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Abstract

Large language models (LLMs) are now available in various sizes and configura-1

tions from cloud API providers. While this diversity offers a broad spectrum of2

choices, effectively leveraging the options to optimize computational cost and per-3

formance remains challenging. In this work, we present AutoMix, an approach that4

strategically routes queries to larger LMs, based on the approximate correctness of5

outputs from a smaller LM. Central to AutoMix is a few-shot self-verification mech-6

anism, which estimates the reliability of its own outputs without requiring training.7

Given that verifications can be noisy, we employ a meta verifier in AutoMix to re-8

fine the accuracy of these assessments. Our experiments using LLAMA2-13/70B,9

on five context-grounded reasoning datasets demonstrate that AutoMix surpasses10

established baselines, improving the incremental benefit per cost by up to 57%.11

1 Introduction12

Human problem-solving inherently follows a multi-step process: generate a solution, verify its13

validity, and refine it further based on verification outcomes. The emulation of this self-refinement and14

reflective behavior has gained attention in the recent research (Pan et al., 2023; Madaan et al., 2023;15

Reid and Neubig, 2022; Schick et al., 2022; Welleck et al., 2022; Shinn et al., 2023). Classic self-refine16

paradigms consistently employ a singular model across all problem-solving stages, demonstrating17

effectiveness in certain scenarios (Madaan et al., 2023; Welleck et al., 2022). Yet, the intrinsic18

complexity and variability of tasks, from simplistic (e.g., binary classification on separable data)19

to complex (e.g., code generation) and potentially unsolvable (e.g., certain forms of multi-step20

reasoning), motivate an alternative approach. This approach iteratively queries over models of21

disparate sizes and capabilities, verifying feedback at each step and determining whether to accept22

the output or route to a more capable, albeit computationally intensive, model (Liu et al., 2020; Zhou23

et al., 2020; Madaan and Yang, 2022; Geng et al., 2021; Schuster et al., 2022).24

Past studies in model-switching strategies predominantly rely on separate models trained explicitly25

for each step or require access to logits(Welleck et al., 2022; Reid and Neubig, 2022), which may not26

always be feasible as modern LLMs rely on access to black box APIs. To address these challenges,27

we propose a new method, which we call AutoMix. In contrast to existing approaches, AutoMix28

fully leverages black-box LLM APIs, avoiding the need for separate models or access to logits29

using few-shot learning (Brown et al., 2020) and meta-verification. Our method proposes strategies30

for each step of problem-solving: solution generation, verification, and routing, all assuming we31

only have access to black-box LLMs. In contrast to existing approaches, which generally delineate32

tasks as Simple or Complex for model routing, AutoMix integrates a third category of Unsolvable33

queries. These queries are likely unsolvable even by a Large Language Model (LLM) and should34

not be routed to larger models if identified early enough. This consideration allows AutoMix to35

judiciously allocate computational resources, preventing unwarranted computational spending on36

these particularly challenging instances.37
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Figure 1: AutoMix: Given a context C and question q, an initial answer ASLM is generated with
the smaller language model (SLM). ASLM is verified by the SLM, yielding a noisy verification score.
Based on the meta-verifier’s decision, either ASLM is returned if deemed satisfactory, or the task is
rerouted to a larger language model (LLM) to enhance accuracy. The looping arrow around the SLM
symbolizes self-correction before proceeding to the meta-verifier.

We use context-grounded few-shot entailment to quantify the uncertainty in an answer’s correct-38

ness (Poliak, 2020; Dagan et al., 2022). However, recognizing that verifications can sometimes be39

inconsistent or noisy, we introduce a meta-verifier to evaluate the reliability of the initial verification.40

The meta-verifier acts as a secondary check, providing an additional layer of confidence assessment41

to ensure that the decision to route a task to a larger or smaller model is well-founded.42

In summary, our contributions are:43

• We introduce AutoMix, a method that strategically leverages black-box LLM APIs for generating44

a solution, verifying the solution, and switching to a larger language model, everything without45

access to model weights, gradients, or logits.46

• We also show that context-grounded entailment is a reasonable albeit noisy proxy for self-47

verification. To deal with this noise, we propose a POMDP-based meta-verification mechanism48

that helps improve the reliability of the final decision.49

• We propose and introduce the Incremental Benefit Per Cost (IBC) metric, a novel measure that50

quantifies the efficiency of integrating smaller and larger language models.51

• We present empirical evidence from experiments on five context-grounded reasoning datasets52

using the language models LLAMA2-13B and LLAMA2-70B as the SLM and LLM. Our results53

demonstrate that AutoMix surpasses established baselines, enhancing the incremental benefit per54

cost by up to 57%.55

2 AutoMix: Few-shot Self-Verification and Meta-Verification56

Context: {context}

Question: {question}

AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate if the AI Generated Answer is correct, based
on the provided context and question. Provide the judgement and reasoning for
each case. Choose between Correct or Incorrect.

↪→
↪→

Evaluation:"

Listing 1: Verification Prompt. The verification process is framed as a natural language entailment
task, where the model determines the validity of the model-generated answer with respect to the
context and question. We use a generic few-shot prompt for all tasks (prompt in appendix C.1).
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Task and setup We tackle the problem of context-grounded question answering, where given57

a context C (e.g., stories, newswire, or research article) and a question q, the model is tasked to58

generate an accurate and coherent answer, consistent with the provided context. We deploy two59

distinct models: a smaller, cost-efficient model, denoted as SLM, and a larger, more accurate yet60

costly model, LLM. Our objective is to optimize performance while staying economical. We use a61

verifier, V , to ascertain the validity of SLM’s outputs and decide if a query should be redirected to62

LLM. We start by generating an initial answer, As using the smaller SLM. Next, we need to assess63

the trustworthiness of As. To this end, we use a few-shot verifier. Our choice of tasks is motivated64

by two key concerns. First, longer queries are more computationally demanding, underscoring the65

need for an approach like AutoMix to navigate the cost-accuracy trade-off. Second, Context allows66

the verifier to cross check the preliminary answers with available information, aiding in identifying67

inconsistencies as ungrounded is challenging (Pan et al., 2023; Huang et al., 2023).68

Verification is framed as an entailment task (Poliak, 2020; Dagan et al., 2022). The objective is to69

determine if the answer generated by SLM aligns with the provided context. Specifically, the verifier70

gauges v = p(correct = 1 | As, C, q), with correct = 1 indicating that As is correct. The verification71

prompt is outlined in Figure 1. We use the same verification prompt for all tasks.72

2.1 Meta-verifier73

Given the potential inconsistency or noise in verifier outcomes, a secondary evaluation mechanism,74

which we term the meta-verifier, is crucial to vet the verifier’s conclusions. In particular, the verifier75

is tasked with determining whether the SLM’s answer is entailed by the context, and this decision76

is made without considering the inherent difficulty of the problem. Notably, routing unsolvable77

queries for the LLM is resource-inefficient without enhancing performance. While ascertaining the78

ground truth of query difficulty is non-trivial, verification probability and historical data can provide79

insightful guidance. Formally, we define the meta-verifier’s outputs as m(v,As, C, q) → {0, 1},80

where m = 1 implies the verifier’s output can be trusted.81

Addressing the notable challenges of self-correction in large language models (Madaan et al., 2023;82

Huang et al., 2023), our method employs a non-LLM setup for meta-verification to avoid escalating83

issues like hallucination and reasoning errors (Dziri et al., 2023). The versatile meta-verifier can84

adopt various advanced learning strategies, from supervised to reinforcement learning, explored85

further in upcoming sections. Subsequent sections provide a deeper exploration into two particular86

implementations of this strategy.87

Thresholding In this simplistic meta-verifier approach, the decision is made based on probability88

of verifier being correct with a threshold t, defined as H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0.89

For black-box language models, the probability of correctness can be derived by sampling k > 190

samples at a higher sampling temperature.91

Using a POMDP In the context of meta-verifier, we observe that all the queries in this two language92

model setup could be categorized in three different categories: Simple, Complex, and Unsolvable.93

The simple queries are addressable by SLM itself, the complex queries are addressable by LLM but94

not by SLM and Unsolvable queries are so complex that they can’t be addressed by either LLM or95

SLM. Hence, a ground truth oracle should route only the complex queries but not unsolvable queries.96

Since the ground truth state is not known and unobserved, we formulate this decision problem as97

a Partially Observable Markov Decision Process (POMDP) (Monahan, 1982). POMDP presents a98

robust framework, offering a structured way to manage and navigate through the decision spaces99

where the system’s state is not fully observable. A POMDP is defined by a tuple (S,A, T,R,Ω, O),100

where S is a set of states, A is a set of actions, T represents the state transition probabilities, R is the101

reward function, Ω is a set of observations, and O is the observation function. See Appendix A.1 for102

more details.103

Another advantage of the POMDP-based meta-verifier is its interpretability and customizability via104

reward assignment. For instance, in a Complex state, assigning a reward of +50 for invoking the105

LLM indicates a preference for accurate solutions over computational cost. Although the POMDP106

framework inherently handles sequences of decisions, we confine our approach to a single-decision107

scenario (horizon or episode length 1) for simplicity, with potential for extension to streaming settings108

for optimizing across multiple queries or a fixed time duration.109
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procedure ANSWERQUERY(C, q)
▷ Context, Question

As ← solve(SLM, C, q)
v ← self-verify(As, C, q)
if m(v,As, C, q) then

▷ Check meta-verifier decision
if v ≥ 0.5 then

return As

else
return solve(LLM, C, q)

end if
else

return As

end if
end procedure
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Figure 2: Left: AutoMix algorithm. Right: Performance vs. Cost curve. The slope between SLM and
LLM provides a way to the Incremental Benefit per Cost (IBC) for methods that mix models. Methods
with a steeper slope than this reference when plotted against SLM have a positive IBC (green region),
whereas those below the reference have a negative IBC (red region), falling into the red region.

3 Cost-Performance Efficiency Analysis110

In our approach to leveraging model performance, it is essential to consider not only the raw accuracy111

of predictions but also the associated computational or monetary costs. To that end, we introduce a112

metric to understand the efficiency of the models in terms of cost. We use CM and PM to denote the113

cost and performance of a method M . We also use CSLM and CLLM, and PSLM and PLLM, to denote the114

cost and performance of using the SLM and LLM, respectively.115

Incremental Benefit Per Cost (IBC) We introduce methods, denoted by M , to optimally in-116

tegrate SLM and LLM. For each method M , we associate a cost CM and performance PM . To117

quantify the utility of M over SLM, we define the metric Incremental Benefit Per Cost (IBC) as118

IBCM (Equation (1)).119

IBCM =
PM − PSLM

CM − CSLM
, IBCBASE =

PLLM − PSLM

CLLM − CSLM
, ∆IBC(M) =

IBCM − IBCBASE

IBCBASE
× 100 (1)

The IBC metric captures the efficiency of performance enhancement relative to the additional cost.120

For comparative evaluation, we set a baseline IBC, IBCBASE, representing the benefit of always using121

LLM over SLM. Finally, we compare methods using ∆IBC, which compares the IBC of a specific122

method with IBCBASE. A positive IBC lift suggests that M achieves performance increments more123

cost-effectively than a standalone LLM, whereas a negative lift indicates reduced efficiency (Figure 2)124

Cost Calculation The total cost, CM , for a method M utilizing the Small Language Model (SLM)125

for initial answer generation and verification, and the Large Language Model (LLM) as needed, is126

computed as: CM = 2 ·CSLM +wLLM ·CLLM. Here, wLLM ∈ [0, 1] represents the proportion of LLM127

usage, with values indicating exclusive (wLLM = 1) or no usage (wLLM = 0) of LLM. While we128

utilize SLM for verification, it is worth noting that a different verifier model could also be employed,129

which would alter the cost calculations accordingly.130

4 Experiments131

Setup We experiment with open-source pair LLAMA2-13B and LLAMA2-70B (Touvron et al.,132

2023). We assume a cost of 1 unit for the SLM, and 50 units for the LLM, following the price disparity133

between the small and large models offered by LLM API providers like OpenAI and Together 1.134

1https://openai.com/pricing, https://together.ai/
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CNLI Quality QASPER NarrativeQA COQA
Method C P ∆IBC C P ∆IBC C P ∆IBC C P ∆IBC C P ∆IBC

SLM 1 40.1 - 1 29.8 - 1 14.0 - 1 20.3 - 1 48.1 -
FrugalGPT 37.4 59.2 66.1 49.7 42.0 -2.1 49.3 27.7 -1.1 45.9 26.0 2.5 30.3 57.1 13.1
SC 43.6 51.2 -17.3 11.8 32.3 -9.8 46.6 27.5 2.6 23.4 23.1 1.2 16.9 54.6 49.6
AutoMix +T 51.9 55.4 -4.5 24.8 36.1 3.5 38.4 24.9 -12.0 13.2 21.9 2.4 8.3 51.0 31.7
AutoMix +P 5.5 42.3 57.0 9.6 32.1 4.0 45.4 27.4 5.0 10.3 21.5 3.6 7.9 50.8 42.5
LLM 50 55.5 - 50 42.3 - 50 28.1 - 50 26.4 - 50 61.4 -

Table 1: Main Results: highlighting the trade-offs between Cost (C), Performance (P), and In-
cremental Benefit per Cost (∆IBC) across various methods and datasets. The acronyms represent:
SLM - Small Language Model, LLM- Large Language Model, AutoMix + T and AutoMix + P
- variations of our proposed method with thresholding (T) and POMDP (P) based meta-verifiers,
respectively. AutoMix + POMDP demonstrates a robust and consistent ∆IBC across the Quality,
QASPER, NARRATIVE-QA, and COQA datasets, implying a judicious utilization of computational
resources.

Datasets We experiment with a diverse set of datasets: NARRATIVE-QA (Kočiskỳ et al., 2018)135

for full-length book and movie script QA, QASPER (Dasigi et al., 2021) for research paper QA,136

CNLI (Koreeda and Manning, 2021) for NLI tasks, QUALITY (Pang et al., 2022) for multiple-choice137

questions from long articles, and COQA (Reddy et al., 2019) for conversational comprehension QA.138

The datasets are evaluated on F1 score, accuracy, and exact match based on answer format.139

Baselines Our baselines include: i) Verifier Self-Consistency (Wang et al., 2022), where we140

prompt SLM with our entailment verifier and draw 8 samples (temperature 0.7). The majority label141

routes the query to LLM or not. We cache the KV values for the (long) input prompt, so only a142

single forward pass is done. The cost of this verifier is the same as the cost of SLM. and ii) Frugal143

GPT (F) (Chen et al., 2023) We finetune a DistillBert (Sanh et al., 2019) as a verifier, outputting144

a confidence probability for a given question, context, and SLM-generated answer, with a verifier145

confidence threshold directing query routing and its cost set to 0 due to significantly lower operational146

costs than SLM. Both approaches adhere to a low-resource setting, utilizing 1000 training examples147

per dataset.148

Proposed approaches We experiment with two different types of meta-verifiers: threshold and149

POMDP-based. i) AutoMix + Thresholding: Using a threshold on the verifier probability e.g.,150

Thresh=0.75 implies using SLM outputs with confidence ≥ 0.75 and LLM. We use a threshold for151

each dataset that yields the highest ∆IBC on the validation set. ii) AutoMix + POMDP: This method152

optimizes routing decisions using a POMDP solver (Smith and Simmons, 2006), given verifier outputs153

and observation probabilities learned on the validation set (detailed in Appendix A.1).154

4.1 Main Results155

Table 1 shows the meta-verifier method consistently showcases superior performance in terms of156

∆IBC across both LLAMA2-13/70B. On QUALITY,QASPER,NARRATIVE-QA,COQA, AutoMix beat157

FrugalGPT despite the latter having access to domain-specific training and low verifier cost. In158

Figure 3 (left), we present the performance of our model, AutoMix, across various cost intervals.159

Our findings reveal that AutoMix-POMDP shows consistent positive ∆IBC across all evaluated costs.160

This suggests that our method can deliver consistent improvements, regardless of the user’s desired161

cost or performance requirements. Further, in Figure 3 (right), we compare the accuracy of using162

POMDP based meta-verifier over Verifier-SC. We see significant improvements across all datasets,163

with relative gains of up to 33% demonstrating our proposed meta-verifier’s importance in few-shot164

verification setups.165

4.2 Key findings and takeaway166

AutoMix is Effective in Low-Resource Scenarios Figure 6 demonstrates the performance dy-167

namics of AutoMix and FrugalGPT with varying validation sizes. Notably, our method significantly168

outperforms FrugalGPT with limited data (under 2000 samples), despite the latter’s domain-specific169

training and zero verifier cost. However, as training data increases, FrugalGPT narrows the perfor-170
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Figure 3: Left: Aggregated performance vs. cost for different methods on the small and large
LLAMA2-13/70B. POMDP based meta-verifier is consistenly in the green region, signifying a
higher Incremental Benefit per Cost (IBC). Right: The accuracy of the meta-verifier for both POMDP
and Verifier-Self-Consistency (Verifier-SC) approaches across various datasets. Across all scenarios,
the POMDP method consistently wins with up to 33% relative performance gains.

mance gap by leveraging domain-specific training. This pattern indicates that AutoMix provides a171

particularly advantageous solution in real-world scenarios where data may be scarce.172

Effectiveness of Few-shot Self-Verification In Appendix B.1, we evaluate few-shot self-173

verification quantitatively and qualitatively. We observe that the self-verification can effectively174

use context to identify errors in answers generated by SLM in many cases.175

Improving Self-Verification with Task-Specific Prompt Engineering We explore the impact of176

task-specific prompt engineering on self-verification performance in Appendix B.2. While prompt177

engineering improves verifier accuracy, our meta-verifier remains robust in various settings and can178

beneficially leverage even a weak verifier.179

5 Related Work180

1. Mixing Models Distinct from related work optimizing LLM inference cost by model switching and181

external verifiers (Chen et al., 2023; Zhu et al., 2023; vSakota et al., 2023), AutoMix obviates the need182

for verifier training through few-shot SLM model prompting and does not require upfront access to all183

input queries. 2. Adaptive Computation In contrast to adaptive computation methods that preempt184

computation via intermediate representations (Liu et al., 2020; Zhou et al., 2020; Schuster et al.,185

2021; Geng et al., 2021; Schuster et al., 2022), AutoMix necessitates no architectural modifications.186

Further, unlike AdaptiveConsistency (Aggarwal et al., 2023), which optimizes inference within a187

single LLM model, AutoMix flexibly optimizes between two models and transcends its utility in188

Self-Consistency. 3. Self-Verification AutoMix aligns in spirit with works that aim to perform189

self-verification for reasoning problems, such as Weng et al. (2023); Pan et al. (2023). However,190

AutoMix uniquely harnesses context for verification instead of relying on LLM’s knowledge, and191

introduces a meta-verifier mechanism to offset the verifier’s potential noise.192

6 Conclusion193

AutoMix integrates black-box large language model (LLM) APIs into a multi-step problem-solving194

framework, optimizing the computational cost and performance trade-offs. AutoMix opens avenues195

for several interesting research directions. First, while self-verification and correction are challenging196

for LLMs in general, we find promising results using context-grounded few-shot verification, indi-197

cating that similar approaches may yield gain in other scenarios. Secondly, our work interweaves198

Good Old-Fashioned Artificial Intelligence (GOFAI) approaches with LLMs, demonstrating that the199

incorporation of a POMDP can boost the accuracy of a noisy few-shot verifier, showing the promise200

of this paradigm as an approach for improving LLMs during inference.201
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A Methodology297

A.1 POMDP298

The Partially Observable Markov Decision Process (POMDP) presents a robust framework for299

handling decision-making problems under uncertainty, offering a structured way to manage and300

navigate through the decision spaces where the system’s state is not fully observable (Monahan, 1982).301

A POMDP is defined by a tuple (S,A, T,R,Ω, O), where S is a set of states, A is a set of actions, T302

represents the state transition probabilities, R is the reward function, Ω is a set of observations, and303

O is the observation function.304

In the context of meta-verifier, the unobservable states (S) represent the potential correctness of the305

verifier’s predictions, categorized as Simple, Complex, and Insolvable. Actions (A) are binary: trust306

the verifier or invoke the LLM. The reward function (R) quantifies the cost or gain of making307

a particular action in a given state, steering the decision policy towards cost-effective actions.308

Observations (Ω) in our model are the verifier’s probability outputs, discretized into bins. Specifically,309

we generate k=8 samples from the verifier, discretizing our observation space in intervals of size310

0.125 ranging from 0 to 1.311

The observation function (O) depicts the likelihood of observing an observation given an action was312

taken and the system transitioned to a particular state. Using an appropriate observation function is313

crucial for POMDP to work. Specifically, we define observations probabilities in two ways:314

• 1. Functional Form: For each of the states s, the observation function O is defined as315

O(s, v) = 1
K · v

γs , where v is the verifier probability and γs ∈ [0,∞] is a hyperparameter316

for every state and K is normalizing factor. Intutively, a value of γ close to 1 indicates ideal317

calibration, with verifier probability v indicating true probability of being in a particular state.318

The values of γs’s for the three states are determined based on the respective POMDP’s319

performance on validation set based on the IBC-Lift.320

• 2. Discrete Form: An alternate option is to directly learn observation function O from321

the statistics of validation set. Since in validation set, we have access to the true state322

along with verifier probabilites of individual data instances, we can model observation323

function as O(s, v) =
ΣN

i=01{si=s and vi=v}
ΣN

i=01{si=s} . The method has the advantage of being324

hyperparameter free and provides more accurate representation by computing the true325

observation probabilities on validation set. However, it performs worse than functional form,326

when either certain values of v or s are not well represented in validation set or in cases of327

high distribution shift between validation and test set.328

Since both these methods have their strengths, and are independent of each other, we choose the best329

performing method on validation set.330

This POMDP mechanism allows for optimal decision-making under uncertainty, balancing the cost331

and reliability of invoking the LLM. Through employing standard POMDP solving algorithms such332

as Focused Real-Time Dynamic Programming2 (Smith and Simmons, 2006), we derive a policy that333

maps belief states (probability distributions over S) to actions. During inference, the learned policy334

effectively decides whether to trust the verifier’s output or to invoke the LLM based on a combination335

of expected future rewards and computational costs.336

Another advantage of the POMDP-based meta-verifier is its interpretability and customizability via337

reward assignment. For instance, in a "Needy" state, assigning a reward of +50 for invoking the LLM338

indicates a preference for accurate solutions over computational cost. Conversely, in a "Good" state,339

designating a reward of -10 for trusting the SLM encourages computational savings. This enables340

users to strategically balance solution quality against computational expenses, aligning with specific341

application needs.342

2We use zmdp package https://github.com/trey0/zmdp for solving POMDP
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# Meta-verifier POMDP File for narrative_qa

discount: 0.99
values: reward

# We have 6 states: 3 corresponding to the initial state before verifier is
called, and 3 corresponding to the state after verifier is called

states: START_S START_C START_U SIMPLE COMPLEX UNSOLVABLE

# Effectively, we have 3 actions: 1.) The initial State where we run verifier
2.) Report SLM's Answer 3.) Invoke LLM and Report its Answer

actions: Init Trust_SLM Invoke_LLM

# Observations lies in one of verifier probability bins. Eg: bin_correct_high
represents Verifier outputs SLM answer as correct with high confidence

observations: bin_incorrect_low bin_incorrect_high bin_correct_low
bin_correct_high

# Transition Model for Init action

T: Init
# Format: start_state : end_state : Transition_Probability

# Transition Model for Trust_SLM action
T: Trust_SLM
identity

# Transition Model for Invoke_LLM action
T: Invoke_LLM
identity

# Observation Model after "Init" action for narrative_qa
# Format: O : action : state : observation : probability

# Eaxmple: In SIMPLE cases, it is likely, SLM is correct and Verifier is
Confident, while in UNSOLVABLE, SLM is incorrect (Lower Obs. Probability)

O : * : SIMPLE : bin_correct_high 0.8
O : * : COMPLEX : bin_correct_high 0.4
O : * : UNSOLVABLE : bin_correct_high 0.1

# Reward Model:
# Format: R: action : init_state : end_state : observation : probability

# Example: For COMPLEX state, Trusting SLM results in negative score, while
invoking LLM results in a high +50 score.

R: Trust_SLM : COMPLEX : * : * -10
R: Invoke_LLM : COMPLEX : * : * +50

Figure 4: A sample POMDP specification file. POMDP requires defining states, actions, observations
and relevant Transition, Observation Probabilities and Reward Values.
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B Verifier Qualitative Analysis343

B.1 How effective is few-shot verification?344

One of the contributions of this work is few-shot self-verification of outputs. While Self-Verification is345

challenging in general for reasoning problems, our setup offers an advantage: the context allows us to346

check for the validity of the answer using the context. For example, the model can spot factual errors347

in the answer, or apparent contradictions that may not be clear when the question is answered for the348

first time. Are the models able to use this advantage for effective self-verification? Figure 5 shows349

that for all datasets except CNLI, few-shot self-verification effectively identifies correct example,350

assigning a higher probability to them.351

Qualitative Analysis Representative Examples from our qualitative analysis are shown in Tables 2,352

3, and 4.353

Attribute Content
Context Which country grows the most tea? ... Shen sipped it. He liked it. He drank

it all. Shen was proud of his new drink. Truncated for brevity

Question When did he take it?

Generated An-
swer

He took it in 1990.

Gold Answer about 2737 B.C

Verifier Output The context does not mention that he took tea in 1990. Verification Decision:
The AI generated answer is Incorrect.

Table 2: An example where the generated answer is verifiably incorrect, citing an unsupported date
(1990), and the verifier successfully catches this discrepancy.

Attribute Content
Context Fort Lauderdale, Florida (CNN) – Just taking a sip of water or walking to the

bathroom is excruciatingly painful for 15-year-old Michael Brewer, ... He
suffered second- and third-degree burns over about two-thirds of his body,
according to the hospital’s associate director, Dr. Carl Schulman. Truncated
for brevity

Question How long before he recovers from his injury?

Generated An-
swer

he will never recover from his injury.

Gold Answer He has a lifelong recovery.

Verifier Output The context clearly states that the teen is recovering from his injuries. Verifi-
cation Decision: The AI generated answer is Incorrect.

Table 3: The example demonstrates a challenging case for the verifier. The generated answer is a
rephrasing of what’s mentioned in the context, however the verifier fails to catch it.

FrugalGPT vs. AutoMix at different levels of data availability Figure 6 demonstrates the354

performance dynamics of AutoMix and FrugalGPT with varying validation data sizes. Notably, our355

method significantly outperforms FrugalGPT with limited data (under 2000 samples), despite the356

latter’s domain-specific training and zero verifier cost. However, as training data increases, FrugalGPT357

narrows the performance gap by leveraging its domain-specific training. This pattern indicates that358

AutoMix provides a particularly advantageous solution in real-world scenarios where data may be359

scarce.360
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Attribute Content
Context Pruning keeps the plant only three or four feet tall. This is an easy height for

tea picking. Green tea is steamed right after the leaves are picked. Green tea
_ its healthy qualities. For example, it may prevent heart disease. How did
we get tea bag? The answer: by accident. Truncated

Question What did they do to green tea after picking it?

SLM Answer steamed.

Gold Answer prune it

Verifier Output The context mentions that green tea is steamed after being picked. Verification
Decision: The AI generated answer is Correct.

Table 4: An instance where the verifier deems the answer correct, and the gold lable was incorrect.
The verifier is able to correctly infer that the context mentions tea being steamed after picking.
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Figure 5: Verifier Probability and Correctness: Percentage of correct responses across distinct
verifier probability bins, representing P (C = 1 |ASLM, C, q), where ASLM is the answer from the
Small Language Model, C is the context, and q is the query. Each bin represents a range of verifier
probabilities and the corresponding accuracy of the responses within that probability range across
various datasets. Notably, for all datasets, excluding CNLI and QASPER, a higher verification score
generally corresponds to a larger proportion of correct examples, indicating that the verifier is, to an
extent, capable of discerning the reliability of responses generated by itself. We use a meta-verifier to
get around these noisy predictions.

B.2 Domain-specific vs. Domain independent verifier361

We used a single verifier with the LLAMA2-13B model to help steer the model. To avoid excessive362

prompt engineering, we used a generic prompt for all datasets. However, task-specific prompts363

generally help (Le Scao and Rush, 2021; Liu et al., 2021b; Mishra et al., 2021; Liu et al., 2021a). To364

investigate this, we create task specific prompts for CNLI by giving examples from legal domain in365

the prompt.366

Figure 7 underscores the efficacy of employing task-specific verification prompts, ensuring a height-367

ened probability allocation for accurate examples during the verification process. Interestingly,368

the enhanced verifier accuracy does not always directly translate to proportionate improvements in369

our proposed method, AutoMix, as evidenced in Table 5. This phenomenon higlights the role of370

meta-verifiers, adeptly negotiating through the outputs of potentially unreliable verifiers.371
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Figure 7: Enhancement of verifier accuracy using task-specific verification prompts, which allocate
higher verification probabilities to more correct examples.

CNLI CNLI-CV
Method Cost Perf. IBC_Lift Cost Perf. IBC_Lift

SLM 1 40.1 - 1 40.1 -
FrugalGPT 37.4 59.2 66.1 37.4 59.2 66.1
Self-Consistency 43.6 51.2 -17.3 40.5 50.6 -15.5
AutoMix-Threshold 51.9 55.4 -4.5 28.1 46.9 -49.1
AutoMix-POMDP 5.5 42.3 57.0 15.8 45.2 12.4
LLM 50 55.5 - 50 55.5 -

Table 5: Despite the boost in verifier accuracy with task-specific prompts (Figure 7), AutoMix may
not always benefit, highlighting the utility of even weak verifiers when supported by meta-verifiers.
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C Few-Shot Prompts372

Story:
{relevant parts of the story}

{instruction}

Question: {question}

Answer:

Listing 2: Task Prompt. We experiment with long-context reasoning tasks, which require answering
questions from stories, legal contracts, research papers, and novels.

Context: {context}

Question: {question}

AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate if the AI Generated Answer is correct, based
on the provided context and question. Provide the judgement and reasoning for
each case. Choose between Correct or Incorrect.

↪→
↪→

Evaluation:"'

Listing 3: Verification Prompt. The verification process is framed as a natural language entailment
task, where the model determines the validity of the model-generated answer with respect to the
context and question.

C.1 Verifier Prompts373
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### NARRATIVE_QA

Story:
{context}

You are given a story, which can be either a novel or a movie script, and a
question. Answer the question as concisely as you can, using a single phrase
if possible.

↪→
↪→

Question: {question}

Answer: The answer is'""",
"truncation_message": "... [The rest of the story is omitted]\n\n",

### QASPER

Article:
{context}

You are given a scientific article and a question. Answer the question as
concisely as you can, using a single phrase or sentence if possible. If the
question cannot be answered based on the information in the article, write
'unanswerable'. If the question is a yes/no question, answer 'yes', 'no', or
'unanswerable'.

↪→
↪→
↪→
↪→

Question: {question}

Answer: The answer is'""",
"truncation_message": "... [The rest of the article is omitted]\n\n",

### QUALITY

Story:
{context}

You are provided a story and a multiple-choice question with 4 possible answers
(marked by A, B, C, D). Choose the best answer by writing its corresponding
letter (either A, B, C, or D).

↪→
↪→

Question and Possible Answers: {question}

Answer: The answer is'""",
"truncation_message": "... [The rest of the story is omitted]\n\n",

### CNLI

Contract:
{context}

You are given a non-disclosure agreement and a sentence that proposes a hypothesis
based on the agreement. Choose whether the hypothesis is entailed by the
agreement, contradicted by the agreement, or not mentioned by (neutral to) the
agreement. If the hypothesis is entailed by the agreement, write 'Entailment'.
If the hypothesis is contradicted by the agreement, write 'Contradiction'. If
the hypothesis is not mentioned by the agreement, write 'Not mentioned'.

↪→
↪→
↪→
↪→
↪→

Hypothesis: {question}

Answer: The answer is'""",
"truncation_message": "... [The rest of the contract is omitted]\n\n",

}

Listing 4: Few-Shot Prompts: Dataset Specific Few-Shot Prompts used for SLM and LLM on
NARRATIVE-QA, QASPER, QUALITY, CNLI. A general structure of context, instruction, question and
answer is followed.

15



Context: The manuscript, discovered in 1980 in a dusty attic, turned out to be a
lost work of Shakespeare.↪→

Question: Whose lost work was discovered in a dusty attic in 1980?

AI Generated Answer: Shakespeare

Instruction: Your task is to evaluate if the AI Generated Answer is correct, based
on the provided context and question. Provide the judgement and reasoning for
each case. Choose between Correct or Incorrect.

↪→
↪→

Evaluation: The context specifically mentions that a lost work of Shakespeare was
discovered in 1980 in a dusty attic.↪→

Verification Decision: The AI generated answer is Correct.

---

Context: The celestial event, known as the Pink Moon, is unique to the month of
April and has cultural significance in many indigenous tribes.↪→

Question: In which month does the celestial event, the Pink Moon, occur?

AI Generated Answer: July

Instruction: Your task is to evaluate if the AI Generated Answer is correct, based
on the provided context and question. Provide the judgement and reasoning for
each case. Choose between Correct or Incorrect.

↪→
↪→

Evaluation: The context clearly states that the Pink Moon is unique to the month
of April.↪→

Verification Decision: The AI generated answer is Incorrect.

---

{truncated examples}

Context: {context}

Question: {question}

AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate if the AI Generated Answer is correct, based
on the provided context and question. Provide the judgement and reasoning for
each case. Choose between Correct or Incorrect.

↪→
↪→

Evaluation:

Listing 5: Few-Shot Verifier Prompts: 3-shot verifier prompt for evaluating the correctness of SLM’s
answer. The same prompt is used for all datasets.
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