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ABSTRACT

Unsupervised domain adaptation (UDA) refers to a domain adaptation framework
in which a learning model is trained based on the labeled samples on the source
domain and unlabelled ones in the target domain. The dominant existing methods
in the field that rely on the classical covariate shift assumption to learn domain-
invariant feature representation have yielded suboptimal performance under label
distribution shift. In this paper, we propose a novel conditional adversarial support
alignment (CASA) whose aim is to minimize the conditional symmetric support
divergence between the source’s and target domain’s feature representation distri-
butions, aiming at a more discriminative representation for the classification task.
We also introduce a novel theoretical target risk bound, which justifies the merits of
aligning the supports of conditional feature distributions compared to the existing
marginal support alignment approach in the UDA settings. We then provide a
complete training process for learning in which the objective optimization func-
tions are precisely based on the proposed target risk bound. Our empirical results
demonstrate that CASA outperforms other state-of-the-art methods on different
UDA benchmark tasks under different label shift conditions.

1 INTRODUCTION

The remarkable success of modern deep learning models often relies on the assumption that training
and test data are independent and identically distributed (i.i.d), contrasting the types of real-world
problems that can be solved. The violation of that i.i.d. assumption leads to the data distribution shift,
or out-of-distribution (OOD) issue, which negatively affects the generalization performance of the
learning models (Torralba & Efros, 2011; Li et al., 2017) and renders them impracticable. One of
the most popular settings for the OOD problem is unsupervised domain adaptation (UDA) (Ganin &
Lempitsky, 2015; David et al., 2010) in which the training process is based on fully-labeled samples
from a source domain and completely-unlabeled samples from a target domain.

While the covariate shift assumption has been extensively studied under the UDA problem setting,
with reducing the feature distribution divergence between domains as the dominant approach (Ganin
& Lempitsky, 2015; Tzeng et al., 2017; Shen et al., 2018; Courty et al., 2017; Liu et al., 2019; Long
et al., 2015; 2017; 2016; 2014), the label shift assumption (i.e., the marginal label distribution p(y)
varies between domains, while the conditional p(x|y) is unchanged) remains vastly underexplored
in comparison. Compared to the covariate shift assumption, the label shift assumption is often
more reasonable in several real-world settings, e.g., the healthcare industry, where the distribution
of diseases in medical diagnosis may change across hospitals, while the conditional distribution of
symptoms given diseases remains unchanged.

Several UDA methods that explicitly consider the label shift assumption often rely on estimating
the importance weights of the source and target label distribution and strictly require the conditional
distributions p(x|y) or p(z|y) to be domain-invariant Lipton et al. (2018); Tachet des Combes et al.
(2020); Azizzadenesheli et al. (2019). Another popular UDA under label shift framework is enforcing
domain invariance of representation z w.r.t some relaxed divergences Wu et al. (2019); Tong et al.
(2022). Wu et al. (2019) proposed reducing β-admissible distribution divergence to prevent cross-
label mapping in conventional domain-invariant approaches. However, choosing inappropriate β
values can critically reduce the performance of this method under extreme label shifts (Wu et al.,
2019; Li et al., 2020).
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This paper aims to develop a new theoretically sound, namely conditional adversarial support
alignment (CASA) approach for UDA under the label shift. Our proposed method is relatively related
to but different from the adversarial support alignment (ASA) (Tong et al., 2022) one, which utilizes
the symmetric support divergence (SSD) to align the support of the marginal feature distribution of
the source and the target domains. One of the critical drawbacks of the ASA method is that reducing
the marginal support divergence indiscriminately may make the learned representation susceptible
to conditional distribution misalignment. Our proposed CASA alleviates that issue by considering
discriminative features when aligning the supports of two distributions. In particular, the conditional
support alignment instead of marginal case makes CASA less susceptible to misalignment of features
between different classes than ASA, which is illustrated intuitively by Figure 1.

(a) Distribution alignment (b) Support alignment (c) Conditional support alignment

Figure 1: Illustration of the learned latent space of different domain-invariant frameworks under label
shift for a binary classification problem. It can be seen that the support alignment (b) can mitigate
the high error rate induced by distribution alignment (a), whereas the conditional support alignment
(c) can achieve the best representation by explicitly aligning the supports of class-conditioned latent
distributions.

The main contributions of our paper are summarized as follows:

• We propose a novel conditional adversarial support alignment (CASA) to align the support
of the conditional feature distributions on the source and target domains, aiming for a more
label-informative representation for the classification task.

• We provide a new theoretical upper bound for the target risk for the learning process of
our CASA. We then introduce a complete training scheme for our proposed CASA by
minimizing that bound.

• We provide experimental results on several benchmark tasks in UDA, which consistently
demonstrate the empirical benefits of our proposed method compared to other relevant
existing UDA approaches.

2 METHODOLOGY

2.1 PROBLEM STATEMENT

Let us consider a classification framework where X ⊂ Rd represents the input space and Y =
{y1, y2, . . . , yK} denotes the output space. A domain is then defined by P (x, y) ∈ PX×Y , where
PX×Y is the set of joint probability distributions on X × Y . The set of conditional distributions of x
given y, P (x|y), is denoted as PX|Y , and the set of probability marginal distributions on X and Y is
denoted as PX and PY , respectively. We also denote PX|Y=yk

as PX|k for convenience.

Consider an UDA framework, in which the (labelled) source domain DS =
{(

xS
i , y

S
i

)}nS

i=1
, where(

xS
i , y

S
i

)
∼ PS(x, y) , and the (unlabelled) target domain DT =

{
xT
j

}nT

j=1
, where xt

j ∼ PT
X ⊂ PX .

Without loss of generality, we assume that both the source and target domains consists of K classes,
i.e., Y = {y1, . . . , yK}. In this paper, we focus on the UDA setting with label shift, which assumes
that PS

Y ̸= PT
Y while the conditional distributions PS

X|Y and PT
X|Y remain unchanged. Nevertheless,

unlike relevant works such as Tachet des Combes et al. (2020); Lipton et al. (2018), we do not make
the strong assumption about the invariance of PX|Y or PZ|Y between those domains, targeting more
general UDA settings under label shift.

A classifier (or hypothesis) is defined by a function h : X 7→ ∆K , where ∆K ={
π ∈ RK : ∥π∥1 = 1 ∧ π ≥ 0

}
is the K-simplex, and an induced scoring function g : X 7→ RK .
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Consider a loss function ℓ : RK × RK → R+, satisfying ℓ(y, y) = 0, ∀y ∈ Y . Given a scoring
function g, we define its associated classifier as hg, i.e., hg(x) = ŷ with ŷ ∈ argminy∈Y ℓ[g(x), y].
For conciseness, we consider any hypothesis h also a scoring function g.

The ℓ-risk of a scoring function g over a distribution PX×Y is then defined by LP (g) :=
E(x,y)∼P [ℓ(g(x), y)], and the classification mismatch of g with a classifier h by LP (g, h) :=
Ex∼PX

[ℓ(g(x), h(x))]. For convenience, we denote the source and target risk of scoring function or
classifier g as LS(g) and LT (g), respectively.

2.2 A TARGET RISK BOUND BASED ON SUPPORT MISALIGNMENT

Similar to Ganin et al. (2016), we assume that the hypothesis g can be decomposed as g = c ◦ f ,
where c : Z → Y is the classifier, f : X → Z is the feature extractor, and Z represents the latent
space. Let us denote the domain discriminator as ϕ : Z → {0, 1}, and the marginal distribution of
Z ∈ Z in source and target domains as PS

Z and PT
Z , respectively.

We next introduce several necessary definitions and notations, for the theoretical development of the
target error bound in our proposed CASA. Some of them are employed in the construction of the
IMD-based domain adaptation bound in Dhouib & Maghsudi (2022).
Definition 1 (Source-guided uncertainty (Dhouib & Maghsudi, 2022)). Let H be a hypothesis space,
and let ℓ be a given loss function. The source-guided uncertainty of g ∈ H associated with ℓ is defined
by:

CH(g) = inf
h∈H

LT (g, h) + LS(h), (1)

where LT (g, h) is the classification mismatch of g and h on PT
X .

Remark 1. When ℓ is the cross entropy loss, minimizing the conditional entropy of predictor on the
target domain, along with LS(hg), effectively minimizes CH(g) (Dhouib & Maghsudi, 2022).
Definition 2 (Integral measure discrepancy). Let F be a family of nonnegative functions over X,
containing the null function, e.g., F = {ℓ(h, fs);h ∈ H} with fs as the source labeling function. The
Integral Measure Discrepancy (IMD) associated to F between two distribution Q and P over X is

IMDF (Q,P) := sup
f∈F

∫
f dQ−

∫
f dP. (2)

Intuitively, this discrepancy aims to capture the distances between measures w.r.t. difference masses.
Definition 3 (Symmetric support divergence). Assuming that d is a proper distance on the latent
space Z . The symmetric support divergence (SSD) between two probability distributions PZ and QZ

is then defined by:

Dsupp(PZ , QZ) = Ez∼PZ
[d(z, supp(QZ))] + Ez∼QZ

[d(z, supp(PZ))],

where supp(PZ) and supp(QZ) are the corresponding supports of PZ and QZ , respectively.

Different from the work in Dhouib & Maghsudi (2022) that extends the bound with β-admissible
distances, our proposed method goes beyond interpreting the bound solely in terms of support
divergences Tong et al. (2022). In particular, our method also incorporates the label structures of the
domains, allowing a more comprehensive analysis of the underlying relationships.

2.3 A NOVEL CONDITIONAL SSD-BASED DOMAIN ADAPTATION BOUND

In this work, we first introduce a definition for a novel conditional symmetric support divergence
between the conditional distributions PS

Z|Y and PT
Z|Y . For simplicity, we also denote d as a well-

defined distance on the conditional Z|Y space.
Definition 4 (Conditional symmetric support divergence). The conditional symmetric support diver-
gence (CSSD) between the conditional distributions PS

Z|Y and PT
Z|Y is defined by

Dc
supp(P

S
Z|Y , P

T
Z|Y )

=
∑
y∈Y

PS(Y = y)Ez∼PS
Z|Y =y

[d(z, supp(PT
Z|Y=y))] + PT (Y = y)Ez∼PT

Z|Y =y
[d(z, supp(PS

Z|Y=y))].
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We establish the justification for CSSD as a support divergence through the following result.
Proposition 1. Assume PS(Y = y) > 0, PT (Y = y) > 0 for any y ∈ Y , Dc

supp(P
S
Z|Y , P

T
Z|Y ) is a

support divergence.

The proof is deferred to the Appendix. In comparison to the SSD in Definition 3, our CSSD takes
into account the class proportions in both source and target domains. As a result, the localized IMD
considers per-class localized functions, which are defined as the (ϵ, PS

Z|Y )-localized nonnegative
function denoted by Fϵ. Specifically, Fϵ = {f ; f(z) ≥ 0,EPS

Z|k
[f ] ≤ ϵk, k = 1 . . .K} with

ϵ = (ϵ1, . . . , ϵK) ≥ 0. In the following lemma, we introduce upper bounds for the IMD using CSSD
(the corresponding proof is provided in the Appendix A).
Lemma 1 (Upper bound IMD using CSSD). Let F be a set of nonnegative and 1-Lipschitz functions,
and let Fϵ be a (ϵ, PS

Z|Y )-localized nonnegative function. Then, we can bound the IMD w.r.t the
conditional support domain and CSSD, respectively, as

IMDFϵ(P
T
Z , PS

Z ) ≤
K∑

k=1

qkEz∼PT
Z|k

[d(z, supp(PS
Z|k))] + qkδk + pkϵk, (3)

IMDFϵ(P
T
Z , PS

Z ) ≤ Dc
supp(P

T
Z|Y , P

S
Z|Y ) +

K∑
k=1

qkδk + pkγk, (4)

where δk := supz∈suppPS
Z|k,f∈Fϵ

f(z), γk := supz∈suppPT
Z|k,f∈Fϵ

f(z), pk = PS(Y = yk) and

qk = PT (Y = yk).

We now provide a novel upper bound of the target risk based on CSSD in the following theorem,
which is a straightforward result from Lemma 1.
Theorem 1 (Domain adaptation bound via CSSD). Let H be a hypothesis space, g be a score
function, and ℓ be a loss function satisfying the triangle inequality. Consider the localized hypothesis
Hr := {h ∈ H;LSk

(h) ≤ rk, k = 1 . . .K}. Given that all the assumptions for Fϵ in Lemma 1 are
fulfilled. Then, for any r1 = (r11, . . . , r

1
K) ≥ 0, r2 = (r21, . . . , r

2
K) ≥ 0 that satisfy r1k + r2k = ϵk, we

have:

LT (g) ≤ CHr1 (g) +Dc
supp(P

T
Z|Y , P

S
Z|Y ) +

K∑
k=1

qkδk + pkγk + inf
h∈Hr2

LS(h) + LT (h). (5)

Remark 2. In the case that we do not incorporate the label information, the IMD can be bounded as

IMDFϵ ≤ Ez∼PT
Z
[d(z, supp(PS

Z ))] + δ + ϵ, (6)

where δ = supz∈supp(PS
Z ),f∈Fϵ

f(z). Similar to the findings in Dhouib & Maghsudi (2022), the
inequality in Equation 6 provides a justification for minimizing SSD proposed in Tong et al. (2022).
Notably, this inequality extends to the case where ϵ ≥ 0, and thus recover the bound with SSD in
Dhouib & Maghsudi (2022) as a special case. Note that in order to make a fair comparison between
Equation 3 and 6, we assume that

∑
k ϵkpk = ϵ making Fϵ ⊆ Fϵ.

In comparison the the upper bound in Equation 6, our expectation∑
k

qkEz∼PT
Z|k

[d(z, supp(PS
Z|k))] ≥ Ez∼PT

Z
[d(z, supp(PS

Z ))],

due to the fact that d(z, supp(PS
Z|k)) ≥ d(z, supp(PS

Z )) and that Jensen’s inequality holds.

However, this inequality does not imply that our bound is less tight than the bound using SSD. When
considering the remaining part, we can observe that

∑
k qkδk ≤ δ since supp(PS

Z|k) ⊆ supp(PS
Z )

for any k = 1, . . . ,K. In other words, there is a trade-off between the distance to support space and
the uniform norm (sup norm) of function on the supports.
Remark 3. The proposed bound shares several similarities with other target error bounds in the UDA
literature (Ben-David et al., 2010; Acuna et al., 2021). In particular, these bounds all upperbound the
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target risk with a source risk term, a domain divergence term, and an ideal joint risk term. The main
difference is that we use the conditional symmetric support divergence instead of H∆H-divergence
in Ben-David et al. (2010) and f -divergence in Acuna et al. (2021), making our bound more suitable
for problems with large degrees of label shift, as a lower value of CSSD does not necessarily increase
the target risk under large label shift, unlike H∆H-divergence and f -divergence (Tachet des Combes
et al., 2020; Zhao et al., 2019). Furthermore, the localized hypothesis spaces Hr1 and Hr2 are
reminiscent of the localized adaptation bound proposed in Zhang et al. (2020). While lower values of
r1, r2 can make the term

∑K
k=1 qkδk + pkγk smaller, the source-guided uncertainty term and ideal

joint risk term can increase as a result. In our final optimization procedure, we assume the ideal joint
risk term and

∑K
k=1 qkδk + pkγk values to be small and minimize the source-guided uncertainty (see

section 2.4.1) and CSSD via another proxy (see section 2.4.3) to reduce the target domain risk.

2.4 TRAINING SCHEME FOR OUR CASA

So far, we have presented the main ideas of our CASA algorithm in a general manner. In the next
section, we discuss the implementation details of our proposed framework.

2.4.1 MINIMIZING SOURCE-GUIDED UNCERTAINTY

As stated in Remark 1, minimizing the source risk and the target conditional entropy reduces the
source-guided uncertainty CHr1 (g), which is the second term in the target risk bound of equation 5.
Minimizing the prediction entropy has also been extensively studied and resulted in effective UDA
algorithms (Shu et al., 2018; Kirchmeyer et al., 2022; Liang et al., 2021). Hence, the total loss
of CASA first includes the overall classification loss Ly(·) on source samples and the conditional
entropy loss on target samples Lce(·), defined as follows:

Ly(g) =
1

nS

nS∑
i=1

ℓ(g(xS
i ), y

S
i ) and Lce(g) = − 1

nT

nT∑
i=1

g(xT
i )

⊤ ln g(xT
i ). (7)

2.4.2 ENFORCING LIPSCHITZ HYPOTHESIS

The risk bound in Eq. 5 suggests regularizing the Lipschitz continuity of the classifier c. Inspired by
the success of virtual adversarial training by Miyato et al. (2018) on domain adaptation tasks (Shu
et al., 2018; Tong et al., 2022), we instead enforce the locally-Lipschitz constraint of the classifier,
which is a relaxation of the global Lipschitz constraint, by enforcing consistency in the norm-ball w.r.t
each representation sample z. In additional, we observe that enforcing the local Lipschitz constraint
of g = c ◦ f instead of c leads to better performance in empirical experiments. Hence, we introduce
the virtual adversarial loss term (Miyato et al., 2018), which enforces the classifier consistency within
the ϵ-radius neighborhood of each sample x by penalizing the KL-divergence between predictions of
nearby samples, and follow the approximation method in Miyato et al. (2018)

Lv(c, f) =
1

nS

nS∑
i=1

max
∥r∥<ϵ

DKL

(
g(xS

i )∥g(xS
i + r)

)
+

1

nT

nT∑
i=1

max
∥r∥<ϵ

DKL

(
g(xT

i )∥g(xT
i + r)

)
.

(8)

2.4.3 MINIMIZING CONDITIONAL SYMMETRIC SUPPORT DIVERGENCE

The next natural step for reducing the target risk bound in equation 5 is to minimize
Dc

supp(P
S
Z|Y , P

T
Z|Y ). However, it is challenging to directly optimize this term since in a UDA

setting, we have no access to the labels of the target samples. Motivated by the use of pseudo-labels to
guide the training process in domain adaptation literature (French et al., 2018; Chen et al., 2019; Long
et al., 2018; Zhang et al., 2019a), we alternatively consider minimizing Dc

supp(P
S
Z|Ŷ

, PT
Z|Ŷ

) as a proxy

for minimizing Dc
supp(P

S
Z|Y , P

T
Z|Y ), where Ŷ are pseudo-labels. To mitigate the error accumulation

issue of using pseudolabels under large domain shift (Zhang et al., 2019a; Liu et al., 2021), we employ
the entropy conditioning technique in Long et al. (2018) in our implementation of CASA . Never-
theless, given that the estimation of the conditional support alignment Dc

supp(P
S
Z|Y , P

T
Z|Y ) is based

on the approximation of PT
Y , which is commonly time-consuming and error-prone, the following
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Algorithm 1 Conditional Adversarial Support Alignment

Input: DS =
{(

xS
i , y

S
i

)}nS

i=1
, DT =

{
xT
j

}nT

j=1

Output: Feature extractor f , classifier c, domain discriminator r
1: for number of training iterations do
2: Sample minibatch from source

{(
xS
i , y

S
i

)}m

i=1
and target

{
xT
i

}m

i=1
3: Update ϕ according to Eq. 12
4: Update f, c according to Eq. 11
5: end for

proposition motivates us to alternatively minimize the joint support divergence Dsupp(P
S
Z,Y , P

T
Z,Y )

to tighten the target error bound, without using any explicit estimate of the marginal label distribution
shift as performed in Lipton et al. (2018); Tachet des Combes et al. (2020).

Proposition 2. Assuming that PS(Ŷ = y) > 0, PT (Ŷ = y) > 0,∀y ∈ Y , and there exists a
well-defined distance denoted by d in the space Z × Y . Then Dc

supp(P
S
Z|Y , P

T
Z|Y ) = 0 if and only if

Dsupp(P
S
Z,Y , P

T
Z,Y ) = 0.

Moreover, minimizing this joint support divergence can be performed efficiently in one-dimensional
space. In particular, Tong et al. (2022) indicated that when considering the log-loss discriminator
ϕ : X → [0, 1] trained to discriminate between two distributions P and Q with binary cross
entropy loss function can be can be used to estimate Dsupp(P,Q). Instead of aligning the marginal
distributions PS

Z and PT
Z , our approach focuses on matching the support of joint distributions, PS

Z,Ŷ

and PT
Z,Ŷ

. We use a trained optimal discriminator ϕ∗ to discriminate between these distributions,

which are represented as the outer product Z ⊗ Ŷ (Long et al., 2018). Consequently, our model
incorporates the domain discriminator loss and support alignment loss to minimize the conditional
support divergence Dc

supp(P
S
Z|Y , P

T
Z|Y ) in the error bound specified in equation 5.

Ld(ϕ) = − 1

nS

nS∑
i=1

ln
[
G(xS

i )
]
− 1

nT

nT∑
i=1

ln
[
1−G(xT

i )
]
; (9)

Lalign(f) =
1

nS

nS∑
i=1

d
(
G(xS

i ), {G(xT
j )}nT

j=1

)
+

1

nT

nT∑
i=1

d
(
G(xT

i ), {G(xS
j )}nS

j=1

)
, (10)

where G(x) = ϕ(f(x)⊗ g(x)) and u⊗ v = uvT . Here, similar to Tong et al. (2022), d(·, ·) is either
the squared L2 or the L1 distance.

Overall, the training process of our proposed algorithm, CASA , can be formulated as an alternating
optimization problem (see Algorithm 1),

min
f,c

Ly(g) + λalignLalign(f) + λceLce(g) + λvLv(g), (11)

min
ϕ

Ld(ϕ), (12)

where λalign, λy, λce, λv are the weight hyper-parameters associated with the respective loss terms.

3 EXPERIMENTS

3.1 SETUP

Datasets. We focus on visual domain adaptation tasks and empirically evaluate our proposed
algorithm CASA on benchmark UDA datasets USPS → MNIST, STL → CIFAR and VisDA-2017.
We further conduct experiments on the DomainNet dataset and provide the results in Appendix due
to the page limitation. For VisDA-2017 and DomainNet, instead of using the 100% unlabeled target
data for both training and evaluation, we utilize 85% of the unlabeled target data for training, and the
remaining 15% for evaluation, to mitigate potential overfitting (Garg et al., 2023).

Evaluation setting. To assess CASA ’s robustness to label shift, we adopt the experimental protocol
of Garg et al. (2023). We simulate label shift using the Dirichlet distribution, keeping the source
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label distribution unchanged and PT
Y (y) ∼ Dir(β), with βy = α.PT0

Y (y), PT0
Y (y) as the original

target marginal, and α values of 10, 3.0, 1.0, 0.5. We also include a no label shift setting, denoted
as α = None, where both source and target label distributions are unchanged. For each method
and label shift degree, we perform 5 runs with different random seeds and report average per-class
accuracy on the target domain’s test set as evaluation metrics.

Baselines. We assess the performance of CASA by comparing it with various existing UDA algo-
rithms, including: No DA (training using solely labeled source samples), DANN (Ganin et al., 2016),
CDAN (Long et al., 2018), VADA (Shu et al., 2018), SDAT (Rangwani et al., 2022), MIC (Hoyer
et al., 2023), IWDAN, IWCDAN (Tachet des Combes et al., 2020), sDANN (Wu et al., 2019), ASA
(Tong et al., 2022), PCT (Tanwisuth et al., 2021), and SENTRY (Prabhu et al., 2021). Whereas
IWDAN and IWCDAN rely on importance weighting methods, CDAN, IWCDAN, FixMatch and
SENTRY employ target pseudolabels. Moreover, we apply the resampling and reweighting heuristics
in Garg et al. (2023) to DANN, CDAN and FixMatch to make these baselines more robust to label
shift, and denote them as DANN*, CDAN* and FixMatch* in Table 1, 2 and 3. Further implemen-
tation details, including the hyperpamarater values and network architectures, are provided in the
Appendix.

3.2 MAIN RESULTS

We report the results on USPS→MNIST, STL→CIFAR and VisDA-2017 in Table 1, 2 and 3
respectively.

Table 1: Per-class average accuracies on
USPS→MNIST. Bold and underscore denote the
best and second-best methods respectively.

Algorithm α
=

N
on

e

α
=

10

α
=

3.
0

α
=

1.
0

α
=

0.
5

A
ve

ra
ge

No DA 73.9 73.8 73.5 73.9 73.8 73.8

DANN* 96.2 96.2 93.5 82.6 72.3 88.2
CDAN* 96.6 96.5 93.7 82.2 70.7 88.0
VADA 98.1 98.1 96.8 84.9 76.8 90.9
SDAT 97.8 97.5 94.1 83.3 68.8 88.3
MIC 98.0 97.6 95.2 82.9 70.8 88.9

IWDAN 97.5 97.1 90.4 81.3 73.3 87.9
IWCDAN 97.8 97.5 91.4 82.6 73.8 88.7
sDANN 87.4 90.7 92.1 89.4 85.2 89.0
ASA 94.1 93.7 94.1 90.8 84.7 91.5
PCT 97.4 97.2 94.3 82.3 71.8 88.6
SENTRY 97.5 91.5 91.4 84.7 82.3 89.5

CASA (Ours) 98.0 98.0 97.2 96.7 88.3 95.6

Table 2: Per-class accuracy on STL→CIFAR.
Same setup as Table 1.

Algorithm α
=

N
on

e

α
=

10

α
=

3.
0

α
=

1.
0

α
=

0.
5

A
ve

ra
ge

No DA 69.9 69.8 69.7 68.8 67.9 69.2

DANN* 75.9 74.9 74.4 72.7 70.5 73.7
CDAN* 75.6 74.3 74.0 72.8 70.7 73.5
VADA 77.1 75.5 73.8 71.3 68.0 73.1
SDAT 75.8 74.4 71.5 68.3 66.2 71.2
MIC 76.4 75.5 72.7 68.6 67.3 72.1

IWDAN 72.9 72.6 71.8 70.6 69.5 71.5
IWCDAN 72.1 72.0 71.5 71.9 69.9 71.5
sDANN 72.8 72.0 72.0 71.4 70.1 71.7
ASA 72.7 72.2 72.1 71.5 69.8 71.7
PCT 75.0 76.1 75.0 70.9 68.3 73.1
SENTRY 76.7 76.6 75.2 71.2 67.0 73.3

CASA (Ours) 76.9 76.8 75.8 74.2 71.7 75.1

Among the methods focusing on distribution alignment, such as DANN, CDAN, and VADA, they
tend to achieve the highest accuracy scores under α = None. However, their performances degrade
significantly as the serverity of label shift increases. For instance, under α = 0.5 in USPS→MNIST
task, SDAT and MIC perform worse than source-only training by 5.0% and 3.0%, respectively.

On the other hand, baseline methods in the third group that explicitly address label distribution shift,
such as ASA, sDANN and IWCDAN, often outperform distribution alignment methods under severe
label shift (α ∈ {1.0, 0.5}). However, they fall behind previous domain-invariant methods when label
shift is mild or nonexistent (α ∈ {None, 10.0}) by a large margin of 2-4% in the STL→CIFAR task.
In contrast, CASA outperforms baseline methods on 11 out of 15 transfer tasks. It achieves the second-
highest average accuracies when there is no label shift in the USPS→MNIST and STL→CIFAR
tasks, and outperforms the second-best methods by 3.6%, 1.6% and 0.7% under α = 0.5 in the
USPS→MNIST, STL→CIFAR and VisDA-2017 tasks, respectively.

3.3 VISUALIZATION AND HYPERPARAMETER ANALYSIS

Analysis of individual loss terms. To study the impact of each loss term in Eq.equation 11, we
provide additional experiment results, which consist of the average accuracy over 5 different random
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Table 3: Per-class accuracies on VisDA-2017.
Same setup as Table 1.

Algorithm α
=

N
on

e

α
=

1
0

α
=

3.
0

α
=

1.
0

α
=

0.
5

A
ve

ra
ge

No DA 55.6 56.0 55.5 55.2 55.1 55.5

DANN* 75.5 71.3 68.4 62.2 56.4 66.8
CDAN* 75.0 72.5 69.8 61.3 56.3 67.0
FixMatch* 71.6 67.5 65.6 60.1 58.7 64.7
VADA 75.2 72.3 69.6 59.2 52.6 65.8
SDAT 75.4 73.3 66.8 63.9 61.8 68.3
MIC 75.6 74.5 69.5 64.8 62.0 69.3

IWDAN 74.1 73.3 71.4 65.3 59.7 68.8
IWCDAN 73.5 72.5 69.6 62.9 57.2 67.1
sDANN 72.8 72.2 71.2 64.9 62.5 68.7
ASA 66.4 65.3 64.6 61.7 60.1 63.6
PCT 68.2 66.8 65.4 60.5 53.6 63.3
SENTRY 67.5 64.5 57.6 53.4 52.6 59.1

CASA (Ours) 74.3 73.4 71.8 66.3 63.2 69.8

Table 4: Ablation study of individual loss terms.

Lalign Lce Lv α
=

N
on

e

α
=

1
0

α
=

3.
0

α
=

1.
0

α
=

0.
5

A
ve

ra
ge

✓ 94.5 94.2 94.3 94.3 84.9 92.4
✓ ✓ 97.7 97.2 96.8 96.2 87.4 95.1
✓ ✓ ✓ 98.0 98.0 97.2 96.7 88.3 95.6

runs on USPS→MNIST in Table 4. It is evident that the conditional support alignment loss term
Lalign, conditional entropy loss term Lce and virtual adversarial loss term Lv all improve the model’s
performance across different levels of label shift.

Visualization of learned feature embeddings under severe label shift. We first conduct an
experiment to visualize the effectiveness of our proposed method. Samples from three classes (3, 5,
and 9) are selected from USPS and MNIST datasets, following Tong et al. (2022), to create source and
target domains, respectively. The label probabilities are equal in the source domain, while they are
[22.9%, 64.7%, 12.4%] in the target domain. We compare the per-class accuracy scores, Wasserstein
distance DW , Dc

supp and 2D feature distribution of CDAN, ASA and CASA.

Fig. 3 shows that CASA achieves a higher target average accuracy, resulting in a clearer separation
among classes and more distinct feature clusters compared to CDAN and ASA. Although ASA
reduces the overlap of different target classes to some extent, its approach that only enforces support
alignment between marginals does not fully eradicate the overlap issue. CASA tackles this drawback
by considering discriminative class information during the support alignment in feature embeddings.
The plot also demonstrates that CASA effectively reduces Dc

supp through the proxy objective in
Proposition 2. Our observations are consistent with those made in Tong et al. (2022), namely that
lower values of Dc

supp tend to correlate with higher accuracy values under label distribution shift.
This visualization helps explain the superior performance of CASA over other baseline methods
under severe label shift settings.

Hyperparameter analysis We analyze the impact of hyperparameters λalign, λce and λv on the
performance of CASA on the task USPS→MNIST, with α = 1.0. Overall, the performance remains
stable as λalign increases, reaching a peak at λalign = 1.5. On the other hand, the model’s accuracy
increases sharply at lower values of λce, λv and plunges at values greater than 0.1. This means that
choosing appropriate values of these 2 hyperparameters may require more careful tuning compared
to λalign.

4 RELATED WORKS

A dominant approach for tackling the UDA problem is learning domain-invariant feature representa-
tion, based on the theory of Ben-David et al. (2006), which suggests minimizing the H∆H-divergence
between the two marginal distributions PS

Z , PT
Z . More general target risk bound than that of Ben-

David et al. (2006) have been developed by extending the problem setting to multi-source domain
adaptation (Mansour et al., 2008; Zhao et al., 2018; Phung et al., 2021), or considering discrepancy
distance (Mansour et al., 2009), hypothesis-independent disparity discrepancy (Zhang et al., 2019b),
or PAC-Bayesian bounds with weighted majority vote learning (Germain et al., 2016).
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Figure 2: Hyperparameter analysis on USPS→MNIST task
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Figure 3: Visualization of support of feature representations for 3 classes in the USPS → MNIST
task. Similar to Tong et al. (2022), each plot illustrates the 2 level sets of kernel density estimates
for both the source and target features. The average accuracy, Wasserstein distance DW and
Dc

supp are also provided.

Numerous methods have been proposed to align the distribution of feature representation between
source and target domains, using Wasserstein distance (Courty et al., 2017; Shen et al., 2018; Lee
& Raginsky, 2018), maximum mean discrepancy (Long et al., 2014; 2015; 2016), Jensen-Shannon
divergence (Ganin & Lempitsky, 2015; Tzeng et al., 2017), or first and second moment of the
concerned distribution (Sun & Saenko, 2016; Peng et al., 2019),.

However, recent works have pointed out the limits of enforcing invariant feature representation distri-
bution, particularly when the marginal label distribution differs significantly between domains (Jo-
hansson et al., 2019; Zhao et al., 2019; Wu et al., 2019; Tachet des Combes et al., 2020). Based on
these theoretical results, different methods have been proposed to tackle UDA under label shift, often
by minimizing β-relaxed Wasserstein distance (Tong et al., 2022; Wu et al., 2019), or estimating
the importance weight of label distribution between source and target domains (Lipton et al., 2018;
Tachet des Combes et al., 2020; Azizzadenesheli et al., 2019).

5 CONCLUSION

In this paper, we propose a novel CASA framework to handle the UDA problem under label distribu-
tion shift. The key idea of our work is to learn a more discriminative and useful representation for
the classification task by aligning the supports of the conditional distributions between the source
and target domains. We next provide a novel theoretical error bound on the target domain and then
introduce a complete training process for our proposed CASA . Our experimental results consistently
show that our CASA framework outperforms other relevant UDA baselines on several benchmark
tasks. We plan to employ and extend our proposed method to more challenging problem settings,
such as domain generalization and universal domain adaptation.
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A PROOFS OF THE THEORETICAL RESULTS

A.1 CSSD AS A SUPPORT DIVERGENCE

Proof. First, we aim to demonstrate that Dc
supp(P

S
Z|Y , P

T
Z|Y ) ≥ 0 for all PS

Z|Y and PT
Z|Y . To establish

this, consider any y ∈ Y:

Ez∼PS
Z|Y =y

[d(z, suppPT
Z|Y=y)] = Ez∼PS

Z|Y =y

[
inf

z′∈suppPT
Z|Y =y

d(z, z′)

]
≥ 0.

This is a consequence of d(·, ·) is a distance metric, ensuring d(z, z′) ≥ 0. The same reasoning
applies to the second term in the definition of Dc

supp(P
S
Z|Y , P

T
Z|Y ).

Second, we show that Dc
supp(P

S
Z|Y , P

T
Z|Y ) = 0 if and only if suppPS

Z|Y=y = suppPT
Z|Y=y for any

y ∈ Y . In other words, since PS(Y = y) > 0 and PT (Y = y) > 0, Dc
supp(P

S
Z|Y , P

T
Z|Y ) = 0 if and

only if both
Ez∼PS

Z|Y =y
[d(z, suppPT

Z|Y=y)] = 0

Ez∼PT
Z|Y =y

[d(z, suppPS
Z|Y=y)] = 0.

The first condition implies that, for any z ∈ suppPS
Z|Y=y , the probability of d(z, supp(PT

Z|Y=y)) >

0 is 0. Consequently, d(z, suppPT
Z|Y=y) = 0 for all z ∈ suppPS

Z|Y=y , leading to suppPS
Z|Y=y) ⊆

suppPT
Z|Y=y . Analogously, the second condition yields suppPT

Z|Y=y ⊆ suppPS
Z|Y=y . Combining

these, for any y, we conclude that suppPT
Z|Y=y = suppPS

Z|Y=y .

Note that the definition of support divergence is closely related to Chamfer divergence (Fan et al.,
2017; Nguyen et al., 2021), which has been shown to not be a valid metric. Figure 1c is best suited to
illustrate this proposition as the class-wise supports of two distributions are aligned.

A.2 LEMMA 1

Proof. By the law of total expectation, we can write

IMDFϵ(P
T
Z , PS

Z ) = sup
f∈Fϵ

EPT
Y
EPT

Z|Y
[f ]−EPS

Y
EPT

Z|Y
[f ] = sup

f∈Fϵ

K∑
k=1

qkEPT
Z|Y =k

[f ]−pkEPS
Z|Y =k

[f ].

Next, we bound the function f using the assumption that f is 1-Lipschitz. That is, for any z ∈ Z and
z′ ∈ suppPS

Z|Y=k, we have

f(z) ≤ f(z′) + d(z, z′) ≤ δk + d(z, z′).

The infimum of d(z, z′) w.r.t z′ ∈ suppPS
Z|Y=k in the right-hand side will result in

d(z, suppPS
Z|Y=k). Therefore, we have

f(z) ≤ δk + d(z, suppPS
Z|Y=k)

Now the class-conditioned expectation of f is bounded by
EPT

Z|Y =k
[f ] ≤ δk + EPT

Z|Y =k
[d(z, suppPS

Z|Y=k)].

Together with the definition of Fϵ, we can arrive with the first result

IMDFϵ(P
T
Z , PS

Z ) ≤
K∑

k=1

qkEPT
Z|Y =k

[d(z, suppPS
Z|Y=k)] + qkδk + pkϵk.

The second result can be obtained by deriving a similar bound for EPS
Z |Y=k[f ] as

EPS
Z|Y =k

[f ] ≤ γk + EPS
Z |Y=k[d(z, suppP

T
Z|Y=k)].
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A.3 ADDITIONAL ANALYSIS ON F0

In this section, we demonstrate a special case where given f ∈ F0, our bound in Eq equation 3
becomes independent of δk. This independence arises due to our significantly relaxed assumption
f ∈ Fϵ and is not directly linked to our proposed CSSD. While the precise interpretation of δk might
not immediately clear, the result indicates the trade-off between constraining ϵ = 0 and allowing for
ϵ > 0.

Recall that in our proof for Lemma 1, where we can express IMDF0(P
T
Z , PS

Z ) as follows:

IMDF0(P
T
Z , PS

Z ) = sup
f∈F0

EPT
Y
EPT

Z|Y
[f ]−EPS

Y
EPT

Z|Y
[f ] = sup

f∈F0

K∑
k=1

qkEPT
Z|Y =k

[f ]−pkEPS
Z|Y =k

[f ].

In the context of f ∈ F0, it implies that, for any z ∈ suppPS
Z , f(z) = 0. This also holds for any

z ∈ suppPS
Z|Y=k ⊂ suppPS

Z , f(z) = 0. Using the Lipschitz property, we have, for any z ∈ Z ,
z′ ∈ suppPS

Z|Y=k,
f(z) ≤ f(z′)︸ ︷︷ ︸

=0,no δk arises

+d(z, z′) ≤ d(z, z′).

This inequality means f(z) ≤ E[d(z, suppPS
Z|Y=k)] for any k. Consequently, we can derive the

following bound:

IMDF0(P
T
Z , PS

Z ) ≤
K∑

k=1

qkEPT
Z|Y =k

[d(z, suppPS
Z|Y=k)].

This result aligns precisely with the first term in our CSSD and δk does not appear.

A.4 PROPOSITION 2

Proof. We have Dc
supp(P

S
Z|Y , P

T
Z|Y ) = 0 is equivalent to

PS(Z = z|Y = y) > 0 iff PT (Z = z|Y = y) > 0

Since PS(Y = y) > 0, and PT (Y = y) > 0, the condition above is equivalent to

PS(Z = z, Y = y) > 0 iff PT (Z = z, Y = y) > 0,

which means that

Dsupp(P
S
Z,Y , P

T
Z,Y ) = 0.

B ADDITIONAL COMPARISON TO OTHER GENERALIZED TARGET SHIFT
METHODS

The methods proposed in Gong et al. (2016) and Tachet des Combes et al. (2020) both estimate
the shifted target label distribution and enforce the conditional domain invariance. However, they
rely on several assumptions that may not be practical, e.g., clustering of source and target features,
invariant conditional feature distribution between source and target domains, or linear independence
of conditional target feature distribution. Similarly, Rakotomamonjy et al. (2022) assumes that there
exists a linear transformation between class-conditional distributions in the source and target domains,
proposing the use of kernel embedding of conditional distributions to align these distributions. In
contrast, our proposed framework does not impose such strict assumptions as those in these prior
works and avoids aligning the class-conditional feature distributions.

While the theoretical bound in Tachet des Combes et al. (2020) does not introduce the additional term
of

∑K
k=1 qkδk + pkγk in Theorem 1, our theoretical result does not rely on the strict assumption of
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GLS Tachet des Combes et al. (2020), which can be challenging to enforce. Hence, our proposed
CASA provides an orthogonal view on the problem of generalized target shift, without imposing
stringent assumptions on data distribution shift between source and target domains.

Similar to previously described methods Tachet des Combes et al. (2020); Gong et al. (2016),
Rakotomamonjy et al. (2022) proposed learning a feature representation in which both marginals and
class-conditional distributions are domain-invariant. The authors also proposed estimating the target
label distribution, similar to Gong et al. (2016), in order to align class-conditional feature distribution
and thus reduce the target error. Hence, the performance of the algorithm in Rakotomamonjy et al.
(2022) relies heavily on accurate estimation of PT

Y , which might be challenging under severe label
shift. More importantly, the target error upper bound in Rakotomamonjy et al. (2022) contains the
term supk,z(w(z)Sk(z)) that increases together with the severity of label distribution shift, which
might degrade the proposed method’s performances under severe label shift. In contrast, our bound
in Theorem 1 does not have this issue, which may help explain the superior empirical performance of
CASA over MARS Rakotomamonjy et al. (2022) under severe label shift that is demonstrated in our
global response section.

In Kirchmeyer et al. (2022), the authors proposed learning an optimal transport map between the
source and target distribution, as an alternative to the popular approach of enforcing domain invariance.
Unlike Kirchmeyer et al. (2022), our method does not require additional assumptions on the source
and target feature distribution, including the source domain cluster assumption, and the conditional
matching assumption between the source and target domain. While the target risk error bound in
Kirchmeyer et al. (2022) contains the Wasserstein-1 divergences between 2 pairs of distribution, one
of which is computationally intractable due to the absence of target domain labels, our proposed
bound contains only the support divergence between conditional source and target feature distribution.
Because the support divergence has been shown to be considerably smaller than other conventional
distribution divergences, e.g. Wasserstein-1 divergence, the proposed error bound can be tighter than
that of Kirchmeyer et al. (2022). Moreover, the last term in the bound of Kirchmeyer et al. (2022) is
inversely proportional to the minimum proportion of a particular class in the target domain, making
the performance of OSTAR degrade considerably on severe label shift Kirchmeyer et al. (2022). On
the contrary, our bound does not suffer from such issue on severe label shift. However, the trade-off
for the absence of additional assumptions like those in Kirchmeyer et al. (2022) is that our bound
introduces an additional term of

∑K
k=1 qkδk + pkγk, which intuitively is the sum of a worst-case

per-class error on both source and target domain. As we mentioned in Remark 3, we assume this term
and the ideal joint risk term to be small, similar to existing domain adversarial methods Ben-David
et al. (2006); Ganin et al. (2016), and minimize the first and second terms in our bound.

C ADDITIONAL EXPERIMENT RESULTS

We further conduct experiments on the DomainNet dataset, following the same experiment setting in
the main paper, and report the results in Table 5. Overall, while CASA provides lower results under
α ∈ {None, 10.0} than FixMatch(RS+RW) and SDAT, CASA consistently achieves the highest
accuracy scores under more severe label shift setting.

D DATASET DESCRIPTION

• USPS → MNIST is a digits benchmark for adaptation between two grayscale handwritten
digit datasets: USPS (Hull, 1994) and MNIST (LeCun et al., 1998). In this task, data from
the USPS dataset is considered the source domain, while the MNIST dataset is considered
the target domain.

• STL → CIFAR. This task considers the adaptation between two colored image classification
datasets: STL (Coates & Ng, 2012) and CIFAR-10 (Krizhevsky et al., 2009). Both datasets
consist of 10 classes of labels. Yet, they only share 9 common classes. Thus, we adapt the
9-class classification problem proposed by Shu et al. (2018) and select subsets of samples
from the 9 common classes.

• VisDA-2017 is a synthetic to real images adaptation benchmark of the VisDA-2017 chal-
lenge (Peng et al., 2017). The training domain consists of CAD-rendered 3D models of 12
classes of objects from different angles and under different lighting conditions. We use the
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Table 5: Per-class accuracy on DomainNet

Algorithm α
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0.
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ra
ge

No DA 40.6 40.6 40.6 40.5 40.5 40.6

DANN* 44.2 43.7 43.0 43.0 40.8 43.0
CDAN* 44.4 43.8 43.2 43.1 41.6 43.2
VADA 44.0 43.6 43.3 42.6 42.3 43.2
FixMatch* 45.1 44.5 43.3 42.9 42.3 43.6
SDAT 44.6 44.2 43.2 42.0 41.2 43.0
MIC 44.8 44.3 43.3 42.2 41.1 43.1

IWDAN 43.8 43.2 41.5 39.2 38.4 41.3
IWCDAN 44.0 44.1 43.2 42.8 41.7 43.2
sDANN 43.6 43.3 43.5 43.1 42.6 43.3
ASA 42.9 41.8 41.3 39.6 39.3 41.0
PCT 44.6 43.5 43.3 42.1 40.4 42.8
SENTRY 43.4 43.4 43.1 42.5 42.1 42.9

CASA 44.5 44.1 43.6 43.4 42.9 43.7

validation data of the challenge, which consists of objects of the same 12 classes cropped
from images of the MS COCO dataset (Lin et al., 2014), as the target domain.

• DomainNet dataset contains about 0.6 million images in total with 345 classes (Peng et al.,
2019). We consider 3 domains from this dataset: real, painting and sketch, use the real
domain as the source and the other 2 domain as targets.

E IMPLEMENTATION DETAILS

USPS → MNIST. Following Tachet des Combes et al. (2020), we employ a LeNet-variant (LeCun
et al., 1998) with a 500-d output layer as the backbone architecture for the feature extractor. For the
discriminator, we implement a 3-layer MLP with 512 hidden units and leaky-ReLU activation.

We train all classifiers, along with their feature extractors and discriminators, using 65000 SGD steps
with learning rate 0.02, momentum 0.9, weight decay 5× 10−4, and batch size 64. The discriminator
is updated once for every update of the feature extractor and the classifier. After the first 30000 steps,
we apply linear annealing to the learning rate for the next 30000 steps until it reaches the final value
of 2× 10−5.

For the loss of the feature extractor, the alignment weight λalign is scheduled to linearly increase
from 0 to 1.0 in the first 10000 steps for all alignment methods, and λvat equals 1.0 for the source,
and 0.1 for the target domains.

STL → CIFAR. We follow Tong et al. (2022) in using the same deep CNN architecture as the
backbone for the feature extractor. The 192-d feature vector is then fed to a single-layer linear
classifier. The discriminator is a 3-layer MLP with 512 hidden units and leaky-ReLU activation.

We train all classifiers, along with their feature extractors and discriminators, using 40000
ADAM (Kingma & Ba, 2015) steps with learning rate 0.001, β1 = 0.5, β2 = 0.999, no weight decay,
and batch size 64. The discriminator is updated once for every update of the feature extractor and the
classifier.

For the loss of the feature extractor, the weight of the alignment term is set to a constant λalign = 0.1
for all alignment methods. The weight of the auxiliary conditional entropy term is λce = 0.1 for all
domain adaptation methods, and λvat equals 1.0 for the source, and 0.1 for the target domains.

VisDA-2017. We use a modified ResNet-50 (He et al., 2016) with a 256-d final bottleneck layer
as the backbone of our feature extractor. All layers of the backbone, except for the final one, use
pretrained weights from torchvision model hub. The classifier is a single linear layer. Similar to
other tasks, the discriminator is a 3-layer MLP with 1024 hidden units and leaky-ReLU activation.
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We train all classifiers, feature extractors, and discriminators using 25000 SGD steps with momentum
0.9, weight decay 0.01, and batch size 64. We use a learning rate of 0.001 for feature extractors. For
the classifiers, the learning rate is 0.01. For the discriminator, the learning rate is 0.005. We apply
linear annealing to the learning rate of feature extractors and classifiers such that their learning rates
are decreased by a factor of 0.05 by the end of training.

The alignment weight λalign is scheduled to linearly increase from 0 to 0.1 in the first 5000 steps
for all alignment methods. The weight of the auxiliary conditional entropy term is set to a constant
λce = 0.05, and λvat equals 0 for the source, and 0.1 for the target domains.

DomainNet. We use the same backbone and network architecture as those of VisDA-2017 experi-
ments. We train all classifiers, feature extractors, and discriminators using 20000 SGD steps with
momentum 0.9, weight decay 0.0001, and batch size 64. We use a learning rate of 0.01 for feature
extractors. For the classifiers, the learning rate is 0.1. For the discriminator, the learning rate is 0.01.
We use the same learning rate scheduler as that of Garg et al. (2023). The values for λalign, λce and
λv are 1.0, 0.02 and 0.1, respectively.
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