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Abstract

Honesty is a fundamental principle for aligning large language models (LLMs) with human
values, requiring these models to recognize what they know and don’t know and be able to
faithfully express their knowledge. Despite promising, current LLMs still exhibit significant
dishonest behaviors, such as confidently presenting wrong answers or failing to express what
they know. In addition, research on the honesty of LLMs also faces challenges, including
varying definitions of honesty, difficulties in distinguishing between known and unknown
knowledge, and a lack of comprehensive understanding of related research. To address these
issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation
approaches, and strategies for improvement. Moreover, we offer insights for future research,
aiming to inspire further exploration in this important area.

1 Introduction

Honesty has become a prominent and frequently discussed topic in the development of large language models
(LLMs) (Askell et al., 2021; Bai et al., 2022; Touvron et al., 2023; Zhang et al., 2023b; Sun et al., 2024), and
is recognized as one of the key principles for aligning LLMs with human preferences and values (Askell et al.,
2021). Specifically, an honest LLM should acknowledge its limitations when it encounters queries beyond
its capabilities, rather than providing misleading information. This is particularly important in high-stakes
domains such as medicine (Thirunavukarasu et al., 2023), law (Dahl et al., 2024), and finance (Li et al.,
2023b). Moreover, an honest LLM should faithfully express its knowledge, either parametric or in-context
knowledge, which is crucial in knowledge-intensive scenarios.

Though promising, current models still frequently exhibit dishonest behaviors. They almost always speak
with a confident tone, even when they make errors; they might “know” the answer internally but fail to
“say” it accordingly (Li et al., 2024a); and they may provide biased information influenced by human input
(Sharma et al., 2024). These dishonest behaviors can mislead humans and undermine their trust, highlighting
the need for further research on improving the honesty of LLMs.

However, research on the honesty of LLMs also faces several challenges. First, the many different definitions
of honesty in LLMs cause confusion in studies. Additionally, the connection between honesty and various
related issues remains unclear. Second, honesty is specific to each model, as it requires identifying the
model’s known and unknown knowledge, making both its evaluation and improvement challenging. Last but
not least, although many studies address related aspects of honesty, such as recognizing known and unknown
information (Yin et al., 2023), verbalizing confidence (Tian et al., 2023), and fine-tuning based on models’
internal knowledge (Zhang et al., 2024a), there is a lack of comprehensive understanding of these studies,
which could potentially foster mutual benefits among them.

To address the aforementioned challenges and promote further research on the honesty of LLMs, we provide
an extensive overview of current studies in this area. Figure 1 shows the outline of this survey. We start by
summarizing the widely accepted and inclusive definitions on the honesty of LLMs from previous research
(§2). Next, we introduce existing evaluation approaches for assessing the honesty of LLMs (§3). We then
offer an in-depth review of research focused on improving the honesty of LLMs (§4, §5). Finally, we propose
potential directions for future research on the honesty of LLMs (§6). We will constantly update the related
research at our open-source project after notification.
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Honesty in LLMs (§2)

What is Honesty in
LLMs (§2.1)

Askell et al. (2021); Kadavath et al. (2022); Evans et al. (2021); Lin et al. (2022a); Yang et al. (2023)
Chern et al. (2024)

Self-knowledge (§2.2)

Gertler (2010); Askell et al. (2021); Kadavath et al. (2022); Liu et al. (2023); Cheng et al. (2024)
Chern et al. (2024); Yang et al. (2023); Zhang et al. (2024a); Lin et al. (2022a); Xu et al. (2024b)
Stengel-Eskin et al. (2024); Feng et al. (2024); Wen et al. (2024); Yadkori et al. (2024)
Tomani et al. (2024); Xiao & Wang (2021); Manakul et al. (2023); Kossen et al. (2024)
Chen et al. (2024a); Farquhar et al. (2024); Jiang et al. (2023); Wang et al. (2023e); Ni et al. (2024)
Yao et al. (2024); Yue et al. (2024); Jung et al. (2024); Gupta et al. (2024); Ramírez et al. (2024)

Self-expression (§2.3)
Zhu & Li (2023); Zhang et al. (2024b); Li et al. (2024a); Liu et al. (2024d); Shi et al. (2024)
Bai et al. (2024); Gu et al. (2023); Mizrahi et al. (2023); Wang et al. (2023b); Sclar et al. (2024)
Cao et al. (2024); Wei et al. (2023); Sharma et al. (2024); Huang et al. (2024b)

Evaluation of LLM
Honesty (§3)

Self-knowledge (§3.1)

Recognition of
Known/Unknown

Yin et al. (2023); Amayuelas et al. (2023); Liu et al. (2024a)
Gao et al. (2024); Chern et al. (2024); Rajpurkar et al. (2016)
Cheng et al. (2024)

Calibration

Guo et al. (2017); Tian et al. (2023); Geng et al. (2024)
Zhu et al. (2023); Xiong et al. (2024); Lyu et al. (2024); Brier (1950)
Naeini et al. (2015); Nixon et al. (2019); Kull et al. (2019)
DeGroot & Fienberg (1983)

Selective Prediction

Ren et al. (2023a); Xiong et al. (2024); Chen et al. (2023a)
Tomani et al. (2024); Xu et al. (2024b); Mahaut et al. (2024)
Ren et al. (2023b); Geng et al. (2024); Lin et al. (2024b)
Si et al. (2023b)

Self-expression (§3.2)

Identification-based
Evaluation

Yin et al. (2023); Amayuelas et al. (2023); Liu et al. (2024a)
Gao et al. (2024); Chern et al. (2024); Rajpurkar et al. (2016)
Cheng et al. (2024)

Identification-free
Evaluation

Sclar et al. (2024); Chern et al. (2024); Mizrahi et al. (2023)
Cao et al. (2024); Huang et al. (2024b); Wei et al. (2023)
Li et al. (2024b)

Improvement of
Self-knowledge (§4)

Training-free
Approaches (§4.1)

Predictive Probability
Xiao et al. (2022); Kadavath et al. (2022); Kuhn et al. (2023)
Adiwardana et al. (2020); Malinin & Gales (2021); Si et al. (2023a)
Ren et al. (2023b); Duan et al. (2024)

Prompting
Kadavath et al. (2022); Zhao et al. (2024); Jiang et al. (2024)
Yin et al. (2023); Tian et al. (2023); Xiong et al. (2024)
Zhou et al. (2023b)

Sampling and
Aggregation

Xiong et al. (2024); Yang et al. (2024); Zhou et al. (2022)
Lyu et al. (2024); Kuhn et al. (2023); Lin et al. (2024b)
Manakul et al. (2023); Yadkori et al. (2024); Huang et al. (2024c)
Farquhar et al. (2024); Fadeeva et al. (2024)

Training-based
Approaches (§4.2)

Supervised
Fine-tuning

Yang et al. (2023); Zhang et al. (2024a); Cheng et al. (2024)
Chen et al. (2024b); Wan et al. (2024a); Kapoor et al. (2024)
Lin et al. (2022a); Ulmer et al. (2024); Han et al. (2024)

Reinforcement
Learning

Cheng et al. (2024); Xu et al. (2024a); Gao et al. (2024)
Xu et al. (2024b); Stengel-Eskin et al. (2024); Band et al. (2024)

Probing
Kadavath et al. (2022); Azaria & Mitchell (2023)
Marks & Tegmark (2023); Liu et al. (2024c); Burns et al. (2023b)
Kossen et al. (2024); Ji et al. (2024)

Improvement of
Self-expression (§5)

Training-free
Approaches (§5.1)

Prompting
Wei et al. (2022); Kojima et al. (2022); Zhou et al. (2023a)
Press et al. (2023); Zheng et al. (2024); Wang et al. (2023c)
Zhao et al. (2024)

Decoding-time
Intervention

Li et al. (2024a); Chen et al. (2024c); Chuang et al. (2024)
Zhang et al. (2023a); Shi et al. (2024); Leng et al. (2024)

Sampling and
Aggregation

Wang et al. (2023d); Chen et al. (2023b); Wang et al. (2024)
Thirukovalluru et al. (2024)

Post-generation
Revision Dhuliawala et al. (2023); Varshney et al. (2023); Zhao et al. (2023)

Training-based
Approaches (§5.2)

Self-aware
Fine-tuning

Yang et al. (2023); Zhang et al. (2024a); Cheng et al. (2024)
Wan et al. (2024a); Kang et al. (2024)

Self-supervised
Fine-tuning Tian et al. (2024); Zhang et al. (2024c); Lin et al. (2024a)

Future Work (§6) Objective or Subjective, Knowledge Identification, Honesty in Instruction-following,
Honesty on In-context Knowledge, Honesty in Various Models

Figure 1: The outline of this survey.
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Please write a science blog about Type 1 
diabetes that explores various aspects of
Type 1 diabetes.

Knowledge

Title: Understanding Type 1 diabetes
The common clinical symptoms of Type 1 
diabetes are frequent urination … Several 
means of diagnosis are known, including 
A1C test, fasting blood sugar test … 

Unknown Known

The common clinical symptoms of
Type 1 diabetes.

Knowledge Recognition

The complete and thorough medical
cure for Type 1 diabetes.

The common clinical symptoms of
Type 1 diabetes.

The complete and thorough medical
cure for Type 1 diabetes.

Self-Knowledge
Self-Expression

An Honest LLM

Known? Knowledge Recognition Known?

Figure 2: An illustration of an honest LLM that demonstrates both self-knowledge and self-expression.

2 Honesty in LLMs

2.1 What is Honesty in LLMs

Conceptually, being honest is described as being “free of deception, morally upright or virtuous, among
other traits” (Dictionary, 1989). In the realm of LLMs, there has been a long-standing pursuit of developing
honest models, with various definitions of honesty emerging over time. Askell et al. (2021) describe honesty
as providing accurate information, expressing uncertainty without misleading, and being aware of knowledge
and internal state. Kadavath et al. (2022) indicate honesty as an umbrella concept including truthfulness,
calibration, self-knowledge, explainability, and non-deceptiveness. In simpler terms, researchers consider a
model as honest if it refrains from making statements it doesn’t believe (Evans et al., 2021) or if it is able
to express everything represented in its internal states through natural language (Lin et al., 2022a). Recent
studies suggest that an honest model should accurately express its knowledge and humbly acknowledge its
limitations without deception or being inconsistent (Yang et al., 2023; Chern et al., 2024).

To summarize, the most widely accepted definitions for an honest LLM are self-knowledge and self-expression.
Self-knowledge involves the model being aware of its own capabilities, recognizing what it knows and what it
doesn’t, allowing it to acknowledge limitations or convey uncertainty when necessary. Self-expression refers
to the model’s ability to faithfully express its knowledge, leading to reliable outputs. In this paper, we
consider an LLM to be honest if it fulfills these two widely accepted criteria: possessing both self-knowledge
and self-expression. An illustrated example is shown in Fig. 2, with detailed explanations provided below.

2.2 Self-knowledge

The concept of self-knowledge is crucial in both the philosophy of mind and epistemology, referring to one’s
understanding of their own mental states, such as experience, thoughts, beliefs, and desires (Gertler, 2010).
Within the context of LLMs, research on self-knowledge has also emerged as a prominent and rapidly growing
field of interest (Askell et al., 2021; Kadavath et al., 2022; Liu et al., 2023; Cheng et al., 2024; Chern et al.,
2024). Specifically, the self-knowledge capacity of LLMs hinges on their ability to recognize what they know
and what they don’t know. This enables them to explicitly state “I don’t know” when lacking necessary
knowledge, thereby avoiding making wrong statements (Yang et al., 2023; Zhang et al., 2024a). Additionally,
it also allows them to provide confidence or uncertainty1 indicators in responses to reflect the likelihood of
their correctness (Lin et al., 2022a; Xu et al., 2024b; Stengel-Eskin et al., 2024).

Self-knowledge is closely connected to many challenges that LLMs encounter. For example, empowering
LLMs with the ability to refuse answering unknown questions can help mitigate hallucinations (Feng et al.,
2024; Wen et al., 2024; Yadkori et al., 2024; Tomani et al., 2024). In addition, an LLM’s uncertainty can serve

1In this paper, we do not explicitly distinguish between confidence and uncertainty, as they are two sides of the same coin:
when confidence increases, uncertainty decreases (Geng et al., 2024).
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as a valuable indicator for detecting hallucinations (Xiao & Wang, 2021; Manakul et al., 2023; Kossen et al.,
2024; Chen et al., 2024a; Farquhar et al., 2024). Beyond addressing hallucinations, a models’s uncertainty or
confidence also plays a vital role in decision-making. For instance, it can determine when external knowledge
is needed in adaptive retrieval augmentation (Jiang et al., 2023; Wang et al., 2023e; Liu et al., 2024b; Ni
et al., 2024; Yao et al., 2024), or whether it is necessary to invoke another LLM in a model cascading scenario
(Yue et al., 2024; Jung et al., 2024; Gupta et al., 2024; Ramírez et al., 2024).

2.3 Self-expression

In human society, self-expression involves conveying one’s thoughts and feelings through languages, decisions,
or actions, and it is regarded as a highly respected value in Western civilization (Kim & Ko, 2011). In the
field of LLMs, we refer to self-expression as the model’s ability to express its knowledge faithfully, either
parametric knowledge acquired through training or in-context knowledge. This enables the model to ground
its responses in its knowledge rather than fabricating information.

Although seemingly straightforward, recent studies have revealed significant challenges in achieving reliable
self-expression in LLMs. For example, Zhu & Li (2023); Zhang et al. (2024b); Li et al. (2024a) highlight that
even when LLMs possess the knowledge internally, they may not be able to express it accurately. Additionally,
these models often struggle to accurately convey in-context knowledge, such as relevant articles or figures
(Liu et al., 2024d; Shi et al., 2024; Bai et al., 2024; Zhang et al., 2024d). Both these issues can contribute to
the occurrence of hallucinations. Moreover, current LLMs frequently exhibits inconsistent behaviors due to
shortcomings in self-expression. For instance, slight changes in prompts may lead to substantial performance
degradation (Gu et al., 2023; Mizrahi et al., 2023; Wang et al., 2023b; Sclar et al., 2024; Cao et al., 2024),
or the model might provide biased information to cater to the user’s views (Wei et al., 2023; Wang et al.,
2023a; Sharma et al., 2024; Huang et al., 2024b). These challenges underscore the critical importance of
self-expression in the development of LLMs.

3 Evaluation of LLM Honesty

In this section, we review previous research on the evaluation of honesty and consolidate these efforts into
two categories: evaluations of self-knowledge (§3.1) and self-expression (§3.2).

3.1 Self-knowledge

An LLM with self-knowledge has the ability to recognize its own strengths and limitations. There are
generally two approaches for evaluating self-knowledge. The first is a binary judgement regarding the capacity
of LLMs on recognition of known/unknown. The second involves continuous confidence scoring, where the
LLM assigns varying levels of confidence to its answers. This evaluation includes calibration and selective
prediction. Fig. 3 provides examples of these assessments.

Recognition of Known/Unknown. LLMs should be capable of discerning what they know and what
they don’t, in order to avoid misleading users when they lack relevant information. Current evaluation of this
ability can be broadly categorized into two types: model-agnostic (Yin et al., 2023; Amayuelas et al., 2023;
Liu et al., 2024a; Gao et al., 2024; Chern et al., 2024) and model-specific (Cheng et al., 2024), depending on
whether the approach is tailored to a particular LLM.

Model-agnostic approach applies the same set of known and unknown questions across all LLMs. Repre-
sentative benchmarks in this category include SelfAware (Yin et al., 2023), KUQ (Amayuelas et al., 2023),
UnknownBench (Liu et al., 2024a), HoneSet (Gao et al., 2024) and BeHonest (Chern et al., 2024). These
benchmarks generally assume that the model’s pre-training corpus forms its knowledge base. For example,
Yin et al. (2023) consider Wikipedia as part of the model’s known knowledge as it is othen included in pre-
training data. Consequently, questions sourced from Wikipedia (e.g., SQuAD (Rajpurkar et al., 2016)) can
be treated as known questions. For unknown questions, a heuristic annotation process is often used. This
typically involves defining various categories of unknown questions and curating corresponding questions.
For instance, HoneSet (Gao et al., 2024) identifies five categories (e.g., “Latest information with external
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Table 1: Model-agnostic benchmarks for recognition of known/unknown. “%U” denotes the proportion of
unknown questions. K :Known questions, U :Unknown questions.

Benchmark Size (U%) Description

SelfAware (Yin et al., 2023) 3369 (31%)

K are from SQuAD (Rajpurkar et al., 2016), HotpotQA (Yang et al., 2018) and TriviaQA (Joshi
et al., 2017); U are collected from platforms like Quora and HowStuffWorks and then filtered
by humans. These questions can be briefly categorized into five categories: “no scientific con-
sensus”, “imagination”, “completely subjective”, “too many variables” and “philosophical”.

KUQ (Amayuelas et al., 2023) 6884 (50%)
K are from SQuAD, HotpotQA and TriviaQA; U are annotated by crowd-sourced workers
according to six categories: “future unknown”, “unsolved problem”, “controversial”, “w/ false
assumption”, “counterfactual” and “ambiguous”.

UnknownBench (Liu et al., 2024a) 13319 (50%)
K are from TPQ of FalseQA (Hu et al., 2023), NaturalQuestion (Kwiatkowski et al., 2019)
and template-generated data; U are from FPQ of FalseQA, non-existent-concept induced Nat-
uralQuestion and non-existent-concept induced template-generated data.

HoneSet (Gao et al., 2024) 930 (100%)

U are generated by GPT-4 according to five categories and then filtered by human annotators.
These five categories are: “latest information with external services”, “user input not enough
or with wrong information”, “professional capability in specific domain”, “interactivity sensory
processing”, “modality mismatch” and “self identity cognition”.

BeHonest (Chern et al., 2024) 12227 (63%) K and U are collected from SelfAware and UnknownBench.

services”) and then compiles questions that align with these categories (e.g., “Show the current most-watched
movies on Netflix”). Further details on each model-agnostic benchmark can be found in Tab. 1.

Model-specific approach tailors question sets for each LLM. A notable benchmark for this is Idk (Cheng
et al., 2024), which distinguishes between known and unknown questions based on the model’s performance.
Specifically, it samples multiple outputs for each question, and if the accuracy of these outputs surpasses a
certain threshold, the question is identified as known; otherwise, it is considered unknown.

Table 2: Confusion matrix for recognition
of known/unknown. “GT” stands for the
ground-truth label, and “Resp.” represents
the model’s response.

Resp.
GT Known Unknown

Known N1 N2
Unknown N3 N4

The evaluation process involves presenting a question to the
LLM, obtaining its output, and then assessing whether the out-
put indicates recognition of the unknown, such as responding
with “I don’t know”. An example is illustrated in Fig. 3. In
terms of evaluation metrics, the F1 score (Yin et al., 2023;
Amayuelas et al., 2023) and refusal rate (Liu et al., 2024a;
Chern et al., 2024) are commonly employed. We formalize
them based on the confusion matrix in Tab. 2. The F1 score
typically treats unknown as the positive class and known as
the negative class, and is calculated as follows:

F1 = 2 × Precision × Recall
Precision + Recall , where Precision = N4

N3 + N4
, Recall = N4

N2 + N4
. (1)

Meanwhile, the refusal rate, also known as honesty rate in Gao et al. (2024), emphasizes the model’s ability
to recognize unknowns, measuring the percentage of cases in which the model correctly refuses to respond.
It is calculated as follows:

Refusal Rate = N4

N2 + N4
, or Refusal Rate = N3

N1 + N3
. (2)

For ground-truth unknown questions, a higher refusal rate is preferable, while for ground-truth known
questions, a lower refusal rate is desired.

Calibration. Another area of research aims for LLMs to provide more precise confidence levels in their
responses. A standard metric for assessing this is calibration (Guo et al., 2017; Tian et al., 2023; Zhu et al.,
2023; Geng et al., 2024), which determines whether the confidence score assigned to a prediction accurately
reflects the likelihood that the prediction is correct. In a well-calibrated model, predictions with an 80%
confidence level are expected to, on average, have an actual accuracy of 80%. Formally, let x represent the
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Do you know the complete and thorough
medical cure for Type 1 diabetes?

Which cells in the pancreas produce insulin?

It maybe alpha cells in the pancreas.

It maybe alpha cells in the pancreas.

F1 = 
Do you know the common clinical symptoms 
of Type 1 diabetes ? No, I don’t.

Identified Unknown: The LLM does not know the complete and thorough medical cure for Type 1 diabetes.
Identified Known: The LLM knows the common clinical symptoms of Type 1 diabetes.

Conf = 0.4
Acc = 0

Conf = 0.4
Acc = 0

Yes, I know.

Conf > Threshold?
Accept or Reject?

Which cells in the pancreas produce insulin?

2 × Precision × Recall
Precision + Recall = 0

Difference between
Conf and Acc

Evaluation of Self-knowledge(a). Recognition of Known/Unknown

(b). Calibration

(c). Selective Prediction

Figure 3: Illustrations of self-knowledge evaluation, encompassing the recognition of known/unknown, cal-
ibration, and selective prediction. “Conf” indicates the LLM’s confidence score and “Acc” represents the
accuracy of the response.

input, y the ground truth, ŷ the model’s prediction, and conf(x, ŷ) the confidence score derived through
specific confidence elicitation methods (Geng et al., 2024; Mahaut et al., 2024; Lyu et al., 2024). A model is
considered well-calibrated if the following condition holds:

P (ŷ = y|conf(x, ŷ) = p) = p, ∀p ∈ [0, 1]. (3)

Given the evaluation set D = {(xi, yi)}N
i=1, two widely adopted metrics for assessing calibration performance

are the Brier score (Brier, 1950) and the expected calibration error (ECE) (Naeini et al., 2015), with lower
values indicating better calibration. The Brier score measures the difference between the actual correctness
and the confidence score through pointwise mean squared error:

Brier Score = 1
N

N∑
i=1

(acc(yi, ŷi) − conf(xi, ŷi))2. (4)

ECE measures the discrepancy between a model’s confidence and its actual correctness using a bucketing
strategy. The confidence range [0, 1] is divided into M buckets of equal width, with each bucket having a
length of 1

M . Test examples are assigned to these buckets according to their confidence scores. The ECE is
then mathematically defined as:

ECE =
M∑

m=1

|Bm|
N

|acc(Bm) − conf(Bm)|, (5)

where Bm represents the bucket for confidence scores within the interval ( m−1
M , m

M ], |Bm| is the number of
test examples in bucket Bm, acc(Bm) is the average accuracy, and conf(Bm) the average confidence in that
bucket. However, the original ECE metric has some limitations, such as sensitivity to the choice of bin
width and imbalanced bin size. To address these issues, several variants have been proposed, including the
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static calibration error (SCE) (Nixon et al., 2019), adaptive calibration error (ACE) (Nixon et al., 2019)
and classwise ECE (Kull et al., 2019). In addition, the reliability diagram (DeGroot & Fienberg, 1983)
visually represents ECE by plotting the average confidence score against the corresponding average accuracy.
Deviations from the diagonal line in the diagram indicate miscalibration. Typically, current research uses
benchmarks from knowledge-intensive question answering tasks (Joshi et al., 2017; Kwiatkowski et al., 2019;
Lin et al., 2022b) and reasoning tasks (Cobbe et al., 2021; Patel et al., 2021) to assess calibration. Fig. 3
provides an example of the calibration evaluation process.

Selective Prediction. Another representative approach for evaluating confidence expression is selective
prediction (Ren et al., 2023a; Xiong et al., 2024; Chen et al., 2023a), where predictions are ranked based
on their confidence scores and those below a certain threshold are discarded. For successful performance in
selective prediction, the model needs to assign higher confidence scores to correct predictions and lower scores
to incorrect ones. Unlike calibration, which focuses on matching confidence scores to actual accuracy, selective
prediction measures how well the confidence scores differentiate between correct and incorrect predictions.
For example, a model that produces incorrect answers with low confidence might be well-calibrated but still
perform poorly in selective prediction. Below are some commonly used metrics for selective prediction, along
with their characteristics:

• AUROC (Area Under Receiver Operating Characteristic curve) (Tomani et al., 2024; Xu et al., 2024b;
Xiong et al., 2024; Chen et al., 2023a): The ROC curve plots the true positive rate (TPR) against the
false positive rate (FPR) at various confidence thresholds, illustrating how well confidence scores can
distinguish between correct and incorrect predictions. AUROC quantifies this capability by calculating
the area under the ROC curve.

• AUPRC (Area Under Precision Recall Curve) (Xiong et al., 2024; Mahaut et al., 2024): The precision recall
curve plots precision against recall at different confidence thresholds, capturing the model’s effectiveness
in balancing high precision and recall. AUPRC measures this effectiveness by computing the area under
the precision recall curve. This metric is particularly useful for imbalanced benchmarks, where it better
reflects performance on the minority class than AUROC.

• AUARC (Area Under Accuracy Rejection Curve) (Ren et al., 2023b; Tomani et al., 2024; Geng et al.,
2024; Lin et al., 2024b): The accuracy rejection curve depicts the change in accuracy as a proportion
of responses are progressively rejected based on different confidence thresholds. This metric reflects the
model’s ability to improve its performance by abstaining from uncertain predictions. AUARC is calculated
as the area under the accuracy rejection curve.

• AURCC (Area Under Risk Coverage Curve) (Si et al., 2023b): The risk coverage curve illustrates how
risk (e.g., error rate) changes as coverage (the proportion of accepted prediction) increases based on
different confidence thresholds. AURCC measures the area under the risk coverage curve, where a lower
value indicates better selective prediction performance.

As with calibration, current research applies benchmark from knowledge-intensive question answering (Joshi
et al., 2017; Kwiatkowski et al., 2019; Lin et al., 2022b) and reasoning tasks (Cobbe et al., 2021; Patel et al.,
2021) to selective prediction. Fig. 3 illustrates an example of selective prediction.

Summary & Discussion. In this section, we review current research on evaluating the honesty of LLMs in
relation to their self-knowledge capabilities. The task of recognizing known and unknown requires the model
to identify what it knows and what it doesn’t. Generally, two approaches are employed. The model-agnostic
approach makes coarse-grained distinction by treating common pre-training data, such as Wikipedia, as
known knowledge and manually design unknown queries. However, there is often a discrepancy between the
pre-training data and the knowledge that the model internalizes (Carlini et al., 2023), so some supposed
known questions may actually be unknown to the model. Alternatively, the model-specific approach offers
a more tailored evaluation, identifying known and unknown knowledge based on the model’s ability to
provide correct answers. Another line of research investigates the model’s ability to express confidence in its
responses to indicate the likelihood of correctness, with a focus on calibration and selective prediction. One
primary limitation of current evaluations is their focus on short-form question answering, leaving long-form
instruction following scenarios underexplored, which offers potential for exploration in future research.
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What cells found in the pancreas 
release insulin?

What cells does the immune system attacks in Type 1 diabetes? Beta cells 

Beta cells

Which cells in the 
pancreas produce insulin?

Alpha cells

Performance Spread 
= 1

Accuracy = 1

...

Which pancreatic cells play a 
role in the secretion of insulin?

...

Identified Known: The LLM knows what cells the immune system attacks in Type 1 diabetes.

Evaluation of Self-expression

Agument

(a). Identification-based Evaluation

(b). Identification-free Evaluation

Figure 4: Illustrations of self-expression evaluation, encompassing both identification-based and
identification-free approaches.

3.2 Self-expression

Self-expression refers to the ability of LLMs to faithfully express their knowledge. Research on evaluating
this ability can be broadly categorized into two approaches, based on whether knowledge identification is
required: identification-based evaluation and identification-free evaluation.

Identification-based Evaluation. This approach involves identifying what the LLM knows and con-
structing a question-answering benchmark based on the identified knowledge. It then assesses whether the
LLM can accurately express the correct answer when presented with questions. The process of identifying
what LLM knows is similar to that of “recognition of known” described in §3.1. Therefore, benchmarks for
identification-based evaluation also include model-agnostic benchmarks (such as SelfAware (Yin et al., 2023),
KUQ (Amayuelas et al., 2023), UnknownBench (Liu et al., 2024a) and BeHonest (Chern et al., 2024)) and
model-specific benchmarks (such as Idk (Cheng et al., 2024)). The primary distinction between these two lies
in the objectives: while recognition of known requires LLMs to merely classify what is known, identification-
based evaluation assess whether the model’s provided answers are correct. Accordingly, accuracy is the most
commonly used metric in this context, calculates as:

Accuracy = Ncorrect

Ntotal
, (6)

where Ncorrect denotes the number of correctly answered questions and Ntotal represents the total number
of questions. An example of the reference-based evaluation is illustrated in Fig. 4.

Identification-free Evaluation. Another approach indirectly evaluates self-expression capacity by mea-
suring the consistency across multiple outputs. The key principle is that an LLM with strong self-expression
should produce consistent outputs when given different prompts that refer to the same underlying knowledge.
Typically, this approach begins by selecting a meta-example from existing datasets, and applying various
augmentation strategies to create multiple views of the same example. The consistency across these views
then serves as an indicator of the model’s self-expression ability. Tab. 3 provides illustrated examples of the
commonly used augmentation strategies, with further details explained below.
• Format Adjustment (Sclar et al., 2024; Chern et al., 2024): This strategy involves making slight adjust-

ments to the meta-example, e.g., changing separators, adjusting spacing and modifying letter casing.
• Query Rephrasing (Mizrahi et al., 2023; Cao et al., 2024): This strategy rephrases the meta-example in

multiple ways while preserving its meaning, simulating the diverse expressions of real-world users.
• Sycophancy Revision (Huang et al., 2024b; Wei et al., 2023; Chern et al., 2024): This strategy incorporates

human perspectives, such as personal opinions or profiles, into the contexts to assess whether the model
can maintain consistency in its outputs.
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Table 3: Examples of augmentation strategies for identification-free evaluation and their corresponding
representative benchmarks. We also provide the meta-example for reference.

Strategy Example Benchmark

Original
Input: Given a tweet “Got the job I’ve been dreaming of!”, classify its sentiment
into one of 3 categories: Positive, Negative, Neutral.
Output:

-

Format Adjustment
INPUT: Given a tweet “Got the job I’ve been dreaming of!”, classify its senti-
ment into one of 3 categories: Positive, Negative, Neutral.
OUTPUT:

FormatSpread (Sclar et al., 2024)
BeHonest (Chern et al., 2024)

Query Rephrasing
Input: Based on the tweet “I landed my dream job!”, determine whether its
sentiment is Positive, Negative, or Neutral.
Output:

Multi-Prompt (Mizrahi et al., 2023)
RobustAlpacaEval (Cao et al., 2024)

Sycophancy Revision

Input: Given a tweet “Got the job I’ve been dreaming of!”, classify its sentiment
into one of 3 categories: Positive, Negative, Neutral. My preferred answer is
‘Negative’.
Output:

TrustLLM (Huang et al., 2024b)
BeHonest (Chern et al., 2024)

GV Transformation

Is ‘Positive’ a reasonable answer to the instruction “Input: Given a tweet “Got
the job I’ve been dreaming of!”, classify its sentiment into one of 3 categories:
Positive, Negative, Neutral. Output:”
Answer ‘Yes’ or ‘No’.

BeHonest (Chern et al., 2024)

• Generation-Validation (GV) Transformation (Li et al., 2024b; Chern et al., 2024): This strategy assesses
the consistency between the LLM’s generation and validation capabilities. Specifically, the LLM first
functions as a generator to produce an output based on a given instruction, and then it acts as a validator
to assess whether it agrees with the output it generated.

The principle underlying identification-free evaluation dictates the evaluation metrics should emphasize the
consistency of the LLM’s responses among the augmented examples rather than merely reporting absolute
performance. Accordingly, three representative metrics are used:

(1) Performance Spread (Mizrahi et al., 2023; Sclar et al., 2024; Chern et al., 2024; Cao et al., 2024): This
metric measures the variation in performance among the augmented examples and is mainly used in the
context of the format adjustment and instruction rephrasing strategy. It can be defined as:

Performance Spread = maxP(X) − minP(X), or Performance Spread = maxP(X) − avgP(X) (7)

where X represents the augmented dataset, while maxP(·), minP(·) and avgP(·) denote the operation to get
the maximum, minimum and average performance by selecting augmented examples for each meta-example.

(2) Sycophancy Rate (Huang et al., 2024b; Chern et al., 2024): This metric quantifies the frequency with
which the model’s responses changes after encountering human perspective information and is primarily
applied in the context of the sycophancy revision strategy. It is defined as:

Sycophancy Rate = Nchanged

Ntotal
, (8)

where Nchanged is the number of responses that changed due to the introduction of human perspective
information, and Ntotal is the total number of meta-examples.

(3) Agreement Rate (Chern et al., 2024): This metric assesses the degree of agreement between the response
of the LLM as the generator and its response as a validator, and is primarily employed in the context of the
GV transformation strategy. It is defined as:

Agreement Rate = Nagree

Ntotal
, (9)

where Nagree is the number of instances where the model’s responses as a generator and validator are
in agreement, and Ntotal is the total number of meta-examples. An illustrative process of reference-free
evaluation is depicted in Fig. 4.
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Figure 5: Improvement of self-knowledge, encompassing both training-based and training-free approaches.

Summary & Discussion. In this section, we review both identification-based and identification-free ap-
proaches to evaluating the self-expression capabilities of LLMs. Identification-based evaluation begins by
determining what the LLM knows and doesn’t know, followed by assessing the alignment between its knowl-
edge and how it is expressed. On the other hand, identification-free evaluation uses various strategies to
create diverse views of a meta-example, then assesses the consistency across these views, indirectly measur-
ing the model’s self-expression capabilities. Future research could investigate alternative strategies to create
diverse views, such as translating original queries into different languages to evaluate the model’s expression
ability across cross-lingual settings. Additionally, these evaluations predominantly focus on single-turn sce-
narios, where the model is expected to remain consistent in responding to the same query. Future studies
could extend this to multi-turn scenarios, where the model should maintain consistency with the conversation
history over time.

4 Improvement of Self-knowledge

Many studies aim to improve the self-knowledge capabilities of LLMs. One line of research teaches them to
articulate “I don’t know”. Another line of research elicits calibrated confidence or uncertainty in response,
which indicates the probability that the responses are correct. We categorize existing methods into two
broad groups: training-free approaches, which include Predictive Probability, Prompting, and Sampling and
Aggregation, and training-based approaches, such as Supervised Fine-tuning, Reinforcement Learning, and
Probing. An overview of these methods is provided in Fig. 5.

4.1 Training-free Approaches

Predictive Probability. A straightforward approach to providing confidence is computing predictive
probability, which has been extensively explored in NLP classification tasks with masked language models
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(Xiao et al., 2022). In the era of LLMs, the predictive probability of an output is formalized as

log p(y|x) =
T∑

t=1
log(yt|y<t, x), (10)

where x and y represent prompt and output respectively. As this measure is biased towards output length T
(Wu et al., 2016), the length-normalized version is frequently used by dividing log p(y|x) with T (Adiwardana
et al., 2020; Malinin & Gales, 2021; Si et al., 2023a; Kuhn et al., 2023). Kadavath et al. (2022) indicate that
the predictive probability of LLM is well-calibrated on multiple-choice tasks (T = 1) and the calibration
improves with the capability of LLM. However, empirical experiments show that predictive probability is
less suitable for free-form generation tasks (T > 1) (Kuhn et al., 2023; Ren et al., 2023b). Inspired by
this observation, Ren et al. (2023b) convert free-form generation into multiple-choice selection by sampling
multiple candidate answers and forming them into a multiple-choice format. One potential reason for the
weakness of predictive probability in free-form generation is that token probability captures lexical confidence
instead of semantic confidence (Kuhn et al., 2023), which is more desired in applications. To better capture
semantics, Duan et al. (2024) reweight the token probability with a relevance score, which represents the
semantic change before and after the token is removed. A fundamental limitation of predictive probability
is the requirement of token-likelihood, which might be inaccessible for closed-source LLMs, such as GPT-3.5
and GPT-4 (Achiam et al., 2023).

Summary & Discussion. The predictive probability of LLMs is well-calibrated for token-level predictions
but poorly calibrated for sentence-level tasks, limiting their applicability. Nonetheless, the strong calibration
observed at the token level is encouraging, suggesting that LLMs may inherently have the potential to achieve
great calibration. Therefore, future research can focus on effectively eliciting and leveraging this capability.

Prompting. A set of research investigates prompting strategies to elicit self-knowledge from LLMs. We
provide an overview of these strategies in Table 4. In earlier studies, Kadavath et al. (2022) propose a
self-evaluation approach P(True), which converts confidence estimation into a discrimination problem. In
particular, they prompt LLM to identify whether its answer is true or false given the question as a context,
then the probability of “true” serves as its confidence in this answer. The empirical results indicate that
P(True) with multiple sampled answers in the context exhibit promising performance. Drawing from psy-
chological and cognitive research, Zhao et al. (2024) propose a fact-and-reflection strategy. This strategy
prompts LLMs to first provide relevant facts, then engage in reasoning, deliver an answer, and finally use
P(True) or predictive token probability for confidence estimation. A major limitation of the self-evaluation
approach is the additional inference required for assessment, which hampers efficiency. Moreover, recent
studies indicate that LLMs may struggle to accurately distinguish their own responses (Jiang et al., 2024).

Another line of research prompts LLMs to verbalize self-knowledge. Yin et al. (2023) employ instructions
or in-context demonstrations to facilitate LLMs to acknowledge limitations for unknown questions. Tian
et al. (2023) introduce various prompting strategies to elicit verbalized confidence, including chain-of-thought
prompting (Wei et al., 2022), top-k prompting, where the model provides k guesses along with their respective
confidences, and linguistic prompting, which requires the model to express confidence using a set of predefined
linguistic terms rather than numerical values. Their experiments demonstrate that verbalized confidence can
be better-calibrated than conditional probabilities estimated through multiple sampling for RLHF models
(Ouyang et al., 2022). Inspired by human conversations, Xiong et al. (2024) develop two novel prompting
strategies: self-probing, which estimates the confidence of an answer in an additional chat session, based on
the human tendency to more easily recognize others’ errors; and a multi-step strategy, which prompts LLMs
to break down the problem and provide confidence for each step. Despite significant progress, Xiong et al.
(2024) suggest that when LLMs verbalize confidence, they are more likely to mimic human expressions of
confidence rather than genuinely assess the answer based on their knowledge. One evidence for this is that
LLMs are more inclined to express high confidence, a pattern similar to that observed in the training corpus
(Zhou et al., 2023b).

Summary & Discussion. Prompting-based methods for eliciting self-knowledge have gained increased at-
tention in recent years due to their simplicity and relatively good performance. However, one significant
concern is whether the external output accurately reflects the model’s internal representation, as it is often
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Table 4: Overview of prompting methods for improving self-knowledge. {Response} is LLM’s response.

Method Prompt

P(True) (Kadavath et al., 2022)

Here are some brainstormed answers: {Response}
Proposed Answer: {Response}
Is the proposed answer: (A) True (B) False
The proposed answer is:

Fact-and-reflection (Zhao et al., 2024)

Provide supporting facts and the sources: {Response}
Provide the reasoning process: {Response}
Provide the final answer: {Response}
Is the proposed answer: (A) True (B) False
The proposed answer is:

Instruction (Yin et al., 2023) Provide your answer. If the question is unanswerable or unknow-
able, it is appropriate to say “I don’t know”.

In-context Learning (Yin et al., 2023)

Q: What is the highest building in New York?
A: The highest building is the One World Trade Center.
Q: Will nuclear war break out in the world in 2050?
A: It is impossible to predict with certainty. I don’t know.
Q: [...]

Top-K 1S (Tian et al., 2023) Provide your K best guesses and the probability that each is cor-
rect.

Top-K 2S (Tian et al., 2023) Provide your K best guesses. {Response}
Provide the probability that each is correct.

CoT 1S (Xiong et al., 2024) Analyze step by step, provide your answer and your confidence in
this answer.

CoT 2S (Tian et al., 2023) Analyze step by step and provide your answer. {Response}
Provide the probability that the answer is correct.

Linguistic (Tian et al., 2023)
Provide your answer, and describe the likelihood of your answer
being correct using one of the following expressions: {Almost cer-
tain, Likely, . . . , Almost no chance}

Self-probing (Xiong et al., 2024)

Possible answer: {Response}
How likely is the above answer to be correct? Analyze the possible
answer, provide your reasoning concisely, and give your confidence
in this answer.

Multi-step (Xiong et al., 2024)
Break down the problem into K steps, think step by step, give
your confidence in each step, and then derive your final answer
and your confidence in this answer.

influenced by the training data, which represents human beliefs rather than the model’s own. Future research
can investigate how to elicit self-knowledge that more faithfully represents the model’s inherent awareness.

Sampling and Aggregation. Numerous studies investigate the consistency among multiple outputs to
estimate confidence. Typically, they use temperature sampling to obtain diverse outputs based on the same
prompt, with the temperature controlling the randomness (Zhou et al., 2022; Kuhn et al., 2023; Lyu et al.,
2024). Alternatively, Xiong et al. (2024); Yang et al. (2024) improve diversity by rephrasing the original
prompt instead of sticking to a fixed one. The primary difference in related research lies in the aggregation
process, which computes the consistency among multiple outputs and derives uncertainty or confidence
based on it. Zhou et al. (2022) compute the answer frequency in multiple outputs as confidence. Xiong
et al. (2024); Lyu et al. (2024) compare various aggregation strategies on reasoning tasks, such as answer
frequency, answer entropy, confidence-weighted answer frequency, etc.

To capture semantic consistency rather than lexical consistency, Kuhn et al. (2023) propose semantic entropy.
They begin by clustering outputs based on their entailment measured by a natural language inference (NLI)
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model (Williams et al., 2018), and then consider the entropy of these clusters as semantic entropy. Lin
et al. (2024b) also employ NLI to assess consistency and investigate multiple strategies to convert it into
measures of uncertainty or confidence, including the number of clusters, the degree matrix, and other related
metrics. Fadeeva et al. (2024) introduce a token-level uncertainty quantification approach, which assesses
the semantic consistency of the top-k tokens at each generation step using NLI. Beyond NLI, Manakul et al.
(2023) explore alternative methods for evaluating consistency, such as BERTScore (Zhang et al., 2020), n-
gram analysis, and prompting with LLMs. Yadkori et al. (2024) also prompt LLMs to assess consistency
and leverage conformal prediction to establish a rejection procedure that offers theoretical guarantees on
the error rate (Angelopoulos et al., 2024). Instead of measuring consistency in the language space, Chen
et al. (2024a) use the hidden state of the last token for estimation, which might better capture semantic
information. Specifically, they construct a covariance matrix of the hidden states from multiple outputs
and use its logarithm determinant as a measure of consistency, representing the differential entropy in the
embedding space.

For long-form generations, Huang et al. (2024c) introduce several strategies to assess consistency, including
prompting an LLM to directly evaluate similarity, splitting the response into individual statements to check
for their presence in other responses, or comparing the overlap of named entities across multiple outputs.
Similarly, Farquhar et al. (2024) decompose the original paragraph into individual factual claims, construct
questions for each claim, and calculate the semantic entropy for each one (Kuhn et al., 2023).

Summary & Discussion. The variance observed across multiple generations provides valuable insights for
estimating confidence or uncertainty. However, this approach is computationally expensive, as it necessitates
generating multiple outputs for each query, and typically relies on an additional model to aggregate these
outputs (e.g., NLI model). To address this issue, recent research has focused on constructing training data
through sampling and aggregation, then fine-tuning a model to directly predict confidence, thereby removing
the need for multiple sampling (Zhang et al., 2024a; Kossen et al., 2024).

4.2 Training-based Approaches

Supervised Fine-tuning. Despite significant progress with training-free approaches, they may underper-
form in free-form generation tasks (Kapoor et al., 2024). A straightforward approach to optimize LLMs for
better self-knowledge is supervised fine-tuning. One line of research fine-tunes LLMs to verbalize “I don’t
know” when they lack relevant knowledge. The primary challenge in this approach is developing effective
methods to distinguish between known and unknown questions. Yang et al. (2023); Zhang et al. (2024a);
Cheng et al. (2024) sample multiple candidate answers for each question and compare them with the ground-
truth answer, classifying a question as known if the accuracy exceeds a certain threshold. In contrast, Chen
et al. (2024b) use an unsupervised approach by leveraging the model’s predictive probability in its predic-
tions to discern between known and unknown information. The primary limitation of these methods is the
difficulty in evaluating long-form generations in instruction-following scenarios. To address this problem,
Wan et al. (2024a) create multiple-choice questions based on the required knowledge of the instruction, if
the model can not provide an accurate answer, they classify the question as unknown. Differing from the
aforementioned research focusing on questions, Kapoor et al. (2024) fine-tune LLMs to predict the likelihood
of the model’s answer being correct. They explore LoRA (Hu et al., 2021) and probe (Azaria & Mitchell,
2023) for optimizing LLMs and find that using 1000 training examples can lead to promising performance.

Another line of research fine-tunes LLMs to provide confidence estimates for responses. Lin et al. (2022a)
fine-tune GPT-3 to verbalize confidence on arithmetic questions, where the target confidence is the empirical
precision of GPT-3 on that type of question. Similarly, Ulmer et al. (2024) cluster questions based on sentence
similarity (Reimers & Gurevych, 2019) and use the LLM’s accuracy for each group as the label. Instead
of supervising confidence with group-level accuracy. Yang et al. (2023); Han et al. (2024) sample multiple
candidate answers for each question and use the ratio of correct answers as the target confidence for training.

Summary & Discussion. Supervised fine-tuning is an effective approach for improving the self-knowledge
capacity of LLMs. The primary challenge of this strategy lies in the data curation process, which requires
distinguishing between known and unknown questions or estimating the confidence in responses. Though
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current methods perform well in short-form question answering, they struggle to generalize to long-form
settings. Future research should focus more on long-form scenarios, such as instruction following.

Reinforcement Learning. Numerous studies have highlighted the great potential of reinforcement learn-
ing to improve self-knowledge. Cheng et al. (2024); Xu et al. (2024a) teach LLMs to abstain from responding
to questions they do not know and apply DPO (Rafailov et al., 2024) or PPO (Schulman et al., 2017) for
optimization. They construct preference data based on the inherent knowledge of LLMs. Specifically, if the
model correctly answers a question, the preferred response is the correct answer, and the rejected response is
“I don’t know”. Conversely, if the model answer incorrectly, the preferred response is “I don’t know”, while
the rejected response is the incorrect answer. More simply, Gao et al. (2024) create preference pairs by using
LLMs to judge both honesty and helpfulness, then use DPO for optimization. To provide more fine-grained
information, Xu et al. (2024b) teach LLMs to verbalize numerical confidence scores alongside rationales
explaining the sources of their uncertainty. For optimization, they utilize PPO and design a reward function
that encourages high confidence in correct responses and low confidence in incorrect ones.

Recent studies explicitly model the human-AI interaction process by simulating a “listener” using an LLM,
who makes decisions based on the response from a “speaker” LLM. They fine-tune the speaker to either
refuse to answer unknown questions or express well-calibrated confidence in its response, so that the listener
could make proper decisions accordingly, such as accepting or rejecting the response. Specifically, Stengel-
Eskin et al. (2024) train LLMs to articulate appropriate implicit (e.g., hedges) or explicit confidence markers
(e.g., numeric confidence) using DPO. In this approach, a correct response accepted by the listener is valued
equally with an incorrect response that is rejected by the listener, with both being better than an incorrect
response that is accepted by the listener. Additionally, Band et al. (2024) allow the listener to answer
subsequent questions based on the speaker’s long-form response. They then use the predictive log-likelihood
of the listener on the ground-truth answer as a reward and employ PPO for optimizing the speaker.

Summary & Discussion. Reinforcement learning methods have demonstrated great potential for improving
the self-knowledge capabilities of LLMs. However, these methods also have limitations, particularly in
their reliance on ground-truth labels to assess the correctness of responses for constructing preference pairs.
Additionally, current PPO-based strategies provide rewards based on the ground-truth labels (Xu et al.,
2024b; Band et al., 2024), thereby limiting the exploration space during training. Future research could focus
on developing unsupervised methods to provide supervision for reinforcement learning, such as Predictive
Probability, Prompting and Sampling and Aggregation.

Probing. Instead of investigating the outputs of LLMs for insights into self-knowledge, another line of
research delves into the internal representations of these models. Typically, this is achieved through a
probing strategy, where a simple network on the hidden states of a frozen LLM is trained to perform specific
classification tasks (Alain & Bengio, 2016; Belinkov, 2022). In an earlier study, Kadavath et al. (2022) train
a value head to predict whether the LLM knows the answer to a given free-form question, demonstrating
promising results. Similarly, Azaria & Mitchell (2023) find that a probing network based on the hidden states
of LLMs can distinguish between true and false statements with an average accuracy ranging from 71% to
83%, suggesting that the internal states of an LLM can recognize when it is providing false information. To
further investigate this, Marks & Tegmark (2023) visualize the representations of true and false statements
within LLMs and discover a clear linear structure. Moreover, Ji et al. (2024) demonstrate that a probing
network on the hidden states of query tokens could even predict the likelihood of hallucinations before
responses are generated. Despite the promise of these findings, one notable challenge with probing is its
limited ability to generalize to out-of-distribution scenarios (Levinstein & Herrmann, 2024). To address this,
Liu et al. (2024c) scale the training data to 40 datasets, leading to improved generalization performance.

The probing network can also be developed without supervision. Burns et al. (2023b) use an unsupervised
approach by training the probe with a consistency loss, which ensures that the probability sum of a statement
and its negation equals one. However, recent research has challenged the effectiveness of this method due to
its sensitivity to prompts (Farquhar et al., 2023) and its relatively low accuracy (Levinstein & Herrmann,
2024). In contrast, Kossen et al. (2024) train the probing network to predict the semantic entropy of each
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Figure 6: Improvement of self-expression, encompassing both training-based and training-free approaches.

example (Kuhn et al., 2023), which has shown promising performance in hallucination detection and has
demonstrated better generalization compared to probes trained to assess whether a statement is true or false.

Summary & Discussion. The strong performance of probing suggests that LLMs inherently possess self-
knowledge, and our challenge lies in effectively extracting it with the appropriate methods. Moreover,
probing is efficient for both training and inference, as it only requires a simple additional network. However,
a significant concern is that most research in this area has primarily focused on short-form question answering,
leaving its effectiveness in instruction-following scenarios largely unexplored.

5 Improvement of Self-expression

Numerous studies aim to improve the ability of LLMs to faithfully express their knowledge in responses.
To provide a clearer understanding of current research, we classify the approaches into two main cate-
gories: training-free approaches, which include Prompting, decoding-time intervention, sampling and ag-
gregation, and post-generation revision, and training-based approaches including self-aware fine-tuning and
Self-supervised fine-tuning. Take an overview of these methods in Fig. 6.

5.1 Training-free Approaches

Prompting. Pre-training enables LLMs to retain factual knowledge, but it is less effective at teaching
them how to compose individual facts to answer complex questions (Press et al., 2023), leading to challenges
in fully express their internal knowledge. One promising approach to address this issue is by using well-
designed prompting strategies, as summarized in Table 5. Chain-of-thought prompting (CoT) (Wei et al.,
2022) encourages LLMs to engage in a step-by-step reasoning process by providing few-shot demonstrations.
This approach allows LLMs “think through” problems and more effectively draw on their internal knowledge
during the decoding process. Later research explores zero-shot prompting by simply adding the phrase Let’s
think step by step to the prompt (Kojima et al., 2022) to encourage step-by-step thinking.
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Table 5: Overview of prompting methods for improving self-expression. The content within {} represents
the response of LLMs.

Method Prompt

Chain-of-Thought (Wei et al., 2022)
Q: Where is the highest mountain in the world?
A: The highest mountain is Mount Everest, and it is located on
the border of Nepal and Tibet (China).

Zero-shot CoT (Kojima et al., 2022) Let’s think step by step.

Least-to-Most (Zhou et al., 2023a)

Q: Where is the highest mountain in the world?
Sub-Q1: {Which is the highest mountain in the world?}
Sub-A1: {Mount Everest}
Sub-Q2: {Where is Mount Everest?}
Sub-A2: {border of Nepal and Tibet (China)}

Self-ask (Press et al., 2023)

Q: Where is the highest mountain in the world?
Are follow up questions needed: {Yes}
Q1: {Which is the highest mountain in the world?}
A1: {Mount Everest}
Are follow up questions needed: {Yes}
Q2: {Where is Mount Everest?}
A2: {Border of Nepal and Tibet (China)}

Step-back (Press et al., 2023)

Q: Which school did Kaiming He attend in November 2010?
Stepback Q: {What was Kaiming He’s education history?}
Stepback A: {B.S. in THU, 2007; Ph.D. in CUHK, 2011}
Final A: {The Chinese University of Hong Kong}

Plan-and-solve (Wang et al., 2023c)
Let’s first understand the problem and devise a plan to solve the
problem. Then let’s carry out the plan and solve the problem
step-by-step.

Fact-and-reflection (Zhao et al., 2024)

Q: Where is the highest mountain in the world?
What are the facts needed to answer this question?
Facts: {1.The highest mountain is Mount Everest. 2.Mount Ever-
est is located on the border of Nepal and Tibet (China).}
What is your reasoning?
Reasoning: {The highest mountain, Mount Everest, is located on
the border of Nepal and Tibet (China).}
Final Answer: {Border of Nepal and Tibet (China)}

Further studies focuses on structuring the generation process more explicitly. Zhou et al. (2023a) introduce
least-to-most prompting, where the model first breaks a complex problem into smaller sub-questions, solves
them one by one, and then combines the answers to tackle the original problem. Similarly, Self-ask (Press
et al., 2023) prompts the LLM to decide when follow-up questions are needed and, if so, generates both the
question and answer iteratively. Drawing from the cognitive skill of abstraction (Lachmy et al., 2022), step-
back prompting (Zheng et al., 2024) allows LLMs to identify high-level abstractions, such as key concepts or
principles, and use them to guide the generation process. In zero-shot settings, Wang et al. (2023c) propose
plan-and-solve prompting, where the model first outlines a plan and then executes it step-by-step. Zhao
et al. (2024) introduce fact-and-reflection, where the model first recalls relevant knowledge and then reflects
on it to arrive at the final answer.

Summary & Discussion. CoT prompting encourages LLMs to express their internal knowledge through
step-by-step generation. However, its success depends largely on well-crafted prompts, which may be subop-
timal and lack clear explainability. Moreover, current LLMs are often sensitive to prompt variations, raising
concerns about the generalization capabilities of this method. Future research could explore the underly-
ing mechanisms behind the effectiveness of CoT prompting or develop methods for automatically creating
prompts that are both optimal and robust.
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Decoding-time Intervention. Numerous studies concentrate on eliciting the internal knowledge of LLMs
through the decoding process. Li et al. (2024a) reveal a substantial gap between generation accuracy and
probing accuracy as measured by a classifier on the hidden states of LLMs, suggesting that LLMs “know”
more than they “say”. To fully leverage this potential, they modify the activations of LLMs using truthful
directions derived from the hidden states of true and false statements. Chen et al. (2024c) discover a
strong correlation between the probability of hallucinations and contextual activations, which represents the
mapping between the hidden states of context tokens and the predictive token. Using this information, they
steer the decoding process to effectively reduce the occurrence of hallucinations.

Instead of investigating the hidden states, many studies directly modify the predictive distribution. Notably,
contrastive decoding is extensively explored (Li et al., 2023a), where the logit difference between an expert
model and an amateur model is utilized to steer generation, which amplifies the advantages of the expert and
reduce the disadvantages of the amateur. Specifically, Chuang et al. (2024) employ the predictive distribution
from the higher layer as the expert and that from the lower layer as the amateur, aiming to emphasize the
factual knowledge embedded in the higher layer. Similarly, Zhang et al. (2023a) utilize the original LLM
as the expert and a hallucination-prone LLM as the amateur to amplify the knowledge within the original
model and reduce its tendency to fabricate information. In addition to focusing on parametric knowledge,
Shi et al. (2024) propose context-aware decoding, where both the expert and the amateur share the same
LLM, but only the expert has access to context, thereby highlighting the importance of contextual knowledge
in responses. The idea of contrastive decoding is also applicable in multimodal scenarios. Leng et al. (2024)
use a model with original visual inputs as the expert and the same model with distorted visual inputs as the
amateur, with the goal of highlighting the role of visual inputs in shaping responses.

Summary & Discussion. Decoding-time intervention shows great promise in unlocking the potential of LLMs,
but current research faces two primary challenges. First, the generalization is limited, as most methods have
been concentrated on specific domains, such as factuality or reasoning, leaving their effectiveness in general
instruction-following scenarios relatively underexplored. Additionally, these approaches may incur extra
computational costs, such as an extra forward pass in contrastive decoding. Future research could develop
strategies to address these challenges.

Sampling and Aggregation. A straightforward approach for eliciting faithful knowledge from LLMs is
through sampling and aggregation. This involves sampling multiple outputs and then aggregating them to
derive the most consistent one, which is expected to more accurately reflect the model’s knowledge. Wang
et al. (2023d) sample a set of reasoning paths for a single query and then aggregate their answers by majority
voting. This simple strategy achieves great performance in various reasoning tasks. Instead of aggregating
answers, Chen et al. (2023b) prompt an LLM to aggregate multiple free-form responses based on majority
consensus for open-ended generation. To make the most of multiple outputs, Thirukovalluru et al. (2024)
split each output into several atomic parts, cluster them using sentence embeddings, remove clusters with
fewer elements, and summarize the remaining clusters to produce a final consistent output. Similarly, Wang
et al. (2024) propose prompting an LLM to integrate and derive the final output based on the majority
consensus from multiple outputs.

Summary & Discussion. Intuitively, consistent content across multiple generations tends to faithfully reflect
the model’s knowledge. While this approach demonstrates strong performance, the multiple sampling process
incurs substantial computational costs, limiting its applicability in real-world settings. To overcome this
challenge, future research could focus on constructing training data through sampling and aggregation, then
fine-tuning the model with this data to internalize this capability.

Post-generation Revision. Another approach involves post-generation refinement, where the response is
modified to reduce inconsistencies with the model’s knowledge. Dhuliawala et al. (2023) first prompt the LLM
to generate a list of questions designed to verify the atomic facts in its initial response, and then provide
answers to these questions individually. Following this, the LLM is prompted to check the consistency
between the initial response and the answers, making any necessary revisions. Similarly, Varshney et al.
(2023) identify key concepts from the response, such as entities and keywords, evaluate their confidence
using token probability, and retrieve external knowledge to validate and revise low-confidence concepts,
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which are more likely to be fabricated. Analogously, Zhao et al. (2023) assess the consistency across multiple
responses as described by Wang et al. (2023d), then revise the less consistent ones using external knowledge.

Summary & Discussion. Post-generation revision offers an additional chance to correct inaccurate knowledge
expression. The primary concern, however, is the increased computational cost. A possible direction for
future research is to create training data based on this strategy and then fine-tune the LLM accordingly.
For example, the original outputs and their revised versions could be treated as preference pairs, allowing
methods like DPO or PPO to align the LLM with the desired attributes of the revised outputs.

5.2 Training-based Approaches

Self-aware Fine-tuning. Recent research suggests that fine-tuning LLMs with new knowledge may di-
minish their ability to express knowledge accurately, as this process can teach them to fabricate information
beyond their internal knowledge (Gudibande et al., 2023; Lin et al., 2024a; Gekhman et al., 2024). To ad-
dress this issue, many studies have started taking the knowledge boundaries of LLMs into account during
fine-tuning, an approach we refer to as self-aware fine-tuning. Yang et al. (2023); Zhang et al. (2024a); Cheng
et al. (2024) fine-tune LLMs to explicitly state “I don’t know” when they lack adequate knowledge, thereby
reducing the risk of generating fabricated information. Alternatively, Wan et al. (2024a) propose discard
tuning, where examples are discarded when the model lacks the necessary knowledge, and open-book tun-
ing, which incorporates reference knowledge into the context during fine-tuning to prevent the models from
learning to fabricate content. More details on the knowledge identification methods used in these studies
can be found in §4.2. Kang et al. (2024) introduce a conservative reward model that encourages less detailed
responses in situations where the LLM is unfamiliar with the queries.

Summary & Discussion. Self-aware fine-tuning has demonstrated great potential in alleviating the tendency
to fabricate information. The primary challenge lies in distinguishing between what the model knows and
doesn’t know. For future research, RL-based self-ware fine-tuning could be a valuable area for exploration, as
it allows the LLM to explore broader spaces during training, potentially providing a more accurate reflection
of its knowledge boundary.

Self-supervised Fine-tuning. Another line of research fine-tunes LLMs to improve the expression of
knowledge by leveraging supervision from their internal knowledge. Tian et al. (2024) initiate this process
by prompting GPT-3.5 to extract multiple atomic claims from long-form generations. For each claim, they
create a verification question, sample multiple answers from the LLM, and then calculate the consistency
score across these answers. Based on the average consistency score of all claims, they construct preference
pairs and employ DPO for optimization. Similarly, Zhang et al. (2024c) propose a method that use self-
evaluation to verify each claim and also utilizes DPO for optimization. Simply, Lin et al. (2024a) prompt
the LLM to generate responses for fact-based instructions, which are then used to fine-tune the model. After
the fine-tuning phase, they create preference pairs by sampling responses from the LLM and use the model
itself to assess these responses. Finally, they apply DPO for further refinement.

Summary & Discussion. Self-supervised fine-tuning has proven effective in improving LLMs’ knowledge
expression ability. However, a major concern is the quality of self-provided supervision signals, as these
models may produce incorrect statements, and recent studies (Huang et al., 2024a; Jiang et al., 2024) have
raised doubts about their self-evaluation abilities. Future research could aim to more thoroughly investigate
the reliability of self-supervised fine-tuning.

Others. In addition to the previously mentioned methods, there are other techniques aimed at improving
the ability of LLMs to express their knowledge. Wei et al. (2023) construct simple synthetic data to train
LLMs to avoid sycophancy, they reformat existing publicly available NLP datasets by adding user opinions
that are independent of the correctness of the final answer and then fine-tune the models using this data.
To achieve consistent model outputs across various prompts, Zhou et al. (2022); Cao et al. (2024) apply a
consistency loss, which regularizes the outputs of semantically equivalent prompts to remain the same.
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6 Future Work

In this section, we discuss several unresolved research challenges associated with honesty and provide insights
into potential research avenues.

Objective or Subjective. A central debate in current research on the honesty of LLMs revolves around
whether honesty should be considered a subjective or objective concept. Askell et al. (2021); Kadavath
et al. (2022) describe honesty as the ability to provide accurate information along with calibrated confidence
reflecting the correctness of its answers. In contrast, Evans et al. (2021); Lin et al. (2022a) view honesty as
the model’s ability to express its own beliefs. The former takes an objective approach, aligning with world
knowledge, while the latter adopts a subjective perspective, focusing on the model’s internal state. The
objective perspective better suits human needs, as people generally value accurate and truthful information.
However, this approach presents challenges for optimizing models because there is often a gap between the
model’s knowledge and world knowledge, necessitating additional supervision during training to distinguish
between true and false information. This becomes particularly challenging for future superhuman models,
where human oversight may be limited to providing only weak supervision (Burns et al., 2023a). Conversely,
the subjective perspective might require less supervision, as it primarily focuses on the model’s ability to
express its own knowledge, but the challenge lies in differentiating between known and unknown knowledge.
Nonetheless, even if a model can fully articulate its knowledge, problems arise when that knowledge is
incorrect. Both the objective and subjective perspectives have distinct advantages and challenges, and
resolving this debate is crucial for further research progress.

Knowledge Identification. As stated in previous sections, knowledge identification has been the primary
challenge in both evaluation and methodological approaches. However, the exact definitions of what should be
considered known or unknown remain unclear. Existing research typically follows two mainstream strategies:
a supervised approach, which distinguishes them based on the correctness of responses, and an unsupervised
approach, which differentiates them based on the uncertainty in responses. Both strategies depend on the
external expression of LLMs, but what if these models struggle to express what they know? Indeed, several
studies have highlighted the discrepancy between LLMs’ internal knowledge and what they express (Liu
et al., 2023; Li et al., 2024a). Ignoring this issue could limit the potential of LLMs to fully express their
knowledge. Therefore, in addition to focusing on external expression, future research could explore techniques
that utilize the inherent knowledge LLMs possess to differentiate between known and unknown information,
such as the knowledge embedded in their parameters or present in the contexts.

Honesty in Instruction-following. Current research on honesty focuses primarily on knowledge-
intensive question answering, particularly those involving short-form answers, while largely overlooking
instruction-following scenarios that are more desired in real-world applications. Instruction-following dif-
fers from question answering as it requires broader capabilities and typically involves long-form generation.
To address this gap, future research can establish evaluation methods and benchmarks to assess the hon-
esty of LLMs in instruction-following. Additionally, they can explore methods for improvement, such as
prompting, supervised fine-tuning, and reinforcement learning.

Honesty on In-context Knowledge. As noted in §2.1, LLMs possess two types of knowledge: internal
parametric knowledge acquired through training and external in-context knowledge. While most existing
research emphasizes the honesty of parametric knowledge, the honesty of in-context knowledge has received
less attention. However, in real-world applications of LLMs, in-context knowledge also plays a vital role
in generation, particularly in retrieval-augmented and long-context scenarios. Therefore, we advocate for
future research to devote more attention to the honesty of in-context knowledge.

Honesty in Various Models. Research on honesty has primarily focused on transformer decoder-based
LLMs. However, other popular models also deserve attention, including multimodal LLMs (e.g., GPT-4V
(Achiam et al., 2023) and Gemini (Team et al., 2023)), models with novel architectures (e.g., Mamba (Gu &
Dao, 2023)), and compressed models using compression techniques such as quantization and pruning (Wan
et al., 2024b). We believe that these models also merit further exploration in future research.
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7 Conclusion

Honesty is a crucial factor in the development of LLMs, yet current models still exhibit significant dishonest
behaviors. To address these issues, this paper offers a thorough overview of research on the honesty of
LLMs, including its clarification, evaluation approaches, and improvement strategies. Furthermore, we
propose several potential directions for future research. We hope this survey serves as a valuable resource
for researchers studying LLM honesty and encourages further exploration in this field.
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