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ABSTRACT

In safety-critical applications such as medical imaging and autonomous driving,
where decisions have profound implications for patient health and road safety, it is
imperative to maintain both high adversarial robustness to protect against poten-
tial adversarial attacks and reliable uncertainty quantification in decision-making.
With extensive research focused on enhancing adversarial robustness through var-
ious forms of improved adversarial training (AT), a notable knowledge gap re-
mains concerning the uncertainty inherent in adversarially trained models. To
address this gap, this study investigates the uncertainty of deep learning mod-
els by examining the performance of conformal prediction (CP) in the context of
standard adversarial attacks within the adversarial defense community. It is first
unveiled that existing conformal prediction methods fail under the commonly used
l∞-norm bounded attack if the model is not adversarially trained, which underpins
the importance of adversarial training for CP. Our paper next demonstrates that the
prediction set size of CP using adversarially trained models with AT variants is of-
ten worse than using standard AT, which inspires us to research into CP-efficient
AT for improved prediction set size. Our empirical study finds two factors are
strongly correlated with the efficiency of CP: 1) predictive entropy and 2) distribu-
tion of the true class probability ranking (TCPR). Based on the two observations,
we propose the Uncertainty-Reducing AT (AT-UR) to learn an adversarially robust
and CP-efficient model with entropy minimization and Beta importance weighting.
Theoretically, this paper presents generalization error analysis for Beta importance
weighting indicating that the proposed UR-AT can potentially learn a model with
improved generalization. Empirically, we demonstrate the substantially improved
CP-efficiency of our method on four image classification datasets compared with
several popular AT baselines.

1 INTRODUCTION

The research into adversarial defense has been focused on improving adversarial training with var-
ious strategies, such as logit-level supervision (Zhang et al., 2019; Cui et al., 2021a) and loss re-
weighting (Wang et al., 2019; Liu et al., 2021a). However, the predictive uncertainty of an ad-
versarially trained model is a crucial dimension of the model in safety-critic applications such as
healthcare (Razzak et al., 2018), and is not sufficiently understood. Existing works focus on cali-
bration uncertainty (Stutz et al., 2020; Qin et al., 2021; Kireev et al., 2022), without investigating a
practical uncertainty quantification of a model, e.g., a prediction set in image classification (Shafer
& Vovk, 2008; Angelopoulos et al., 2020; Romano et al., 2020).

On the other hand, the research into conformal prediction (CP) has been extended to non-i.i.d. (iden-
tically independently distributed) settings, including distribution shifts (Gibbs & Candes, 2021) and
toy adversarial noise (Ghosh et al., 2023; Gendler et al., 2021). However, there is little research
work on the performance of CP under standard adversarial attacks in the adversarial defense commu-
nity, such as PGD-based attacks (Madry et al., 2018; Croce & Hein, 2020) with l∞-norm bounded
perturbations. For example, Gendler et al. (2021) and Ghosh et al. (2023) only consider l2-norm
bounded adversarial perturbations with a small attack budget, e.g., ϵ = 0.125 for the CIFAR dataset
(Krizhevsky et al., 2009). In contrast, the common l2-norm bounded attack budget in adversarial
defense community reaches ϵ = 0.5 on CIFAR (Croce & Hein, 2020). In other words, existing re-
search on adversarially robust conformal prediction is not practical enough to be used under standard
adversarial attacks.
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Figure 1: The proposed uncertainty-reducing adversarial training (AT-UR) improves the CP-
efficiency of existing adversarial training methods like AT, FAT and TRADES. (1) AT improves
the Top-1 robust accuracy of a standard model; (2) CP generates a prediction set with a pre-specified
coverage guarantee for an input image, but for models not adversarially trained, CP fails to gen-
erate informative prediction sets, as the prediction set size is almost the same as the class number,
when models being attacked (Fig. 2); (3) When using CP in an adversarially trained model, the pre-
diction set size is generally large, leading to inefficient CP. Our AT-UR substantially improves the
CP-efficiency of existing AT methods.
In this context, our paper is among the first research papers to explore uncertainty of deep learning
models within the framework of CP in the presence of a standard adversary. We first present an
empirical result that shows the failure of three popular CP methods on non-robust models under a
standard adversarial attack, indicating the necessity of using adversarial training (AT) during the
training stage. Next, we show the CP performance of three popular AT methods and find that ad-
vanced AT methods like TRADES (Zhang et al., 2019) and MART (Wang et al., 2019) substantially
increase the prediction set size in CP even though they improve the Top-1 robust accuracy. This
key observation inspires us to develop the uncertainty-reducing AT (AT-UR) to learn an adversari-
ally robust model with improved CP-efficiency (Angelopoulos et al., 2020), meaning that CP uses
a smaller prediction set size to satisfy the coverage. The proposed AT-UR consists of two training
techniques based on our observation about the two major factors that affect prediction set sizes:
prediction entropy and the True Class Probability Ranking (TCPR), both defined in Sec. 5. Our AT-
UR is demonstrated to be effective at reducing the prediction set size of models on multiple image
classification datasets. In summary, there are four major contributions of this paper.

1. We test several CP methods under commonly used adversarial attacks in the adversarial
defense community. It turns out that but for models not adversarially trained, CP cannot to
generate informative prediction sets. Thus, adversarial training is necessary for CP to work
under adversarial attacks.

2. We test the performance of adversarially trained models with CP and demonstrate that im-
proved AT often learns a more uncertain model and leads to less efficient CP with increased
prediction set sizes.

3. Our empirical study reveals that the prediction set size of a model is closely related to
the entropy of predictive distributions and the distribution of true class probability ranking
(TCPR). Inspired by the empirical observation, we propose uncertainty-reducing AT (AT-
UR) to learn a CP-efficient and adversarially robust model by minimizing the entropy of
predictive distributions and weighting losses based on TCPR with a Beta density function.

4. Our theoretical study provides a generalization bound for the proposed Beta weighting
training that shows this weighting scheme will potentially learn a model with improved
generalization. Our empirical study demonstrates that the proposed AT-UR learns adversar-
ially robust models with substantially improved CP-efficiency on four image classification
datasets.

The paper has a structure as follows. Section 2 discusses related works and Section 3 introduces
mathematical notations and two key concepts in this paper. Section 4 shows the pitfalls of three CP
methods under standard attacks when the model is not robustly trained and the low CP-efficiency
of two improved AT methods and motivates us to develop the AT-UR introduced in Section 5. Our
major empirical results are shown in Section 6 and we conclude the paper in Section 7.

2 RELATED WORKS

Adversarial Robustness. The most effective approach to defending against adversarial attacks is
adversarial training (AT) (Madry et al., 2018). There is a sequence of works following the vanilla
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Figure 2: The performance of three representative CP methods using non-robust models under stan-
dard adversarial attacks in the adversarial defense community. The red line denotes means standard
deviation of the metric. For comparison, the average prediction set sizes for normal images is 1.03
and 2.39 for CIFAR10 and CIFAR 100. See Sec. 6.1 for details of the experiment.

version of AT based on projected gradient descent (PGD), including regularization (Qin et al., 2019;
Liu & Chan, 2022; Liu et al., 2021b), logit-level supervision (Zhang et al., 2019; Cui et al., 2021a)
and loss re-weighting (Wang et al., 2019; Liu et al., 2021a). Existing methods on regularization focus
on improving Top-1 robust accuracy by training the model with certain properties like linearization
(Qin et al., 2019) and large margins (Liu & Chan, 2022). In contrast, our work focuses on the
prediction set size, i.e., the efficiency of CP, in adversarially trained models by regularizing the
model to have low prediction entropy. The entropy minimization regularization also entails logit-
level supervision as in Zhang et al. (2019). In comparison, our proposed approach, AT-EM, enhances
CP efficiency, whereas TRADES (Zhang et al., 2019) impedes CP-efficiency. The most related work
is Gendler et al. (2021) which also studies CP under adversarial attacks. However, there are two
fundamental differences: 1) Gendler et al. (2021) only considers a small attack budget under l2-norm
bounded attacks, while our work investigates CP under common adversarial attacks in adversarial
defense literature with l∞-norm bounded attacks; 2) Our paper shows that AT is essential for CP
to work under strong adversarial attacks and proposes novel AT methods to learn a CP-efficient
and adversarially-robust model, while Gendler et al. (2021) only considers the post-training stage.
Our experiment validates that Gendler et al. (2021) fails when there are strong adversarial attacks
(Fig. 2).

Uncertainty Quantification. Uncertainty quantification aims to provide an uncertainty measure
for a machine learning system’s decisions. Within this domain, Bayesian methods stand out as a
principled approach, treating model parameters as random variables with distinct probability distri-
butions. This is exemplified in Bayesian Neural Networks (BNNs), which place priors on network
weights and biases, updating these with posterior distributions as data is observed (Gal & Ghahra-
mani, 2016; Kendall & Gal, 2017; Cui et al., 2020). However, the large scale of modern neural
networks introduces challenges for Bayesian methods, making piror and posterior selection, and ap-
proximate inference daunting tasks (Kingma et al., 2015; Cui et al., 2021b; 2023; CUI et al., 2023).
This can sometimes compromise the optimal uncertainty quantification in BNNs. In contrast, the
frequentist approach offers a more direct route to uncertainty estimation. It views model parameters
as fixed yet unknown, deriving uncertainty through methods like conformal prediction (Vovk et al.,
1999; Ghosh et al., 2023; Gendler et al., 2021). While Bayesian methods integrate prior beliefs with
data, their computational demands in large networks can be overwhelming, positioning the straight-
forward frequentist methods as a viable alternative for efficient uncertainty quantification. Thus, our
paper investigates the uncertainty of adversarially trained models via CP. Note that our work is fun-
damentally different from existing research on uncertainty calibration for AT (Stutz et al., 2020; Qin
et al., 2021; Kireev et al., 2022), as our focus is to produce a valid prediction set while uncertainty
calibration aims to align accuracy and uncertainty. Finally, Einbinder et al. (2022) proposes to train
a model with uniform conformity scores on a calibration set in standard training, while our work
proposes CP-aware adversarial training to reduce prediction set sizes.

3 PRELIMINARY

Before diving into the details of our analysis and the proposed method, we first introduce our math-
ematical notations, adversarial training and conformal prediction.

Notations. Denote a training set with m samples by Dtr = {(xi, yi)}mi=1. Suppose each data
sample (xi, yi) ∈ X × Y is drawn from an underlying distribution P defined on the space X × Y ,
where xi and yi are the feature and label, respectively. Particularly, we consider the classification
problem and assume that there are K classes, i.e., Y = {1, ...,K} (we denote [K] = {1, ...,K} for
simplicity). Let fθ : X → ∆K

p denote a predictive model from a hypothesis class F that generates
a K-dimensional probability simplex: ∆K

p = {v ∈ [0, 1]K :
∑K

k=1 vk = 1}. θ is the model
parameter we optimize during training. A loss function ℓ : Y × Y → R is used to measure the
difference between the prediction made by fθ(x) and the ground-truth label y.
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Dataset CIFAR10 CIFAR100 Caltech256 CUB200

AT

Rob. Coverage 90.55(0.51) 90.45(0.59) 91.35(0.85) 90.33(0.89)
Rob. Set Size 3.10(0.07) 23.79(0.80) 43.20(2.11) 37.37(2.11)
Clean Acc. 89.76(0.15) 68.92(0.38) 75.28(0.51) 65.36(0.27)
Rob. Acc. 50.17(0.91) 28.49(1.14) 47.53(0.67) 26.29(0.44)

TRADES

Rob. Coverage 90.72(0.62) 90.35(0.57) 90.82(0.81) 90.38(0.76)
Rob. Set Size 3.31(0.09) 27.60(0.97) 44.80(3.42) 52.18(2.60)
Clean Acc. 87.31(0.27) 62.83(0.33) 69.57(0.25) 58.16(0.38)
Rob. Acc. 53.07(0.23) 32.07(0.20) 47.07(0.37) 27.82(0.23)

MART

Rob. Coverage 91.60(0.48) 90.67(0.83) 91.92(0.84) 90.22(0.53)
Rob. Set Size 3.81(0.07) 28.37(1.29) 46.79(2.73) 45.31(1.78)
Clean Acc. 85.43(0.24) 59.66(0.26) 69.68(0.31) 58.72(0.18)
Rob. Acc. 54.48(0.29) 34.04(0.46) 49.82(0.32) 28.99(0.25)

Table 1: CP and Top-1 accuracy of three popular adversarial defense methods under PGD100 ad-
versarial attack. Bold numbers are the best prediction set size and robust accuracy.

To measure the performance of fθ in the sense of population over P , the true risk is typically
defined as R(fθ) = P(x,y)∼P [fθ(x) ̸= y]. Unfortunately, R(f) cannot be realized in practice,
since the underlying P is unreachable. Instead, the empirical risk R̂(fθ) = 1

m

∑m
i=1 I[fθ(xi) ̸=

yi] is usually used to estimate R(fθ), where I[·] is the indicator function. The estimation error
of R̂(fθ) to R(fθ) is usually referred to as generalization error bound and can be bounded by a
standard rate O(1/

√
m). To enable the minimization of empirical risk, a loss function ℓ is used as

the surrogate of I[·], leading to the classical learning paradigm empirical risk minimization (ERM):
minfθ∈F L̂(fθ) = 1

m

∑m
i=1 ℓ(fθ(xi), yi). In this work, we use the standard cross-entropy loss as

the loss function,

ℓ(fθ(xi), yi) = −
K∑
j=1

yij log(fθ(xi)j). (1)

Adversarial training. Write the loss for sample (xi, yi) in adversarial training as l(x̃i, yi), where
x̃i = xi + δi and δi is generated from an adversarial attack, e.g., PGD attack (Madry et al., 2018).
The vanilla adversarial training minimizes the loss with uniform weights for a mini-batch with B
samples, i.e.,

∇fθ = ∇ 1

B

B∑
i=1

l(fθ(x̃i)j , yi), (2)

where ∇fθ is the gradient in this mini-batch step optimization with respect to θ.

Conformal prediction (CP). CP is a distribution-free uncertainty quantification method and can
be used in a wide range of tasks including both regression and classification (Vovk et al., 1999;
2005). This paper focuses on the image classification task, where CP outputs a prediction set instead
of the Top-1 predicted class as in a standard image classification model, and satisfies a coverage
guarantee. Mathematically, CP maps an input sample x to a prediction set C(x), which is subset of
[K] = {1, · · · ,K}, with the following coverage guarantee,

P (y ∈ C(x)) ≥ 1− α, (3)
where 1 − α is a pre-defined confidence level such as 90%, meaning that the prediction set will
contain the ground-truth label with 90% confidence for future data. This paper mainly considers
the split conformal prediction, an efficient CP approach applicable to any pre-trained black-box
classifier (Papadopoulos et al., 2002; Lei et al., 2018) as it does not need to re-train the classifier
with different train-calibration-test splits.

The prediction set of CP is produced by the calibration-then-test procedure. In the context of a
classification task, we define a prediction set function S(x, u;π, τ), where u is a random variable
sampled from a uniform distribution Uniform[0, 1] independent of all other variables, π is shorthand
for the predictive distribution fθ(x), and τ is a threshold parameter that controls the size of the pre-
diction set. An increase in the value of τ leads to an expansion in the size of the prediction set within
S(x, u;π, τ). We give one example (Romano et al., 2020) of the function S in Appendix A. The
calibration process computes the smallest threshold parameter τ̂cal to achieve an empirical coverage
of (1−α)(nc+1)/nc on the calibrations set with nc samples. For a test sample x∗, a prediction set
is the output of the function S(x∗, u;π∗, τ̂cal).

4 NECESSITATE AT FOR ROBUST AND EFFICIENT COVERAGE.
The pitfalls of CP under strong adversarial attacks. We test the performance of three conformal
prediction methods, i.e., APS (Adaptive Prediction Sets) (Romano et al., 2020), RAPS (Regularized
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Figure 3: (1): The kernel density estimation for predictive distribution’s entropy on adversarial test
sets. (2): Box plot of prediction set size of three AT baselines and AT-EM. AT-EM effectively
controls prediction entropy and improves CP-efficiency. See Tab. 1 and Tab. 2 for their coverages.

Adaptive Prediction Sets) (Angelopoulos et al., 2020) and RSCP (Randomly Smoothed Conformal
Prediction) (Gendler et al., 2021), under standard adversarial attacks. Specifically, for APS and
RAPS, we use PGD100 adversarial attacks with l∞-norm bound and attack budget ϵ = 8/255 =
0.0314. For RSCP, we adopt PGD20 with an l2-norm bound, in accordance with the original paper’s
settings, but with a larger attack budget of ϵ = 0.5 as in RobustBench (Croce & Hein, 2020). If not
specified otherwise, we use adversarial attack PGD100 with l∞ norm and ϵ = 8/255 = 0.0314 to
generate adversarial examples throughout this paper.

Fig. 2 shows the coverage and prediction set size of three CP methods on CIFAR10 and CIFAR100
when models are trained in a standard way, i.e., without adversarial training. Although all CP
methods have good coverages, their prediction set sizes are close to the number of classes in both
datasets as the classifier is completely broken under the strong adversarial attacks. In contrast,
when the same models are applied to standard images, the prediction set sizes are 1.03 and 2.39 for
CIFAR10/CIFAR100. This result reveals that adversarial training is indispensable if one wants to
use CP to get reasonable uncertainty quantification for their model in an adversarial environment.
Therefore, in next section, we test AT and two improved AT methods to investigate the performance
of CP for adversarially trained models.

Improved AT Compromises Conformal Prediction’s Efficiency. We test three popular adversar-
ial training methods, i.e., AT (Madry et al., 2018), TRADES (Zhang et al., 2019) and MART (Wang
et al., 2019), using APS as the conformal prediction method under a commonly used adversarial
attack, PGD100 with l∞-norm and ϵ = 8/255 = 0.0314. See more detailed experimental settings
in Sec. 6. Tab. 1 shows their coverage and prediction set size, as well as clean and robust accuracy
on four datasets. The results demonstrate that while the two enhanced adversarial training methods,
TRADES and MART, effectively improve the Top-1 accuracy in the presence of adversarial attacks,
they lead to an increase in the size of the prediction set, consequently yielding a less CP-efficient
model. In other words, the improvement in Top-1 accuracy does not necessarily lead to less uncer-
tainty. Therefore, to design a new AT method that learns an adversarially robust model with efficient
CP, a deep investigation into the prediction set size is necessary. In the following section, we iden-
tify two major factors that play an important role in controlling the prediction set size through our
empirical study.

5 UNCERTAINTY-REDUCING ADVERSARIAL TRAINING

This section investigates two factors highly correlated with prediction set size and introduces our
uncertainty-reducing adversarial training method.

5.1 ENTROPY MINIMIZATION FOR CP-EFFICIENCY

The prediction set size is closely related to the entropy of prediction distribution, as both quantities
reflect the prediction uncertainty of a model. A more uniform categorical distribution has higher
uncertainty, which is reflected in its higher entropy. Fig. 3 visualizes the kernel density estimation
(KDE) (Rosenblatt, 1956; Parzen, 1962) of entropy values calculated with adversarial test samples
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AT AT_beta
Coverage 90.00(0.18) 90.04(0.09)
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Coverage 90.33(0.89) 90.17(1.06)
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Figure 5: Top: The histogram and kernel density estimation of normalized TCPR on adversarial test
sets. Bottom: The coverage and prediction set size of AT and AT-Beta. AT-Beta pushes the TCPR
distribution towards the promising region and improves CP-efficiency.

on three datasets. It is evident that TRADES and MART learn models with predictive distributions
that have higher entropy values than AT, thus increasing the prediction set size comparatively.

To decrease the prediction set size of AT, we add an entropy minimization term to the loss function,

ℓEM(fθ(xi), yi) = −
K∑
j

yij log(fθ(xi)j) +H(fθ(xi)), (4)

where the regularization is the entropy function H(fθ(xi)) = −
∑K

j fθ(xi)j log(fθ(xi)j). The AT
scheme with entropy minimization (EM) is denoted as AT-EM. This entropy term is the same as the
entropy minimization in semi-supervised learning (Grandvalet & Bengio, 2004). However, note that
our work is the first to use entropy minimization in adversarial training for improving CP-efficiency.
Fig. 3 also shows the KDE of entropy values on adversarial test sets using AT-EM. The reduction in
predictive entropy effectively leads to a substantial decrease in the prediction set size of AT-EM.

5.2 BETA WEIGHTING FOR CP-EFFICIENCY

AT AT_beta
CIFAR100 61.43% 65.15%
Caltech256 33.28% 35.30%
CUB200 46.47% 49.91%

Figure 4: Top: The Beta distribution
density function used in our experiment.
Bottom: The ratio of pBeta(r̂i) within
the promising TCPR region (red) to the
summation of all pBeta(r̂i)’s.

The second factor that controls prediction set sizes is the
distribution of True Class Probability Ranking (TCPR)
on the test dataset. The TCPR is defined as the ranking
of a sample x’s ground-truth class probability among the
whole predictive probability. In equation, we sort π with
the descending order into π̂,

π̂ = {π(1), · · · , π(K)}, (5)
where π(j) ≥ π(j+1),∀j = 1, · · · ,K − 1, and (j) is the
sorted index. TCPR is the index j in π̂ corresponding to
the ground-truth label y, i.e., Sort(y) = j.

The TCPR matters to the prediction set size as we ob-
serve that a model with higher robust accuracy does not
necessarily have a smaller prediction set size as shown
in Tab. 1. This discovery indicates that improving Top-1
accuracy, i.e., the percentage of samples with TCPR=1,
is not enough to learn a CP-efficient model. In addition,
the model capacity might be not strong enough to fit all
the adversarial training data or achieve 100% adversarial
training accuracy as a result of strong adversary and high
task complexity, such as a large number of classes. For

instance, on CIFAR100, the robust accuracy on training data using a pre-trained ResNet50 is only
46.1%.

Motivated by this observation, we propose to use a Beta distribution density function (Fig. 4) to
weight the loss samples so that the TCPR distribution shifts towards the lower TCPR region. This
design embodies our insight that the training should focus on samples with promising TCPR’s,
whose TCPR’s are not 1 and also not too large, because TCPR of 1 means the sample is correctly
classified and a large TCPR means the sample is too difficult. Those samples with promising TCPR’s
are important to control prediction set sizes as they are the majority of the dataset and thus largely
affect the averaged prediction set sizes. Note that the Beta weighting is fundamentally different

6



Under review as a conference paper at ICLR 2024

from Focal Loss (Lin et al., 2017), which focuses on hard examples, i.e., samples with higher TCPR
are weighted higher. Our experiment demonstrates that focusing hard samples leads to inferior CP-
effiency.

Thus, we propose an importance weighting scheme based on Beta distribution density function of
TCPR to learn a CP-efficient model. Let the TCPR of sample x̃i be ri ∈ [K] and the normalized
TCPR be r̂i ∈ [0, 1]. We use the Beta distribution density function, e.g., Fig. 4, to give an importance
weight to sample x̃i. The Beta distribution density is

pBeta(z; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
· (z)a−1 · (1− z)b−1, (6)

where Γ(a) is the Gamma function. To enforce the model to focus on samples with promising
TCPR’s, we use the Beta distribution with a = 1.1 and b ∈ {3.0, 4.0, 5.0}. When a = 1.1 and
b = 5.0, we have the Beta weighting function shown in Fig. 4. The objective function of Beta-
weighting AT is

ℓBeta(fθ(xi), yi) = −pBeta(r̂i; a, b) ·
K∑
j

yij log(fθ(xi)j) (7)

We name this Beta distribution based importance weighting scheme in AT as AT-Beta. The TCPR
distributions of adversarial test samples when training with AT and AT-Beta are shown in Fig. 5,
where AT-Beta has more density around the promising region. The CP performance is also shown
below each plot, which validates the effectiveness of AT-Beta in improving CP-efficiency. In the
table of Fig. 4, we show the ratio of pBeta(r̂i) within the promising TCPR region (red) to the sum-
mation of all pBeta(r̂i)’s, where AT-Beta has substantially more promising weight values than AT.

In summary, the proposed AT-UR consists of two methods, AT-Beta and AT-EM. It also contains the
combination of the two methods, i.e.,

ℓBeta-EM(fθ(xi), yi) = −pBeta(r̂i; a, b) ·
K∑
j

yij log(fθ(xi)j) +H(fθ(xi)), (8)

denoted as AT-Beta-EM. We test the three variants of AT-UR in our experiment and observe that
different image classification tasks need different versions of AT-UR.

5.3 THEORETICAL ANALYSIS ON BETA WEIGHTING

We next give our theoretical analysis on the Beta weighting, which shows that the generalization
error of Beta weighting is potentially improved compared with uniform weighting. We drop the
subscript θ for fθ to lighten the notation. Note that we leave the full proof in Appendix D.

Importance Weighting (IW) Algorithm. IW assigns importance weight ω(x, y) to each sample
(x, y) ∈ Dtr such that ω(x, y) is directly determined by TCPR r̂. Analogous to the empirical risk
R̂(f), we define the IW empirical risk with weights ω(x, y) for f as follows

R̂ω(f) =
1

m

m∑
i=1

ω(xi, yi) · ℓ(f(xi), yi). (9)

It is worth noting that restricting ω(xi, yi) = 1 as a special case for all data samples reduces R̂ω(f)

to R̂(f). With some configurations of ω under the general IW framework, the generalization error
bound can be tightened compared to the standard case.

We strategically design a group-wise IW approach that groups data into K disjoint subsets according
to the rank of their true labels, and assign the same weight to a group of data. For a sample (x, y),
the importance weight is ω(x, y) = pBeta(r̂(x, y); a, b).

Lemma 1. (Generalization error bound of IW empirical risk, Theorem 1 in Cortes et al. (2010))
Let M = sup(x,y)∈X×Y ω(x, y) denote the infinity norm of ω on the domain. For given f ∈ F and
δ > 0, with probability at least 1− δ, the following bound holds:

R(f)− R̂ω(f) ≤
2M log(1/δ)

3m
+

√
2d2(P||Pω ) log(1/δ)

m
, (10)

where d2(P ||Q) =
∫
x
P(x) · P(x)

Q(x)dx is the base-2 exponential for Rényi divergence of order 2

between two distributions P and Q and m is the number of training samples.

7
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Dataset CIFAR10 CIFAR100 Caltech256 CUB200
Metric Cvg PSS Cvg PSS Cvg PSS Cvg PSS

AT 90.55(0.51) 3.10(0.07) 90.45(0.59) 23.79(0.80) 91.35(0.85) 43.20(2.11) 90.33(0.89) 37.37(2.11)
AT-EM∗ 90.39(0.48) 3.05(0.05) 90.35(0.82) 22.05(1.02) 91.09(0.79) 41.42(2.52) 90.08(1.10) 34.77(2.60)
AT-Beta∗ 90.46(0.51) 3.11(0.07) 90.10(0.51) 22.64(0.65) 90.20(0.84) 35.39(2.66) 90.17 (1.06) 35.25(2.15)

AT-Beta-EM∗ 90.65(0.62) 3.10(0.08) 90.40(0.60) 22.53(0.91) 90.81(1.00) 36.17(3.73) 90.31(0.84) 33.10(1.74)
FAT 90.69(0.61) 3.16(0.07) 90.41(0.67) 23.54(0.81) 90.70(0.77) 41.52(2.43) 90.50(1.17) 39.43(2.88)

FAT-EM∗ 90.54(0.68) 3.06(0.06) 90.00(0.82) 23.47(2.71) 90.55(0.79) 39.72(2.49) 89.89(0.919) 35.51(2.06)
FAT-Beta∗ 90.47(0.51) 3.16(0.08) 90.22(0.47) 23.15(0.71) 89.90(0.70) 34.72(2.25) 89.92(0.84) 35.46(1.71)

FAT-Beta-EM∗ 90.71(0.61) 3.04(0.07) 90.36(0.50) 22.28(0.63) 90.41(0.61) 33.59(2.75) 89.88(0.91) 34.35(1.68)
TRADES 90.72(0.62) 3.31(0.09) 90.35(0.57) 27.60(0.97) 90.82(0.81) 44.80(3.42) 90.38(0.76) 52.18(2.60)

TRADES-EM∗ 90.54(0.40) 3.16(0.05) 90.36(0.71) 26.76(1.00) 90.68(0.87) 38.83(3.78) 90.05(0.76) 44.96(2.75)
TRADES-Beta∗ 90.41(0.56) 3.30(0.09) 90.14(0.85) 27.22(1.42) 90.48(0.70) 38.94(2.74) 89.83(0.84) 49.63(2.59)

TRADES-Beta-EM∗ 90.01(0.40) 3.21(0.06) 90.54(0.24) 26.55(0.35) 90.52(0.74) 39.83(3.02) 90.16(1.12) 48.54(2.58)

Table 2: Comparison of AT baselines and the proposed AT-UR variants denoted with ∗. The average
coverage (Cvg) and prediction set size (PSS) are presented, along with the standard deviation in
parentheses. The most CP-efficient method is highlighted in bold.

Theorem 1. (Beta weighting preserves generalization error bound.) Suppose P(x,y)∼P{r̂(x, y) =
k} = k−c∑K

k′=1
(k′)−c is a polynomially decaying function with c = max{K−α, b ln(a)+1

ln(K) + 2− α} for

α ≥ 0. Beta weighting improves generalization error bound compared with ERM.

Remark. Theorem 1 shows that the Beta weighting approach guarantees improved generalization
error bound, which is beneficial to ensure the desirable accuracy for prediction. Meanwhile, the
Beta-based IW strategy focuses on penalizing the data samples whose prediction set size is moder-
ately large (e.g., 10-20 labels included out of 100+ class labels, see experiments).

6 EXPERIMENT

We first give the details of our experimental setting and then present the main empirical result.

6.1 EXPERIMENTAL SETTING

Model. We use the adversarially pre-trained ResNet50 (He et al., 2016; Salman et al., 2020) with
l∞ norm and an attack budget ϵpt = 4/255 in all experiment of our paper. The reason is that,
besides testing on CIFAR10/100, we also test on more challenging datasets such as Caltech256 and
CUB200, on which an adversarially pre-trained model is shown to be much more robust than random
initialized weights (Liu et al., 2023).

Dataset. Four datasets are used to evaluate our method, i.e., CIFAR10, CIFAR100 (Krizhevsky
et al., 2009), Caltech-256 (Griffin et al., 2007) and Caltech-UCSD Birds-200-2011 (CUB200) (Wah
et al., 2011). CIFAR10 and CIFAR100 contain low-resolution images of 10 and 100 classes, where
the training and validation sets have 50,000 and 10,000 images respectively. Caltech-256 has 30,607
high-resolution images and 257 classes, which is split into training and validation set using a 9:1
ratio. CUB200 also contains high-resolution bird images for fine-grained image classification, with
200 classes, 5,994 training images and 5,794 validation images.

Training and Adversarial Attack. In all adversarial training of this paper, we generate adversarial
perturbations using PGD attack. The PGD attack has 10 steps, with stepsize λ = 2/255 and attack
budget ϵ = 8/255. The batch size is set as 128 and the training epoch is 60. We divide the learning
rate by 0.1 at the 30th and 50th epoch. We use PGD attack with 100 steps for evaluation in this
paper. The stepsize and attack budget is the same as in adversarial training, i.e., λ = 2/255 and
ϵ = 8/255. See more training details in Appendix B.

Conformal Prediction Setting. We fix the training set in our experiment and randomly split the
original test set into calibration and test set with a ratio of 1:4 for conformal prediction. For each AT
method, we repeat the training for three trials with three different seeds and repeat the calibration-
test splits five times, which produces 15 trials for our evaluation. The mean and standard deviation
of coverage and prediction set size of 15 trials are reported. If not specified, we use APS (Romano
et al., 2020) as the CP method in our paper as the performance of APS is more stable than RAPS, as
shown in Fig. 2. The target coverage is set as 90% following existing literature in CP (Romano et al.,
2020; Angelopoulos et al., 2020; Ghosh et al., 2023). We use the same adversarial attack setting as
in Gendler et al. (2021), i.e., both calibration and test samples are attacked with the same adversary.
We discuss the limitation of this setting in the conclusion section.

Baselines. We use AT (Madry et al., 2018), Fair-AT (FAT) (Xu et al., 2021) and TRADES (Zhang
et al., 2019) as the baseline and test the performance of the two proposed uncertainty-reducing meth-
ods with the three baselines. AT and TRADES are the most popular adversarial training methods
and FAT reduces the robustness variance among classes, which could reduce the prediction set size,
which is validated by our experiment. Note that we only reports the performance of CP, i.e., cov-
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Figure 6: The CP curve of coverage versus prediction set size. Each point on the curve is obtained
by adjusting the threshold τ̂cal. We plot 15 CP curves (opaque line) and their average (solid line) for
each method. The red vertical line indicates the operating point for 90% coverage.

erage and prediction set size, in the main paper as the main target of our paper is to improve CP
efficiency.

6.2 EXPERIMENTAL RESULTS

Efficacy of AT-UR in reducing prediction set sizes. The coverage and prediction set size of all
tested methods under the PGD100 attack are shown in Tab. 2. The proposed AT-UR methods effec-
tively reduce the prediction set size when combined with the three AT baselines on four datasets,
validating our intuition on the connection between the two factors, i.e., predictive entropy and the
distribution of TCPR, and PSS’s. There are two phenomena worth noting. First, the EM version
of AT-UR generally works better than Beta and Beta-EM on CIFAR10 and CIFAR100, where EM
achieves the lowest prediction set size in AT and TRADES. Second, on the two challenging datasets,
Caltech256 and CUB200, the Beta-EM variant of AT-UR can improve either EM or Beta, e.g., AT
on CUB and FAT on all four datasets. Based on the two observations, we recommend that for
high-complexity classification tasks, the Beta-EM is the first choice if one needs to train an adver-
sarially robust and also CP-efficient model. Note that although the Top-1 accuracy of our method
(Appendix C) is decreased compared to baselines, the main target of our method is to improve CP
efficiency.

Coverage-PSS curve visualization. To visualize the effect of AT-UR more comprehensively, we
plot the CP curve by adjusting the threshold τ̂cal to get different points on the curve of coverage
versus prediction set size. Fig. 6 shows the CP curve of AT, AT-Beta and AT-EM on three datasets.
It demonstrates that AT-UR achieves a reduced prediction set size compared to the AT baseline, not
only at 90% coverage , but also over a wide range of coverage values.

6.3 ABLATION STUDY

Does Focal loss improve CP-efficiency? We consider using a power function r̂ηi as in focal loss (Lin
et al., 2017) to generate loss weights and test the CP performance of AT-Focal. We set η = 0.5 based
on a hyperparameter search from {0.1, 0.5, 1.0, 2.0}. AT-Focal forces the model to focus on hard
samples, contrary to our AT-Beta which focuses on promising samples. The averaged coverage and
PSS of AT-Focal on CIFAR100 and Caltech256 are (90.50, 27.24) and (91.38, 48.35) respectively,
which is far worse than the AT baseline of (90.45, 23.79) and (91.35, 43.20). This result corroborates
that promising samples are crucial for improving CP-efficiency instead of hard samples.

What is the difference between label smoothing and AT-EM? The formulation of AT-EM is
similar to the formulation of label smoothing (Müller et al., 2019), if we combine the log term in
(4). However, label smoothing and AT-EM train the model into two different directions: the former
increases the prediction entropy (by smoothing the label probabilities to be more uniform), while the
latter decreases the prediction entropy. We validate this argument on Caltech256 and find that label
smoothing makes the CP-efficiency much worse than the AT baseline, with an averaged coverage
and prediction set size of (90.22, 46.39), compared to (91.35, 43.20) of AT.

7 CONCLUSION
This paper first studies the pitfalls of CP under adversarial attacks and thus underscores the impor-
tance of AT when using CP in an adversarial environment. Then we unveil the compromised CP-
efficiency of popular AT methods and propose to design uncertainty-reducing AT for CP-efficiency
based on our thorough empirical study on two factors affecting the prediction set size. Our experi-
ment validates the effectiveness of the proposed AT-UR on four datasets when combined with three
AT baselines. A common limitation shared by this study and Gendler et al. (2021) is the assumption
that the adversarial attack is known, enabling the calibration set to be targeted by the same adver-
sary as the test set. In future research, we will alleviate this constraint by exploring CP within an
adversary-agnostic context.
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A ADAPTIVE PREDICTION SETS (ROMANO ET AL., 2020)

We introduce one example of prediction set function, i.e., APS conformal prediction used in our
experiment. Assume we have the prediction distribution π(x) = fθ(x) and order this probability
vector with the descending order π(1)(x) ≥ π(2)(x) ≥ . . . ≥ π(K)(x). We first define the following
generalized conditional quantile function,

Q(x;π, τ) = min{k ∈ {1, . . . ,K} : π(1)(x) + π(2)(x) + . . .+ π(k)(x) ≥ τ}, (11)
which returns the class index with the generalized quantile τ ∈ [0, 1]. The function S can be defined
as

S(x, u;π, τ) =
{

‘y’ indices of the Q(x;π, τ)− 1 largest πy(x), if u ≤ V (x;π, τ),

‘y’ indices of the Q(x;π, τ) largest πy(x), otherwise,
(12)

where

V (x;π, τ) =
1

π(Q(x;π,τ))(x)

Q(x;π,τ)∑
k=1

π(k)(x)− τ

 .

It has input x, u ∈ [0, 1], π, and τ and can be seen as a generalized inverse of Equation 11.

On the calibration set, we compute a generalized inverse quantile conformity score with the follow-
ing function,

E(x, y, u;π) = min {τ ∈ [0, 1] : y ∈ S(x, u;π, τ)} , (13)
which is the smallest quantile to ensure that the ground-truth class is contained in the prediction set
S(x, u;π, τ). With the conformity scores on calibration set {Ei}nc

i=1, we compute the ⌈(1− α)(1 +
nc)⌉th largest value in the score set as τ̂cal. During inference, the prediction set is generated with
S(x∗, u;π∗, τ̂cal) for a novel test sample x∗.

B MORE EXPERIMENTAL DETAILS

APS Setting. We use the default setting of APS specified in the official code of Angelopoulos
et al. (2020), i.e., first use temperature scaling (Platt et al., 1999; Guo et al., 2017) to calibrate the
prediction distribution then compute the generalized inverse quantile conformity score to perform
the calibration and conformal prediction.

Hyperparameter and Baseline Setting. As mentioned in the main paper, we use a = 1.1 and
search b from the discrete set {2.0, 3.0, 4.0, 5.0} in Beta distribution since the parameter combina-
tions perform well in our pilot study and satisfy the goal of focusing on promising samples. The
learning rate and weight decay of AT, FAT and TRADES are determined by grid search from {1e-
4,3e-4,1e-3,3e-3,1e-2} and {1e-3,1e-4,1e-5} respectively. We compute the class weight for FAT
using the output of a softmax function with error rate of each class as input. The temperature in
the softmax function is set as 1.0. For TRADES, we follow the default setting β = 6.0 for the
KL divergence term (Zhang et al., 2019). Our AT-UR method also determines the learning rate and
weight decay using the grid search with the same mentioned grid. For TRADES, we weight both
the cross-entropy loss and KL divergence loss with the Beta density function based on TCPR.

CP Curve. The CP curve in Fig. 6 is obtained by using different threshold val-
ues, for instance, using the linspace function in numpy (Harris et al., 2020) with
np.linspace(0.9,1.1,200)×τ̂cal generates 200 different (coverage, PSS) points.

C MORE EXPERIMENTAL RESULTS

Note that this paper uses CP as the inference method to achieve a coverage guarantee, which is
orthogonal to the Top-1 inference method. Thus, Top-1 accuracy is not a relevant metric in the
context of CP inference. Nevertheless, we show the Top-1 accuracy of tested methods in Tab. 4.
Using AT-UR generally worsens the Top-1 accuracy, especially for TRADES. However, note that
using TRADES-Beta-EM can improve the Top-1 robust accuracy of TRADES-Beta on CIFAR10
and TRADES-EM on Caltech256. This result again confirms the observation that Top-1 accuracy
is not necessarily correlated with CP-efficiency. We use the AutoAttack (AA) Croce & Hein (2020)
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Figure 7: The CP curve of coverage versus prediction set size using FAT.
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Figure 8: The CP curve of coverage versus prediction set size using TRADES.

to evaluate our method with AT, as AA is the most popular adversarial attack in literature due to
its effectiveness. See Tab. 5 for the result. Under AA, the performance of our approach is also
substantially better than the AT baseline. Interestingly, the robust accuracy under AA drops while
the prediction set size reduced (CP efficiency is improved).

Fig. 7 and Fig. 8 shows the CP curve of FAT and TRADES when they are combined with EM and
Beta on three datasets. It demonstrates that the CP-efficiency is also improved when using FAT and
TRADES as in the experiment using AT. In most cases (5 out of 6), AT-UR (either EM or Beta) has
a lower PSS than the corresponding baseline within a large range of coverage.

D PROOF OF THEOREM 1

Theorem 2. (Theorem 1 restated, Beta weighting preserves generalization error bound.) Sup-
pose P(x,y)∼P{r̂(x, y) = k} = k−c∑K

k′=1
(k′)−c is a polynomially decaying function with c =

max{K−α, b ln(a)+1
ln(K) + 2 − α} for α ≥ 0. Beta weighting improves generalization error bound

compared with ERM.

Proof. (of Theorem 1)

The key idea to prove Theorem 1 is to show d2(P||P/ω) ≤ d2(P||P) = 1 (recall d2 is the base-2
exponential for Renýi divergence of order 2, as in Lemma 1), which implies that Beta weighting
gives tighter generalization error bound than ERM.
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Dataset CIFAR10 CIFAR100 Caltech256 CUB200
Metric Cvg NPSS Cvg NPSS Cvg NPSS Cvg NPSS

AT 90.55(0.51) 31.0(0.7) 90.45(0.59) 23.79(0.80) 91.35(0.85) 16.8(0.8) 90.33(0.89) 18.7(1.1)
AT-EM∗ 90.39(0.48) 30.5(0.5) 90.35(0.82) 22.05(1.02) 91.09(0.79) 16.1(1.0) 90.08(1.10) 17.4(1.3)
AT-Beta∗ 90.46(0.51) 31.1(0.7) 90.10(0.51) 22.64(0.65) 90.20(0.84) 13.8(1.0) 90.17 (1.06) 17.6(1.1)

AT-Beta-EM∗ 90.65(0.62) 31.0(0.8) 90.40(0.60) 22.53(0.91) 90.81(1.00) 14.1(1.4) 90.31(0.84) 16.5(0.9)
FAT 90.69(0.61) 31.6(0.7) 90.41(0.67) 23.54(0.81) 90.70(0.77) 16.2(0.9) 90.50(1.17) 19.7(1.4)

FAT-EM∗ 90.54(0.68) 30.6(0.6) 90.00(0.82) 23.47(2.71) 90.55(0.79) 15.5(1.0) 89.89(0.919) 17.8(1.0)
FAT-Beta∗ 90.47(0.51) 31.6(0.8) 90.22(0.47) 23.15(0.71) 89.90(0.70) 13.5(0.9) 89.92(0.84) 17.7(0.9)

FAT-Beta-EM∗ 90.71(0.61) 30.4(0.7) 90.36(0.50) 22.28(0.63) 90.41(0.61) 13.1(1.1) 89.88(0.91) 17.2(0.8)
TRADES 90.72(0.62) 33.1(0.9) 90.35(0.57) 27.60(0.97) 90.82(0.81) 17.4(1.3) 90.38(0.76) 26.1(1.3)

TRADES-EM∗ 90.54(0.40) 31.6(0.5) 90.36(0.71) 26.76(1.00) 90.68(0.87) 15.1(1.5) 90.05(0.76) 22.5(1.4)
TRADES-Beta∗ 90.41(0.56) 33.0(0.9) 90.14(0.85) 27.22(1.42) 90.48(0.70) 15.1(1.1) 89.83(0.84) 24.8(1.3)

TRADES-Beta-EM∗ 90.01(0.40) 32.1(0.6) 90.54(0.24) 26.55(0.35) 90.52(0.74) 15.5(1.2) 90.16(1.12) 24.3(1.3)

Table 3: Comparison of AT baselines and the proposed AT-UR variants denoted with ∗. The average
coverage (Cvg) and prediction set size normalized by the class number (NPSS, %) are presented.

Dataset CIFAR10 CIFAR100 Caltech256 CUB200
Metric Std. Acc. Rob. Acc. Std. Acc. Rob. Acc. Std. Acc. Rob. Acc. Std. Acc. Rob. Acc.

AT 89.76(0.15) 50.17(0.91) 68.92(0.38) 28.49(1.14) 75.28(0.51) 47.53(0.67) 65.36(0.27) 26.29(0.45)
AT-EM∗ 90.02(0.10) 48.92(0.39) 68.39(0.51) 28.33(0.73) 74.62(0.22) 46.23(0.44) 64.75(0.33) 25.60(0.25)
AT-Beta∗ 89.81(0.22) 47.50(0.78) 68.50(0.28) 28.04(0.57) 74.66(0.54) 45.40(0.59) 64.62(0.17) 25.57(0.41)

AT-Beta-EM∗ 90.00(0.06) 46.69(0.71) 68.45(0.35) 27.20(1.08) 74.71(0.36) 44.88(0.60) 64.44(0.22) 25.32(0.38)
FAT 89.96(0.25) 49.12(0.70) 68.80(0.38) 28.97(0.53) 75.20(0.33) 47.09(0.70) 65.01(0.19) 25.21(0.57)

FAT-EM∗ 90.19(0.07) 48.31(0.80) 68.76(0.39) 25.84(3.54) 74.59(0.20) 45.53(0.70) 65.13(0.25) 24.92(0.27)
FAT-Beta∗ 90.07(0.16) 47.09(0.50) 68.58(0.33) 27.90(0.56) 74.00(0.39) 45.12(0.90) 64.38(0.25) 24.76(0.26)

FAT-Beta-EM∗ 89.86(0.06) 48.61(0.13) 67.95(0.24) 28.06(0.24) 74.78(0.10) 45.75(0.48) 64.32(0.21) 23.57(0.14)
TRADES 87.31(0.27) 53.07(0.23) 62.83(0.33) 32.07(0.20) 69.57(0.25) 47.07(0.37) 58.16(0.38) 27.82(0.23)

TRADES-EM∗ 86.68(0.06) 52.71(0.26) 57.03(0.31) 30.29(0.25) 57.17(0.39) 39.56(0.59) 45.50(5.81) 22.26(2.26)
TRADES-Beta∗ 89.81(0.22) 47.50(0.78) 62.61(0.36) 30.20(0.31) 70.96(0.25) 46.74(0.23) 57.72(0.24) 23.49(0.21)

TRADES-Beta-EM∗ 86.99(0.10) 51.85(0.23) 62.13(0.34) 30.52(0.20) 69.44(0.25) 46.24(0.39) 56.03(0.15) 22.90(0.32)

Table 4: Top-1 clean and robust accuracy comparison of AT baselines and the proposed AT-UR
variants.

First, we derive the following equivalent formulations.

d2(P||P/ω) =

∫
(x,y)

P(x, y) · ω(x, y)d(x, y) =
∫
(x,y)

P(x, y) · pBeta(r̂(x, y)/K; a, b)d(x, y)

=

∫
(x,y)

P(x, y)

(
K∑

k=1

I[r̂(x, y) = 1]

)
· pBeta(r̂(x, y)/K; a, b)d(x, y)

=

K∑
k=1

∫
(x,y)

P(x, y) · I[r̂(x, y) = 1] · pBeta(r̂(x, y)/K; a, b)d(x, y)

=

K∑
k=1

∫
(x,y)

P(x, y) · I[r̂(x, y) = 1] · pBeta(k/K; a, b)d(x, y)

=

K∑
k=1

P(x,y)∼P{r̂(x, y) = k}︸ ︷︷ ︸
=pk

·pBeta(k/K; a, b).
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Dataset CIFAR10 CIFAR100 Caltech256 CUB200
Metric Cvg PSS Cvg PSS Cvg PSS Cvg PSS

AT 93.25(0.45) 2.54(0.04) 91.99 (0.61) 14.29(0.59) 94.35(0.81) 23.73(1.68) 91.87(0.90) 17.75(0.71)
AT-EM∗ 92.36(0.53) 2.45(0.04) 91.87(0.61) 13.29(0.49) 93.41(0.58) 21.19(1.46) 91.26(0.57) 16.47(0.61)
AT-Beta∗ 91.96(0.39) 2.50(0.04) 91.24(0.69) 11.61(0.40) 93.52(0.73) 18.54(1.32) 91.37(0.75) 16.56(0.76)

AT-Beta-EM∗ 92.06(0.44) 2.50(0.04) 91.13(0.63) 11.78(0.47) 93.50(0.69) 18.56(1.32) 91.93(0.68) 16.67(0.58)

Table 5: Comparison of AT and the proposed AT-UR variants denoted with ∗ under AutoAttack
Croce & Hein (2020).

Suppose pk = k−c∑K
k′=1

(k′)−c a polynomially decaying function of k for c ≥ 0.

pk · pBeta(k/K)

=
k−c∑K

k′=1(k
′)−c

· Γ(a+ b)

Γ(a)Γ(b)
· ( k

K
)a−1 · (1− k

K
)b−1

=
K−c

K−c
· k−c∑K

k′=1(k
′)−c

· (a+ b− 1)!

(a− 1)!(b− 1)!
· ( k

K
)a−1 · (1− k

K
)b−1

=
K−c∑K

k′=1(k
′)−c

· k−c

K−c
·
(a− c+ b− 1)! ·

∏a+b−1
i=a−c+b i

(a− c− 1)!(b− 1)! ·
∏a−1

i=a−c i
· ( k

K
)a−1 · (1− k

K
)b−1

=
K−c∑K

k′=1(k
′)−c

· Γ(a− c+ b)

Γ(a− c)Γ(b)
·

c∏
i=1

a+ b− c− 1 + i

a− c− 1 + i
· ( k

K
)a−c−1 · (1− k

K
)b−1

=
K−c∑K

k′=1(k
′)−c︸ ︷︷ ︸

=A

·
c∏

i=1

(1 +
b

a− c− 1 + i
)︸ ︷︷ ︸

=B

· Γ(a− c+ b)

Γ(a− c)Γ(b)
· ( k

K
)a−c−1 · (1− k

K
)b−1︸ ︷︷ ︸

=pBeta(k/K;a−c,b)

where term A can be bounded as follows
K−c∑K
k=1 k

−c
≤ K−c(c− 1)

1− (K + 1)−(c−1)
≤ cK−c, c > 0,

and term B can be bounded as follows

B =

c∏
i=1

(1 +
b

a− c− 1 + i
) = exp(log(

c∏
i=1

(1 +
b

a− c− 1 + i
)))

= exp(

c∑
i=1

log(1 +
b

a− c− 1 + i
)) ≤ exp(

c∑
i=1

b

a− c− 1 + i
)

≤ exp(

a−1∑
i=1

b

i
) ≤ exp(b(ln(a) + 1)).

Then, combining term A and B together:
K−2 ·K−c+2 · exp(b ln(a) + 1) · c ≤ K−2

⇔ exp(ln(Kc−2/c)) ≥ exp(b ln(a) + 1)

(a)⇐ exp(ln(Kc−2+α)) ≥ exp(b ln(a) + 1)

⇔ c− 2 + α ≥ b ln(a) + 1

ln(K)

⇔ c ≥ b ln(a) + 1

ln(K)
+ 2− α,

where the development (a) is due to c = max{K−α, b ln(a)+1
ln(K) + 2− α} for α ≥ 0.

As a result, we have
pk · pBeta(k/K) = K−2 · pBeta(k/K; a− c; b)

⇒
K∑

k=1

pk · pBeta(k/K; a− c; b) ≤
K∑

k=1

pBeta(k/K; a− c; b)/K2 ≤ 1.
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(1)
K∑

k=1

k−c ≥
∫ K+1

1

k−cdk =
k−(c−1)

−(c− 1)

∣∣∣∣K+1

k=1

=
(K + 1)−(c−1)

−(c− 1)
− 1−(c−1)

−(c− 1)
=

(K + 1)−(c−1) − 1

−(c− 1)
,

where the inequality is due to the left Riemann sum for the monotonically decreasing function k−c

with c > 0.
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