetry-flipping noise and
increasing noise rate.
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(d) Forward on CIFAR10
Figure 5: Test accuracies of the models trained on MNIST and CIFAR10 by using biased transition
matrices, We increase the error of transition matrices manually. The proposed VRNL is robust to
the biased transition matrix.

SGD is used to train the neural network with batch size 128, momentum 0.9, weight decay 10−4,
and an initial learning rate 10−2. The algorithm is trained for 80 epochs, and the learning rate
is divided by 10 after the 30-th and 60-th epochs. For Forward and Reweight, we set the hyper-
parameter α = 0.1 on symmetry-flipping noise, asymmetry-flipping noise, and we set α = 0.01 on
pair-flipping noise. For VolMinNet, we set α = 0.005 on MNIST and CIFAR-100 with pair-flipping
noise. For other experiments on synthetic noisy datasets, α = 0.05 is employed. When the dataset
is Clothing-1M, for Forward and Reweight, SGD with batch size 64, momentum 0.9, weight decay
10−4 is used to train the model, and α is set to be 0.1; for VolMinNet, SGD with batch size 64,
momentum 0.9, weight decay 10−3 is used, and α is set to be 0.005. For Forward and Reweight,
the transition matrix T has to be estimated in advance. For the end-to-end method VolMinNet, the
transition matrix T and the classifier are learned simultaneously. To estimate the transition matrix,
we follow the same experimental settings described in their original papers (Patrini et al., 2017; Li
et al., 2021). The parameters of the model used to estimate the transition matrix will be used to
initialize the weights of the classifier.

4.1 CLASSIFICATION ACCURACY EVALUATION

We embed VRNL into the label-noise learning methods, e.g., Forward, Reweight and VolMin-
Net which are named Forward-VRNL, Reweight-VRNL and VolMinNet-VRNL, respectively. In
Tab. 1, we illustrate classification accuracies on datasets containing symmetry-flipping, asymmetry-
flipping and pair-flipping noise. It shows that VRNL improves the classification accuracies of all the
label-noise learning methods on different datasets and different types of noise. The performance of
VolMinNet is usually better than that of Forward and Reweight and the estimation error of transition
matrix used in Forward and Reweight is larger than in VolMinNet (Li et al., 2021). However, by
employing VRNL, the performance of Forward and Reweight are comparable to that of VolMinNet,
which suggests that VRNL is robust to the biased transition matrix. The improvements of VRNL
under pair-flipping noise are not large compared with symmetry-flipping and asymmetry-flipping
noise. More experiments to analyse the reason can be found in the Appendix.

We also provide the performance of VRNL under various noise rates. The experiment results are
visualized in Fig. 4. VRNL can improve the performance of existing methods on both little noise
and extreme noise. Detailed digits are posed in Tab. 4 and Tab. 5 in Appendix.

In Tab. 2, we illustrate the results on the real-world dataset Clothing1M. VRNL improves the gener-
alization ability of backbone methods. The performance of VolMinNet-VRNL outperforms all other
baselines.
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4.2 THE INFLUENCE ON CLEAN AND NOISY CLASS POSTERIORS

To analyze the influence of variance of losses increase on clean class posteriors and noisy class
posteriors. In Fig. 2 and Fig. 3, we visualize the change of cross-entropy losses for instances with
clean labels and instances with noisy labels during the model training, respectively. The average loss
and the standard derivation of mislabeled examples and correctly labeled examples are visualized
separately for better illustration. The methods used are Reweight and VolMinNet.

By comparing Reweight-VRNL with Reweight, the loss of noisy labels for mislabeled examples
is larger but the loss of noisy labels for correctly labeled examples is almost unchanged as shown
in Fig. 2c and Fig. 2d. It means that the proposed method prevents the model from memorizing
incorrect labels and has little influence on learning correctly labeled examples. By comparing Fig.
2b with Fig. 2a, the loss of clean labels for mislabeled examples becomes smaller when our method
is employed. It implies that our method helps learn clean class posteriors of mislabeled examples.

Similarly, the results also hold for VolMinNet. Specifically, the variance of noisy class posteriors in
Fig. 3d increases compared with Fig. 3c, which could help VolMinNet better estimate the transition
matrix. It is because our method encourages the diversity of noisy class posteriors, which makes the
sufficiently scattered assumption easier to be satisfied when the sample size is limited. Meanwhile,
it can be seen that the empirical risk defined by clean training examples decreases after using our
method, as shown in Fig. 3a and Fig. 3b. It means that the model can classify the examples better.

4.3 PERFORMANCE WITH THE BIASED TRANSITION MATRIX

In practice, the noise transition matrix generally is not given and is required to be estimated. How-
ever, the estimated transition matrix could contain a large estimation error. One reason is that the
transition matrix can be hard to accurately estimate when sample size is limited (Yao et al., 2020b).
Another reason is that the assumptions (Patrini et al., 2017; Li et al., 2021) used to identify the tran-
sition matrix may not hold. This motivates us to investigate the performance of our regularizer when
the transition matrix contains bias.

To simulate the estimation error, we manually inject noise into the transition matrix, i.e., T ρ =
T + γ|∆|, where ∆ ∈ RC×C sampled from standard multivariate normal distribution, and γ ∈
[0.01, 0.15]. Then we normalize the column of the transition matrix Tρ sum up to 1 by TN

ij =

T ρ
ij/

C∑
k=1

T ρ
ik. The estimation error ϵT of a transition matrix is calculated by employing the entry-

wise matrix norm, i.e., ϵT = ∥T − TN∥1,1/∥T ∥1,1.

The biased transition matrix TN is adopted to Reweight, Reweight-VRNL, Forward and Forward-
VRNL, respectively. Experimental results shown in Fig. 5 illustrate that our method is more robust
to the bias transition matrix. Specifically, for most experiments and different levels of bias ϵT ,
the test accuracies of Reweight-VRNL and Forward-VRNL are higher than Reweight and Forward.
Additionally, the test accuracy of Reweight-VRNL drops much slower than Reweight with the in-
creasing of bias ϵT .

5 CONCLUSION

In this paper, we study whether we should always penalize the variance of losses for the problem
of learning with noisy labels. Interestingly, we found that increasing the variance of losses could
be helpful, which can boost the memorization effect and reduce the harmfulness of incorrect labels.
Theoretically, we show that increasing variance of losses can reduce the weights of the gradient
with respect to instances with incorrect labels, therefore these instances have a small contribution
to the update of model parameters. A simple and effective method VRNL is also proposed which
can be easily integrated into existing label-noise learning methods to improve their robustness. The
experimental results on both synthetic and real-world noisy datasets demonstrate that VRNL can
dramatically improve the performance of existing label-noise learning methods. Empirically, we
have shown that the proposed method can help models better learn clean class posteriors. We have
also illustrated that VRNL can improve the classification performance of existing methods when the
transition matrix is poorly estimated, which makes our method be practically useful.

9



Under review as a conference paper at ICLR 2023

REFERENCES
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A THE GRADIENTS OF VRNL

The full derivation of the gradients of VRNL.

RG(fθ)

∂θ
=

∂E(X,Ỹ )[ℓ(fθ(X), Ỹ )]

∂θ
− α

∂V ar(X,Ỹ )[ℓ(fθ(X), Ỹ )]

∂θ

=
∂E(X,Ỹ )[ℓ(fθ(X), Ỹ )]

∂θ
− α

{
∂E(X,Ỹ )[ℓ

2(fθ(X), Ỹ )]
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−

∂E2
(X,Ỹ )
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∂θ

}

= E(x,ỹ)∼Dρ [
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∂θ
]− α

{
E(x,ỹ)∼Dρ

[
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∂θ

]
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[
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]}
= E(x,ỹ)∼Dρ

[(
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) ∂ℓ(fθ(X), Ỹ )
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[
W
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where

W = 1 + 2α
(
E(X,Ỹ )[ℓ(fθ(X), Ỹ )]− ℓ(fθ(X), Ỹ )

)
. (5)
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B DISCUSSIONS ABOUT THE MEMORIZATION EFFECT

(a) Symmetry-flipping noise

(b) Pair-flipping noise

Figure 6: We increase the number of classes gradually, and the differences between the loss of
instances with incorrect labels and the loss of instances with correct labels in symmetry-flipping
noise are larger than the differences in pair-flipping noise. The differences are increasing gradually
with the increase in the number of classes.

To investigate why the improvement of VRNL on pair-flipping noise is smaller than on symmetry-
flipping noise, we conduct a series of experiments. We train a ResNet-18 (He et al., 2016) using
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(b) Pair-flipping noise

Figure 7: The differences between the loss of instances with incorrect labels and the loss of instances
with correct labels in symmetry-flipping noise and pair-flipping noise.

Forward loss (Patrini et al., 2017) under the symmetry-flipping noise or pair flipping noise. The
noise rate is 0.2. We reclassify 100 classes of CIFAR100 (Krizhevsky et al., 2009), e.g., when
the number of classes is 2, the classes of 0-49 are reclassified as 0, and the classes of 50-100 are
reclassified as 1. The experiment results are shown in Fig. 6.

By comparing with the data containing pair flipping noise, we found that the memorization effect
is stronger in the data containing symmetry-flipping noise. Then the improvement of VRNL on
pair-flipping noise is smaller than symmetry-flipping noise because our method relies on the mem-
orization effect. Specifically, the results show that the difference between the loss of instances
with incorrect labels and the loss of instances with correct labels becomes larger in both symmetry-
flipping noise and pair-flipping noise. However, by comparing with the average difference under the
pair-flipping noise, the difference between the loss of instances with correct labels and the loss of
instances with correct labels is larger under symmetry-flipping noise.

It implies that under symmetry-flipping noise, the memorization effect is strong because it is much
easier to memorize the easy examples with correct labels than the hard examples with incorrect
labels. We think the reason that the memorization effect is strong on symmetry-flipping noise is that
in a noisy class, the contained noisy examples are from different classes, then memorizing all these
noisy examples can be hard. By contrast, for pair-flipping noise, in a noisy class, the contained noisy
examples are from one class, then it is easy for the learning model to find the common features and
memorize these examples.

C EXPERIMENTS ON WEBVISION

We also conduct experiments on WebVision dataset 1.0 (Li et al., 2017). Following previous work
(Chen et al., 2019), we train models on Google image subset and test model on Validation set. We
first resize images to make shorter size as 320, then randomly crop a patch of image whose size is
299x299. Horizontal random flipping is used. The network structure is inception-resnet v2 (Szegedy
et al., 2017). To estimate transition matrix for Forward and Reweight, we train the network for 20
epochs. We use SGD with momentum as 0.9, learning rate as 0.01, weight decay as 10−3. Then
we follow the previous work (Liu & Tao, 2015; Patrini et al., 2017) using anchor point assumption
to estimate transition matrix. We train the classifier for 80 epochs, learning rate is divided by 10
after 30 and 60 epochs. We start increasing variance of losses at 30th epoch. α is set to 0.05 for
Forward-VRNL and VolMinNet-VRNL. For Reweight-VRNL, α is set to 0.005. The experiment
results are provided at Tab. 3.

Table 3: The experiment results on WebVision.

Forward Reweight VolMinNet

Without VRNL 33.40 46.28 72.44
With VRNL 35.00 48.44 72.92
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D EXPERIMENTS UNDER EXTREME NOISE

We also conduct the experiments under extreme noise, the noise rate is 80%, noise type is symmetry-
flipping.

Table 4: The test accuracy under Sym-80% noise.

Forward Forward-VRNL Reweight Reweight-VRNL VolMinNet VolMinNet-VRNL

MNIST 91.66 ± 0.68 92.46 ± 2.13 93.09 ± 1.79 94.49 ± 0.52 92.16 ± 0.90 92.35 ± 0.25
CIFAR10 28.16 ± 1.86 29.27 ± 2.13 27.64 ± 3.43 43.56 ± 4.13 37.10 ± 3.33 37.73 ± 3.87
CIFAR100 16.84 ± 1.31 19.87 ± 0.67 6.64 ± 1.84 12.26 ± 0.89 22.56 ± 0.39 23.84 ± 1.17

The experiment results show that the proposed method still can improve the performance of Forward,
Reweight and VolMinNet when the noise rate is large.

E EXPERIMENTS UNDER LITTLE NOISE

We also conduct the experiments under little noise on CIFAR-10, the noise rate is 10%, noise type
is symmetry-flipping. The experiments results are shown in Table 5.

Table 5: The test accuracy under Sym-10% noise.

Forward Reweight VolMinNet

Without VRNL 89.74 ± 0.27 90.08 ± 0.51 90.49 ± 0.09
With VRNL 91.30 ± 0.15 91.11 ± 0.19 90.77 ± 0.13

The experiment results show that the proposed method still can improve the performance of Forward,
Reweight and VolMinNet when the noise rate is small.

F EXPERIMENTS ON CLEAN DATASETS

We also conduct the experiment on clean datasets using standard cross entropy loss with VRNL, α
is set to 0.01. The experiment results are shown in Tab. 6.

The VRNL has little negative influence when the dataset is clean.

G SENSITIVITY ANALYSIS

We conduct the sensitivity analysis on one synthetic dataset, CIFAR-10, under symmetry-flipping
noise, the noise rate is 50%. The α increases from 0.001 to 0.3. The experiment results are shown
in Fig. 8. Overall, the curve is smooth, thus VRNL is not sensitive. We also show corresponding
validation accuracy. As shown in Fig. 9, the tendency of validation accuracy is as same as test
accuracy, even though the validation set is noisy. Therefore, the user can use the validation set to
determine the best α.

H THE INFLUENCE ON HARD EXAMPLES

If the loss of incorrectly-labeled examples is larger than the loss of hard but correctly-labeled exam-
ples (e.g., the number of hard but correctly-labeled examples is more than the number of incorrectly-
labeled examples), VRNL should not have a large negative impact on hard but correctly-labeled
examples because it can still separate hard correctly-labeled examples from incorrectly-labeled ex-
amples.

If the loss of incorrectly-labeled examples equals the loss of hard but correctly-labeled examples
(i.e., these examples are entangled), it is hard to separate hard but correctly-labeled examples from
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Table 6: Means and standard deviations (percentage) of classification accuracy. Results with “*”
mean that they are the highest accuracy.

MNIST CIFAR-10 CIFAR-100

CE 99.16 ± 0.03 92.23 ± 0.09 71.30 ± 0.16
CE-VRNL 99.13 ± 0.08 92.02 ± 0.17 71.40 ± 0.32
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Figure 8: Sensitivity analysis for α.

0.001 0.005 0.01 0.05 0.1 0.2 0.3
Alpha

0.38

0.39

0.40

0.41

0.42

0.43

0.44

Ac
c

Validation accuracy with VRNL
Validation accuracy without VRNL

(a) Forward (Sym-50%)

0.001 0.005 0.01 0.05 0.1 0.2 0.3
Alpha

0.34

0.36

0.38

0.40

0.42

0.44

Ac
c

(b) Reweight (Sym-50%)

0.001 0.005 0.01 0.05 0.1 0.2 0.3
Alpha

0.415

0.420

0.425

0.430

0.435

0.440

0.445

Ac
c

(c) VolMinNet (Sym-50%)

Figure 9: Validation accuracy for different α.

incorrectly-labeled examples. In such a case, all existing sample selection and reweighting methods
would have the same problem.

We conduct an experiment on CIFAR-10 and found that the loss of hard but correctly-labeled exam-
ples is smaller than the loss of incorrectly-labeled examples. To find out hard examples, we train a
ResNet-18 model on the clean dataset for 50 epochs and sort the cross-entropy loss of all training
examples. The 30% examples with the largest loss are defined to be hard examples. Then we corrupt
all training examples manually by using 50% symmetry-flipping noise and train a new ResNet-18
model using Forward-VRNL. The losses of hard but correctly-labeled examples are shown in Fig.
10. Hard but correctly-labeled examples and incorrectly-labeled examples can be separated very
well, thus VRNL should not have a large negative impact on hard but correctly-labeled examples.

I EXPERIMENTS OF PROGRESSIVE EARLY STOPPING

We also conduct the experiment on Progressive Early Stopping with VRNL (PES-VRNL). The
experiment results are shown and Tab. 7. The VRNL can still boost the performance of models.

J WARMING UP α

The initial weights of VolMinNet are random (The weights of Forward and Reweight are acquired
through early stopping which is also used to estimate transition matrix), the loss of instances with
incorrect labels might not be larger than correct ones. Therefore, the influence of VRNL should
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Figure 10: The influence of VRNL on hard examples.

Table 7: The test accuracy under Sym-50% noise on CIFAR-10.

Sym-20% Sym-50%

PES 92.57 ± 0.22 87.78 ± 0.34
PES-VRNL 92.66 ± 0.09 87.85 ± 0.17
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not be large at first. We conduct the experiment on CIFAR-10 using VolMinNet, α is increased
with time. Specifically, we increase α from 0 to 0.1 linearly every mini-batch. α peaks at 0.1 after 5
epochs. The experiment results are shown in Tab. 8. As can be seen in the experiments, the warming
up strategy can increase the test accuracy compared with keeping α a constant.

Table 8: The test accuracy under Sym-50% noise.

Sym-20% Sym-50%

VolMinNet 89.27 ± 0.30 82.17 ± 0.19
VolMinNet-VRNL (constant) 89.42 ± 0.12 82.92 ± 0.24

VolMinNet-VRNL (warming up) 89.51 ± 0.16 83.51 ± 0.40

K THE LOSSES DURING TRAINING

To influence of VRNL on the losses distribution through training, we plot the training losses of
the model with/without VRNL (correct/incorrect labeled examples together). The noise type is
symmetry-flipping, and the noise rate is 0.5. The results are shown in Fig. 11.
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(c) CIFAR-100 (Sym-50%)

Figure 11: The training losses of models with VRNL and without VRNL.

The experiment results imply that when the model uses VRNL, the variance of training losses will
increase.

L THE LOSSES AND VARIANCE OF LOSSES DURING TRAINING ON CLEAN
AND NOISY DOMAIN

We conduct experiments, we train a Forward model on a clean dataset and a noisy dataset separately,
the noise type is symmetry-flipping, and the noise rate is 0.5.
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Figure 12: The training losses of models on clean and noisy domain.
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M THE GRADIENTS OF REWEIGHT-VRNL

The full derivation of the gradients of Reweight-VRNL.
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1

n
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∂θ

− α

(
1

n

n∑
i=1

2β̂iℓCE(fθ(xi), ỹi)
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∂θ

)

=
1

n

n∑
i=1

((
1− 2αβ̂iℓCE(fθ(xi), ỹi) + 2αÊir
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