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Abstract

Numerous applications of large language models (LLMs) rely on their ability to
perform step-by-step reasoning. However, the reasoning behavior of LLMs remains
poorly understood, posing challenges to research, development, and safety. To
address this gap, we introduce landscape of thoughts-the first visualization tool for
users to inspect the reasoning paths of chain-of-thought and its derivatives on any
multi-choice dataset. Specifically, we represent the states in a reasoning path as
feature vectors that quantify their distances to all answer choices. These features are
then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative
analysis with the landscape of thoughts effectively distinguishes between strong
and weak models, correct and incorrect answers, as well as different reasoning
tasks. It also uncovers undesirable reasoning patterns, such as low consistency and
high uncertainty. Additionally, users can adapt our tool to a model that predicts
the property they observe. We showcase this advantage by adapting our tool to a
lightweight verifier that evaluates the correctness of reasoning paths. Empirically,
this verifier boosts the accuracy of reasoning as well as the test-time scaling
effect. The code is publicly available at https://github.com/tmlr-group/
landscape-of-thoughts.

1 Introduction

Large language models (LLMs) have revolutionized the paradigm of solving problems with their
broad spectrum of capabilities. In particular, several useful applications of LLMs, such as tool
use [37], retrieval-augmented generation [26], and agents [57], heavily rely on their capability of
step-by-step reasoning [53, 25]. Although many base models, e.g., OpenAl ol [19], and decoding
algorithms, e.g., test-time scaling-up search [41], have been introduced to advance the performance
of LLMs on these applications, the underlying reasoning behavior of LLMs remains unclear to the
community. This hinders the development of algorithms and poses potential risks at deployment [4].

A few pioneer attempts [50, 35, 36, 11] have been made to understand the reasoning capacity of LLMs.
Nevertheless, these findings are often tied to certain decoding algorithms and problem-solving tasks,
which may not be so instructive for users working with their own algorithms and tasks. Instead, there
is a strong demand for such tools that can be applied to analyze the reasoning behavior of LLMs in
the users’ scenarios. We foresee that such tools will at least benefit three groups of practitioners: First,
engineers can iterate their solutions faster based on the feedback from the tool; Second, reasoning
researchers can improve decoding algorithms based on insights revealed by the tool; And third, safety
researchers can utilize the tool to monitor, understand, and improve the behavior of LLMs.

We made a small but meaningful step towards the above goal by introducing the landscape of
thoughts, a tool for visualizing the reasoning paths produced by chain-of-thought and other step-
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Figure 1: Landscape of thoughts for visualizing the reasoning steps of LLMs. Note that the red
landscape represents wrong reasoning cases, while the blue indicates the correct ones. The darker
regions in landscapes indicate more thoughts, with % indicating incorrect answers and * marking
correct answers. Specifically, given a question with multiple choices, we sample a few thoughts from
an LLM and divide them into two categories based on correctness. We visualize the landscape of
each category by projecting the thoughts into a two-dimensional feature space, where each density
map reflects the distribution of states at a reasoning step. With these landscapes, users can easily
discover the reasoning patterns of an LLM or a decoding algorithm. In addition, a predictive model is
applied to predict the correctness of landscapes and can help improve the accuracy of reasoning.

by-step reasoning algorithms. Given any multi-choice reasoning dataset, our tool visualizes the
distribution of intermediate states and any reasoning path of interest w.z.. the answer choices, which
enables users to uncover reasoning patterns of LLMs in both success and failure cases (Fig. 1). The
core idea is to characterize the textual states of thoughts in a reasoning path as features that quantify
their distances to all answer choices. These distances are estimated by the commonly used perplexity
metric, with the same LLLM to generate thoughts and explain to itself. The state features are then
projected to a two-dimensional space via t-SNE [49], a non-linear dimensionality reduction method
to preserve manifolds in the original high-dimensional space, based on which the plots are drawn.

We examine our tool with different combinations of model sizes, decoding algorithms, and benchmark
datasets. Our tool reveals several qualitative observations regarding the reasoning behaviors of LLMs.
Some notable observations include: 1) The convergence speed of reasoning paths towards correct
answers reflects the accuracy, no matter what base model, decoding algorithm, or dataset is used;
2) The convergence speed of reasoning paths in success and failure cases is distinct, indicating that
we may use the convergence speed of a reasoning path to predict its accuracy; 3) Low consistency
and high uncertainty are generally observed in the intermediate thoughts, presenting the unstable
properties of the reasoning process. To our knowledge, these observations have not been reported by
previous works that analyze chain-of-thought mostly based on text analysis and performance metrics.

Since our tool is built on the top of state features, it can be adapted to a machine-learning model
to quantitatively predict certain properties, such as the findings mentioned above. We showcase
this advantage by training a lightweight model to predict the success and failure cases, which is
equivalent to verifiers commonly used in LLM reasoning [8]. Even though this verifier is lightweight
compared to most LLM-based verifiers, it consistently improves the reasoning performance on most
combinations of models, decoding algorithms, and datasets in our experiments. Hence, users can
further leverage this advantage to predict potential properties that they discover in their scenarios.

In summary, our main contributions are three-fold:

* We introduce the first visualization tool for inspecting the reasoning dynamics of different LLMs
and decoding algorithms on any multi-choice reasoning dataset (Sec. 2).

* Our tool reveals several observations regarding the reasoning behaviors of different models,
algorithms, and datasets, offering new insights into the reasoning (Sec. 3).
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* Our tool can also be adapted to a model to predict certain properties and guide the reasoning
process, improving LLM reasoning without modifying parameters (Sec. 4).

2 Visualizing Multi-step Reasoning of LL.Ms

This section outlines a general framework for language models and reasoning algorithms compatible
with our tool (Sec. 2.1), demonstrates how it visualizes reasoning by projecting thoughts into a
two-dimensional space (Sec. 2.2), and introduces metrics for quantitative analysis (Sec. 2.3).

2.1 Problem Formulation

Our goal is to visualize the reasoning process of LLMs across a variety of problem types. To achieve
this, we aim for a formulation that is sufficiently general to encompass a wide range of use cases.
Specifically, we focus on datasets consisting of multiple-choice questions, where each sample (x, y,C)
comprises a question x, a correct answer y, and a finite set of candidate choices C = {cj }2?:1, all
represented in texts. The visualization tool applies to the following models and algorithms.

Language models. To explore the landscape of thoughts generated by an LLM pym(-), it is necessary
for the model to produce diverse reasoning paths for solving a given problem. This requires the
LLM to support sampling during inference § ~ pLim(y|z,C). For chain-of-thought reasoning,
thoughts are sampled autoregressively as #; ~ prim(ts|z,C,t1,...,t;_1). Namely, each thought
t; is conditioned on the problem z, the candidate set C, and the sequence of preceding thoughts
fl, - ,12_1. To characterize intermediate states within these reasoning paths, the LLM must also
function as a likelihood estimator, enabling the computation of the probability prym (3|, C, t1,.. ., fi)
of any generation ¢. These two requirements are generally satisfied by most open-source LLMs, such
as Llama [10], Mistral [20], and DeepSeek [29]. However, proprietary LLMs, such as GPT-4 [1] and
Gemini [45], are excluded as they do not support likelihood estimation with the logits of generations.

Reasoning algorithms. While there are many approaches to solving reasoning problems with
LLMs [9, 22], this work focuses on chain-of-thought (CoT) [53] and its derivatives [62, 56], owing
to their widespread use and development. These decoding algorithms generally guide the model in
generating a structured path of intermediate reasoning thoughts before arriving at the final answer.
Note that to visualize a large number of reasoning thoughts effectively, these thoughts should be
automatically parsed into distinct units (e.g., via sentence tokenization). This requirement is typically
satisfied by most variants of CoT. We also empirically verify the robustness of our tool if this
requirement does not hold (please see Appendix D.2 for detailed experiments).

2.2 Landscape of Thoughts

Given a collection of reasoning paths generated by an LLM, our tool seeks to visualize how different
paths lead to either correct or incorrect answers within a two-dimensional (2D) space, as illustrated
in Fig. 1. A key challenge lies in the absence of a direct mapping from the textual space of thoughts
to 2D coordinates. To address this gap, we first utilize the same LLM to represent intermediate states
as numerical vectors. These state vectors are then projected into a 2D space for visualization. For
simplicity, we use the notation ¢; instead of t;, which is clear in the following.

Characterizing the states. Here, the intermediate thoughts {¢;}!, in a reasoning path naturally
define a sequence of states {s;}I'_, where so = [z] and s; = [z, t1,t2, ..., ;). Here, we propose to
characterize the states as feature vectors using the likelihood function of the LLM. Specifically, the
k-dim feature vector s; for state s; is defined as follows:

s; = [d(si, 1), d(si, ), ..., d(si, )] T, (1

where d(s;, cj) measures the distance between state s; and choice ¢;. Here, the vector s; indicates
the relative distances from the state s; to all possible choices {c; } 9?:1. To reduce the effect of length
on choices, we calculate the distance of d(s;, ¢;) through the perplexity metric [38, 32]: 2

d(si, cj) = pum(cs|si) /19, @)

1 lej

The perplexity can also be expressed as PPL(c;|s;) = exp (_\cTI 21 log pLim(c;[t]|sq, ¢;[: t}))
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where |c;| is the number of tokens in ¢;, and prim(c;|s;) is the accumulated probability in an autore-
gressive manner. We further normalize the vector s; to have a unit L1 normalization. Additionally,
to represent the choices as landmarks in the visualization, it is necessary to encode the choices as
feature vectors. Notably, the perplexity decreases as the model’s prediction confidence increases. To
align with this observation, we define the feature vector ¢; for a choice c; as:

¢ = 216G £, 1G £ KT )

For r paths, each with n states, we compute the feature vectors for all 7 - n states. > Together with the
feature vectors of k choices, we obtain a feature matrix S € RF*(rn+k) 4q:

S = [sgl),...7sg)7...,.SY),...,sg),cl,...,ck]. @)

Note that a sufficiently large number of paths is necessary to generate a comprehensive visualization
of the reasoning landscape. However, visualizing all samples in a dataset under this setting incurs
a significant computational cost. In practice, we found it more efficient to visualize d paths with %
samples projected into the same space. This approach retains much of the visualization quality while
substantially reducing the number of paths required for each sample. The key idea is to rearrange
the order of choices such that the correct answer consistently aligns with the same dimension in the
k-dimensional feature space across all the r samples.

Visualization. After constructing the feature matrix S, we project the states and choices into a
2D space for visualization. This dimensionality reduction step can be accomplished using various
existing algorithms [34, 49, 33]. In this study, we employ t-SNE [49] due to its ability to preserve the
underlying manifolds of the original high-dimensional space and its robustness to a wide range of
transformations. By applying t-SNE to the k-dim S, we obtain the 2-dim coordinates § € R?* (k)
The two axes in the landscape visualization correspond to reduced dimensions from the original
spaces. This original space captures the full answer space for problem-solving, with each state’s
coordinates reflecting its relative distance to different answers. The coordinates of the states define
a discrete density function in the 2D space. To create a more intuitive and visually interpretable
representation, we smooth this density function using a Parzen window estimator [40]. The smoothed
density at a given coordinate v is as follows, where the o controls the radius of Gaussian kernels:

1 = _ all2
p(v) = p Z exp (—|U2028|> . (5)

sc8
2.3 Maetrics

Besides the qualitative visualization, we introduce three quantitative metrics to help understand the
LLMs’ behavior. These metrics are defined based on the intermediate states in Sec. 2.2.

Consistency. To understand whether the LLM knows the answer before generating all thoughts, we
compute the consistency of state s; by checking whether s; and s,, agree

Consistency(s;) = L(argmin s; = argmin s,,). (6)
Uncertainty. To know how confident the LLM is about its predictions at intermediate steps, we
compute the uncertainty of state s; as the entropy of s; (note >, s d=1
Uncertainty(s;) = — Z d-logd. @)
des,;

Perplexity. We are also interested in how confident the LLM is about its thoughts. We use the
perplexity of thought ¢;, since it is comparable across thoughts of different length

Perplexity(t,;) = pLLM(t1'|SZ'_1)71/Iti‘. (8)
3 Results and Observations

In this section, we utilize the landscape of thoughts to analyze the reasoning behavior of LLMs.
Specifically, we conduct a comprehensive evaluation and extract several observations by comparing

3Qur tool can also be applied to paths with different numbers of states. We assume 7 states for demonstrations.
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Figure 2: Comparing the landscapes and corresponding metrics of four reasoning algorithms (using
Llama-3.1-70B on the AQuA dataset). Through the reasoning progression, spanning from early
(0-20% states) to the later stages (80-100% states), the visualization shows correct cases (bottom row
in blue) with incorrect cases (top row in red). Metrics are calculated w.x.t. each bin, e.g., 20% - 40%
of states. Note that darker regions represent a higher density of states, with ¥ indicating incorrect
answers and * marking correct answers. The accuracy of reasoning for the four subfigures is: (a)
84.4%, (b) 82.2%, (c) 75.8%, and (d) 81.6%, respectively.

the landscape of thoughts across three dimensions: (1) various reasoning algorithms in Sec. 3.1, (2)
different reasoning tasks in Sec. 3.2, and (3) diverse scales of language models in Sec. 3.3.

To help understand the qualitative visualizations, we quantitatively calculate the consistency and
uncertainty of states, as well as the perplexity of thoughts, all previously introduced in Sec. 2.3. Unless
stated otherwise, we employ Llama-3.1-70B with CoT as the default configuration in evaluations.
Note that all the visualizations are built upon the model’s estimation of their intermediate thoughts.

3.1 Comparison across Reasoning Algorithms

Setup. We evaluate the default model with four reasoning algorithms: chain-of-thought (CoT) [53],
least-to-most (LtM) [62], MCTS [61], and tree-of-thought (ToT) [56]. We run these algorithms on 50
problems randomly selected from the AQuA dataset. The corresponding landscapes are presented in
Fig. 2, which yields the following observations. Further discussion, detailed experimental settings,
and additional results can be found in Appendix B, C, and D, respectively.

Observation 3.1 (The landscapes converge faster to the correct answers are of higher reasoning
accuracy). By comparing the four groups of landscapes in Fig. 2, we observe that the states scatter
dispersedly at early stages and gradually converge to correct (or incorrect) answers in later stages.
Here, converge means the trend of a reasoning path approaching one answer. As can be seen from
Fig. 2, different reasoning algorithms present diverse landscapes. Generally, methods with more
scattered landscapes (converge slower) present lower accuracy than those that converge faster.

Observation 3.2 (Wrong paths quickly converge to wrong answers, while correct paths slowly step
to correct answers). By comparing the landscapes of failure and success paths, it is found that the
failure paths usually converge to the wrong answers at earlier states of reasoning, e.g., 20-40% states.
By contrast, the states in the success paths converge to the correct answers at later 80-100% states.
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Figure 3: Comparing the landscapes and corresponding metrics of different datasets (using Llama-
3.1-70B with CoT). Darker regions represent higher state density, with % indicating incorrect answers
and * marking the correct ones. In addition, the accuracy of reasoning for the four subfigures is: (a)
84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%, respectively.

This implies that early states of the reasoning process can lead to any potential answers (from model
perspective), while the correct answers are usually determined at the end of reasoning paths.

Observation 3.3 (Compared to failure paths, the intermediate states in correct paths have higher
consistency w.r.t. the final state). By comparing the consistency plots in Fig. 2, we found that the
model generally has low consistency between the intermediate states and the final state. Notably, the
consistency of wrong paths is significantly lower than that of correct paths. This implies that the
reasoning process can be quite unstable. Even though decoding algorithms like CoT and LtM are
designed to solve a problem directly (without explorations), the generated thoughts by these methods
do not consistently guide the reasoning path to the answer.

3.2 Comparison across Reasoning Tasks

Setup. Besides the AQuA, we include MMLU, CommonsenseQA, and StrategyQA datasets. We run
the base model with CoT on 50 problems per dataset. The observations follow are derived from the
landscapes in Fig. 3. More visualization cases can be found in Appendix E.

Observation 3.4 (Similar reasoning tasks exhibit similar landscapes). The landscapes of AQuA,
MMLU, and StrategyQA exhibit organized search behavior with higher state diversity, while Com-
monSenseQA presents concentrated search regions, reflecting direct knowledge retrieval rather than
step-by-step reasoning processes. These distinct landscape patterns demonstrate the potential to
reveal underlying domain relationships across different reasoning tasks.

Observation 3.5 (Different reasoning tasks present significantly different patterns in consistency,
uncertainty, and perplexity). The histograms in Fig. 3 show that path perplexity consistently increases
as reasoning progresses across all datasets. Specifically, different datasets, e.g., AQuA and MMLU,
show distinctly higher levels of uncertainty. As for StrategyQA, correct paths show increasing
consistency that surpasses incorrect paths at around 60% states, while incorrect paths show decreasing
consistency. However, extending beyond the typical three-step requirement [13], the later stages
(60-100% states) show increasing perplexity as well as lower uncertainty.
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Figure 4: Comparing the landscapes and corresponding metrics of different language models (with
CoT on the AQuA dataset). Darker regions represent higher state density, with ¥ indicating incorrect
answers and * marking the correct ones. In addition, the accuracy of reasoning for the four subfigures
is: (a) 15.8%, (b) 42.0%, (c) 53.2%, and (d) 84.4%, respectively.

3.3 Comparison across Language Models

Setup. In this part, we study several LLMs’ behavior across different parameter scales (1B, 3B, 8B,
and 70B). We run each model with CoT on 50 problems from the AQuA dataset. The landscapes of
these models are shown in Fig. 4. We also provide case studies on the up-to-date reasoning models [14,
46] in the Appendix E, whose behaviors are also consistent with the following observations.

Observation 3.6 (The landscape converges faster as the model size increase). As model parameters
scale from 1B to 70B, the corresponding landscape demonstrates faster convergence to the correct
answers with higher density in the last 20% states, aligning with the increasing accuracy. With more
parameters to store information, larger models can access broader knowledge [3]. This leads to more
confident solutions, demonstrated by more focused answer patterns and lower uncertainty.

Observation 3.7 (Larger models have higher consistency, lower uncertainty, and lower perplexity).
As the model size increases, the consistency increases, at the same time, the uncertainty and perplexity
decrease significantly. This also aligns with the higher accuracy for the large models.

4 Adapting Visualization to Predictive Models

One advantage of our method is that it can be adapted to a model to predict any property users
observe. Here, we show how to convert our method to a lightweight verifier for voting reasoning
paths, following the observations in Sec. 3. Note that this methodology is not limited to verifiers.
Users can use this technique to adapt the visualization tool to monitor the properties in their scenarios.

4.1 A Lightweight Verifier

Observation 3.2 and 3.3 show that the convergence speed and consistency of intermediate states
can distinguish correct and wrong paths. Inspired by these observations, we build a model f :
REFDxn 5 £0 1} to predict the correctness of a reasoning path based on the state features {s; }7_,
and consistency metric {Consistency(s; )} ;. The insight is that the state features, used to compute
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Figure 6: Demonstration of the Figure 7: Absolute accuracy changes (A Acc) with the verifier,
inference-time scaling effect of the compared to performance in Fig. 5 (without the verifier). The
verifier. We show the voting accu- verifier is trained on each column (dataset or model) and eval-
racy (%) on StrategyQA scales with uated on all rows (other datasets or models). Positive values
the number of reasoning paths. indicate improvement in accuracy with the verifier.

the 2-D visualization, encode rich location information of the states and can be used to estimate the
convergence speed. Due to the small dimensionality of these features, we parameterize f with a
random forest [5] to avoid overfitting. We use this model as a verifier to enhance LLM reasoning [8].
Unlike popular verifiers [27] that involve a moderately sized language model on textual thoughts, our
verifier operates on state features and is quite lightweight. We train a verifier on thoughts sampled
on the training split of each dataset and apply it to vote reasoning paths at test time. Given ¢ paths
sampled by a decoding algorithm, the final prediction is produced by a weighted majority voting:

q
§ =arg maxz 159 = ¢) - f({si}1,, {Consistency(s;)}7_, ). )
ceC

4.2 Experimental Results

We evaluate our numerical verifier against an unweighted voting baseline [52] with various models,
decoding algorithms, and reasoning datasets. Detailed settings and results are in Appendix C.1.

Effectiveness of the verifier. We first compare our verifier against the unweighted voting baseline,
each applied to 10 reasoning paths. As shown in Fig. 5, our verifier consistently enhances the
reasoning performance of all models and decoding algorithms, even though our verifier does not use
any pre-trained language model. Notably, smaller language models (1B and 3B) show significant
performance gains with the verifier’s assistance, achieving substantial improvements over their
original capabilities of reasoning. We also compare the verifier between reward-guided algorithms

Test-time scaling. While the improvement of the verifier seems marginal with 10 reasoning paths,
our verifier can provide a substantial performance gain with more reasoning paths. We adjust the
number of reasoning paths from 1 to 50, and plot the results of the verifier and the unweighted voting
baseline in Fig. 6. Models with our verifier exhibit significantly stronger scaling behaviors, achieving
over 65% accuracy. In contrast, the performance of the baseline saturated around 30% accuracy.
These results suggest that our state features, which are used in both the visualization tool and the
verifier, capture important information about the reasoning behavior of LLMs. Thus, the verifier can
boost test-time scaling, especially in solving complex problems.

Cross-dataset and cross-model transferability. One interesting property of the state features and
metrics is that their shape and range are agnostic to the model and dataset, suggesting that we may
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deploy the verifier trained on one dataset or model in another setting. As illustrated in Fig. 7, we
evaluate how the verifier transfers across reasoning datasets (e.g., train on AQuA and test on MMLU)
and model scales (e.g., train on 1B model and test on 70B model). We observe some positive transfers
across datasets and models. For example, a verifier trained on AQuA can improve the performance
of StrategyQA by 4.5%. A verifier trained on the 70B model also improves the performance of the
3B model by 5.5%. However, some cases do not benefit from the transferring verifiers. We leave
improving the transferability of the state features and metrics as future work.

5 Related Work

Reasoning with large language models. Chain-of-Thought (CoT) prompting [53, 25] has empow-
ered LLMs to tackle multi-step reasoning problems by generating intermediate steps before producing
a final answer. Building upon CoT, numerous methods have been proposed to address various chal-
lenges, including compositional generalization [62, 23], planning [56, 15], and rule learning [63]
within the CoT reasoning. Beyond solving reasoning tasks, CoT has also emerged as a foundational
framework for other techniques, such as fine-tuning LLMs [60], enabling LLM-based agents [57],
and facilitating test-time scaling [41]. Nevertheless, most of these approaches are developed in a
trial-and-error manner, largely due to the absence of proper tools for analyzing the CoT.

Understanding chain-of-thought reasoning. There are a few studies that explore what makes
CoT prompting effective by perturbing its exemplars. To be specific, Madaan and Yazdanbakhsh
[31] found that the text and patterns of exemplars help CoT generate sentences resembling correct
answers. Besides, Wang et al. [50] highlighted the importance of maintaining the correct order
of reasoning steps, while Ye et al. [59] demonstrated that using complementary exemplars can
enhance reasoning performance. Furthermore, CoT can benefit from longer reasoning chains, even
without new information to the prompt [21]. Another line of research investigates CoT’s general
behavior [44, 35, 36, 39]. For example, CoT heavily depends on the semantic structure of the problem
to perform reasoning [44], struggles with planning and unification in deductive reasoning [35],
has difficulty generalizing to longer reasoning paths [36], and can be easily misled by irrelevant
information in the context [39]. However, these observations are derived from specific reasoning
tasks and prompt settings, limiting their applicability to other scenarios. In contrast, we introduce a
general-purpose tool that allows users to analyze reasoning in their contexts.

Tools for analyzing chain-of-thought. To the best of our knowledge, the only existing tool for
analyzing CoT is gradient-based feature attribution [54], which computes a saliency score for each
input token based on the model’s output. However, these token-level saliency scores do not directly
capture the thought-level, multi-step reasoning process of LLMs. Consequently, the main finding
in [54] is that CoT stabilizes saliency scores on semantically relevant tokens compared to direct
prompting. Metrics designed to quantify CoT performance [6, 48] can also be used to analyze the
reasoning behaviors of LLMs. For instance, Ton et al. [48] employs information gain to identify
failure modes in reasoning paths, aligning with Observation 3.2 in this paper. However, our 2-D
visualization offers significantly deeper insights than a single information gain metric. Additionally,
the verifier derived from our tool is conceptually related to outcome-supervised reward models [8].

6 Conclusion

This paper introduces the landscape of thoughts, a visualization tool for analyzing the reasoning
paths produced by large language models with chain-of-thought. Built on top of feature vectors
of intermediate states in reasoning paths, our tool reveals several insights into LLM reasoning,
such as the relationship between convergence and accuracy, and issues of low consistency and high
uncertainty. Our tool can also be adapted to predict the observed property, which is demonstrated by
a lightweight verifier developed based on the feature vectors and our observations. We foresee that
this tool will create several opportunities to develop, understand, and monitor the LLM reasoning.

One limitation of the landscape of thoughts is its applicability only to multiple-choice tasks. Future
work could focus on adapting this tool for open-ended reasoning tasks, such as mathematical problem-
solving, code generation, and planning, where reasoning paths are less structured and more complex.
Additionally, further research could aim to make the tool more accessible by generating intuitive
visual and textual explanations, enabling non-experts to better understand and trust the reasoning
processes of LLMs. Another promising direction is the development of automated methods to detect
reasoning failures at scale, which could enhance the reliability of LLMs across diverse applications.
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A Impact Statement

Our work presents a tool for visualizing and understanding reasoning steps in large language models.
We foresee that our work will introduce more interpretability and transparency into the development
and deployment of LLMs, advancing us toward more trustworthy machine learning. However, we
must acknowledge that malicious activities can also be augmented by our tool. For example, attackers
may use this tool to find prompts that bypass the alignment safeguards in LLMs. We believe such
risks will be mitigated if this tool is widely adopted by safety researchers. Overall, the positive
societal consequences of our work outweigh the negative ones, which stem primarily from misuse.

B Further Discussions

In this section, we further discuss the challenges in developing the system for analyzing LLMs’
reasoning (Appendix B.1), followed by comparing the proposed landscape visualization technique
with the textual analysis methodology (Appendix B.2). In addition, we compare the lightweight
verifier to conventional reward-guided algorithms (Appendix B.3).

B.1 Challenges in Analyzing LLM’s Reasoning Automatically

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts
in LLMs remain inadequately understood. Traditional performance metrics, such as accuracy, provide
insufficient insights into model behavior. While human evaluation has been employed to assess
the quality of sequential thoughts (e.g., logical correctness and coherence), such approaches are
resource-intensive and difficult to scale. We identify three challenges in developing automated
analysis systems for LLMs’ reasoning:

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention maps [7,
24], probing [2, 47, 17], and circuits [12, 58], primarily operate at the token-level explanation. While

14
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these approaches offer valuable insights into model inference, they struggle to capture the emergence
of higher-level reasoning patterns from lower-level token interactions. Additionally, the discrete
nature of natural language thoughts poses challenges for traditional statistical analysis tools designed
for continuous spaces. Understanding how thought-level patterns contribute to complex reasoning
capabilities requires new analytical frameworks that can bridge this conceptual gap.

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning
have predominantly focused on correlating test questions with training data [18, 51]. This approach
becomes particularly infeasible given the reality of modern LLMs: many models are closed-source,
while some offer only model weights. Therefore, a desired analysis framework should operate across
varying levels of model accessibility.

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways
to evaluate the quality and reliability of model reasoning. This includes developing techniques to
understand reasoning paths, creating intermediate representations that capture both token-level and
thought-level patterns, and designing metrics that can assess the logical coherence and validity of
reasoning steps.

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria:
it should operate in a post-hoc manner with varying levels of model access, bridge the gap between
token-level and thought-level analysis, and provide meaningful metrics for evaluating reasoning
quality. Given the absence of tools meeting these requirements, we identify the need for a new
analytical framework that can address these challenges while providing useful insights for improving
model reasoning capabilities.

B.2 A Comparison Between Landscape Visualization and Textual Analysis

Notably, for the language model, one could manually examine the responses of individual samples,
as their responses are interpretable by humans. However, this approach has two major limitations:

Limitation 1: Lack of Scalability. Analyzing individual samples is time-consuming and labor-
intensive. In general, text-based analysis requires human evaluators to carefully read long reasoning
chains word by word. For example, if it takes 30 seconds to understand a single sample, reviewing
100 samples would require around 50 minutes of focused human effort. This burden grows quickly,
especially as researchers often repeat this process many times while developing models and methods.
In practice, researchers need quick, easily interpretable feedback like accuracy when experimenting
with changes to models and methods.

Limitation 2: Lack of Aggregation. 1t is difficult to aggregate insights across multiple samples to
understand model behavior at the dataset level. Summarizing model behavior across multiple samples
presents another challenge. Suppose one researcher has 100 reasoning chains, it is hard for him/her
to reliably synthesize the model’s overall behavior. Different researchers may arrive at different,
subjective summaries, which hinders consistency and interpretability.

By contrast, our visualization method provides a more objective and automatic way to analyze a
model, making it much easier for researchers to analyze the model’s reasoning behavior. Similar
to the t-SNE [49], the visualization enables a more comprehensive analysis of multiple reasoning
samples instead of only one sample. The visualization uniquely combines human-readable paths with
quantitative, scalable metrics for reasoning process analysis, enabling both model comparisons and
mechanistic insights beyond manual text inspection.

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot
capture. This power source bridges the gap between localized text understanding and global reasoning
behavior. Our analysis in Sec. 3 reveals insights that are not revealed by previous text-based analysis.
These insights include structural patterns across many reasoning paths, a strong correlation between
early consistency and accuracy, and model-level differences where larger models explore more
broadly than smaller ones.

B.3 A Comparison Between Lightweight Verifier and Reward-guided Algorithms

It is worth noting to mention that our goal is not to build a sophisticated verifier, but rather to
demonstrate how the feature vectors from the landscape visualization can be effectively used.
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In general, reward-guided algorithms are more computationally efficient than the path landscape.
Specifically, for a reasoning path with n thoughts and ¢ answer choices, constructing the landscape
requires n X ¢ forward passes through the reasoning model. In contrast, a reward-guided approach
typically makes a single call to a reward model that evaluates the entire reasoning chain at once.

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-
guided algorithms. Notably, for Process-Reward Models (PRMs) [30, 55], collecting high-quality
training data often requires detailed, fine-grained annotations of reasoning steps, which can be costly
and time-consuming. Moreover, training a reward model (often itself a LLM) incurs significant
computational expense. In contrast, our lightweight verifier is much more efficient to train, as it
requires no human annotations and uses easily obtainable data.

C Experiment Settings

C.1 Settings

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of LLMs. To
this end, we adopted four open-source models with varying parameter sizes, namely L1lama-3.2-1B,
Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. We repeatedly sample 10 times from the
target LLM using the same reasoning strategy as self-consistency [52].

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset
and generate reasoning paths with the setup described above. For simplicity, we compute distances
only between each state and all candidate answers. To visualize multiple samples in a shared space,
we always place the distance to the correct answer as the first element of each feature vector. This
alignment allows joint analysis across samples, as introduced in the paragraph below Equation 4. We
then aggregate feature vectors from all samples into a feature matrix (Equation 2), which is passed to
t-SNE to compute the pairwise distance between any two states and then outputs the 2D coordinate
of each state.

For training the lightweight verifier, we randomly sample 20 questions from the training split of
each dataset to obtain the feature matrix S. We extract these features using three model scales:
Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. Despite the relatively small training set,
it proves sufficient for our lightweight verifier, which we subsequently evaluate on the data for
visualization in Sec. 3.

C.2 Datasets

AQuA [28]. This dataset develops to challenge language models’ quantitative reasoning capabilities.
The AQuA presents complex algebraic word problems in a multiple-choice format, where only one is
correct. Each problem requires numerical computation, deep linguistic understanding, and logical
inference. It provides a nuanced assessment of a model’s ability to translate textual information into
algebraic reasoning.

MMLU [16]. Spanning 57 distinct academic and professional domains, MMLU provides a rigorous
test of language models’ capabilities across humanities, social sciences, hard sciences, and technical
disciplines.

StrategyQA [13]. This dataset is designed to evaluate implicit reasoning and multi-hop question
answering. The dataset is characterized by yes/no questions that demand implicit reasoning strategies.
Unlike straightforward factual queries, these questions require models to construct elaborate reasoning
paths, showing hidden logical connections.

CommonsenseQA [43]. This dataset assesses commonsense reasoning through multi-choice ques-
tions derived from the ConceptNet knowledge graph [42]. The dataset aims to test a model’s
understanding of commonsense concepts and ability to make logical inferences. However, the ques-
tions often require the model to incorporate external knowledge to select the correct answer from
plausible distractors.

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning
states, resulting in diverse but structured landscapes. CommonsenseQA, conversely, represents a
distinct domain where answers depend on static knowledge rather than emergent reasoning pathways.
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Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Obs. 3.1 (b) Verifying Obs. 3.2 and 3.6 (c) Verifying Obs. 3.4
Correct Incorrect Speed Accuracy AQUA MMLU StrategyQA g;ilslggx
CoT 1.026 0975 CoT 0322 844% AwA 10 0914 089 0859
L2M 1026  0.989 L2M 0224 822% MMLU 0914 10 0870 03843
ToT 1.004 0.987 ToT 0205 81.6% StrategyQA 0895 0870 1.0~ 0.889
MCTS 1.002 0.985 MCTS 0.198  75.8% SenseQa 0859 0843 0.889 1.0

C.3 Decoding Algorithms

Chain of Thought (CoT) [53]. CoT elicits the LLM’s reasoning capabilities by incorporating
few-shot examples that demonstrate explicit reasoning steps. It provides the model with exemplar
reasoning traces to guide its problem-solving process.

Zero-shot CoT [25]. The core idea of this prompt strategy lies in adding simple instructions, e.g.,
"Let’s think step by step." to the prompt, enabling models to generate reasoning traces without
assigned task-specific examples.

Least-to-Most (LtM) [62]. LtM is an innovative reasoning approach that systematically breaks down
complex problems into progressively simpler subproblems. This approach mirrors human cognitive
problem-solving strategies, where individuals naturally break down complex tasks into smaller, more
comprehensible parts.

Tree-of-Thought (ToT) [56]. ToT expanded this concept by creating a more sophisticated, multi-
branching reasoning framework. While CoT follows a linear path of reasoning, ToT introduces a
more dynamic exploration, allowing models to generate multiple reasoning paths simultaneously,
evaluate them, and strategically prune less promising trajectories.

Monte Carlo tree search (MCTS) [61]. MCTS is a powerful computational algorithm originally
developed for game-playing strategies, particularly in complex decision-making environments like
chess and Go. The method uses probabilistic sampling and tree exploration to systematically navigate
potential solution spaces, balancing exploring new possibilities with exploiting promising paths. We
adopt the task-agnostic node expansion and evaluation prompt from ReST-MCTS [61] to conduct our
experiment across different tasks.

Reproduction. The source code is provided in the anonymous repository: https://anonymous.
4open.science/r/landscape-of-thoughts-submission-code-3803/.

D Supplementary Results and Analysis

D.1 Statistical Verification of the Observations

In this part, we conduct extra experiments and statistically verify Obs. 3.1, 3.2, 3.4, and 3.6, while
the other Obs. 3.3, 3.5, and 3.7 have been quantitatively verified by the metrics in Sec. 2.3.

To verify Obs. 3.1, we calculate the convergence coefficient (e?) by fitting a log-linear regression
model to the sequence of distances d; between each state and the final answer as log(d;) ~ a + (41,
where « is the intercept term; [ is the slope coefficient that quantifies convergence behavior; ¢
represents the position index in the reasoning chain. Lower values of e indicate faster convergence.
For Obs. 3.2 and 3.6, we measure the speed of a reasoning path moving from start to end as

speed = % € [0, 1], where 5; represents the 2D coordinate of the state i. Whereas

Obs. 3.4, we compute pairwise histogram intersection scores of the density distributions. Lower
scores indicate greater dissimilarity between landscapes.

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while incorrect
paths show more convergence (p-value = 0.008), thus verifying Obs. 3.1. As shown in Tab. 1(b),
speed and accuracy correlate strongly (p-value = 9.421e-11), thus verifying Obs. 3.2. This is also
applicable for verifying Obs. 3.6. Tab. 1(c) shows that lower scores indicate greater dissimilarity
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(a) Demonstration of Sentence Tokenization (b) Llama-3.1 8B (c) Llama-3.1 70B

Figure 8: Demonstration of sentence tokenization methods for thoughts splitting.

Table 2: Absolute accuracy with the verifier, compared to performance in Fig. 5 (without the verifier).

(a) Across datasets (b) Across models
AQuA MMLU  StrategyQA g:;‘s‘;‘& 1B 3B 8B 70B
AQuA 63.0(+0.7) 623 (+0.0)  62.3(+0.0)  64.0 (+1.7) 1B 260 (+0.5)  27.5(+2.0)  27.5(+2.0)  275(+2.0)
MMLU 53.0(+0.0)  53.0(+0.0)  53.0(+0.0)  53.0(+0.0) 3B 455(+00)  48.0(+25) 51.0(+55)  51.0(+5.5)
StrategyQA  41.5(+4.5)  405(+3.5)  43.0(+6.0)  37.0 (+0.0) 8B 60.0(+0.0)  60.0(+0.0)  60.0(+0.0)  60.0 (+0.0)
5;’,{‘;?(5’2 540(+1.0)  53.0(+0.0)  53.0(+0.0)  54.0(+1.0) 70B 740 (+2.0)  73.0(+1.0)  72.5(+0.5)  72.5(+0.5)

between landscapes, which verifies Obs. 3.4, i.e., AQuA, MMLU, and StrategyQA are more similar,
while CommonSenseQA exhibits distinct patterns.

D.2 Robustness of Sentence Tokenization

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the
granularity of the sentence tokenization, we conduct the controlled experiment by considering two
imperfect cases in thought split, namely over-split thoughts and under-split thoughts.

Specifically, shown as Fig. § (a), compared to the original thoughts split that transform sentences to
thoughts based on the period, over-split thoughts jointly consider the comma, resulting in additional
splits. For the under-split, two adjacent thoughts are merged into one thought. We then visualize the
imperfect thought splits using CoT on AQuA following the setting in Fig. 2(a) and Fig. 4(c),

Shown in Fig. 8 (b) and (c), the landscapes are robust to the split thoughts’ information volume,
which are stable and consistent with our observations. Notably, for over-split thoughts, the states
are more visually diverse but eventually converge to the answers. Whereas under-split thoughts, the
states show a more compact pattern and exhibit a clear convergence trend toward the answer.

D.3 Absolute Performance of the Verifier

In this part, we provide the absolute performance of the experiment conducted in Fig. 7. Shown as
Tab. 2, the results demonstrate that our approach consistently provides improvements across different
domains and models.

D.4 Variants of Verifier

In this part, we extend it into a process verifier and validate its effectiveness through additional
experiments. Our lightweight verifier functions as an outcome reward model (ORM), assessing the
correctness of an entire reasoning path. Specifically, the process verifier predicts the accuracy of
each reasoning state using features from the current and all previous thoughts. State accuracy reflects
whether the current state is closer to the correct answer (measured by perplexity) than other answers.
We then aggregate these predictions across the chain to estimate overall accuracy.

Empirically, we collect the state-wise data by comparing the state features and the correct answers,
and train the process verifier. Note, we do not need to manually annotate the step-wise rewards
to train conventional PRMs. Results in Tab. 3 show that this process verifier is comparable to the
outcome verifier.
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Table 3: Performance comparison of reasoning methods across model scales on the AQuA dataset,
with and without verifiers.

Model Method Without Verifier With OQutcome Verifier With Process Verifier
CoT 0.26 0.28 0.26
L2M 0.22 0.24 0.29
Llama-3.2-1B ¢ 035 0.38 035
MCTS 0.29 0.32 031
CoT 0.46 051 0.46
L2M 0.29 031 031
Llama-3.2-3B .7 033 035 033
MCTS 0.35 0.36 035
CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
Llama-3.1-8B .y 0.50 0.53 0.50
MCTS 0.50 051 0.50
CoT 0.72 0.73 0.73
L2M 0.72 0.72 0.73
Llama-3.1-70B . ip 0.74 0.74 0.74
MCTS 0.72 0.73 0.72

D.5 Further Discussion on the StrategyQA

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer
in Fig. 3(c), is not due to our visualization method but to the unstable reasoning process in the Llama-
3.1-70B using CoT on StrategyQA. This model struggles to reliably represent its self-generated
intermediate thoughts, presenting consistency between intermediate thoughts and final predictions,
thus leading to the abnormal patterns observed.

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable
reasoning, as it fails to maintain coherent reasoning even when approaching the final answer. In
addition, the landscape exhibits the highest perplexity compared to other models, indicating low
confidence in its generated thoughts, which undermines the reliability of the estimated feature matrix
used in our visualization.

Further, we provide landscape visualizations for the same dataset using other models and methods in
Fig. 9 to Fig. 12. These landscapes do not exhibit the same abnormal density patterns, reinforcing that
the issue is specific to Llama-3.1-70B’s reasoning instability rather than a flaw in our visualization
framework.

E Visulizations

In this part, we provide the full visualization of the verifier performance and landscapes.

In Fig. 13 to Fig. 16, we visualize the average voting accuracy (%) of different LLMs reasoning
with and without verification on various datasets and methods. In Fig. 17 to Fig. 20, we display the
landscape of different models on various datasets using four methods. We also provide case studies
by visualizing the landscape with corresponding states in Fig 21 to Fig. 24.

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we
conduct experiments on the QwQ-32 B [46] and DeepSeek-R1-Distill model [14] (Llama-70 B and
Qwen-1.5 B). As shown in Fig. 25 to Fig. 27, the landscape of the reasoning model also aligns with
the observation drawn from the general-purpose model, but exhibits more complex reasoning patterns,
such as self-evaluation and back-tracking.
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Figure 9: The landscapes of the model across scales (using CoT on the StrategyQA dataset).
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Figure 10: The landscapes of the model across scales (using L2M on the StrategyQA dataset).
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Figure 11: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).
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Figure 12: The landscapes of the model across scales (using ToT on the StrategyQA dataset).
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Figure 13: Average voting accuracy (%) of reasoning with and without verification on AQuA.
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Figure 15: Average voting accuracy (%) of reasoning with and without verification on StrategyQA.
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Figure 17: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).
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Figure 18: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).
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Figure 19: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).

27



0-20% states 40-60% states 60-80% gtates 80-100% states

(b) Llama-3.1-70B with LtM on AQuA

=

0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(c) Llama-3.1-70B with ToT on AQuA

% 2 <':7\\,j 0 & A z
0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(d) Llama-3.1-70B with MCTS on AQuA

Figure 20: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).
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To solve the problem, let's 2. The perimeter of the Step 4: Substitute the Conclusion: The original

break it down into a series  other part is 66 cm Hose A fills the pool in 8  calculated value for 4/5 price of the item was
of calculations according  (perimeter of 16x and ~ hours, so its rate is 1/8 of ~ of 25 into the expression  approximately $63.32.
to the given property. 14y). the pool per hour. for the difference. The answer is A.

0-20%)states 20-40%6 states

Step 1: Start by adding 3. The minimum total Step 4: Calculate the 5. Now, divide both Based on our calculation,

the positive numbers: commission needed to population 2 years after sides by 1.2, in order the grocer likely sold

adding 45 to -30 results reach a salary of at least the initial population. to solve for C. approximately 24.4 bags

in 15 since 15> -15 $1000 is 1000. Therefore, C =360/ of flour. The answer is C.
1.2 =300.

Figure 21: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

4. Since the profit is However, the number  Step 8: Since Hose B can
Let's break down the steps  25% of the selling 6. Since we found that A= of toys cannot be a fill 1/8 of the pool per
to calculate the average price, we can calculate  1/8, we can solve for B by fraction, so we need to  hour, it can fill the entire
speed of the plane around  the total selling price substituting A into the round to the nearest pool in 8 hours. Therefore,
the square field. for all the bags sold. equation: 1/8 + B = 3/4. whole number. the answer is D.

20-40% states 60-80% [states states
To solve this problem, Step 2: To find the Step 4: Web those 7. Converting 30/70 to a The answer is C.
let's break down the time it takes for them formula values into percentage, we get
solution process into to produce 10 yo-yos, the conditional (30/70) * 100% =
clear, independent steps.  we need to consider probability formula. 42.86%.
the least common P(A/B) =P(A)/ P(B)
multiple (LCM) 9 of =0.2/0.8.

6 and 9 minutes.

Figure 22: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.
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Step 3: The total cost can

be expressed as the sum of Conclusion: The original
costs of brown and white  Next, we divide the total Step 8: Solve for x price of the item was
Let's think step by step ~ sharpeners: b X + (18 - b)  profit by the profit per using the equation approximately $63.32. The
to solve this problem. (x+1)=100. bag: $3,000 / $25 = 120. identified in step 7. answer is A

AT
E . - "* == -
0-20%/states 20-40%|states 80-100%/states

Let‘s think step by step to 3. This leaves 1 1/4 =3/4 We can represent the To find the percentage The answer is B.
solve the problem. of the pool to be filled by commission of 15% increase, we'll use the

both hoses working on the monthly sale formula: ((Increase /

together in the following as: 0.15 * total Original) 100). *

3 hours. monthly sale.

Figure 23: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Now, rewrite the two equations Therefore, the Conclusion: The original
Let's break down the in terms of 1, as follows: First ~ The total cost is 50 + resultant solution is price of the item was
problem into steps to equation is | = 66 - 2w and 32 = 82 rupees which 37.25% tea and approximately $63.32.
find the solution. second is | =48 - 2w. is less than 100. 62.75% milk. The answer is A

40-60% states

80-100%6 states

Step 1: Start by adding the ~The distance traveled on Therefore, to find the Now, we multiply the Therefore, the
positive numbers: adding  the third side is 's' total sales, we need to common prime factors answer is D)40
45 to -30 results in 15 kilometers at a speed of divide the additional and the uncommon
since 15 > -15 600 km/hr. amount by 5% (which prime factors together

is 0.05). to find the LCM.

Figure 24: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.
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‘mistake in the equation

20+40% states 40- 60% states

@ thought

Wait, but maybe | made an arithmetic
ere. Let me check the

Wait, perhaps my total cost calculation was.

division again: wrong. Let me check again.

letme check @ wait | @ make a mistake

i
options are A)27, B)81, C)90, D)98, E)110. So
according to this, the answer should be E. But the
question might be a trick here?

6D-80% slates

...perhaps the original price must be a value that
‘when discounted and sublracted by 20 gives
exactly the value needed. Let me check.

not among the options
Wlﬂuﬂ Did | make a
‘mistake sor

think again.
ukm for the number of staplers produced that.

day, which is the total N, 50 yes. The steps seem
correct.

are A} B)4.5 C)5 D)5.5 E)6.5.
Soyes, C s correct. Let me check f there was
w Hmm, yes, il ste

ppr

Figure 25: Landscape of QwQ-32B using CoT on AQuA.

‘Wat, but that can' be right because the selling
price has to cover the costs. Wait, let me check

Walt, let me check because | think | might have.
my calculations again because | think | might

made a miscalculation. Let me try another way

Walt, let me check: 1.2 times what gives 360.
Maybe | can do this step by step. 1.2 s the same

Himm, s the additonal time required fs 5(\ 3 +1)
s 615, 50 dividing by 1.2 is the same as multiplying
by 5/6.

minutes. Let me check the options given.

Butjust ly sure,
another option, say option A s $61.

Wai, ut et me check again becauss somstimes
rounding can cause issues.
21.90 divided by 0.28 more mcnmle\y

Butletme make sre |
in't make a mistake....

vn‘ that seems correct.

But walt, let me check if 234.2857 would satisfy.
the condition. Let's plug it back in.

Figure 26: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Walt, that seems quite high. Maybe | made a
mistake. Let in.

Let me check the setup. After the second pull,

the has N + 40 marbles, with 20 black i the options. s
D bkl 226 and 230. Did | make a mistake n calculation?

But wait, the problem just asks to find the multiple
of X, not provided specificall, that is divisible by,
both 9 and 12. Hmm, that seems a bit generic.
Maybe | misread. Let me check again.

Figure 27:

marbles. black marbles is
20/(N + 40) = 5% = 0.05. (EBEDEES

Perhaps | made. But perhaps |
a mistake in ‘made a mistake

in my reasoning.
Let me double-

@ thought

letme check | @ wait @ make a mistake

the
options, but | must have miscalculated. Let me
check the math once more.

Wait, perhaps | read the problem wrong. Let me
check again.

80-10C% states

So, unless | made a.
‘mistake in setting up the.
equation, which doesn't
seem so, the answer
should be 4,000, which is.
option A.

But wail, the letters in PROBLEC' each have

But none of the answer choices are given n this
different frequencies. Let me check that. e

S0, 21.90/0.28 = 77.50, but let me check that

Wait, unless the 2% is on the defective Staplers?
Let me check the problem again

decimal form. Let me.
again with this.

Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.
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