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Abstract

Numerous applications of large language models (LLMs) rely on their ability to1

perform step-by-step reasoning. However, the reasoning behavior of LLMs remains2

poorly understood, posing challenges to research, development, and safety. To3

address this gap, we introduce landscape of thoughts-the first visualization tool for4

users to inspect the reasoning paths of chain-of-thought and its derivatives on any5

multi-choice dataset. Specifically, we represent the states in a reasoning path as6

feature vectors that quantify their distances to all answer choices. These features are7

then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative8

analysis with the landscape of thoughts effectively distinguishes between strong9

and weak models, correct and incorrect answers, as well as different reasoning10

tasks. It also uncovers undesirable reasoning patterns, such as low consistency and11

high uncertainty. Additionally, users can adapt our tool to a model that predicts12

the property they observe. We showcase this advantage by adapting our tool to a13

lightweight verifier that evaluates the correctness of reasoning paths. Empirically,14

this verifier boosts the accuracy of reasoning as well as the test-time scaling15

effect. The code is publicly available at https://github.com/tmlr-group/16

landscape-of-thoughts.17

1 Introduction18

Large language models (LLMs) have revolutionized the paradigm of solving problems with their19

broad spectrum of capabilities. In particular, several useful applications of LLMs, such as tool20

use [37], retrieval-augmented generation [26], and agents [57], heavily rely on their capability of21

step-by-step reasoning [53, 25]. Although many base models, e.g., OpenAI o1 [19], and decoding22

algorithms, e.g., test-time scaling-up search [41], have been introduced to advance the performance23

of LLMs on these applications, the underlying reasoning behavior of LLMs remains unclear to the24

community. This hinders the development of algorithms and poses potential risks at deployment [4].25

A few pioneer attempts [50, 35, 36, 11] have been made to understand the reasoning capacity of LLMs.26

Nevertheless, these findings are often tied to certain decoding algorithms and problem-solving tasks,27

which may not be so instructive for users working with their own algorithms and tasks. Instead, there28

is a strong demand for such tools that can be applied to analyze the reasoning behavior of LLMs in29

the users’ scenarios. We foresee that such tools will at least benefit three groups of practitioners: First,30

engineers can iterate their solutions faster based on the feedback from the tool; Second, reasoning31

researchers can improve decoding algorithms based on insights revealed by the tool; And third, safety32

researchers can utilize the tool to monitor, understand, and improve the behavior of LLMs.33

We made a small but meaningful step towards the above goal by introducing the landscape of34

thoughts, a tool for visualizing the reasoning paths produced by chain-of-thought and other step-35
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Figure 1: Landscape of thoughts for visualizing the reasoning steps of LLMs. Note that the red
landscape represents wrong reasoning cases, while the blue indicates the correct ones. The darker
regions in landscapes indicate more thoughts, with indicating incorrect answers and marking
correct answers. Specifically, given a question with multiple choices, we sample a few thoughts from
an LLM and divide them into two categories based on correctness. We visualize the landscape of
each category by projecting the thoughts into a two-dimensional feature space, where each density
map reflects the distribution of states at a reasoning step. With these landscapes, users can easily
discover the reasoning patterns of an LLM or a decoding algorithm. In addition, a predictive model is
applied to predict the correctness of landscapes and can help improve the accuracy of reasoning.

by-step reasoning algorithms. Given any multi-choice reasoning dataset, our tool visualizes the36

distribution of intermediate states and any reasoning path of interest w.r.t. the answer choices, which37

enables users to uncover reasoning patterns of LLMs in both success and failure cases (Fig. 1). The38

core idea is to characterize the textual states of thoughts in a reasoning path as features that quantify39

their distances to all answer choices. These distances are estimated by the commonly used perplexity40

metric, with the same LLM to generate thoughts and explain to itself. The state features are then41

projected to a two-dimensional space via t-SNE [49], a non-linear dimensionality reduction method42

to preserve manifolds in the original high-dimensional space, based on which the plots are drawn.43

We examine our tool with different combinations of model sizes, decoding algorithms, and benchmark44

datasets. Our tool reveals several qualitative observations regarding the reasoning behaviors of LLMs.45

Some notable observations include: 1) The convergence speed of reasoning paths towards correct46

answers reflects the accuracy, no matter what base model, decoding algorithm, or dataset is used;47

2) The convergence speed of reasoning paths in success and failure cases is distinct, indicating that48

we may use the convergence speed of a reasoning path to predict its accuracy; 3) Low consistency49

and high uncertainty are generally observed in the intermediate thoughts, presenting the unstable50

properties of the reasoning process. To our knowledge, these observations have not been reported by51

previous works that analyze chain-of-thought mostly based on text analysis and performance metrics.52

Since our tool is built on the top of state features, it can be adapted to a machine-learning model53

to quantitatively predict certain properties, such as the findings mentioned above. We showcase54

this advantage by training a lightweight model to predict the success and failure cases, which is55

equivalent to verifiers commonly used in LLM reasoning [8]. Even though this verifier is lightweight56

compared to most LLM-based verifiers, it consistently improves the reasoning performance on most57

combinations of models, decoding algorithms, and datasets in our experiments. Hence, users can58

further leverage this advantage to predict potential properties that they discover in their scenarios.59

In summary, our main contributions are three-fold:60

• We introduce the first visualization tool for inspecting the reasoning dynamics of different LLMs61

and decoding algorithms on any multi-choice reasoning dataset (Sec. 2).62

• Our tool reveals several observations regarding the reasoning behaviors of different models,63

algorithms, and datasets, offering new insights into the reasoning (Sec. 3).64
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• Our tool can also be adapted to a model to predict certain properties and guide the reasoning65

process, improving LLM reasoning without modifying parameters (Sec. 4).66

2 Visualizing Multi-step Reasoning of LLMs67

This section outlines a general framework for language models and reasoning algorithms compatible68

with our tool (Sec. 2.1), demonstrates how it visualizes reasoning by projecting thoughts into a69

two-dimensional space (Sec. 2.2), and introduces metrics for quantitative analysis (Sec. 2.3).70

2.1 Problem Formulation71

Our goal is to visualize the reasoning process of LLMs across a variety of problem types. To achieve72

this, we aim for a formulation that is sufficiently general to encompass a wide range of use cases.73

Specifically, we focus on datasets consisting of multiple-choice questions, where each sample (x, y, C)74

comprises a question x, a correct answer y, and a finite set of candidate choices C = {cj}kj=1, all75

represented in texts. The visualization tool applies to the following models and algorithms.76

Language models. To explore the landscape of thoughts generated by an LLM pLLM(·), it is necessary77

for the model to produce diverse reasoning paths for solving a given problem. This requires the78

LLM to support sampling during inference ŷ ∼ pLLM(y|x, C). For chain-of-thought reasoning,79

thoughts are sampled autoregressively as t̂i ∼ pLLM(ti|x, C, t̂1, . . . , t̂i−1). Namely, each thought80

t̂i is conditioned on the problem x, the candidate set C, and the sequence of preceding thoughts81

t̂1, . . . , t̂i−1. To characterize intermediate states within these reasoning paths, the LLM must also82

function as a likelihood estimator, enabling the computation of the probability pLLM(ŷ|x, C, t̂1, . . . , t̂i)83

of any generation ŷ. These two requirements are generally satisfied by most open-source LLMs, such84

as Llama [10], Mistral [20], and DeepSeek [29]. However, proprietary LLMs, such as GPT-4 [1] and85

Gemini [45], are excluded as they do not support likelihood estimation with the logits of generations.86

Reasoning algorithms. While there are many approaches to solving reasoning problems with87

LLMs [9, 22], this work focuses on chain-of-thought (CoT) [53] and its derivatives [62, 56], owing88

to their widespread use and development. These decoding algorithms generally guide the model in89

generating a structured path of intermediate reasoning thoughts before arriving at the final answer.90

Note that to visualize a large number of reasoning thoughts effectively, these thoughts should be91

automatically parsed into distinct units (e.g., via sentence tokenization). This requirement is typically92

satisfied by most variants of CoT. We also empirically verify the robustness of our tool if this93

requirement does not hold (please see Appendix D.2 for detailed experiments).94

2.2 Landscape of Thoughts95

Given a collection of reasoning paths generated by an LLM, our tool seeks to visualize how different96

paths lead to either correct or incorrect answers within a two-dimensional (2D) space, as illustrated97

in Fig. 1. A key challenge lies in the absence of a direct mapping from the textual space of thoughts98

to 2D coordinates. To address this gap, we first utilize the same LLM to represent intermediate states99

as numerical vectors. These state vectors are then projected into a 2D space for visualization. For100

simplicity, we use the notation ti instead of t̂i, which is clear in the following.101

Characterizing the states. Here, the intermediate thoughts {ti}ni=1 in a reasoning path naturally102

define a sequence of states {si}ni=0, where s0 = [x] and si = [x, t1, t2, . . . , ti]. Here, we propose to103

characterize the states as feature vectors using the likelihood function of the LLM. Specifically, the104

k-dim feature vector si for state si is defined as follows:105

si = [d(si, c1), d(si, c2), . . . , d(si, ck)]
⊤, (1)

where d(si, cj) measures the distance between state si and choice cj . Here, the vector si indicates106

the relative distances from the state si to all possible choices {cj}kj=1. To reduce the effect of length107

on choices, we calculate the distance of d(si, cj) through the perplexity metric [38, 32]: 2108

d(si, cj) = pLLM(cj |si)−1/|cj |, (2)

2The perplexity can also be expressed as PPL(cj |si) = exp
(
− 1

|cj |
∑|cj |

t=1 log pLLM(cj [t]|si, cj [: t])
)

.
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where |cj | is the number of tokens in cj , and pLLM(cj |si) is the accumulated probability in an autore-109

gressive manner. We further normalize the vector si to have a unit L1 normalization. Additionally,110

to represent the choices as landmarks in the visualization, it is necessary to encode the choices as111

feature vectors. Notably, the perplexity decreases as the model’s prediction confidence increases. To112

align with this observation, we define the feature vector cj for a choice cj as:113

cj =
1

k
[1(j ̸= 1), . . . ,1(j ̸= k)]⊤. (3)

For r paths, each with n states, we compute the feature vectors for all r · n states. 3 Together with the114

feature vectors of k choices, we obtain a feature matrix S ∈ Rk×(r·n+k) as:115

S = [s
(1)
1 , . . . , s(1)n , . . . , s

(r)
1 , . . . , s(r)n , c1, . . . , ck]. (4)

Note that a sufficiently large number of paths is necessary to generate a comprehensive visualization116

of the reasoning landscape. However, visualizing all samples in a dataset under this setting incurs117

a significant computational cost. In practice, we found it more efficient to visualize d paths with r
d118

samples projected into the same space. This approach retains much of the visualization quality while119

substantially reducing the number of paths required for each sample. The key idea is to rearrange120

the order of choices such that the correct answer consistently aligns with the same dimension in the121

k-dimensional feature space across all the r samples.122

Visualization. After constructing the feature matrix S, we project the states and choices into a123

2D space for visualization. This dimensionality reduction step can be accomplished using various124

existing algorithms [34, 49, 33]. In this study, we employ t-SNE [49] due to its ability to preserve the125

underlying manifolds of the original high-dimensional space and its robustness to a wide range of126

transformations. By applying t-SNE to the k-dim S, we obtain the 2-dim coordinates S̄ ∈ R2×(rn+k).127

The two axes in the landscape visualization correspond to reduced dimensions from the original128

spaces. This original space captures the full answer space for problem-solving, with each state’s129

coordinates reflecting its relative distance to different answers. The coordinates of the states define130

a discrete density function in the 2D space. To create a more intuitive and visually interpretable131

representation, we smooth this density function using a Parzen window estimator [40]. The smoothed132

density at a given coordinate v̄ is as follows, where the σ controls the radius of Gaussian kernels:133

p(v̄) =
1

rn

∑
s̄∈S̄

exp

(
−||v̄ − s̄||2

2σ2

)
. (5)

2.3 Metrics134

Besides the qualitative visualization, we introduce three quantitative metrics to help understand the135

LLMs’ behavior. These metrics are defined based on the intermediate states in Sec. 2.2.136

Consistency. To understand whether the LLM knows the answer before generating all thoughts, we137

compute the consistency of state si by checking whether si and sn agree138

Consistency(si) = 1(argmin si = argmin sn). (6)

Uncertainty. To know how confident the LLM is about its predictions at intermediate steps, we139

compute the uncertainty of state si as the entropy of si (note
∑

d∈si
d = 1)140

Uncertainty(si) = −
∑
d∈si

d · log d. (7)

Perplexity. We are also interested in how confident the LLM is about its thoughts. We use the141

perplexity of thought ti, since it is comparable across thoughts of different length142

Perplexity(ti) = pLLM(ti|si−1)
−1/|ti|. (8)

3 Results and Observations143

In this section, we utilize the landscape of thoughts to analyze the reasoning behavior of LLMs.144

Specifically, we conduct a comprehensive evaluation and extract several observations by comparing145

3Our tool can also be applied to paths with different numbers of states. We assume n states for demonstrations.
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Figure 2: Comparing the landscapes and corresponding metrics of four reasoning algorithms (using
Llama-3.1-70B on the AQuA dataset). Through the reasoning progression, spanning from early
(0-20% states) to the later stages (80-100% states), the visualization shows correct cases (bottom row
in blue) with incorrect cases (top row in red). Metrics are calculated w.r.t. each bin, e.g., 20% - 40%
of states. Note that darker regions represent a higher density of states, with indicating incorrect
answers and marking correct answers. The accuracy of reasoning for the four subfigures is: (a)
84.4%, (b) 82.2%, (c) 75.8%, and (d) 81.6%, respectively.

the landscape of thoughts across three dimensions: (1) various reasoning algorithms in Sec. 3.1, (2)146

different reasoning tasks in Sec. 3.2, and (3) diverse scales of language models in Sec. 3.3.147

To help understand the qualitative visualizations, we quantitatively calculate the consistency and148

uncertainty of states, as well as the perplexity of thoughts, all previously introduced in Sec. 2.3. Unless149

stated otherwise, we employ Llama-3.1-70B with CoT as the default configuration in evaluations.150

Note that all the visualizations are built upon the model’s estimation of their intermediate thoughts.151

3.1 Comparison across Reasoning Algorithms152

Setup. We evaluate the default model with four reasoning algorithms: chain-of-thought (CoT) [53],153

least-to-most (LtM) [62], MCTS [61], and tree-of-thought (ToT) [56]. We run these algorithms on 50154

problems randomly selected from the AQuA dataset. The corresponding landscapes are presented in155

Fig. 2, which yields the following observations. Further discussion, detailed experimental settings,156

and additional results can be found in Appendix B, C, and D, respectively.157

Observation 3.1 (The landscapes converge faster to the correct answers are of higher reasoning158

accuracy). By comparing the four groups of landscapes in Fig. 2, we observe that the states scatter159

dispersedly at early stages and gradually converge to correct (or incorrect) answers in later stages.160

Here, converge means the trend of a reasoning path approaching one answer. As can be seen from161

Fig. 2, different reasoning algorithms present diverse landscapes. Generally, methods with more162

scattered landscapes (converge slower) present lower accuracy than those that converge faster.163

Observation 3.2 (Wrong paths quickly converge to wrong answers, while correct paths slowly step164

to correct answers). By comparing the landscapes of failure and success paths, it is found that the165

failure paths usually converge to the wrong answers at earlier states of reasoning, e.g., 20-40% states.166

By contrast, the states in the success paths converge to the correct answers at later 80-100% states.167
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Figure 3: Comparing the landscapes and corresponding metrics of different datasets (using Llama-
3.1-70B with CoT). Darker regions represent higher state density, with indicating incorrect answers
and marking the correct ones. In addition, the accuracy of reasoning for the four subfigures is: (a)
84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%, respectively.

This implies that early states of the reasoning process can lead to any potential answers (from model168

perspective), while the correct answers are usually determined at the end of reasoning paths.169

Observation 3.3 (Compared to failure paths, the intermediate states in correct paths have higher170

consistency w.r.t. the final state). By comparing the consistency plots in Fig. 2, we found that the171

model generally has low consistency between the intermediate states and the final state. Notably, the172

consistency of wrong paths is significantly lower than that of correct paths. This implies that the173

reasoning process can be quite unstable. Even though decoding algorithms like CoT and LtM are174

designed to solve a problem directly (without explorations), the generated thoughts by these methods175

do not consistently guide the reasoning path to the answer.176

3.2 Comparison across Reasoning Tasks177

Setup. Besides the AQuA, we include MMLU, CommonsenseQA, and StrategyQA datasets. We run178

the base model with CoT on 50 problems per dataset. The observations follow are derived from the179

landscapes in Fig. 3. More visualization cases can be found in Appendix E.180

Observation 3.4 (Similar reasoning tasks exhibit similar landscapes). The landscapes of AQuA,181

MMLU, and StrategyQA exhibit organized search behavior with higher state diversity, while Com-182

monSenseQA presents concentrated search regions, reflecting direct knowledge retrieval rather than183

step-by-step reasoning processes. These distinct landscape patterns demonstrate the potential to184

reveal underlying domain relationships across different reasoning tasks.185

Observation 3.5 (Different reasoning tasks present significantly different patterns in consistency,186

uncertainty, and perplexity). The histograms in Fig. 3 show that path perplexity consistently increases187

as reasoning progresses across all datasets. Specifically, different datasets, e.g., AQuA and MMLU,188

show distinctly higher levels of uncertainty. As for StrategyQA, correct paths show increasing189

consistency that surpasses incorrect paths at around 60% states, while incorrect paths show decreasing190

consistency. However, extending beyond the typical three-step requirement [13], the later stages191

(60-100% states) show increasing perplexity as well as lower uncertainty.192
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Figure 4: Comparing the landscapes and corresponding metrics of different language models (with
CoT on the AQuA dataset). Darker regions represent higher state density, with indicating incorrect
answers and marking the correct ones. In addition, the accuracy of reasoning for the four subfigures
is: (a) 15.8%, (b) 42.0%, (c) 53.2%, and (d) 84.4%, respectively.

3.3 Comparison across Language Models193

Setup. In this part, we study several LLMs’ behavior across different parameter scales (1B, 3B, 8B,194

and 70B). We run each model with CoT on 50 problems from the AQuA dataset. The landscapes of195

these models are shown in Fig. 4. We also provide case studies on the up-to-date reasoning models [14,196

46] in the Appendix E, whose behaviors are also consistent with the following observations.197

Observation 3.6 (The landscape converges faster as the model size increase). As model parameters198

scale from 1B to 70B, the corresponding landscape demonstrates faster convergence to the correct199

answers with higher density in the last 20% states, aligning with the increasing accuracy. With more200

parameters to store information, larger models can access broader knowledge [3]. This leads to more201

confident solutions, demonstrated by more focused answer patterns and lower uncertainty.202

Observation 3.7 (Larger models have higher consistency, lower uncertainty, and lower perplexity).203

As the model size increases, the consistency increases, at the same time, the uncertainty and perplexity204

decrease significantly. This also aligns with the higher accuracy for the large models.205

4 Adapting Visualization to Predictive Models206

One advantage of our method is that it can be adapted to a model to predict any property users207

observe. Here, we show how to convert our method to a lightweight verifier for voting reasoning208

paths, following the observations in Sec. 3. Note that this methodology is not limited to verifiers.209

Users can use this technique to adapt the visualization tool to monitor the properties in their scenarios.210

4.1 A Lightweight Verifier211

Observation 3.2 and 3.3 show that the convergence speed and consistency of intermediate states212

can distinguish correct and wrong paths. Inspired by these observations, we build a model f :213

R(k+1)×n → {0, 1} to predict the correctness of a reasoning path based on the state features {si}ni=1214

and consistency metric {Consistency(si)}ni=1. The insight is that the state features, used to compute215
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Figure 5: The accuracy of reasoning under different decoding methods and model scales (averaging
across all four datasets). Results for each dataset are in Appendix E.

Figure 6: Demonstration of the
inference-time scaling effect of the
verifier. We show the voting accu-
racy (%) on StrategyQA scales with
the number of reasoning paths.

(a) Transfer across datasets (b) Transfer across models

Figure 7: Absolute accuracy changes (∆ Acc) with the verifier,
compared to performance in Fig. 5 (without the verifier). The
verifier is trained on each column (dataset or model) and eval-
uated on all rows (other datasets or models). Positive values
indicate improvement in accuracy with the verifier.

the 2-D visualization, encode rich location information of the states and can be used to estimate the216

convergence speed. Due to the small dimensionality of these features, we parameterize f with a217

random forest [5] to avoid overfitting. We use this model as a verifier to enhance LLM reasoning [8].218

Unlike popular verifiers [27] that involve a moderately sized language model on textual thoughts, our219

verifier operates on state features and is quite lightweight. We train a verifier on thoughts sampled220

on the training split of each dataset and apply it to vote reasoning paths at test time. Given q paths221

sampled by a decoding algorithm, the final prediction is produced by a weighted majority voting:222

ŷ =argmax
c∈C

q∑
i=1

1(ŷ(i) = c) · f({si}ni=1, {Consistency(si)}ni=1). (9)

4.2 Experimental Results223

We evaluate our numerical verifier against an unweighted voting baseline [52] with various models,224

decoding algorithms, and reasoning datasets. Detailed settings and results are in Appendix C.1.225

Effectiveness of the verifier. We first compare our verifier against the unweighted voting baseline,226

each applied to 10 reasoning paths. As shown in Fig. 5, our verifier consistently enhances the227

reasoning performance of all models and decoding algorithms, even though our verifier does not use228

any pre-trained language model. Notably, smaller language models (1B and 3B) show significant229

performance gains with the verifier’s assistance, achieving substantial improvements over their230

original capabilities of reasoning. We also compare the verifier between reward-guided algorithms231

Test-time scaling. While the improvement of the verifier seems marginal with 10 reasoning paths,232

our verifier can provide a substantial performance gain with more reasoning paths. We adjust the233

number of reasoning paths from 1 to 50, and plot the results of the verifier and the unweighted voting234

baseline in Fig. 6. Models with our verifier exhibit significantly stronger scaling behaviors, achieving235

over 65% accuracy. In contrast, the performance of the baseline saturated around 30% accuracy.236

These results suggest that our state features, which are used in both the visualization tool and the237

verifier, capture important information about the reasoning behavior of LLMs. Thus, the verifier can238

boost test-time scaling, especially in solving complex problems.239

Cross-dataset and cross-model transferability. One interesting property of the state features and240

metrics is that their shape and range are agnostic to the model and dataset, suggesting that we may241
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deploy the verifier trained on one dataset or model in another setting. As illustrated in Fig. 7, we242

evaluate how the verifier transfers across reasoning datasets (e.g., train on AQuA and test on MMLU)243

and model scales (e.g., train on 1B model and test on 70B model). We observe some positive transfers244

across datasets and models. For example, a verifier trained on AQuA can improve the performance245

of StrategyQA by 4.5%. A verifier trained on the 70B model also improves the performance of the246

3B model by 5.5%. However, some cases do not benefit from the transferring verifiers. We leave247

improving the transferability of the state features and metrics as future work.248

5 Related Work249

Reasoning with large language models. Chain-of-Thought (CoT) prompting [53, 25] has empow-250

ered LLMs to tackle multi-step reasoning problems by generating intermediate steps before producing251

a final answer. Building upon CoT, numerous methods have been proposed to address various chal-252

lenges, including compositional generalization [62, 23], planning [56, 15], and rule learning [63]253

within the CoT reasoning. Beyond solving reasoning tasks, CoT has also emerged as a foundational254

framework for other techniques, such as fine-tuning LLMs [60], enabling LLM-based agents [57],255

and facilitating test-time scaling [41]. Nevertheless, most of these approaches are developed in a256

trial-and-error manner, largely due to the absence of proper tools for analyzing the CoT.257

Understanding chain-of-thought reasoning. There are a few studies that explore what makes258

CoT prompting effective by perturbing its exemplars. To be specific, Madaan and Yazdanbakhsh259

[31] found that the text and patterns of exemplars help CoT generate sentences resembling correct260

answers. Besides, Wang et al. [50] highlighted the importance of maintaining the correct order261

of reasoning steps, while Ye et al. [59] demonstrated that using complementary exemplars can262

enhance reasoning performance. Furthermore, CoT can benefit from longer reasoning chains, even263

without new information to the prompt [21]. Another line of research investigates CoT’s general264

behavior [44, 35, 36, 39]. For example, CoT heavily depends on the semantic structure of the problem265

to perform reasoning [44], struggles with planning and unification in deductive reasoning [35],266

has difficulty generalizing to longer reasoning paths [36], and can be easily misled by irrelevant267

information in the context [39]. However, these observations are derived from specific reasoning268

tasks and prompt settings, limiting their applicability to other scenarios. In contrast, we introduce a269

general-purpose tool that allows users to analyze reasoning in their contexts.270

Tools for analyzing chain-of-thought. To the best of our knowledge, the only existing tool for271

analyzing CoT is gradient-based feature attribution [54], which computes a saliency score for each272

input token based on the model’s output. However, these token-level saliency scores do not directly273

capture the thought-level, multi-step reasoning process of LLMs. Consequently, the main finding274

in [54] is that CoT stabilizes saliency scores on semantically relevant tokens compared to direct275

prompting. Metrics designed to quantify CoT performance [6, 48] can also be used to analyze the276

reasoning behaviors of LLMs. For instance, Ton et al. [48] employs information gain to identify277

failure modes in reasoning paths, aligning with Observation 3.2 in this paper. However, our 2-D278

visualization offers significantly deeper insights than a single information gain metric. Additionally,279

the verifier derived from our tool is conceptually related to outcome-supervised reward models [8].280

6 Conclusion281

This paper introduces the landscape of thoughts, a visualization tool for analyzing the reasoning282

paths produced by large language models with chain-of-thought. Built on top of feature vectors283

of intermediate states in reasoning paths, our tool reveals several insights into LLM reasoning,284

such as the relationship between convergence and accuracy, and issues of low consistency and high285

uncertainty. Our tool can also be adapted to predict the observed property, which is demonstrated by286

a lightweight verifier developed based on the feature vectors and our observations. We foresee that287

this tool will create several opportunities to develop, understand, and monitor the LLM reasoning.288

One limitation of the landscape of thoughts is its applicability only to multiple-choice tasks. Future289

work could focus on adapting this tool for open-ended reasoning tasks, such as mathematical problem-290

solving, code generation, and planning, where reasoning paths are less structured and more complex.291

Additionally, further research could aim to make the tool more accessible by generating intuitive292

visual and textual explanations, enabling non-experts to better understand and trust the reasoning293

processes of LLMs. Another promising direction is the development of automated methods to detect294

reasoning failures at scale, which could enhance the reliability of LLMs across diverse applications.295
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A Impact Statement469

Our work presents a tool for visualizing and understanding reasoning steps in large language models.470

We foresee that our work will introduce more interpretability and transparency into the development471

and deployment of LLMs, advancing us toward more trustworthy machine learning. However, we472

must acknowledge that malicious activities can also be augmented by our tool. For example, attackers473

may use this tool to find prompts that bypass the alignment safeguards in LLMs. We believe such474

risks will be mitigated if this tool is widely adopted by safety researchers. Overall, the positive475

societal consequences of our work outweigh the negative ones, which stem primarily from misuse.476

B Further Discussions477

In this section, we further discuss the challenges in developing the system for analyzing LLMs’478

reasoning (Appendix B.1), followed by comparing the proposed landscape visualization technique479

with the textual analysis methodology (Appendix B.2). In addition, we compare the lightweight480

verifier to conventional reward-guided algorithms (Appendix B.3).481

B.1 Challenges in Analyzing LLM’s Reasoning Automatically482

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts483

in LLMs remain inadequately understood. Traditional performance metrics, such as accuracy, provide484

insufficient insights into model behavior. While human evaluation has been employed to assess485

the quality of sequential thoughts (e.g., logical correctness and coherence), such approaches are486

resource-intensive and difficult to scale. We identify three challenges in developing automated487

analysis systems for LLMs’ reasoning:488

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention maps [7,489

24], probing [2, 47, 17], and circuits [12, 58], primarily operate at the token-level explanation. While490
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these approaches offer valuable insights into model inference, they struggle to capture the emergence491

of higher-level reasoning patterns from lower-level token interactions. Additionally, the discrete492

nature of natural language thoughts poses challenges for traditional statistical analysis tools designed493

for continuous spaces. Understanding how thought-level patterns contribute to complex reasoning494

capabilities requires new analytical frameworks that can bridge this conceptual gap.495

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning496

have predominantly focused on correlating test questions with training data [18, 51]. This approach497

becomes particularly infeasible given the reality of modern LLMs: many models are closed-source,498

while some offer only model weights. Therefore, a desired analysis framework should operate across499

varying levels of model accessibility.500

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways501

to evaluate the quality and reliability of model reasoning. This includes developing techniques to502

understand reasoning paths, creating intermediate representations that capture both token-level and503

thought-level patterns, and designing metrics that can assess the logical coherence and validity of504

reasoning steps.505

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria:506

it should operate in a post-hoc manner with varying levels of model access, bridge the gap between507

token-level and thought-level analysis, and provide meaningful metrics for evaluating reasoning508

quality. Given the absence of tools meeting these requirements, we identify the need for a new509

analytical framework that can address these challenges while providing useful insights for improving510

model reasoning capabilities.511

B.2 A Comparison Between Landscape Visualization and Textual Analysis512

Notably, for the language model, one could manually examine the responses of individual samples,513

as their responses are interpretable by humans. However, this approach has two major limitations:514

Limitation 1: Lack of Scalability. Analyzing individual samples is time-consuming and labor-515

intensive. In general, text-based analysis requires human evaluators to carefully read long reasoning516

chains word by word. For example, if it takes 30 seconds to understand a single sample, reviewing517

100 samples would require around 50 minutes of focused human effort. This burden grows quickly,518

especially as researchers often repeat this process many times while developing models and methods.519

In practice, researchers need quick, easily interpretable feedback like accuracy when experimenting520

with changes to models and methods.521

Limitation 2: Lack of Aggregation. It is difficult to aggregate insights across multiple samples to522

understand model behavior at the dataset level. Summarizing model behavior across multiple samples523

presents another challenge. Suppose one researcher has 100 reasoning chains, it is hard for him/her524

to reliably synthesize the model’s overall behavior. Different researchers may arrive at different,525

subjective summaries, which hinders consistency and interpretability.526

By contrast, our visualization method provides a more objective and automatic way to analyze a527

model, making it much easier for researchers to analyze the model’s reasoning behavior. Similar528

to the t-SNE [49], the visualization enables a more comprehensive analysis of multiple reasoning529

samples instead of only one sample. The visualization uniquely combines human-readable paths with530

quantitative, scalable metrics for reasoning process analysis, enabling both model comparisons and531

mechanistic insights beyond manual text inspection.532

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot533

capture. This power source bridges the gap between localized text understanding and global reasoning534

behavior. Our analysis in Sec. 3 reveals insights that are not revealed by previous text-based analysis.535

These insights include structural patterns across many reasoning paths, a strong correlation between536

early consistency and accuracy, and model-level differences where larger models explore more537

broadly than smaller ones.538

B.3 A Comparison Between Lightweight Verifier and Reward-guided Algorithms539

It is worth noting to mention that our goal is not to build a sophisticated verifier, but rather to540

demonstrate how the feature vectors from the landscape visualization can be effectively used.541
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In general, reward-guided algorithms are more computationally efficient than the path landscape.542

Specifically, for a reasoning path with n thoughts and c answer choices, constructing the landscape543

requires n× c forward passes through the reasoning model. In contrast, a reward-guided approach544

typically makes a single call to a reward model that evaluates the entire reasoning chain at once.545

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-546

guided algorithms. Notably, for Process-Reward Models (PRMs) [30, 55], collecting high-quality547

training data often requires detailed, fine-grained annotations of reasoning steps, which can be costly548

and time-consuming. Moreover, training a reward model (often itself a LLM) incurs significant549

computational expense. In contrast, our lightweight verifier is much more efficient to train, as it550

requires no human annotations and uses easily obtainable data.551

C Experiment Settings552

C.1 Settings553

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of LLMs. To554

this end, we adopted four open-source models with varying parameter sizes, namely Llama-3.2-1B,555

Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. We repeatedly sample 10 times from the556

target LLM using the same reasoning strategy as self-consistency [52].557

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset558

and generate reasoning paths with the setup described above. For simplicity, we compute distances559

only between each state and all candidate answers. To visualize multiple samples in a shared space,560

we always place the distance to the correct answer as the first element of each feature vector. This561

alignment allows joint analysis across samples, as introduced in the paragraph below Equation 4. We562

then aggregate feature vectors from all samples into a feature matrix (Equation 2), which is passed to563

t-SNE to compute the pairwise distance between any two states and then outputs the 2D coordinate564

of each state.565

For training the lightweight verifier, we randomly sample 20 questions from the training split of566

each dataset to obtain the feature matrix S. We extract these features using three model scales:567

Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. Despite the relatively small training set,568

it proves sufficient for our lightweight verifier, which we subsequently evaluate on the data for569

visualization in Sec. 3.570

C.2 Datasets571

AQuA [28]. This dataset develops to challenge language models’ quantitative reasoning capabilities.572

The AQuA presents complex algebraic word problems in a multiple-choice format, where only one is573

correct. Each problem requires numerical computation, deep linguistic understanding, and logical574

inference. It provides a nuanced assessment of a model’s ability to translate textual information into575

algebraic reasoning.576

MMLU [16]. Spanning 57 distinct academic and professional domains, MMLU provides a rigorous577

test of language models’ capabilities across humanities, social sciences, hard sciences, and technical578

disciplines.579

StrategyQA [13]. This dataset is designed to evaluate implicit reasoning and multi-hop question580

answering. The dataset is characterized by yes/no questions that demand implicit reasoning strategies.581

Unlike straightforward factual queries, these questions require models to construct elaborate reasoning582

paths, showing hidden logical connections.583

CommonsenseQA [43]. This dataset assesses commonsense reasoning through multi-choice ques-584

tions derived from the ConceptNet knowledge graph [42]. The dataset aims to test a model’s585

understanding of commonsense concepts and ability to make logical inferences. However, the ques-586

tions often require the model to incorporate external knowledge to select the correct answer from587

plausible distractors.588

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning589

states, resulting in diverse but structured landscapes. CommonsenseQA, conversely, represents a590

distinct domain where answers depend on static knowledge rather than emergent reasoning pathways.591
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Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Obs. 3.1
Correct Incorrect

CoT 1.026 0.975
L2M 1.026 0.989
ToT 1.004 0.987

MCTS 1.002 0.985

(b) Verifying Obs. 3.2 and 3.6
Speed Accuracy

CoT 0.322 84.4%
L2M 0.224 82.2%
ToT 0.205 81.6%

MCTS 0.198 75.8%

(c) Verifying Obs. 3.4

AQuA MMLU StrategyQA Common
SenseQA

AQuA 1.0 0.914 0.895 0.859
MMLU 0.914 1.0 0.870 0.843

StrategyQA 0.895 0.870 1.0 0.889
Common
SenseQA 0.859 0.843 0.889 1.0

C.3 Decoding Algorithms592

Chain of Thought (CoT) [53]. CoT elicits the LLM’s reasoning capabilities by incorporating593

few-shot examples that demonstrate explicit reasoning steps. It provides the model with exemplar594

reasoning traces to guide its problem-solving process.595

Zero-shot CoT [25]. The core idea of this prompt strategy lies in adding simple instructions, e.g.,596

"Let’s think step by step." to the prompt, enabling models to generate reasoning traces without597

assigned task-specific examples.598

Least-to-Most (LtM) [62]. LtM is an innovative reasoning approach that systematically breaks down599

complex problems into progressively simpler subproblems. This approach mirrors human cognitive600

problem-solving strategies, where individuals naturally break down complex tasks into smaller, more601

comprehensible parts.602

Tree-of-Thought (ToT) [56]. ToT expanded this concept by creating a more sophisticated, multi-603

branching reasoning framework. While CoT follows a linear path of reasoning, ToT introduces a604

more dynamic exploration, allowing models to generate multiple reasoning paths simultaneously,605

evaluate them, and strategically prune less promising trajectories.606

Monte Carlo tree search (MCTS) [61]. MCTS is a powerful computational algorithm originally607

developed for game-playing strategies, particularly in complex decision-making environments like608

chess and Go. The method uses probabilistic sampling and tree exploration to systematically navigate609

potential solution spaces, balancing exploring new possibilities with exploiting promising paths. We610

adopt the task-agnostic node expansion and evaluation prompt from ReST-MCTS [61] to conduct our611

experiment across different tasks.612

Reproduction. The source code is provided in the anonymous repository: https://anonymous.613

4open.science/r/landscape-of-thoughts-submission-code-3803/.614

D Supplementary Results and Analysis615

D.1 Statistical Verification of the Observations616

In this part, we conduct extra experiments and statistically verify Obs. 3.1, 3.2, 3.4, and 3.6, while617

the other Obs. 3.3, 3.5, and 3.7 have been quantitatively verified by the metrics in Sec. 2.3.618

To verify Obs. 3.1, we calculate the convergence coefficient (eβ) by fitting a log-linear regression619

model to the sequence of distances di between each state and the final answer as log(di) ≈ α+ βi,620

where α is the intercept term; β is the slope coefficient that quantifies convergence behavior; i621

represents the position index in the reasoning chain. Lower values of eβ indicate faster convergence.622

For Obs. 3.2 and 3.6, we measure the speed of a reasoning path moving from start to end as623

speed = ∥s̄n−s̄0∥∑
j=1n∥s̄j−s̄j−1∥ ∈ [0, 1], where s̄i represents the 2D coordinate of the state i. Whereas624

Obs. 3.4, we compute pairwise histogram intersection scores of the density distributions. Lower625

scores indicate greater dissimilarity between landscapes.626

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while incorrect627

paths show more convergence (p-value = 0.008), thus verifying Obs. 3.1. As shown in Tab. 1(b),628

speed and accuracy correlate strongly (p-value = 9.421e-11), thus verifying Obs. 3.2. This is also629

applicable for verifying Obs. 3.6. Tab. 1(c) shows that lower scores indicate greater dissimilarity630
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Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Original 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Over-spilt 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Under-split 
Thoughts

(a) Demonstration of Sentence Tokenization (b) Llama-3.1 8B (c) Llama-3.1 70B

Figure 8: Demonstration of sentence tokenization methods for thoughts splitting.

Table 2: Absolute accuracy with the verifier, compared to performance in Fig. 5 (without the verifier).

(a) Across datasets
AQuA MMLU StrategyQA Common

SenseQA

AQuA 63.0 (+0.7) 62.3 (+0.0) 62.3 (+0.0) 64.0 (+1.7)
MMLU 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0)

StrategyQA 41.5 (+4.5) 40.5 (+3.5) 43.0 (+6.0) 37.0 (+0.0)
Common
SenseQA 54.0 (+1.0) 53.0 (+0.0) 53.0 (+0.0) 54.0 (+1.0)

(b) Across models
1B 3B 8B 70B

1B 26.0 (+0.5) 27.5 (+2.0) 27.5 (+2.0) 27.5 (+2.0)
3B 45.5 (+0.0) 48.0 (+2.5) 51.0 (+5.5) 51.0 (+5.5)
8B 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0)

70B 74.0 (+2.0) 73.0 (+1.0) 72.5 (+0.5) 72.5 (+0.5)

between landscapes, which verifies Obs. 3.4, i.e., AQuA, MMLU, and StrategyQA are more similar,631

while CommonSenseQA exhibits distinct patterns.632

D.2 Robustness of Sentence Tokenization633

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the634

granularity of the sentence tokenization, we conduct the controlled experiment by considering two635

imperfect cases in thought split, namely over-split thoughts and under-split thoughts.636

Specifically, shown as Fig. 8 (a), compared to the original thoughts split that transform sentences to637

thoughts based on the period, over-split thoughts jointly consider the comma, resulting in additional638

splits. For the under-split, two adjacent thoughts are merged into one thought. We then visualize the639

imperfect thought splits using CoT on AQuA following the setting in Fig. 2(a) and Fig. 4(c),640

Shown in Fig. 8 (b) and (c), the landscapes are robust to the split thoughts’ information volume,641

which are stable and consistent with our observations. Notably, for over-split thoughts, the states642

are more visually diverse but eventually converge to the answers. Whereas under-split thoughts, the643

states show a more compact pattern and exhibit a clear convergence trend toward the answer.644

D.3 Absolute Performance of the Verifier645

In this part, we provide the absolute performance of the experiment conducted in Fig. 7. Shown as646

Tab. 2, the results demonstrate that our approach consistently provides improvements across different647

domains and models.648

D.4 Variants of Verifier649

In this part, we extend it into a process verifier and validate its effectiveness through additional650

experiments. Our lightweight verifier functions as an outcome reward model (ORM), assessing the651

correctness of an entire reasoning path. Specifically, the process verifier predicts the accuracy of652

each reasoning state using features from the current and all previous thoughts. State accuracy reflects653

whether the current state is closer to the correct answer (measured by perplexity) than other answers.654

We then aggregate these predictions across the chain to estimate overall accuracy.655

Empirically, we collect the state-wise data by comparing the state features and the correct answers,656

and train the process verifier. Note, we do not need to manually annotate the step-wise rewards657

to train conventional PRMs. Results in Tab. 3 show that this process verifier is comparable to the658

outcome verifier.659
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Table 3: Performance comparison of reasoning methods across model scales on the AQuA dataset,
with and without verifiers.

Model Method Without Verifier With Outcome Verifier With Process Verifier

Llama-3.2-1B

CoT 0.26 0.28 0.26
L2M 0.22 0.24 0.29
ToT 0.35 0.38 0.35
MCTS 0.29 0.32 0.31

Llama-3.2-3B

CoT 0.46 0.51 0.46
L2M 0.29 0.31 0.31
ToT 0.33 0.35 0.33
MCTS 0.35 0.36 0.35

Llama-3.1-8B

CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
ToT 0.50 0.53 0.50
MCTS 0.50 0.51 0.50

Llama-3.1-70B

CoT 0.72 0.73 0.73
L2M 0.72 0.72 0.73
ToT 0.74 0.74 0.74
MCTS 0.72 0.73 0.72

D.5 Further Discussion on the StrategyQA660

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer661

in Fig. 3(c), is not due to our visualization method but to the unstable reasoning process in the Llama-662

3.1-70B using CoT on StrategyQA. This model struggles to reliably represent its self-generated663

intermediate thoughts, presenting consistency between intermediate thoughts and final predictions,664

thus leading to the abnormal patterns observed.665

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable666

reasoning, as it fails to maintain coherent reasoning even when approaching the final answer. In667

addition, the landscape exhibits the highest perplexity compared to other models, indicating low668

confidence in its generated thoughts, which undermines the reliability of the estimated feature matrix669

used in our visualization.670

Further, we provide landscape visualizations for the same dataset using other models and methods in671

Fig. 9 to Fig. 12. These landscapes do not exhibit the same abnormal density patterns, reinforcing that672

the issue is specific to Llama-3.1-70B’s reasoning instability rather than a flaw in our visualization673

framework.674

E Visulizations675

In this part, we provide the full visualization of the verifier performance and landscapes.676

In Fig. 13 to Fig. 16, we visualize the average voting accuracy (%) of different LLMs reasoning677

with and without verification on various datasets and methods. In Fig. 17 to Fig. 20, we display the678

landscape of different models on various datasets using four methods. We also provide case studies679

by visualizing the landscape with corresponding states in Fig 21 to Fig. 24.680

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we681

conduct experiments on the QwQ-32 B [46] and DeepSeek-R1-Distill model [14] (Llama-70 B and682

Qwen-1.5 B). As shown in Fig. 25 to Fig. 27, the landscape of the reasoning model also aligns with683

the observation drawn from the general-purpose model, but exhibits more complex reasoning patterns,684

such as self-evaluation and back-tracking.685
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(a) Llama-3.2-1B with CoT on StrategyQA

(b) Llama-3.2-3B with CoT on StrategyQA

(c) Llama-3.1-8B with CoT on StrategyQA

(d) Llama-3.1-70B with CoT on StrategyQA

Figure 9: The landscapes of the model across scales (using CoT on the StrategyQA dataset).
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(a) Llama-3.2-1B with L2M on StrategyQA

(b) Llama-3.2-3B with L2M on StrategyQA

(c) Llama-3.1-8B with L2M on StrategyQA

(d) Llama-3.1-70B with L2M on StrategyQA

Figure 10: The landscapes of the model across scales (using L2M on the StrategyQA dataset).
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(a) Llama-3.2-1B with MCTS on StrategyQA

(b) Llama-3.2-3B with MCTS on StrategyQA

(c) Llama-3.1-8B with MCTS on StrategyQA

(d) Llama-3.1-70B with MCTS on StrategyQA

Figure 11: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).
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(a) Llama-3.2-1B with ToT on StrategyQA

(b) Llama-3.2-3B with ToT on StrategyQA

(c) Llama-3.1-8B with ToT on StrategyQA

(d) Llama-3.1-70B with ToT on StrategyQA

Figure 12: The landscapes of the model across scales (using ToT on the StrategyQA dataset).
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Figure 13: Average voting accuracy (%) of reasoning with and without verification on AQuA.

Figure 14: Average voting accuracy (%) of reasoning with and without verification on MMLU.

Figure 15: Average voting accuracy (%) of reasoning with and without verification on StrategyQA.

Figure 16: Average voting accuracy (%) of reasoning with and without verification on Common-
SenseQA.

24



(a) Llama-3.2-1B with CoT on AQuA

(b) Llama-3.2-1B with LtM on AQuA

(c) Llama-3.2-1B with ToT on AQuA

(d) Llama-3.2-1B with MCTS on AQuA

Figure 17: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).
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(a) Llama-3.2-3B with CoT on AQuA

(b) Llama-3.2-3B with LtM on AQuA

(c) Llama-3.2-3B with ToT on AQuA

(d) Llama-3.2-3B with MCTS on AQuA

Figure 18: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).

26



(a) Llama-3.1-8B with CoT on AQuA

(b) Llama-3.1-8B with LtM on AQuA

(c) Llama-3.1-8B with ToT on AQuA

(d) Llama-3.1-8B with MCTS on AQuA

Figure 19: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).
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(a) Llama-3.1-70B with CoT on AQuA

(b) Llama-3.1-70B with LtM on AQuA

(c) Llama-3.1-70B with ToT on AQuA

(d) Llama-3.1-70B with MCTS on AQuA

Figure 20: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).
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Step 1: Start by adding 
the positive numbers: 
adding 45 to -30 results 
in 15 since 15 > -15

Conclusion: The original 
price of the item was 
approximately $63.32. 
The answer is A.

To solve the problem, let's 
break it down into a series 
of calculations according 
to the given property.

2. The perimeter of the 
other part is 66 cm 
(perimeter of 16x and 
14y).

Hose A fills the pool in 8 
hours, so its rate is 1/8 of 
the pool per hour.

Step 4: Substitute the 
calculated value for 4/5 
of 25 into the expression 
for the difference.

3. The minimum total 
commission needed to 
reach a salary of at least 
$1000 is 1000.

Step 4: Calculate the 
population 2 years after 
the initial population.

5. Now, divide both 
sides by 1.2, in order 
to solve for C. 
Therefore, C = 360 / 
1.2 = 300.

Based on our calculation, 
the grocer likely sold 
approximately 24.4 bags 
of flour. The answer is C.

Figure 21: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

Step 2: To find the 
time it takes for them 
to produce 10 yo-yos, 
we need to consider 
the least common 
multiple (LCM) 9 of 
6 and 9 minutes.

Step 8: Since Hose B can 
fill 1/8 of the pool per 
hour, it can fill the entire 
pool in 8 hours. Therefore, 
the answer is D.

Let's break down the steps 
to calculate the average 
speed of the plane around 
the square field.

4. Since the profit is 
25% of the selling 
price, we can calculate 
the total selling price 
for all the bags sold.

6. Since we found that A = 
1/8, we can solve for B by 
substituting A into the 
equation: 1/8 + B = 3/4.

However, the number 
of toys cannot be a 
fraction, so we need to 
round to the nearest 
whole number.

To solve this problem, 
let's break down the 
solution process into 
clear, independent steps.

Step 4: Web those 
formula values into 
the conditional 
probability formula. 
P(A/B) = P(A) / P(B) 
= 0.2 / 0.8.

7. Converting 30/70 to a 
percentage, we get 
(30/70) * 100% = 
42.86%.

The answer is C.

Figure 22: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.
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The answer is B.

Conclusion: The original 
price of the item was 
approximately $63.32. The 
answer is A

Let‘s think step by step to 
solve the problem.

3. This leaves 1 1/4 = 3/4 
of the pool to be filled by 
both hoses working 
together in the following 
3 hours.

We can represent the 
commission of 15% 
on the monthly sale 
as: 0.15 * total 
monthly sale.

To find the percentage 
increase, we'll use the 
formula: ((Increase / 
Original) 100). *

Let's think step by step 
to solve this problem.

Step 3: The total cost can 
be expressed as the sum of 
costs of brown and white 
sharpeners: b X + (18 - b) 
(× + 1) = 100.

Next, we divide the total 
profit by the profit per 
bag: $3,000 / $25 = 120.

Step 8: Solve for x 
using the equation 
identified in step 7.

Figure 23: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Figure 24: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.
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Since probabilities can't exceed 1, the maximum 
value of P(A and B) can be the minimum of P(A) 
and P(B). The minimum of 0.56 and 0.74 is 0.56. 
Wait, maybe. Let me check again.

Wait, this might be a 
bit more complicated. 
Let's try to think of it 
in terms of relative 
motion.

Wait, actually when 
solving D = 
\u221a3*(D - 10v), 
let's do it again step 
by step.

Let me check that again. Yes: the non-
defective total is 0.9N, and 2% of that is 
rejected. Therefore, 0.02*(0.9N) = 72.

But maybe it's a trick question 
where the letters have to be 
distinct? Wait, the first part 
might assume whether letters 
can repeat or not,

Wait, first 
maybe I 
need to find 
the total 
distance.

…plus 54,400 gives 1,180,800? Wait, let me 
check again. 626,400 +554,400….

Wait, but perhaps I 
missed something.

Wait, in the previous 
step, the time 
remaining is (d/v). So 
after substitution,…

Wait, let me 
redo the 
division.

Wait, but maybe I made an arithmetic 
mistake somewhere. Let me check the 
division again:

Wait but let me think again. Maybe the question is 
asking for the number of staplers produced that 
day, which is the total N, so yes. The steps seem 
correct. Let me check with another approach.

But wait, looking at the 
answer options, E is 110. 
However, the problem 
says \"at least\" so 
maybe there's a catch 
here?

Let me do the 
calculation in decimals 
without converting to 
fractions. Maybe I 
made a mistake there.

Wait, perhaps 
subtract 
equation 1 
multiplied by 
some factor.

Let me check the options again. The problem's 
options are A)27, B)81, C)90, D)99, E)110. So 
according to this, the answer should be E. But the 
question might be a trick here?

…perhaps the original price must be a value that 
when discounted and subtracted by 20 gives 
exactly the value needed. Let me check.

Wait, maybe 
I confused 
steps here. 
Let me re-
express

Wait a second. 
But hold on, let 
me double-
check because 
maybe I'm 
oversimplifying.

Wait, but this calculation gives exactly 5(\u221a3 
+1), which is option A. But wait, let me check once 
more.

Hmm, that discrepancy is 
odd. Maybe I made a 
mistake in the equation 
setup?

Wait, sorry, let me 
recast…

…Wait, but maybe 
there is another 
approach?

Wait, wait. Wait a second, 
no, actually, maybe I made a 
calculation error here. Let me 
double-check because that 
result seems a bit low. Let me 
recalculate the division:

(N -10 -20e) = (N 
-20 -10e)/2 * 2? 
Wait, no. Wait, 
perhaps better to 
substitute.

Wait, but the options 
include C as 36. So that 
works. Let me confirm 
again step by step. Let 
me see:

But wait the options are A)4 B)4.5 C)5 D)5.5 E)6.5. 
So yes, C is correct. Let me check if there was 
any miscalculation. Hmm, yes, all steps check out.

Wait, let me 
double-check my 
calculation step 
again. Maybe my 
math was wrong.

That's not among the options 
provided. Did I make a 
mistake somewhere?

Wait, perhaps my total cost calculation was 
wrong. Let me check again.

Figure 25: Landscape of QwQ-32B using CoT on AQuA.

Wait, that 
might be the 
correct way to 
model it. Let 
me denote

Wait, that seems high. Let me check my 
calculations again. Maybe I made a mistake 
somewhere.

Let me check the options. I don't think I made any 
mistakes here because the steps align with the 
definition of independent events in probability.

But wait, the initial 
number of marbles isn't 
given, so the total 
number in the bag must 
be unknown.

Wait, the question 
is asking for the 
greatest possible 
value for the 
probability that 
neither happens.

Wait, but that can't be right because the selling 
price has to cover the costs. Wait, let me check 
my calculations again because I think I might 
have made a mistake somewhere.

Wait, that seems 
a bit messy. 
Maybe there's 
another way.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, but let 
me double-
check in 
case I made 
a mistake in 
simplifying.

Wait, let me check: 1.2 times what gives 360. 
Maybe I can do this step by step. 1.2 is the same 
as 6/5, so dividing by 1.2 is the same as multiplying 
by 5/6.

Wait, but I should 
double-check that. Yes, 
tan(60°) is V3, so the 
adjacent side (distance 
to the base) is h / V3 
when the angle is 60°.

But let me make sure I 
didn't make a mistake… 
Yes, that seems correct.

Wait, but let me check again because sometimes 
rounding can cause issues. Let me recalculate 
21.90 divided by 0.28 more accurately.

Wait, maybe 
another way: …

But just to be absolutely sure, let me check with 
another option, say option A is $61.

Wait, but let me check if S=230 would be 
sufficient.

But wait, let me double-
check my initial calculation 
because 78.20 is an option, 
but perhaps I made a mistake 
in my first equation setup.

Wait a second, 
but initially, after 
adding the 20 
black marbles, the 
number of black 
marbles is 20.

Wait, let me check because I think I might have 
made a miscalculation. Let me try another way

Wait, perhaps I should 
compute the per unit 
numbers differently. 
Let me recalculate.

But this seems a 
bit confusing. 
Maybe I made a 
mistake in the 
algebra.

But wait, maybe I made 
an error earlier. Let me 
go back and check my 
steps again.

But wait, the options are 
A)21, B)30, C)31, D)32, 
E)None of the above. So, 
D is available. Therefore, 
the average is 32, which 
matches option

But wait, some-
times when I do 
these problems, I 
might have miss-
ed something. Let 
me think again.

But wait, let me check if 234.2857 would satisfy 
the condition. Let's plug it back in.

Wait, no, in the 
initial example, 
it's a different 
problem. So I 
think my logic 
here is correct. 

Wait, but let me double-check 
that. If the sales-person 
makes 40 sales, each at 
$250, their commission would 
be 40 times $25, which is 
$1000 exactly.

Wait, that 
seems 
similar to 
what I had 
before.

Hmm, so the additional time required is 5(√ 3 +1) 
minutes. Let me check the options given.

Wait, is that right? Let me 
double-check. 420 units/ 
month*12 months=5,040 
units. 5,040* $110=554,400. 
Yeah, that seems correct

Figure 26: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Wait, no, that might 
not be the right 
way. Let me 
reframe it.

Then, another 20 
marbles are pulled out, 
and 1 was black. Wait, 
let's analyze this 
carefully

Wait, that seems quite high. Maybe I made a 
mistake. Let me check my calculations again.

But wait, the problem just asks to find the multiple 
of X, not provided specifically, that is divisible by 
both 9 and 12. Hmm, that seems a bit generic. 
Maybe I misread. Let me check again.

Wait, the order might 
matter. So it's 5 + 
(19? -17). Let me 
ensure I'm 
calculating correctly.

Wait a minute, that's 
interesting because 
P(A) is already 0.2, 
so in this case, 
P(A|B) = P(A). Does 
that make sense?

Let me check the setup. After the second pull, 
the bag has N + 40 marbles, with 20 black 
marbles. The percentage of black marbles is 
20/(N + 40) = 5% = 0.05.

Perhaps I made 
a mistake in 
setting up the 
equation. Let's 
check.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, in the first case, 
the elevator covers 20 
steps in 10 minutes, so 
speed = 20 / 10 = 2 
steps per minute.

But wait, the letters in 'PROBLEC' each have 
different frequencies. Let me check that.

Wait, but I should double-
check to make sure I 
didn't make any mistakes 
in my calculations. 
Alternatively, maybe I can 
think about it another way.

So, unless I made a 
mistake in setting up the 
equation, which doesn't 
seem so, the answer 
should be 4,000, which is 
option A.

So, 21.90 / 0.28 = 77.50, but let me check that 
again because my initial division seems not to align 
with this.

But perhaps I 
made a mistake 
in my reasoning. 
Let me double-
check.

Maybe the problem is designed to have one of the 
options, but I must have miscalculated. Let me 
check the math once more.

Wait, perhaps I read the problem wrong. Let me 
check again.

Wait, I think I need to 
reconsider my approach. 
Let me try again.

Wait, so 
walking more 
steps and 
stopping takes 
longer? 

Still not matching the options. The closest option is 
226 and 230. Did I make a mistake in calculation? 
Let me check.

Wait, maybe I'm 
overcomplicating. Let's 
think about it 
differently.

Wait, that's incorrect. 
It should be (5 + 19? 
-15 -7)/13 =6, which 
simplifies to (19? -
17)/13=6

Wait, perhaps using 
the sine of the angles 
would be more 
straightforward.

Wait, probabilities cannot 
be negative. There must 
be an error in this 
approach. Let me 
reconsider.

Wait, let's go 
back. The 
equation after 
removing 0.5P 
was …

Wait, unless the 2% is on the defective Staplers? 
Let me check the problem again

Wait, but the 
problem says that 
they reach in 10 
minutes. So 
perhaps only T1 
plus T2 equals 10.

Wait, that can't be 
right because 
probabilities can't 
exceed 1.

Wait, maybe it's 
better to 
calculate step by 
step.

But none of the answer choices are given in this 
decimal form. Let me check the answer options 
again

Figure 27: Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.
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