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ABSTRACT

Decision-focused learning (DFL) is an increasingly popular paradigm for train-
ing predictive models whose outputs are used in decision-making tasks. Instead
of merely optimizing for predictive accuracy, DFL trains models to directly min-
imize the loss associated with downstream decisions. However, existing studies
focus solely on scenarios where a fixed batch of data is available and the objec-
tive function does not change over time. We instead investigate DFL in dynamic
environments where the objective function and data distribution evolve over time.
This setting is challenging for online learning because the objective function has
zero or undefined gradients—which prevents the use of standard first-order op-
timization methods—and is generally non-convex. To address these difficulties,
we (i) regularize the objective to make it differentiable and (ii) use perturbation
techniques along with a near-optimal oracle to overcome non-convexity. Com-
bining those techniques yields two original online algorithms tailored for DFL,
for which we establish respectively static and dynamic regret bounds. These are
the first provable guarantees for the online decision-focused problem. Finally, we
showcase the effectiveness of our algorithms on a knapsack experiment, where
they outperform two standard benchmarks.

1 INTRODUCTION.

Many real-world decision problems involve uncertainty, and a common approach to handling it
is through the predict-then-optimize framework (Bertsimas and Kallus, 2020). First, a prediction
model is trained on historical data; then, its output is fed into an optimization problem to guide
decision-making. This natural strategy has been successfully applied in many operation research
(OR) problems, ranging from supply chain management (Acimovic and Graves, 2015; Fisher et al.,
2016; Ban and Rudin, 2019; Bertsimas and Kallus, 2020) and revenue management (Farias et al.,
2013; Ferreira et al., 2016; Cohen et al., 2017; Chen et al., 2022) to healthcare operation (Bertsimas
etal., 2013; Aswani et al., 2019; Gupta et al., 2020; Rath et al., 2017), see Mivsi¢ and Perakis (2020)
for an extensive review. It is clear that this approach would yield optimal decisions if the predictions
were perfectly accurate. However, in practice, prediction errors are inevitable—and even small
inaccuracies can propagate through the optimization process, potentially leading to poor decisions.

To address this limitation, an approach known as decision-focused learning (Mandi et al.,
2024)—also referred to as smart predict-then-optimize (Elmachtoub and Grigas, 2022) or integrated
learning-optimization (Sadana et al., 2025)—has emerged. Instead of optimizing for prediction ac-
curacy alone, this method trains the predictive model to directly minimize the downstream decision
loss. By aligning the learning objective with the decision-making goal, it produces models that are
more robust to prediction errors in practical applications. While decision-focused learning yields
strong empirical performance (Donti et al., 2017; Verma et al., 2022; 2023; Wang et al., 2023),
theoretical development has so far been limited to the batch setting, where models are trained on
pre-collected, independently and identically distributed (i.i.d.) data (Wilder et al., 2019; Mandi
et al., 2022; Shah et al., 2022; Schutte et al., 2024). This assumption breaks down in many real-
world scenarios involving dynamic environments (Cheung et al., 2019; Padakandla et al., 2020) and
shifting data distributions (Lu et al., 2018; Quifionero-Candela et al., 2022).

Online learning (Cesa-Bianchi and Lugosi, 2006; Hazan, 2023) provides a general way to cope with
such non-stationarity of data-generating processes. This framework considers a learner who makes
decisions sequentially, at each round leveraging data collected from previous rounds to inform its
next decision. Crucially, the objective function is allowed to vary over time, either in a stochastic or
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adversarial way. This provides a natural framework for the work that we present here, which extends
decision-focused learning beyond the i.i.d., batch setting.

Contributions. We develop a theoretical foundation for online decision-focused learning, en-
abling its application in non-stationary settings. This presents a significant technical challenge, as the
inherent difficulties of decision-focused learning—such as the non-differentiability of the objective
function or the lack of convexity of the losses due to the bi-level nature of the problem—compound
those already present in online learning. Our contributions are as follows:

(i) We formalize the online decision-focused learning problem by assuming that at each round,
a decision-maker seeks to solve a linear optimization problem over a polytope but does not have
access to the true cost function. Thus the decision-maker has to predict the cost using whatever
partial information that it has at hand. The cost function is then revealed, and the decision-maker
updates its model in a decision-focused fashion. This results in a bi-level optimization problem,
where the inner problem consists in making a decision and the outer problem involves optimizing
the resulting decision cost.

(i) We present two algorithms to tackle this problem, Decision-Focused Follow-the-Perturbed-
Leader (DF-FTPL) and Decision-Focused Online Gradient Descent (DF-0GD). While both rely on
regularizing the inner problem to make the resulting decision differentiable, they differ on the way
they update the parameters of the prediction model. DF-FTPL uses the FTPL approach (Hutter and
Poland, 2005), and DF-0GD leverages a variant of Online Gradient Descent (Zinkevich, 2003). We
establish sublinear convergence guarantees for both procedures, in the form of a static regret bound
for the former and a dynamic regret bound for the latter. To our knowledge, these are the first
provable guarantees for the online decision-focused learning problem.

(iii) Finally, we assess the performance of our algorithms on a knapsack experiment inspired by
Mandi et al. (2024). Our simulations demonstrate that our approach outperforms the online version
of two popular baselines, namely prediction-focused learning and Smart-Predict-then-Optimize, in
both static and dynamic environments.

Additional related work. Several decision-focused approaches have been proposed in the batch
setting, among which differentiating the associated KKT conditions Gould et al. (2016); Amos and
Kolter (2017); Donti et al. (2017); Wilder et al. (2019); Mandi and Guns (2020), smoothing via ran-
dom perturbation Berthet et al. (2020), building surrogate losses via duality Elmachtoub and Grigas
(2022) or directional gradients Huang and Gupta (2024) and relying on pairwise ranking techniques
Mandi et al. (2022), see Mandi et al. (2024); Sadana et al. (2025) for additional references. However,
the extension of decision-focused learning to the online setting remains unexplored. While several
recent studies address online bi-level optimization Shen et al. (2023); Tarzanagh et al. (2024); Lin
et al. (2023), none of them are applicable to decision-focused learning as they rely on restrictive
smoothness assumptions, that are incompatible with the structure of decision-focused problems.
In particular, the decision-focused objective is typically non-convex and features gradients that are
either zero or undefined, owing to its underlying linear structure.

This motivates the use of different online methods, specifically tailored to address these problems.
On the one hand, lack of differentiability is usually tackled through zero-th order methods Héliou
et al. (2020); Frezat et al. (2023), sub-gradient Duchi et al. (2011), proximal Dixit et al. (2019)
or smoothing approaches Abernethy et al. (2014). On the other hand, methods to address non-
convexity in online learning often rely on the existence of a near optimal oracle Kalai and Vempala
(2005); Agarwal et al. (2019); Suggala and Netrapalli (2020); Xu and Zhang (2024) or additional
smoothness conditions Lesage-Landry et al. (2020); Ghai et al. (2022). All those results are derived
for static regret (Zinkevich, 2003) which compares the learned predictors to the best static strategy
and is defined in Section 2. A more challenging criterion, also described in Section 2 is dynamic
regret, introduced in Zinkevich (2003) and later developed in Hall and Willett (2013); Besbes et al.
(2015); Zhao et al.; Zhao and Zhang (2021) among others, which takes into account the evolution of
the environment. An alternative approach to obtain guarantees in the online non-convex setting is to
weaken static regret to local regret Hazan et al. (2017); Aydore et al. (2019); Zhuang et al. (2020);
Hallak et al. (2021), which is the sum of the objective gradient norms evaluated in the iterates over
time. Minimizing local regret corresponds to encouraging convergence toward stationary points.
However as we shall see, this approach is not sensible in our framework, as objective gradients are
either zero or undefined.
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QOutline. In Section 2, we introduce the online decision-focused problem, our notions of regret
and our assumptions. In Section 3, we present the DF-FTPL and DF-0GD algorithms, before deriving
bounds on the static regret of the former and the dynamic regret of the latter. Finally, we present our
experiment in Section 4.

Notation. For a differentiable map ¢ : R™ — Y such that ) C R, V() denotes the gradient of
@ atz € R™ and V2p(z) denotes the Hessian of . In the case where Y C R%, V¢(z) denotes the
Jacobian of ¢. For two vectors (v, w) € R? x R?, v 3= w means that v; > w; for any i € [d], and
(v, w) = v"w refers to the standard Euclidian inner product. Also, ||v]| = +/(v,v) is the standard
euclidian norm. Given a compact convex set © C R?, Ilg denotes the orthogonal projection onto
©. For a matrix M € R™*4 | M|| op refers to its L2-operator norm. In the case d = m, Amin (M)
refers to its lowest real eigenvalue and \,., (M) it largest real eigenvalue. For (z,y) € R?, 2 o< y
means that there exists A € R* such that x = \y.

2 FRAMEWORK

Sequential decision-making. We consider an online decision-making problem over 7' > 0 peri-
ods, defined for any ¢ € [T] as

in (g:(X 1
min (g:(Xe), w) , (D
where W = Conv(vy,...,vx) is a bounded convex polytope of R? with non-empty interior and

vertices {v; } X ;. This feasible set appears naturally in many problems such as shortest-path (Gallo
and Pallottino, 1988), portfolio selection (Li and Hoi, 2014) or mixed strategy design in games
(Syrgkanis et al., 2015). In (1), X, are random covariates and g, : X — R, is a deterministic
cost function, which satisfies for instance g;(X;) = E[Z; | X;] for some hidden state Z;, € R?. At
each period ¢, nature picks both a distribution for X; and a cost function g,. This corresponds
to the stochastic adversary setting (Rakhlin et al., 2011). Importantly, X; is revealed at the
beginning of the round, but not g; (X;) which is only available at the end of the round. While g;(X)
is unknown to the decision-maker at the decision time, they have access to a family of models
g: O x X — R, parameterized by © C R™, to predict it. Then, the general form of the decision-
making dynamics we consider can be described as follows: at each round ¢ € [T], for a horizon
T € N, given the current parameter 6,

1. Nature picks a distribution for X, € X and a cost function g, : X — Z.
2. The decision-maker observes X; and compute its prediction as g(6;, X;).

3. Then, they take an action minimizing the resulting predicted cost

wy = wy (0;) € argtr;\in(g(et,Xt), w) 2)
we

4. Finally, the decision-maker observes g;(X;) and update ;. for the next round.

Formally, the decision-maker considers a joint process (6, w;);c[r), starting from #; € © and a his-
tory Ho = 0, and defined by the following recursion. Atround ¢ € [T, the decision-maker takes the
best action given the collected history H;_1, the current estimate 6, and a new feature X; as in (2).
Then, they observe g:(X;) and update their history H; = H;—1 U {(X+, g:(X¢), 0, wr(6:))}. Fi-
nally, they update their prediction parameter 6,, based on H; through an algorithm Alg,. A central
question for the decision-maker is then the choice of algorithms {Alg, },c|7) to fit their regression
model, that is how to pick 8, € © for each ¢ € [T7].

Online decision-focused learning. From an online perspective, prediction-focused learning con-
sists in selecting at each ¢ € [T'] an algorithm Alg, to estimate argming g R¢(6), where R, is
a statistical risk based on the historical observations H;_1, typically chosen as the empirical risk

R:(0) = 22:1 0(g:(X;),9(0, X;)), for some loss function ¢ (e.g., cross-entropy or squared error).
Alternatively, we consider in this paper, the decision-focused learning approach, which selects pa-

rameters § € O by directly minimizing the downstream objective instead of a risk function. Specif-
ically, the decision-maker chooses Alg, to solve argmingcg (g:(X¢), w; (6)) where w} is defined in
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(2). From the previous formulation, we see that the decision-focused learning formulation corre-
sponds to a bilevel optimization problem (Colson et al., 2007; Sinha et al., 2017; Ji et al., 2021).

We emphasize that no stationary assumptions are made on the process { X¢, g¢(X¢) }+[7]. In other
words, the adversary may select any distribution for X, and any function g; (as long as H2
below is satisfied). To fully accommodate this flexibility, we assess the optimality of {0} };c[) with
two notions of regret. Let

Jt:0€0— <gt(Xt)7w:(9)> ) 3)
denotes the loss incurred when taking an action based on the prediction parameter §, € ©. In-
spired from Zinkevich (2003), we consider the notions of static and dynamic regret to measure the
effectiveness of a learning strategy {6, }, e[y which are respectively:

Ry = Z fe(0r) —eilel(g Z]]E[ft(e)] and ML = Z F,(0,) — Z Girel(gpt(g), @)

te[T] te[T te(T] te(T]

where  Fy : 0 — E[f() | H¢—1]. In our dynamic regret, the sequence of actions is compared
against a sequence of oracles, each minimizing the instantaneous loss. Without taking the
conditional expectation over 7{;_;, each comparator could overfit to the specific realization
of X resulting in an unrealistically strong and unattainable benchmark. By considering the
conditional expectation of the loss, we effectively regularize the dynamic comparators, making
them meaningful competitors. Note that our static regret compare to the best fixed strategy, with
respect to the averaged losses. This notion makes sense here as we aim to control those regrets in
expectation over the randomness of the process.

We make the following mild regularity assumptions for the rest of the analysis.

H1. (i) © C R™ is a compact and convex set with diameter Dg < oo. (ii) For any § € ©
and t € [T), Vog(0,X;) € R™*4 is continuously differentiable and || Vg (0, X;) <G <

almost-surely. (iii) For any t € [T, ||g:(X:)|| < Dz < oo almost-surely.

llop

It is common in online learning to assume boundedness of the parameter space, model gradient
and prediction space (Boyd, 2004; Bishop and Nasrabadi, 2006). Note that in the well-specified
setting, i.e., g = g(6;,) for some 6, these two former conditions automatically imply the latter.
We emphasize however that we do not assume this realizability condition, in contrast to most of the
literature on decision-focused learning (Bennouna et al., 2024).

Without further assumptions on the sequence of costs g; and models g, the problem can still be made
arbitrarily hard. Therefore, we make an assumption coming from the classification (Mammen and
Tsybakov, 1999; Tsybakov, 2004) and bandit literature (Zeevi and Goldenshluger, 2009; Perchet
and Rigollet, 2013) about the margins of the cost function. Recall that we denote by {v;} X, the
vertices of WW. We define for any = € X and i € [K], u;(0,2) = (g(0, x), v;).

H2. There exist Cy > 0 and 8 € [0, 1], such that almost surely foranyt € [T], 0 € © and e € [0, 1],

]P( inf {uj(H,Xt) - ’U,]t(g)(e,Xt)} =€ | Ht—l) >1- C()é‘ﬁ s
J#I(0)

where I(0) € argmin, ¢ g ui (0, Xy).

H2 controls how difficult it is to solve problem (2) since it determines the objective gap between the
optimal vertex vy, 9y € ¥V and the other vertices. In other words, it quantifies how identifiable is the
optimal vertex, ¢ = 0 meaning it is not distinguishable from the others. If it is satisfied for g > 1,
then it is automatically satisfied for 5 = 1 thus we do not loose any generality restraining 3 to [0, 1].
This assumption is critical in our analysis, as it allows bounding the expected distance between the
actual optimal decision w; () and the regularized approximation () introduced in (5) below.

We expect H2 to hold in a wide variety of classical statistical settings. For example, in Appendix A
we show that it is satisfied when ¢ : (6, X) — X6 where X has i.i.d standard Gaussian columns.

3  ONLINE ALGORITHMS FOR DECISION-FOCUSED LEARNING .

On the need of regularization to get differentiation. From an online learning perspective, a
natural approach to minimize the two regrets defined in (4) would be to update 6,1 at each round ¢
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using a variant of either the Follow-The-Leader algorithm (FTL, Kalai and Vempala, 2005) or Online
Gradient Descent (OGD, Zinkevich, 2003), applied to the objective function f; defined in (3), thus
specifying the choice of Alg,. However, these algorithms are designed for single-level optimization
problems and require access to (sub-)gradients of the objective. In our setting, this requirement
is problematic because the function f; does not admit an informative gradient: by construction,
computing the gradient of f; involves differentiating the mapping 6 +— w}(6), which is generally
not (sub-)differentiable. Indeed, w; minimizes a linear function over the convex polytope W, thus
0 — wy () ranges in the finite set of vertices {v1,...,vk }.

To address this issue, following Wilder et al. (2019), we propose to add a regularizer R to the
objective function in (2). Accordingly, we define for any 6 € O,

wy(0) € arg;%n{(g(@,Xt),w) +aR(w)}, &)

which is a regularized approximation of w;. When this surrogate is continuously differen-
tiable—which holds for our choices of R in Section 3—we can use V() in our algorithmic
routine. This approach amounts to minimizing the surrogate

Je 100 (9e(Xy), w04(0)) (6)

instead of f;, which admits gradients of the form V f;(0) = Vw:(0)"g:(X:). Note that there is a
natural trade-off in the choice of the regularization parameter c;. On the one hand, choosing a large
oy makes the function w;(0) smoother. On the other hand, the larger oy is, the more w; deviates
from the true function w; that we aim to approximate. As we will see later, it is possible to balance
these two extremes by carefully tuning the parameter .

On the choice of regularization on a general polytope. In what follows, we write JV as the
intersection of n half-spaces, thatis W = {w € R?: ATw — b < 0} where n > 0 is the number of
faces, A € RY*™ and b € R™. We assume that )V is not degenerated, i.e. AAT € R4*? is full-rank.

It remains to determine what regularizer R to choose in (6). We recall that our aim is to obtain a
w¢(0) in (5) which is differentiable for any 6 € ©. A possible strategy is to choose R so w; remains
in the strict interior of W. In this case, w;(6) is differentiable in a neighborhood of any # € © and
admits a close-form Jacobian Vi, (6) by the implicit function theorem. A natural choice to force
Wy to remains in the interior of W is the corresponding log-barrier function:

R:wH—Zln(bifAIw) , @)

i=1

where A4, € R< is the i-th column of A. With this choice of regularization, we show in Lemma 4
that Vw, has an explicit formulation, allowing its use in practice.

Remark 1. We remark that in the special case where W = {w € R : w = 0, 17w = 1} is the
simplex of RY, an alternative choice for R in (5) is the negative entropy Ro : w + > ie[a) Wi In(w;).
In this case, w:(0) in (5) reduces to the softmax mapping, which is differentiable and admits a close-
form Jacobian. In Appendix C, we theoretically study the performances of our algorithms in this
special case.

Approximate oracles to handle non-convexity. The bi-level structure of the problem yields
unexpected properties. In particular, even when the regularizer R is strongly-convex in (26)—
which the case with both log-barriers and negative entropy—and the model g is simple (such as
9(0,X) = X0), fi : 0 — (w0(0),5:(X:)) may not be convex, but is lipschitz (see Lemmas 1
and 5). This prevents us from directly using known online convex optimization algorithms (Hazan,
2023). However, a recent line of research (Agarwal et al., 2019; Suggala and Netrapalli, 2020;
Xu and Zhang, 2024) has developed online algorithms in the non-convex case, provided the losses
are Lipschitz-continuous—which is the case with log-barriers or negative entropy (see Lemmas 1
and 5). These studies combine near-optimal oracles with perturbation techniques to establish sub-
linear bounds on the expected regret. In line with this literature, we also assume to have access to
an approximate offline optimization oracle, a notion that appeared in a slightly modified form in
Suggala and Netrapalli (2020).
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Definition 1. An &-approximate offline optimization oracle (or approximate oracle), adapted to a
class C is a mapping O taking a function f € C such that f : © — R, and outputting 9 = O¢(f) €
O satisfying:

f(0) < inf f(0) + €. (8)

0€O

The notion of an approximate oracle formalizes that, in non-convex settings, we cannot rely on

subroutines that provably attain a global minimizer of f; at time ¢ (as offline gradient descent would
in convex problems). Instead, we must settle for local minimizers, whose quality is characterized
by a parameter {&—which vanishes in favorable loss landscapes. As a concrete example, consider
the stochastic gradient descent (SGD) algorithm as O¢. A large body of work has shown that, even
when © is a class of deep neural networks, SGD can converge to local minimizers (Ghadimi and
Lan, 2013; Mertikopoulos et al., 2020; Patel and Zhang, 2021; Cutkosky et al., 2023), justifying that
O¢ is indeed an approximate oracle. A more detailed discussion is provided in Appendix B.

We conclude this remark by mentioning that it is possible to conduct a non-convex analy-
sis without an approximate oracle by considering the weaker notion of local regret defined as
ZtE[T] IVF.(6,)|l; see (Hazan et al., 2017; Aydore et al., 2019; Zhuang et al., 2020; Hallak et al.,

2021). However, such a definition is not meaningful in the DFL framework, where gradients are
zero or undefined due to the structure of the problem.

The combined use of approximate oracles and regularization allows us to derive original online
algorithms. In Section 3.1, we focus on a variant of the FTL algorithm, enjoying a static regret
bound, while in Section 3.2 we propose a version of OGD enjoying a dynamic regret bound, both
results holding in the non-convex case.

3.1 DECISION-FOCUSED FOLLOW THE PERTURBED LEADER

Our first algorithm is displayed in Algorithm 1, where Exp(n) refers to an exponential distribution
with parameter 77 > 0. It is inspired from the classic Follow-the-Leader approach (Kalai and Vem-
pala, 2005), which consists in making a decision minimizing the sum of objective functions observed
so far. When losses are non-convex, it is common to inject random noise at each step to regularize
the total cost function, resulting in an approach known as Follow-the-Perturbed-Leader (Hutter and
Poland, 2005; Suggala and Netrapalli, 2020). We employ this strategy as Alg, to update 6,41 in
Algorithm 1. Note that the oracle in line 6 of Algorithm 1 crucially works with the regularized
losses fi,..., fi. This allows to use in practice gradient-based methods to obtain an approximate
minimizer as per our discussion in Section 3, since these surrogate losses are differentiable and
Lipschitz.

Algorithm 1 Decision-Focused Follow The Perturbed Leader DF-FTPL

1: Input: horizon 7" > 0, initialization 6, € ©, {-approximate oracle O and history Ho = 0.
2: foreacht € {1,...,T} do
3:  Observe X; € X and play w; (6;) = argmin, ¢, {(g(6:, X¢), w) .

4:  Observe g;(X;) € Z and update the history H;.
5. Draw o; € R? such that for all j € [d], the j-th component ¢ ; ~ Exp(n).
6:  Update
t
041 = O¢ <Z fi — (o, >>
i=1
7: end for

Note that in line 3, the algorithm takes the best action w} (0;) given the predicted cost g(0;, X;)

(the regularized action w, is only needed to compute f;). In most practical settings, w; can be
computed efficiently with standard numerical solvers. However, we show in Appendix F that only
being able to determine w,(6;) € W such that (g(0:, X¢), w,(6:)) — (g(0s, X¢),w;(6:)) < k for
some x > 0 only shifts the regret bounds of the next section by .

We provide a theoretical guarantee on the convergence of Algorithm 1 in the form of the following
static regret bound.



Under review as a conference paper at ICLR 2026

Theorem 1. Assume H 1, H2 and having access to an §-approximate oracle O¢ adapted to

(0 fi = (o, ) heerr)- Let {0t }iepry be the output of DF-FTPL (Algorithm 1) instantiated with
learning step 1 > 0 and regularization coefficients oy = o > 0 for any t. Then:

mD

~ 1
—1 s1 __ 2
T ER7] = (’)(mn D—OZ2 + T

+&+ an) ,

where E denotes the expectation on both data and the intrinsic randomness of DF-FTPL and )
contains polynomial dependency in In(1/a), In(In(d)).

Furthermore, taking n o< mY/4T=3/*n=12 and o oc m3/*n'/>T=/* yields:

T-E[RS] = (5(n~u°>/4\/ﬁT*1/4 + 5).

The proof of Theorem 1 can be found in Appendix G.2. In particular, Theorem 1 shows that
DF-FTPL enjoys an average regret bound decaying in 7-'/* as long as ¢ = O(T~'/4). While
it features a polynomial dependency m?3/* on the dimension of ©, it only depends on the dimension
of the decision space W through a In In(d) term. This makes Algorithm 1 a particularly competitive
approach when the decision space is of high dimension.

It is informative to compare our guarantee to existing bounds in the literature. Suggala and Ne-
trapalli (2020), who also study non-convex online learning, achieves a rate of O(7'~'/2) as long
as their offline oracle satisfies ¢ = O(T~1/2), at the cost of a degraded m>/? dependency on the
dimension. Their faster rate in 7' comes from the fact that they tackle a simpler, single-level prob-
lem as compared to our bi-level, non differentiable setting. Indeed, we need to regularize the inner
problem to overcome non-differentiability as discussed in Section 3. This introduces an additional
trade-off on the regularization strength « on top of the usual trade-off in the learning rate 7, which
is reflected in our rate.

3.2 DECISION-FOCUSED ONLINE GRADIENT DESCENT

While DF-FTPL (Algorithm 1) benefits from a converging static regret bound, the techniques in-
volved in Suggala and Netrapalli (2020) are not enough to reach dynamic regret guarantees, which is
particularly relevant in highly non-stationary environments where the optimal decisions may change
significantly from one round to another. To this end, we go beyond the Follow-the-Leader approach
and propose an original algorithm based on the celebrated Online Gradient Descent (Zinkevich,
2003). This procedure, which we call DF-0GD, is presented in Algorithm 2.

In words, at each time ¢ € [T, Algorithm 2 first makes a decision w}(6;) € W based on the
current parameters 0; € O. Then, it observes g;(X;) € Z, determines the surrogate objective f; and
computes a near-minimizer via the offline oracle from Definition 1. Next, to handle non-convexity,
it determines the gradient Vwy(uy), evaluated in a point u; drawn uniformly at random in [0, ;).
From there, it updates 6, ; through the classical gradient step scheme of OGD.

The main difference with Algorithm 1 is the update of 6, ; through Alg,. On the one hand, DF-FTPL
invokes O¢ to minimize the cumulative loss observed so far and perturbs the entire objective func-
tion. On the other hand, DF-0GD relies only on a near-optimizer of the most recent regularized cost,

¥y = Og( ft), and perturbs the point at which the descent direction (gradient) is evaluated.

Moreover, note that Algorithm 1 is instanciated with a single pair of parameters («,7) whereas
Algorithm 2 uses on a sequence (¢, 7¢)e[7]. This additional flexibility is crucial for the algorithm
to adapt to the variation of the problem so as to maintain a low dynamic regret.

We provide a convergence guarantee for Algorithm 2 with the following dynamic regret bound.

Theorem 2. Assume HI, H2, access to a -approximate oracle adapted to { Jgt}te[T} Let {0:} e
be the output of DF-0GD (Algorithm 2) instantiated with the non-increasing sequence (nt)te[T] and
regularization coefficients (cvt)ier). Then:

_ ~ 1+Pr 1 U
1 d] _
T'E[R}] =0 E Tor T T gm o2 +nag | +§
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Algorithm 2 Decision-Focused Online Gradient Descent (DF-0GD)

1: Input: horizon T' > 0, initialization §; € © and history Hq = 0.

2: foreacht € {1,...,T} do

3:  Observe X; € X and play w; (6;) = argmin, cy,(g(0:, X¢), w) .

4:  Observe gt(Xt2 € Z and update the history H;.

5: Get ’l?t = Og(ft)

6: Draw 5t ~ Unlf([O, 1]), com~pute Uy = 19t + 6t(9t - ’l9t) and Vt(ut) = Vﬁ)t(ut)Tgt(Xt) .
7: Update 9t+1 = H@ (6t — 'I]tvt (Ut)) .

8: end for

where Pr = 23:11”1975“ — Oy
ness of DF-0GD and O contains polynomial dependency in In(1/a), In(In(d)).

, E denotes the expectation on both data and the intrinsic random-

Furthermore, assume (t~'(1 + P;));>1 is non-increasing almost surely with P, =
ZZ:1||'[95+1 — ]| Then, using oy o< n=Y2t=4(1 4+ P)Y/* and n; o< n=/?2t=3/4(1 + P,)3/* for
any t € [T leads to :

T'E[R4] = O(E[va(L+ Pr)*T /1] +¢) .

The complete statement of the main bound, including constants is provided in Equation (48).
Our dynamic regret bound naturally depends on Pr, which captures the problem’s variability
by measuring the cumulative distance between approximate minimizers over time. When & =
O((1 + Pp)/*T=1/%), the average dynamic regret decreases at the rate O((1 + Pr)'/4T—1/4).
Notably, the bound is independent of the dimension of ©, and depends only mildly on the dimension
of W through a In In(d) factor. This constitutes a key strength of the optimistic strategy underlying
DF-0GD, making it particularly well-suited for high-dimensional settings.

It is instructive to compare our guarantee with those established in recent studies on dynamic regret.
For instance, Zhang et al. (2018) derive a O(T~'/2,/T(Pr + 1) bound. However, their setting is
not directly comparable to ours, as they consider a simpler single-level problem with differentiable
and convex objectives. In contrast, our framework involves non-convex, non-differentiable losses
due to the bi-level nature of decision-focused learning. More recently, Huang and Wang (2025)
obtained a O((1 4+ Pg°)/3T~1/3) bound, where P2° := S [ fis1 — fillso- Yet, this rate is
achieved under substantially more favorable conditions: a single-level problem with losses that are
strongly convex or Lipschitz, an additional assumption of “quasi-stationary” and a more challenging
path involving the full landscapes of the f;s. By comparison, our losses are neither Lipschitz (indeed,
they may even be discontinuous due to the linearity of the lower-level problem) nor required to be
stationary over time—the only restriction being H2 to hold. We view the ability of our algorithm
to achieve efficient convergence despite these demanding conditions as a core contribution of our
work.

4 EXPERIMENTS

In this section, we compare the performances of our algorithms DF-FTPL and DF-0GD to two impor-
tant benchmarks, namely prediction-focused learning and SPO (Elmachtoub and Grigas, 2022).

Setting. Our experimental setup is inspired by the knapsack example from Mandi et al. (2024).
More precisely, we consider a decision maker who must pick at each ¢ € [T] an object v; € V among
K items denoted V = {1,2,..., K} with respective costs g;(X) = (gt 1(X),...,0.x(X)) €
[0,1]% depending on some covariates X € X. At the beginning of each period, the decision-
maker only observe covariates X; € X C RP, and have at their disposal a parametric model g :
© x X — [0,1)¥ to predict g;. Given their current parameter §; € ©, they predict item costs
as g(0y, X¢) = (91(0¢, X), ..., 9k (01, X)) and pick an item vy (6) = argmincx) gi (0, X¢).
This setting is depicted in Figure 2 for K = 2 in Appendix E. After having made their decision, the
decision-maker observes the true item costs g; (X} ), and update ;1 for the next round based on this
feedback. Note that this setting can directly be mapped in the simplex example of Remark 1, since
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v} (6¢) = argmin,, ¢y, (w, g(0;, X¢)), Wy being the simplex of R, For this reason, we instantiate
our algorithms DF-0GD and DF-FTPL with the negative entropy regularizer, following Remark 1.

Synthetic data. We instantiate the previous problem with the following synthetic data. For any
t € [T], we draw X; € RE*P with correlated rows, and generate a cost vector c;(X;) € R¥ as :

ci(Xy) = Asin®((2X,07)7") + &, 9)

where A > 0, ¢; ~ N(0, I ) is a Gaussian noise and 67 € RP is a parameter which satisfies §; =
1/20* +1/2¢;,, where (; ~ N(0,I,) for some 6* € RP. This is a challenging data generating
process, since g;(X;) = sin*((2X;76;)~1) is non-stationary and highly non-linear, and features are
correlated. Equation (9) is discussed more in detail in Appendix E. To predict ¢; from X}, we assume
that the decision-maker has access to a class of linear predictors of the form g : (6, X) — X6.

Benchmarks. In this setting, we compare the performances of DF-FTPL (Algorithm 1) and
DF-0GD (Algorithm 2) to two benchmarks. First, we implement Prediction-Focused Online Gra-
dient Descent (PF-0GD). This strategy consists in training in an online manner the model g at each
timestep so it minimizes the statistical loss ™ : (v, X6) s |lv — X0||?, irrespective of the down-
stream decision problem. Then, decisions are greedily made based on the predictions of the model.
This approach is formally described in Algorithm 3 in Appendix E. Second, we compare our al-
gorithms to an online version of the Smart Predict-then-Optimize (online SPO, see Algorithm 4)
approach from Elmachtoub and Grigas (2022). This algorithm introduces a differentiable and con-
vex loss which upper-bounds the actual decision-focused loss. Given its effectiveness and versatility,
it is considered as a very important benchmark in the literature.

Results. In Figure 1, we plot on the left-hand panel the average cumulated cost t
t=1 3! | Gs.(X,) incurred by DF-0GD, DF-FTPL, PF-0GD and online SPO over 10 runs of
T = 5000 timesteps, as well as the associated 95% confidence intervals. On the right-hand panel,
we plot the average Mean Square Error (MSE) resulting from the sequence of prediction parame-
ters (6¢):e[r). It appears that both DF-FTPL and DF-0GD outperform PF-0GD and online SPO from
a decision point of view, while incurring a higher MSE. This is in line with decision-focused ap-
proach, which cares about decision cost rather than statistical loss. This experiment shows that (i)
DFL outperforms PFL when models are clearly mispecified and (ii) our algorithms also outperforms
the celebrated online SPO. We also mention the presence of additional numerical experiments in

Average Cumulative Cost Prediction Error (Smoothed)
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PFL Avg Cost 6 PFL Prediction Error
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N
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Figure 1: Average cumulated cost (left) and prediction errors (right) of DF-0GD, PF-0GD, DF-FTPL
and online SPO.

Appendix E, to study how model misspecification affects the relative performances of DFL and
PFL.

5 CONCLUSION.

Decision-focused learning offers a promising way to integrate prediction into decision making. We
extend its analysis from the batch to the online setting, enabling non-stationary data and varying
objectives. Our algorithms DF-FTPL and DF-0GD comes with provable guarantees, and empirically
outperform prediction-focused learning and online SPO in our experiment.
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We believe that this work can be extended in several ways. First, it is plausible that faster rates
(e.g., T~'/2) could be obtained using more traditional online-learning techniques that bypass
the bilevel framework, such as discretizing the parameter space and applying expert aggre-
gation over the resulting bins. However, such approaches would likely incur a prohibitive
dependence on the parameter dimension m (e.g., exponential in m). Exploring this direc-
tion remains however an interesting avenue in future work. Second, we believe that alterna-
tive smoothing techniques could be successfully employed, such as Moreau-Yosida transform and
proximal operators, to adress the more challenging of a general convex set W. Third, it would be
valuable to investigate less adversarial environments, such as those involving i.i.d. data, to explore
whether stronger theoretical guarantees could be obtained and whether novel algorithmic designs
might emerge. Finally, implementing our method in more ambitious experimental settings would be
of great interest from a practical perspective.
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A H?2 IS SATISFIED IN THE GAUSSIAN LINEAR CASE.

In this section, we prove that H2 holds true when W is the simplex of R4, g is a linear model and
X has columns distributed according to a Gaussian distribution. In what follows, we denote by
X; € R? the j-th column of X.

Proposition 1. Assume that g : (6,X) € © x X — X0 where © = {§ € R™ : ||0||, = 1} and

X =(X1|...| Xm) € R™™ where X e N(0,I). Then, H2 is true for any 6 € © with
d(d— 1)
Co=—~— d f=1.
b= m P

Proof. Let 6 € O. In what follows, we denote ¢ = I(6) where I(9) is defined as in H2. Since W is
the simplex of RY, v; is the j-th vector of the canonical basis of R?. For any € > 0 we have:

P (inf1000,0) — (X0,00] <€) < B 10660, — (X600 < 2)

JjF#i
< ZP(|<9,XT(vj —v;))| <€)
J#i
= P((0,X; - X;)| <e). (10)
J#i

Since for any j # 4, (0, X, — X;) ~ N (0, 2||9H§) with density f;, we have:

£ 1 € :L‘2
B((0.X; - X < )= | f(@)dz = (2v7]0]),) [emﬂmw>w

and since the integrand reaches its maximum in z = 0,

-1

<e(valol) ™ - an

Then, plugging (11) in (10) and summing over all pairs (¢, ) such that j # ¢ yields the desired
result. O

Note that the d? factor in Cy comes from the use of an union bound, and could be reduced with a
refined analysis.

B EXTENDED DISCUSSION ON THE RELEVANCE OF APPROXIMATE ORACLES.

The notion of an approximate oracle reflects the fact that, in non-convex settings, we cannot rely on
subroutines that provably reach a global minimizer of f; at time ¢ (as offline gradient descent would
in convex problems). Instead, we must settle for local minimizers, whose quality is governed by a
parameter &—which vanishes in favorable loss landscapes.

As a concrete example, consider O as the stochastic gradient descent (SGD) algorithm. Even in the
context of deep networks, it is plausible that O converges to a local minimizer. Indeed, a large body
of work has analyzed SGD in non-convex settings, establishing convergence to stationary points
either in expectation (Ghadimi and Lan, 2013) or almost surely (Mertikopoulos et al., 2020; Patel
and Zhang, 2021; Cutkosky et al., 2023). Such stationary points may correspond to local/global
minima or saddle points.

Recent studies further show that SGD avoids saddle points. For instance, Mertikopoulos et al.
(2020) proved that the trajectories of SGD almost surely avoid all strict saddle manifolds—i.e., sets
of critical points x where the Hessian has at least one negative eigenvalue. These manifolds include
connected families of non-isolated saddle points, a phenomenon common in the loss landscapes of
overparametrized neural networks (Li et al., 2018).
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Beyond SGD, similar guarantees extend to more general methods. In particular, the stochastic Rie-
mannian Robbins—Monro method (a broad template encompassing various algorithms) has been
shown to converge almost surely to local or global minima (Hsieh et al., 2023).

Finally, we highlight that, in most practical industrial settings, solving the downstream opti-
mization problem is typically far more computationally demanding than updating the predic-
tion model. It is therefore reasonable to assume that the oracle call represents only a small
fraction of the overall computational cost.

C SUPPLEMENTARY RESULTS ON THE SIMPLEX.

We now provide convergence guarantees for Algorithms 1 and 2 when W is the simplex. To do so
we choose another regularizer than done in the main document.

C.1 ADDITIONAL FRAMEWORK

We focus on the case where W is the simplex of RY, that is
WOZ{wERd:wk(), lTwzl}.

This setting encompasses various decision-making scenarios such as portfolio selection Li and Hoi
(2014) or mixed strategy design in multiplayer games Syrgkanis et al. (2015). In this case, we choose
the negative entropy

Ro:wr— Z w; In(w;) |
1€[d]

as the regularizer in (5). The minimizer w;(6) € W, in (5) with R = R can easily be shown to be
the softmax mapping, that is it satisfies for any i € [d]:

_ exp(—a~1g;(6, Xy))
Zke[d] exp(—a~tgx(0, Xy))

It is clear from this expression that 10, is differentiable, and that for any 6 € ©:

Wy (6)

Vi (0) = —é[diag[wtw)} — Wi (0)we(0) ] Vog(0, X¢) . (12)

C.2 RESULTS

DF-FTPL
Proposition 2. Assume HI, H2 and having access to an &-approximate optimization oracle Og¢
adapted to {Z§=1 fi — <Jt’.>}t€[T]. Fix W = Wy, R = Ro. Let {0;}e(m) be the output of
DF-FTPL (Algorithm 1) instantiated with learning step 1 > 0 and regularization coefficients oy =
a > 0 for any t. Then:

mD

. 1
-1 s1 < 2
T~ E[R7] < (’)(nm Doﬂ + T

+&+ aln(d)) ,

where [E denotes the expectation on both data and the intrinsic randomness of DF-FTPL and @)
contains polynomial dependency in In(1/a), In(In(d)).

The proof of this result is postponed to Appendix G.4.
DF-0GD

Proposition 3. Assume HI, H2, and having access to an {-approximate optimization oracle O¢

adapted to {ﬂ} - Fix W = Wy, R = Ro. Let {0: }c[1] be the output of DF-0GD (Algorithm 2)
te
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instantiated with the non-increasing sequence (1), () and regularization coefficients (cu)ie|r).
Then:

D% + DoE[Pr] Z 25D zGny

-1 d
TTEM] < 2T 32Ta?

te[T]

+2Dz Y o[l +2In(d)Co{ln(20; ") + (1 = B) In*(ay Ind)}] + € ,
te[T]

where Pp = 31041 — 04]].

The proof of this result is postponed to Appendix G.5.

Note that the principal gain, compared to the general polytope case, is to avoid the dependency in n
the number of faces and enjoys a nice In(d) dependency in the dimension of the decision space.

D BACKGROUND ON THE FTPL ALGORITHM

Approximate Optimization Oracle. The recent work of Suggala and Netrapalli (2020) proposed
an online algorithm for nonconvex losses (£;).c[r] With static regret guarantees. They rely on an
approximate optimization oracle O which takes as input any function ¢, a d-dimensional vector
o and returns an approximate minimizer of { — (o,-). An optimization oracle is called "( &, x )-
approximate optimization oracle" if it returns p* € C such that

Lp") — (o, u") < Eellfc[f(u) — (o, ]+ (E+xllollr) - (13)

We denote the output of such an optimization oracle by pu* = O¢ (¢ — (o,-)). Note the notion
of oracle described in (13) is very close from the Definition 1 we made in Section 3 on the expert
sequence (U¢)¢[7 (in this case x = 0 as no o is involved).

Remark 2. Note that, in our work, we made the choice to fix x = 0. This stronger assumption is due
to the will of having a unifying framework encompassing both the setup for DF-FTPL and DF-0GD.

Follow The Perturbed Leader. Given access to an (£, x )-approximate optimization oracle, Sug-
gala and Netrapalli (2020) study the FTPL algorithm which is described by the following recursion.
Starting from /i1, at each time steps ¢, iy € K is updated as follows:

t—1
i1 = Og <Z b — (o4, '>> (14)
i=1

where o; € R? is a random perturbation such that 0y,j, the j-th coordinate of oy, is sampled from
Exp(n), the exponential distribution with parameter 7.

Following this update route, the addition of an exponential noise allowing to handle the non-
convexity of the losses, they reach the following static regret bound.

Proposition 4 (Theorem 1 of Suggala and Netrapalli (2020)). Let D be the diameter of K. Suppose
that Uy is L-Lipschitz w.r.t LI norm, for all t € [T). For any fixed n, FTPL (Equation (14)) with
access to a (£, x)-approximate" optimization oracle satisfies the following static regret bound:

m(xT + D)

L
T +&+xm )

T T
1 N : 27172
7> (i) —inf Y L) < O(nm DIL? +
t=1 t=1
where | denotes the expectation over o1 - - - o.

E ADDITIONAL EXPERIMENTAL MATERIAL

The motivating example from Mandi et al. (2024). In this paragraph, we recall the example that
motivates our experiment. Mandi et al. (2024) illustrates the interest of decision-focused learning

17
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with a simple problem where a decision maker seeks to pick, between two objects, the one with
the lowest cost. Before picking an object, they do not know costs but have at their disposal a
model to predict it. This situation is depicted in Figure 2. For instance, if the true cost g; =
(Gt.1,Ge,i) 1s (x), any prediction g = (g1, Gt i) lying in the blue-shaded area, such as (+), induces
the optimal decision v; = 1. As observed in Mandi et al. (2024), a prediction-focused approach
may underperform compared to a decision-focused one in this setting. This is because generating
a prediction v, that closely approximates the true value v;—in the sense of minimizing statistical
loss—does not necessarily ensure that ¢, falls on the same side of the 45° line as v;. For example,
the prediction () is satisfactory from a predictive point of view, but induces a sub-optimal action.
On the contrary, one would expect the decision-focused approach to produce predictions that lie
further away from (x) since it does not minimize prediction error, but on the right side of the 45°
line; see for instance (A) or (V) on Figure 2.

5

Value of Item 2
w
<
dy
*

[
X

| I I I
0 1 2 3 4 5
Value of Item 1

Figure 2: Figure 2 from Mandi et al. (2024).

Details on the experimental setup. In this paragraph, we provide more detail about the exper-
imental setup in Section 4 and perform additional numerical simulations. We start by explaining
more precisely how the data used in our experiment are drawn. First, for any t € [T], X; € RE*?
is constructed as follows: (i) we generate a Toeplitz covariance matrix ¥ = (pl*—J ‘)(i’j)e[K]Q for
some p € (0, 1), (i) apply a Cholesky decomposition to it: ¥ = LL", and (iii) generate a matrix
X, with standard Gaussian entries. Then, X, is defined as X; = LX;. This introduces correlation
between features, which makes convergence harder for an online linear model. Second, we generate
v, € RE as follows:

¢; = min(max(é;,0),1) with & = Asin*((2X:0;)7!) +¢.
In the above equation, A > 0 is a constant, §; satisfies:

1 1
0; = 59* + 5@}, where (; ~N(0,Ix) and 6* € RE
and e; ~ N(0, ) is Gaussian noise. The fact that 6} varies throughout time and that the relation-
ship between v; and X; is highly linear makes learning hard for a linear model.

We now present the values used for the different parameters in our experiment. We consider K = 5
items and p = 10 features. The horizon is set to 7' = 5000. For each plot, we run N = 10 times
DF-0GD and PF-0GD. The reported error bars are 95% Gaussian confidence intervals (from the CLT).
In (9), A = 45 and the correlation coefficient for X; is p = 0.8. Our algorithms are instantiated
with the following parameters. First, DF-0GD runs with («;) and (1)) as suggested by our theoretical
analysis. The oracle from H2 is obtained through a SGD algorithm performing ¢y = 10 steps at
each iteration with a learning rate set to 7y = 0.01, while being initialized at ¥;_;. On the other
hand, PF-0GD runs with a learning rate n = 10 determined by grid search. Our code is implemented
with pytorch.

Benchmark algorithms.

18
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Algorithm 3 Prediction-Focused Online Gradient Descent (PF-0GD).
1: Input: horizon T' > 0, initialization §; € ©.

2: foreacht € {1,...,T} do

3:  Observe Xy, predict ¢; = (6, X¢)

4: Play vy (6;) = argmin, g ¢t,; , observe g (X).
5: Update 0t+1 = H@ (Qt - nVEmse(gt(Xt), Xtﬂt)) .
6: end for

Deviation from realizability. As argued in Section 1, prediction-focused learning would be opti-
mal if the prediction model made no mistake, since in this case problem (2) would perfectly align
with (1). As a consequence, one would expect prediction-focused learning to perform very well in
the realizable setting, that is when for any ¢ € [T'], there exists 6; € © such that §;(X;) = g(0, X¢).
On the flip side, it is likely to struggle in a mispecified setting. This is in contrast with DF-0GD,
whose theoretical performance analysis does not highlight any peculiar dependence on realizabil-
ity. We therefore hypothetize that PFL should outperform DFL in the realizable case, and DFL
should take the upper hand when the prediction model is highly mispecified. To test this hypothesis,
we run an alternative experiment where we interpolate between the well-specified, linear case, and

ill-specified, non-linear one. More precisely, for v € [0, 1], we generate (X, vp))tem as follows:

v = (1= 7) X6} +sin*(2X:07) 1) + < -

In Figure 3, we make « vary from O to 1. At each value, we plot the average cumulated cost gap
between DF-0GD and PF-0GD, averaged over 50 runs with horizon 7" = 1000. This experiment
provides empirical support to the previous conjecture, namely, DFL becomes a competitive option
when the prediction model is ill-specified.

—¥— Avg Cost Gap

Average Cost Gap

O.‘S 0.‘6 Oi? 0.‘5 UIEJ lIO
Non linearity

Figure 3: Average cumulated cost gap PFL - DFL as a function of ~.

Algorithm 4 Online Smart Predict-then-Optimize Online Gradient Descent (Online SPO0).

1: Imput: horizon T > 0, initialization #; € ©.

2: foreach¢ € {1,...,T} do

3:  Observe Xy, predict & = g(6, X¢).

Play v} (0;) = argmin, ., é{v, observe c;.

Compute v*(¢;) = argmin, ), éfv and v*(¢;) = argmin, ¢y, cjv.
Define SPO™ surrogate:

éSPO-{-(

AN

Gty ct) = 2¢{v*(6) — cfv*(cr) — E{v*(ér).

7:  Update 0,11 = Ilg (Gt -n VgESPOJF(ét, ct)) , where the gradient is computed via chain rule
through ét = g(9t, Xt)
8: end for
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Average Cumulative Cost Prediction Error (Smoothed)
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Figure 4: Experiment results with 80 items.

Higher dimension problem. Finally, the following figure shows the performance of our algo-
rithms in a higher dimension problem, with K = 80 items. We see that our algorithms still sig-
nificantly beat the baselines, suggesting that they remain effective in moderately high dimension
problems.

F REGRET BOUND WITH AN APPROXIMATE OPTIMAL SOLUTION.

In this section, we show that when we cannot access wy (6;) € W but only w,(6;) € W such that
(9(0, X1), w,(0:) — wy(0:)) < & for k > 0, our regret bounds are only shifted by . The following
proof is for the general convex polytope case. The simplex case is established in the exact same way.

Proposition 5. Assume the assumptions from Theorem 2 and that at each step, w;(0;) € W is
replaced by w,(0) € W which satisfies

(9(0, X1), wy (6:) — wi(01)) <k,

where k > 0. Then,

D} — DoE[Pr] | 3 GDz sup e, [|b = Aw| )
2nr @ Amin (AAT)

E[R7] <
te[T]

+2Dz Y oyl +2n ggﬁ){(]\\kalC’g(ln(la;l) +(1=8)%In*(ayInd))] + € + & .
te[T)

The proof Proposition 5 is deferred to Appendix G.6.

G PROOFS

G.1 PROOFS OF PRELIMINARY LEMMAS.

G.1.1 SIMPLEX

Lemma 1. Assume HI, W = W,y and R = Ryo. Then for any t € [T], fr is K,-Lipchitz almost
surely, with K; = 5D zG(4a;) L

Proof. Let (0,0') € ©2. We have:

Fu0) = J(8))| = (g:(X0), @i (0) — @i(9))

gt
< |ge (Xo) e (8) — we (6) |

1
= 1Kl [ Va0 + ¢ = 0)6 — )]

1
<Dz/ [Va: (0 + (0" — 0))|,,10 — 0’| At (by HI-(ii)) (15)
t=0
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Now, denoting ¢ = 0 + t(6' — 0), we have:
IV (O)lop = ;I (diag[d: ()] — @i () @:(O))Vag (S, Xi) o
< oy | diag[@: (Q)] = @e(Qwe(€) N0 I Vog (¢, Xe)lop
< Goy | diaglwy (O)] — @ (Q)@e(¢) [l (by Hi(iii) (16)

Since diag[w:(¢)] — w:({)w:(¢)T is symmetric, its operator norm equals its largest eigenvalue,
denoted \,,.x. It then follows that:

[diag[w:(C)] = @¢(C)0:(C) [l op = Amax(diag[w:(C)] — wi(C)w:(C)")

i€(d] ]
g max{wt(C)l 1(1 _ﬁ)t(c +wt zz E wt 2]}
el J#i
1 5
<-41=12,
4 + 4

where the two last inequalities hold because w; € [0,1]%. Therefore, we obtain from (16) that
[V (Q)]l,., < 5G(4ay) ™1, and plugging this in (15) yields:

Dz (! D
oz [e-onae =222 10— o).
4oy Jo doy

lop

fe(0) — f(0")| <

O
Lemma 2. Assume H2, W = W, and R = Ry. Then for any 0 € © and t € [T, forany 6 € 0

E[|@:(8) — wi(O)], | He1] < a1 (1 +2In(d)Co (m(i) +(1- 8)n2(ay ln(d))>) .

Proof. Let § € © and t € [T]. Since W = W), denoting for any j € [d] e; the j-th element of
the canonical basis, we have u; (6, X;) = (g(0, X;),e;). We recall that we denote uy,(9)(0, X;) =
min;c(q u;(0, X¢). We first prove the following lemma.

Lemma 3. Assume that there exists ¢ > 0 such that uy,9)(0, X;) + ¢ < u;(0,X;) forany j €
{1,..., K} \ {1:(0)}. Then,

lwi (0) — wi(0) ]|y < ———

Proof. In this proof, I;(0) from H2 is denoted I; to lighten notation. We have by assumption:

d
<g(97Xt)7 wt(e) < 9 Xt Z >
j=1
= uz, (0, Xe)ir,1, (0) + > u;(0, X )by, ;(0)
J#Ie
2 ur, (07 Xt)wt,ft (9) + (uIt (9’ Xt) + E) Z wt’j (9)
i,

= ur, (0, Xe)w,1,(0) + (ur, (0, X1) + €)(1 — w,1,(0)) - (17)
The last equality holds because ||@;(€)]|; = 1. On the other hand, using the facts that Ry > 0,
we(0) = argmin(g(0, X¢), w) + axRo(w) and ur, (0, X+) = (g(0, X¢), wy(0)) yields:

9(0, X1), wi(0)) + cuRo(we(0))

9(0, X1), wi(0)) + cRo(wi (6))

1. (6, X¢) + o Ro(wy (0))

1,(0, X3) + oz In(d). (18)

<g(9aXt)7 ( )>

NN N
: g /\/\
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The last line holds because Ro(w) < In(d) for any w € W,. Combining (17) and (18) gives:

ur, (60, X))@, 1,(0) + (ur, +&)(1 = @4,1,(0)) < ur, (6, X¢) + a; In(d).

.. . ~ ay In(d)
Re-organizing the terms then yields w1, (0) > 1 — =~

S, e (0) < ),

Combining those inequalities yields:

and again, as ||[@;(6)||; = 1, we have:

_ - - - 20 In(d
10 0) = @Ol = ller, ~ @)y = 1~ 1, (0) + 3 1wy 5(0) < 222D,
J#Le
O
To conclude the proof, we first write the expected distance as follows:
+oo
Elllwi (0) — @i (0)[l1 | He-a] =/ P([Jw; (0) — @i(0) [l >y | Hia)dy,
0
Since both w} () and w;(#) belong to the simplex, we can restrict the integral to:
2
— [ Bt @) - 5@l > v | Hen)dy (19)
0
= [ R0~ @)l >y | Heay @0
0

+ / P(Jwf (0) — 5O > y | Hio1)dy

.
2
<ot [ B(wi® - a@)h >y | He)dy @D
We now apply the change of variable y = 2c; In(d)e ! to obtain:

Elllwf(6) — @¢(0)1 | Hi—1]

= oz + 20 In(d) /

(a¢ In(d))
Moreover, for any € > 0 we have by H2 and Lemma 3 that:

1-— Cogﬁ < P(l;lf {uj(G,Xt) — uIt(G,Xt)} =€ | Ht1>
J7F 1

< P(JJwy(0) — we(0)ll; < 200 In(d)e™" | Hir)

(21In(d)) de

In(d
P10t - @@l > 2220 | )£ e

so it follows that:

_ ot In(d N - o In(d
P (0t ) - @)1 > 222 30 ) = 1= By (Jup(0) - ) < 222D 2,0
< o (23)
Hence, plugging (23) in (22) gives:
21In(d)
E[||wi(0) — w(0)]]1 | Hiz1] < o + 204 ln(d)CO/ P2 de .
a; In(d)

We now proceed to bound p(3) = fj:ifg
21n(d), we have:

P(8) = (1= ) (@ =191 = (1= ) e (-8 m(e) _ = (-R )
and since forany x > 0, 1 —x <e ¥ <1 —x+ a2

p(B) < (1= B 1= (1= B)In(a) + (1 = B)*In*(a) = 1 + (1 — B) In(b)]
= 1n<2> + (1 —B)In*(a) .

Substituting in the values of a and b yields the desired result. [

)55_2 de for B € (0,1). With a = ayIn(d) and b =
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G.1.2 GENERAL POLYTOPE
In this section, we denote by W the general polytope described in ?? and R; the log-barrier regu-
larization described in Equation (7).

Lemma 4. Assume HI, W = W and R = Ri. Then for any t € [T}, ft is differentiable and for
any 0 € O, V f(0) = Vw(0)g:(X:) where:
n

Vi (0) = —a; ! <Z(bi - AI@t(9))_2AiA}> Vog(0,Xz) -
=1
Proof. Letf € Rand ¢ € [T]. With
ht : (wae) — <g(9aXt)7w> + atRl(w> )

we have hi(w) — +oo as w — bdry(Wy). Since h:(w:(6),0) = mingew, hi(w, ), we deduce
that w;(0) € int(Wy). It follows from the first order condition and the implicit function theorem
(de Oliveira, 2014, Theorem 2) that @, : 8 — w,.(0) is differentiable, and

Vi (0) = — (V2 he(0:(0),0)) " V3, he(04(0), 0)

1 - -
= —;[Vle(wt(@)] "Vog(6, Xe) - 24)
¢
Since Ry (w) = — Y, In(b; — A;w), simple computations give:
VAR ((0)) = Y (bi — Ajwi(0)) A AT (25)
i=1

Moreover, since rank(AAT) = d by assumption, V2R (w:(#)) is invertible. Plugging (25) in (24)
gives the result. O
Lemma 5. Assume HI and R = Rq. Foranyt € [T, fi is K,-Lipschitz almost-surely, with

_ GDz sy b~ vl

K a Amin(AAT)

Proof.  Let (0,6') € ©2. We proved in (15) that:
1

Fi0) = 6] < Dz [ Va4 16~ 0))l, 0 - 0') e .
t=0
Denoting ¢ = 6 +t(¢" — 0), by (24), since | - ||, is sub-multiplicative:

V@i (Ol = =i V2R (@ ()] Vog (8, Xo)],,
< —a VPR (@ (O] 7H|,,G (by Hi(iiD)) .
Moreover, we have:

n

0RO, = (zwi . Azwt@»—mm)

i=1
op

H(AAT)_lHop ’

oo

< sup [[b— Aw|
weEW,

Since AAT is symmetric, |[(AAT) ! Hop = Amin (AAT) 7L, where Apin (M) is the lowest eigenvalue
of M. We therefore obtain by (15) and the previous inequalities that almost-surely:

- . GDz sup e, ||b — Aw|? /1
_ N < w 1 o) _
ft(e) ft(e ) =X a; /\min(AAT) t:olle ¢ || di
_ GDZ Supwewlnb_AwHio”eie/H
Qi )\min<AAT> ’
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Lemma 6. Assume H2, W = W, and R = Ry. Thenforanyt € [T] and 0 € O,

Ell@(6) — wi (0)], | Hoi] < at(l + 20 max o], Co 1n(jt> (1 - B) (o m(d))) .

Proof. Let § € © and t € [T]. Since Wi = Conv(vy,...,vk), there exists
A, (0), ..., A1, (0)) € [0, 1] such that

K K
=> Ai(0)v; and D A(0)=1.
=1 =1

We recall that u; (0, X;) = (g(6, X;), v;) denotes the value of the objective function on the vertex
vj € W, and uy, (0, X¢) = min;e(x) u;j(0, X¢) so v;, = w;(0). We start by proving the following
lemma:

Lemma 7. If there exists € > 0 such that uy, + € < u; forany j € {1,..., K} \ {1}, then,

lwi (0) — @ ()], <

2noy

. ]gel%ﬂvk\h-

Proof. On the one hand, w;(0) is by definition the solution to the problem:

W (0) = argmin(g(0, X;), w) — a; Zln (b; — Aw) (26)
wew

which is uniquely determined by strong convexity of the objective. We know by (Boyd, 2004, page
566) that:

<g(9,Xt),lDt(9)> — wienif\i < (9 Xt) > noy ,

that is
(9(0, X¢),w(0)) < uy, + no . 27)

On the other hand, by assumption we know that for any j # I;, u; = uy, + € so:

<g(97Xt)awt(9)> = <g(9aXt)7ZAt7j(9)Uj> (28)

= N1, (0)ur, + > A j(0)y
J#L
> M ]t ult + Z >\t,j uIt + 6)
J#L
= A1, (Qug, + (ur, +)(1— X, 1,(0)) . (29)
Combining (27) and (29) yields:
no

M, () 21— ——, (30)

and it follows from (30) that:

K
[wy (8) = @e(O)ll, = lvr, — @Oy = || Y (Li=r,y — M5 (0))v;
Jj=1 1
<[ = A (0) + D> Aej(0 maX ||Uk||1
J#1t
2noy

2 o 0]

O

The result follows from combining H2 and Lemma 7 according to the same lines of computation as
in the proof of Lemma 2. O
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G.1.3 OTHER LEMMAS

Lemma 8. Assume that for any t € [T, ft is K;—Lipschitz almost-surely and that the sequence of
steps (n¢)¢>1 is non-increasing. Denote R = Dty fe(6:) — fo(0,). Then it holds almost surely

that:
q 1 3 d Mt
E[tir] < o (D3 +2D0 S Wes — 0]l | + 3 LKZ
2nr t=1 o 2
where the expectation is taken over the sequence (u1, ..., ur) in Algorithm 2.

Proof. In what follows, we write E,,, the expectation under the distribution Umf( [0,1]) of u, and
E,, . the expectation under the joint distribution Unif([0, 1])*7 of (us,...,ur). For any t € [T],
we have:

T
Zf (0:) — fu(® Z/ Vfo(0 + (B, — 91)), 00 — B, )du

<Eut [Vft(ﬁt g (6, — ﬂt))] 0, — ﬁt>

[
Me

~~
Il
-

I
[M]=

<Eut [@t(ut)],at - ﬁt> , 31)

o~
I
-

where @(ut) =V ft(ﬁt + u¢ (0 — U¢) as in Algorithm 2. To control (31) we note that by definition
of 0,1 in Algorithm 2,

Ey, [||9t+1 Al } ut|:

2
‘He 0 — 1V (ue)] —ﬂt‘”

-

‘Qt - — nt@t(ut)HQ]
<10 — 01> — 277t<]Eut [@t(ut)}ﬁt - 19t> +n K} (32)

< K} because fr is K,;—Lipschitz. Re-arranging (32) and

. 2
where we have used that Hvt(ut)

taking the expectation over (u1, ..., ur) yields:

Eure [( Vi), 00 = 00)] < By {217%<9t 0~ e - 0P + nth} |

2
(33)
Now notice that, forany ¢t € {1,...,T — 1},
16041 = Desa|* = 101 = Dell* + 1001 — Dura|® = (16141 — 0
= [|041 — Dl
+ (10t41 = Dol + [10e41 — Fel) (10241 — Ve ]l — (10241 — Iel)
< 041 — 04]* + 2Do 9141 — 9]l (34)

where we have used H1-(i) and the reversed triangular inequality in the last line. It follows that:
—[16r41 = 94]* < =[10011 = Fera® + 2De [[9r41 — V4] 35)
Plugging (35) into (33) then gives:
\V 1 2 2
Bupr |[(Ve(w), 00 = 01 )| < Buyp T 162 = Dl|” = 10141 — Vi
t

77th2
5 .

1
+—Dg||0t41 — V]| +
Ui
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Thus, summing over 7" and plugging the resulting sum in (31) gives:

Euthiﬂwt)—ft( < mlzet (L L)

Tt Tt—1

1 K?
+Z*D0||79t+1—19t||+zm2 t] :
"t t=1

T T
D K?
e Z( - > + 223 g — Y
i3 = 2

Uiz Nt—1

where we used that for all ¢, ||0, — ¥¢|| < De by H1-(i) and that for all ¢ € [T], n—1 > n, = nr.
Then, we have by telescoping the first sum:

D% +2D K
ulT[th (60) — fo ﬂt)] < @ ®Z||79t+1 19t\|+zm

G.2 PROOF OF THEOREM 1.

Theorem 1. Assume H 1, H2 and having access to an §-approximate oracle O¢ adapted to

{Zz:l fi — (o, }eerr)- Let {0:}iepr) be the output of DF-FTPL (Algorithm 1) instantiated with
learning step 1 > 0 and regularization coefficients oy = o > 0 for any t. Then:

~ 1 mD
—1 s1 2

where K denotes the expectation on both data and the intrinsic randomness of DF-FTPL and o
contains polynomial dependency in In(1/), In(In(d)).
Furthermore, taking 1 oc m*/*T=3/4n=12 and o ox m®/*n/2T=1/* yields:

T-IE[RS] = (§(nﬁ/4\/ﬁT*1/4 + g).

Proof. For the sake of conciseness we use the notation E; to denote E[- | ;1] In what follows, we

consider, for any 0, the intermediary regret: R5.(6) := Zt 1 Fi(6;) — Fy(0), where  Fy : 0 —
E[f:(0) | Hi—1]. We have, for any 6, the following decomposition of the static regret

R%.(0) = Z Ee[(ge(Xe), wi(6:) — we(6:))] (36)
te[T]
+ 3 Ei(G(X0), @(6))] — D Bal(G(Xy), @ (6))] (37)
te[T] te[T]
+ Z E¢[(9e(Xe), we(0))] — Z Eq[(g:(X¢), wy (6))] (38)
te[T] te[T]

Then, taking the sup over O in Equations (36) and (38), and defining

Regh := Y Eyf(g:(X0), @ (0:))] = Y Eul(Gu(X0), 4(6))),
te([T) te(T]

in Equation (37) yields for any 6:

Ri(0) < Regh + 22{;} sup E[(g:(Xe), wi (0) — we(0))]
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Using the fact that || - || _ is dual to || « [|;:

R7(0) < Regq +2 ) sup Eq[[|ge(Xe) || o 1wy (6) — @1(6)]],]
te[r) €@

Since for any ¢ € [T'], ||g:(X¢) o, < [1¢(X¢)|l, < Dz by HI-(ii),

R7(0) < Regy +2Dz » Esupl|wf (6) — @1(6)]],
ter)  9€©

First, notice that, by Lemma 6, and because for any ¢, oy = « we have for all ¢:
() - wi @) | 1] < o1+ 20 e ol Cotn( 2) + (1= 5) e (@)
(39)
Second, taking the expectation (denoted by E) over (0¢)¢c|7) and Xy, - - - X7 on both sides gives:
E[R5(9)] < E[Regh] +2DzaT (1 +2n ;Ié%)((]“vk”lCO ln(i) + (1= B)In*(oy 1n(d))) .
(40)

To bound the first term in the right-hand-side of Equation (40). by the definition of conditional
expectation, we have:

E[Reg%} = EXl“'XTEo'l,“',UT Z <gt(Xt),U~)t(9t)> - <§t(Xt)vu~)t(0)>

te(T)
Then,

E[Reg?] <Ex,x:Eopor | D fil0:) — 1nf > fuo

te[T] te [T]

One recognises (up to a factor T) the left-hand side of Proposition 4 on the loss sequence ( ft)te (7]

Furthermore, we can use this proposition as, given our choice of R, for any ¢ € [T, ft is
L—Lipschitz with L = 5D zG(4c) ™! almost surely by Lemma 1 (with x = 0). We then have:

1 mD
2
Eoy .. o th (0:) — inf th <(9<77m Da2+nT+g>. (41)

te[T] te[T
Dividing Equation (40) by 7', and plugging Equation (41) gives: for all § € O:

TOERG(0)] < O (D 5 + 7 4

+ 2Dga<1 + 21n(d)Cy (m(i) +(1—-B)In*(a 1n(d)))>,
= @(anDO}Q + %13 +§+om).

Finally remark that, by the definition of the conditional expectation (thus of F}), and because 6; is
F:_1-measurable, we have for any 6:

= Elz fi(6r) — ft(e)l

ﬂL

> u(6) |~ El£(6)

=
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Then taking the infimum over 6 yields:

T'E[R] < O<7]m2D + % +&+ cm)

This concludes the proof. The second equation consists in simply plugging the proposed value of
7, c in this bound. O

G.3 PROOF OF THEOREM 2

Theorem 2. Assume HI, H2, access to a &-approximate oracle adapted to { ft}te[T} Let {0:}veim)
be the output of DF-0GD (Algorithm 2) instantiated with the non-increasing sequence (nt)te[T] and
regularization coefficients (cvt)ier). Then:

1+ Pr
Tnr

- 1
TE[R] =O|E T O dp A nar| +¢

T te[T) *t

where Pr = E |19t+1 9,
ness of DF-0GD and O contains polynomial dependency in In(1/a), In(In(d)).

Furthermore, assume (t~1(1 + P;));>1 is non-increasing almost surely with P, =
ZZ:1||195+1 — O, ||. Then, using a; o< n="2t=Y4(1 + P,)"/* and ny o< n=2t=3/4(1 + P,)*/* for
any t € [T leads to :

T'E[R$] = O(E[va(L + Pr)*T~/1] +¢) .

Proof. In this proof, for the sake of conciseness, we use the notation E; to denote E[- | H:—1].
Observe that the dynamic regret can be decomposed as follows:

RE =D Eul(ge(X0), wi (00) = @e(0))] + D Erl(gu(X0), 0(00) — d,(9))]  (42)

te[T) te[T]

+ Z B [(ge(Xe), we(94))] — enel(g E[(g:(X¢), @i (0))] (43)
te(T)

+ Y [ gl 00, 0000)] - ot Bl (), 0] (@
te[T]

First, we remark that for any ¢, given J; = O( ft), we control (43) by Jensen:

Bl (X,),01(01)] — o B(0:(X0), 0(0)] < B 500 — ut )]

<&

Then, taking the sup over © for each summand of the first sum of (42) (which is valid as 6; is
Fi—1-measurable), defining by Regp = ;¢ E¢[(g:(X), @ (60:) — @i (V¢))], and noticing for

(44) that infge B¢ [f:(0)] — infoco Ei[f+(0)] < suppee Ei[f:(0) — f:(0)] leads to:

R < Regr +2 Y sup By [(gi(Xy), wi (6) — @ ()] + T
I

Using the fact that || - || _ is dual to || - [|;:

RE < Regy +2 ) sup Be[[|ga(Xo) o [[wi (0) — @e(0)],] + €T

te[r) ¢
Since for any ¢ € [T, ||g+(X¢)|l o < [|g¢(X¢)|ly < Dz almost surely by HI-(ii),
R} < Regy +2Dz ) supEyf||w; (0) — w,(0)],] + €T (45)
te[T]
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First, by Lemma 6, we know have for any ¢:
- 2
sup Eq[||wy (8) — w(0)||;] < o <1 + 2n max |lvg||;Co ln() + (1 =) In*(ay 1n(d))> .
0cO ke[K] (o

Thus combining the two last equations and taking the expectation (denoted by [E) over (uy).e[r) and
Xj,--- X7 on both sides gives:

E[R?] < E[Regy]

+2Dz Z at(l +2n max||vk\| Co ln< 2 > +(1—8)In?*(oy ln(d))> +£&T . (46)
o773

te[T)
Now, to bound the first term in Equation (46) note that the definition of conditional expectation
implies:
E[Regr] = Exy o Busoour | Y fo(02) = fi(@0) |-

te[T]

One recognizes the definition of E)f{dT of Lemma 8. Since ft is K;—Lipschitz with K; =
GDz SUWPwew, lIb—Awll

almost surely for any ¢ by Lemma 5, we deduce from Lemma 8 that:

o Amin (AAT)
9\ 2
D% — Do Pr Ny [ GDz sup e, ||b — Aw|
By, Fe(6:) = fu(9r) <7 ;
! tEX[’Z:“ tez;“] atAmin(AAT)

(47)
Plugging Equation (47) into Equation (46) and then dividing by 7" > 0 on both sides gives:

2
g < Dot DoBIP | s~ <GDZ Sup e, 1D~ Awlli)

2T77T fG[T Qg Amin (AAT)

+2Dz Z [l +2n ]?61?}?(]||vk||100(1n(2a;1) +(1—B)In*(oyInd))] + €. (48)
te(T)

Rewriting Equation (48) using O concludes the proof.

Concerning the second bound, We know by Equation (48) that the regret of Algorithm 2 satisfies the
following bound:

E[R}] =0|E ki S in Y a+eT
I te[T] X te[T]

With oy o< n~ Y2t /4(1 + P)Y* and 1, o oyt~ /2(1 + P)Y? o< n=V2t73/4(1 + P,)?/4, the
sequence (7;)¢e(r) is non-increasing because so is (¢~ ! (14 P;)).[r) by assumption. Moreover, the
first term satisfies:

1+ Pr 1/2 T8/ 1+ Pr 121+ Pr 1/4
R . __(1+P L - T .
nr O(n 1+ PT)3/4( TPr)) s Tnr o\ T
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For the second term,

XT:EZZ\/I—FB _o n1/2i<1+Pt)1/4
aj Via t :

t=1

Moreover, since 1 + P; < 1+ Pr for any ¢ € [T], we have:

T T o\ /4
- =o(rrsm £ (0)") <olremr)

t=1

where we used in the last line that 3°_, =7 = O(T"~7) for v € (0,1). Dividing by T again gives

arate of O((#) Y 4) for the second term. Finally, we obtain by the same reasoning that

n'Y ap <214 PrYE YT U= 0w+ P AT
te(T) te(T)
and dividing by T > 0 yields the desired rate. O

G.4 PROOF OF PROPOSITION 2

Proposition 2. Assume HI, H2 and having access to an &-approximate optimization oracle O¢

adapted to {Zlef; - (0t,~>} - Fix W = Wy, R = Ro. Let {0;}c[r) be the output of
te[T

DF-FTPL (Algorithm 1) instantiated with learning step 11 > 0 and regularization coefficients oy =

a > 0 foranyt. Then:

_ s ~ 1 mD
T'E[RS] < O<nsza2 + —

T +&+ aln(d)) ,

where E denotes the expectation on both data and the intrinsic randomness of DF-FTPL and )
contains polynomial dependency in In(1/a), In(In(d)).

Proof. For the sake of conciseness we use the notation E, to denote E[- | #;_1] In what follows, we
consider, for any 6, the intermediary regret: R5.(0) := Zle Fy(60;) — Fy(0), where F; : 0 —
E[f:(0) | Hi—1]. We have, for any 6, the following decomposition of the static regret

R7.(0) = Z B [(g:(Xe), wi(6) — we(61))] (49)
te[T]
+ Z E[(g¢(X¢), we (04)) Z B [(g:(X¢), w0 (6))] (50
te[T) te(T)
+ D Ee(3e(X0), 0 (0))] — > Bl (Ge(Xe), wi(0))] (51)
te[T] te[T)

Then, taking the sup over © in Equations (49) and (51), and defining
RegT = Z E¢[(g:(X¢), e (0r)) Z E¢[(g:(Xe), we(9))],
te[T) te[T]

in Equation (50) yields for any 6:

R7(0) < Regh +2 ) gugEt [(Ge(Xe), wi () — 1w (6))]
te[r) %€

Using the fact that || - || _ is dual to || « [|;:

R7(0) < Regq +2 Y sup Eq[[|ge(Xe) || o llwy (0) — :(6)]],]
te(T]
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Since for any t € [T, ||g+(X¢)| o, < [1¢(X¢)|l, < Dz by HI-(ii),
R7(0) < Regy +2Dz ) Egsup||wi(9) — @ (9)ll,
ter)  9€®

First, notice that, by Lemma 2, and because for any ¢, oy = « we have for all ¢:
E{l1(6) — wi ), | Hor] < <1 T 2(d)Cy (1(§) £ (- A n(a 1n<d>>)) o
Second, taking the expectation (denoted by E) over (0¢)¢c|7) and Xy, - - - X7 on both sides gives:
E[R5(0)] < E[Reg}] +2DzaT (1 +21n(d)Cy (m(i) +(1-p) 1n2(a1n(d))>) . (53)

To bound the first term in the right-hand-side of Equation (53). by the definition of conditional
expectation, we have:

E[Reg?] = Ex,.xrBoy o op | O (Ge(Xe), @1(6)) — (g:(X0), @4(0))

te[T]
Then,

E[Reg%] Ex,. . .xrEo,, Z ft (6y) — mf Z ft

te[T] te (T]
One recognises (up to a factor T') the left-hand side of Proposition 4 on the loss sequence ( ft)te (7]

Furthermore, we can use this proposition as, given our choice of R, for any ¢ € [T, ft is
L—Lipschitz with L = 5D zG(4c) ™! almost surely by Lemma 1 (with x = 0). We then have:

By, o Z fe(00) — jnf - Z fi( O(ﬁsz + nD +5> (54)

te[T] tE[T

Dividing Equation (53) by 7, and plugging Equation (54) gives: for all § € ©:

T'E[R%(0)] < O(nm2D1 + ”;—D + g)
+ 2Dga(1 + 21n(d)Cy (m(i) +(1—-p)In*(a 1n(d)))),
= @(anD;Q + %7 +&+ aln(d)).

Finally remark that, by the definition of the conditional expectation (thus of F}), and because 6, is
Fi_1-measurable, we have for any 6:

=E

> fillr) - ftw)]
=E|D_ fi(6:)

Then taking the infimum over 6 yields:

—E[f:(0)]

~ 1 mD
-1 s 2
T~ E[R7] S(’)(nm D042+77T+§+ozln(d)>.

This concludes the proof. The second equation consists in simply plugging the proposed value of
7, « in this bound. O
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G.5 PROOF OF PROPOSITION 3

Proposition 3. Assume HI, H2, and having access to an {-approximate optimization oracle O¢

adapted to {fz} - Fix W =Wy, R = Ro. Let {0 }+c|1) be the output of DF-0GD (Algorithm 2)
te

instantiated with the non-increasing sequence (nt)te[T] and regularization coefficients (ct)ie[7]-
Then:

D2@ =+ D@E[PT] Z 25D3G77t

—1 d
TTE[RY] < 2Ty 32Ta?

te(T)
+2Dz > o[l +2In(d)Co{ln(20; ") + (1 = ) In* (e Ind)}] + €,
te(T]

where Pr = Zz:llﬂﬁtﬂ — 3.

Proof. In this proof, for the sake of conciseness, we denote by E; the conditional expectation
E[- | Hi-1]-
Observe that the dynamic regret can be decomposed as follows:

RE =D Bel(Ge(Xe),wi (0:) — e(00)] + > By[(Ge(X), e(0r) — e (92))]  (55)
]

te[T) te[T

+ Z Ee[(ge(Xe), @i ()] — eig(gEt[@t(Xt),zbt(@))] (56)
te(T)

+ Y [ gl 00, 0000)] - ot Bl ()0 0] 67
te[T]

First, we remark that for any ¢, given J; = O( ft), we control (56) by Jensen:
B0 (X0, (0] - o Bl X0, w0)] < Be | 7000) = juf 7(0)]

<&
Then, taking the sup over © for each summand of the first sum of (55) (which is valid as 6; is
Fi—1-measurable), defining by Regy = ;¢ E¢[(g:(X), 0 (6:) — @i (V¢))], and noticing for

(57) that infpco By [f,(0)] — infoeo Be[f1(8)] < supgee Eilf1(6) — f1(6)] leads to:

RE < Regr +2 ) sup B1[(9(X), wi (6) — 0(9))] + €T
te(T]

Using the fact that || - || _ is dual to || - [|;:
RT < Regy +2 Y sup Bellg:(Xo) o llwf (0) — @, (0)]1,] + €T

ferr €9
Since for any ¢ € [T, ||g:(X¢)|l < [|9¢(X¢)|ly < Dz almost surely by H1-(ii),
R} < Regp + 2Dz » | sup Byf||w; (0) — iy (0)],] + €T (58)
te[T) 0O

First, notice that, by Lemma 2, for all ¢:

_ 2

Sug Ei[|Jw; (0) — @ (0)]];] < e (1 + 21In(d)Cy <1n(a> + (1= B)In’*(oy ln(d))>) . (59)
€ t

Second, taking the expectation (denoted by [E) over (u;)¢c|7) and X1, - - - X7 on both sides gives:

E[R7] < E[Regr]
+2Dz Y ozt<1 +21n(d)Cy (111(2) + (1= B)In*(ay ln(d))>> +£T . (60)

te[T] X
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To bound the first term in the right-hand side of Equation (60). Remark that, by the definition of
conditional expectation:

E[Regr] = Ex, . xrBuy oo | Y [i(0) = fi(90) |-

te[T]

One recognises the definition of ET{% of Lemma 8. Thus, by this lemma, we know that for any
t € [T], because f; is K;—Lipschitz with K; = 5D zG(4a;)~! almost surely by Lemma 1, we
have:

25D%G?n,

61
3202 D)

Z ft (6:) ft ()| < QL(D%JFD@PT) + Z

teT) " te(T]

Plugging Equation (61) into Equation (60) and then dividing by 7' > 0 on both sides gives the
desired result. O

G.6 PROOFS OF APPENDIX F

Proof of Proposition 5. The regret simply decomposes as follows:

RE = D Eif(9:(X0), w,(61))] — Z inf By [(g:(X¢), wi(0))]

=E
te[T] te[T]
=) E(G(X0), Wy (6:) — w}(6))]
te[T]
+ Y (g (Xo), wi(0a)] = Y Jnf Ee[(g:(Xe), wr (6))]
te([T) te[T]
<kt D EBf(G(Xe), wi (00)] = Y Inf e [(ge(Xe), wi (9))]
te[T) te[T]
and the proof continues as in Theorem 2. O
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