
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUBZERO: RANDOM SUBSPACE ZEROTH-ORDER OP-
TIMIZATION FOR MEMORY-EFFICIENT LLM FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) has proven effective for a variety
of downstream tasks. However, as LLMs grow in size, the memory demands for
backpropagation become increasingly prohibitive. Zeroth-order (ZO) optimization
methods offer a memory-efficient alternative by using forward passes to estimate
gradients, but the variance of gradient estimates typically scales linearly with the
model’s parameter dimension—a significant issue for LLMs. In this paper, we
propose the random Subspace Zeroth-order (SubZero) optimization to address
the challenges posed by LLMs’ high dimensionality. We introduce a low-rank
perturbation tailored for LLMs that significantly reduces memory consumption
while improving training performance. Additionally, we prove that our gradient
estimation closely approximates the backpropagation gradient, exhibits lower vari-
ance than traditional ZO methods, and ensures convergence when combined with
SGD. Experimental results show that SubZero enhances fine-tuning performance
and achieves faster convergence compared to standard ZO approaches like MeZO
across various language modeling tasks. The source code will be released publicly.

1 INTRODUCTION

Large Language Models (LLMs), such as the GPT and LLaMA series (Zhang et al., 2022; Touvron
et al., 2023), have recently demonstrated impressive capabilities in natural language processing tasks
and beyond (Solaiman et al., 2019; Achiam et al., 2023). These models utilize deep learning, particu-
larly the transformer architecture (Vaswani et al., 2017), to learn complex patterns in language data.
However, LLMs can struggle with specialized tasks that require domain-specific knowledge (Shen
et al., 2024). Fine-tuning presents an effective solution by slightly adjusting pre-trained LLMs with
domain data, enabling them to adapt to specific tasks more effectively.

For fine-tuning, first-order (FO) optimizers, such as SGD (Amari, 1993) or Adam (Kingma & Ba,
2015), are commonly used to achieve promising performance on domain datasets. However, as
LLMs grow in size, FO optimizers demand increasingly memory consumption due to the gradient
computations required by backpropagation (BP) (Zhao et al., 2024a). To enhance memory efficiency,
MeZO (Malladi et al., 2023) first introduces the zeroth-order (ZO) optimizer to LLM fine-tuning
without BP. It just needs forward passes and calculates gradient estimates using finite differences
of training loss values. Nevertheless, the variance of ZO gradient estimates linearly depends on
the perturbation dimension, which corresponds to the number of model parameters. This can
become extremely large in LLMs, resulting in significant performance degradation compared to FO
optimizers (Gautam et al., 2024; Jiang et al., 2024; Liu et al., 2024).

There are two main attempts to addressing the high variance of ZO gradient estimates. The first
approach involves increasing batch size alongside training iterations, which reduces gradient noise
and variance in ZO gradient estimates (Gautam et al., 2024; Jiang et al., 2024). However, this leads to
significant runtime and memory costs due to the large batch size in the later training stages. The second
approach focuses on perturbing fewer parameters by employing sparse parameter perturbations, such
as random and sparse pruning masks (Liu et al., 2024) and block-coordinate perturbations (Zhang
et al., 2024), or by reducing the number of trainable parameters through techniques like parameter-
efficient fine-tuning (PEFT) (Malladi et al., 2023; Zhang et al., 2024) and tensorized adapters (Yang

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0k 5k 10k 15k 20k
Steps

0.055

0.060

0.065

0.070

Co
sin

e
Si

m
ila

rit
y

MeZO
SubZero

(a) Cosine Similarity

0k 5k 10k 15k 20k
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Va
ria

nc
e

MeZO
SubZero

(b) Relative Variance

0 100 200 300
Wall-clock Time (min)

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

MeZO
SubZero
SGD

(c) Training Loss

SGD MeZO SubZero
Method

4

6

8

10

12

GP
U

M
em

or
y

(G
B)

11.28478

6.97543 6.97545

(d) Memory Cost

Figure 1: Visualization of cosine similarity E [cosine(g, ĝ)], relative variance Var
[
‖ĝ‖
]
/ ‖g‖2,

training loss, and GPU memory cost on OPT-1.3B under the prompt tuning scheme. Here, ĝ
represents the gradient estimated by MeZO or our SubZero, and g denotes the expected gradient
E[ĝ]. SubZero demonstrates reduced angle error and variance in gradient estimation, while also
accelerating convergence with minimal additional memory overhead.

et al., 2024). Recent theoretical advancements have proposed using random projections to lessen
the dimensionality dependence in ZO optimizers (Nozawa et al., 2024; Roberts & Royer, 2023;
Kozak et al., 2021) by applying low-dimensional perturbations in random subspaces. Nonetheless, a
major drawback of this approach is the need to store a huge projection matrix that scales with model
parameter dimensionality, making it impractical for fine-tuning large LLMs.

Contributions. In this work, we propose the first random Subspace Zeroth-order (SubZero) opti-
mization to tackle the challenges of high-dimensional LLM fine-tuning. We introduce a low-rank
perturbation to estimate the gradient, specifically designed for LLM architecture, leading to reduced
memory consumption and enhanced training performance. Our main contributions are as follows.

Firstly, we propose a layer-wise low-rank perturbation approach for gradient estimation, specifically
designed for fine-tuning LLMs. In each layer, we generate a low-rank perturbation matrix by
combining two column-orthogonal matrices with a Gaussian random matrix, which is then used
for gradient estimation. Unlike traditional ZO methods like MeZO (Malladi et al., 2023) which
apply non-low-rank perturbations to the entire model, our approach significantly reduces the variance
of gradient estimates and the angle error between the estimated gradient and its expectation, as
respectively shown in Fig. 1 (a) and (b). SubZero also improves upon random subspace ZO methods
like S-RGF (Nozawa et al., 2024) by using smaller and layer-specific low-rank perturbation matrices
instead of a large and model-scale projection matrix, thus cutting memory and computational costs.
Additionally, we introduce a lazy update strategy, generating perturbations periodically rather than
iteratively, further reducing overhead. Besides, we also successfully apply SubZero to four popular
LLM fine-tuning schemes, highlighting the compatibility of SubZero.

Secondly, we provide theoretical guarantees for SubZero. We first convert our gradient estimation
into an equivalent formulation, highlighting the key differences between our approach and existing
traditional ZO methods (Malladi et al., 2023), as well as random subspace ZO methods (Nozawa
et al., 2024). Then, we prove that the gradient estimated by SubZero closely approximates the
BP gradient, i.e., the ground-truth gradient, and enjoys significantly lower gradient variance than
traditional ZO methods like MeZO. Furthermore, we establish the theoretical convergence of SubZero
when combined with the SGD optimizer.

Finally, experimental results demonstrate SubZero’s superior performance and memory efficiency
compared to other ZO approaches in both full-parameter tuning and parameter-efficient fine-tuning
(PEFT) schemes, such as LoRA, prefix tuning, and prompt tuning. For instance, SubZero improves
upon MeZO by 7.1% on LLaMA-7B and by 3.2% on OPT-1.3B under full-parameter tuning and
prompt tuning, while maintaining nearly identical memory costs to MeZO.

2 RELATED WORK

Zeroth-Order Fine-Tuning. ZO optimizers utilize just two forward passes to estimate gradient
without BP. Malladi et al. (2023) first used ZO optimization to fine-tune LLMs, significantly lowering
the GPU hours and memory usage to levels similar to inference, which offers a considerable advantage
over FO optimizers. They demonstrated that LLM fine-tuning benefits from a well-structured loss

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

landscape by introducing suitable task-specific prompt templates. Convergence theories for ZO
optimization have been elaborated in both convex (Nesterov & Spokoiny, 2017; Jamieson et al.,
2012; Duchi et al., 2015) and non-convex settings (Liu et al., 2018; Ji et al., 2019). However, these
convergence rates typically increase linearly with the number of trainable parameters (Nesterov &
Spokoiny, 2017; Jamieson et al., 2012; Duchi et al., 2015; Liu et al., 2018; Ji et al., 2019).

Recently, more work in ZO has focused on improving the convergence rates and reducing gradient
estimation variance for LLM fine-tuning. Increasing batch size can diminish noise in ZO gradient
estimation (Gautam et al., 2024; Jiang et al., 2024). Perturbing a subset of model parameters also
lowers gradient variance. This approach induces sparse parameter perturbations through random
and sparse pruning masks (Liu et al., 2024) or block-coordinate perturbations (Zhang et al., 2024).
Additionally, some approaches tried to reduce trainable parameters through PEFT (Malladi et al.,
2023; Zhang et al., 2024) and tensorized adapters (Yang et al., 2024).

Random Subspace Optimization. To lessen dependence on dimensionality, some research utilizes
random projections and low-dimensional perturbations in subspaces (Nozawa et al., 2024; Roberts &
Royer, 2023; Kozak et al., 2021). However, these methods are hindered by the need to store a large
projection matrix that increases with dimensionality, making it impractical for fine-tuning LLMs.

Memory-Efficient Fine-Tuning. Fine-tuning generally employs FO optimizers like SGD (Amari,
1993) or Adam (Kingma & Ba, 2015). Various approaches have been developed to reduce the memory
cost of BP, such as sparsifying gradients (Sun et al., 2017), projecting gradients into a low-rank
subspace (Zhao et al., 2024a), and quantizing optimizer states to lower bits (Dettmers et al., 2022b;
Li et al., 2024). Additional methods to conserve activation and weight memory during forward and
backward passes include gradient checkpointing (Chen et al., 2016), FlashAttention (Dao et al., 2022),
QLoRA (Dettmers et al., 2024), and LLM.int8() (Dettmers et al., 2022a).

3 PRELIMINARIES

In this section, we introduce the most popular ZO optimization approach and existing random
subspace optimization methods.

Notations. We use a non-bold letter like a and A to denote a scalar, a boldfaced lower-case letter
like w to denote a column vector, and a boldfaced upper-case letter such as W to denote a matrix.
N (0, I) denotes a multivariate normal distribution with a zero mean vector and an identity covariance
matrix. vec(W) represents the vectorization of matrix W , which transforms W into a column vector
by stacking the columns of W vertically. A ⊗B is the Kronecker product of matrices A and B.
E[x] represents the expected value of a random variable x. Var[x] represents the variance of a
random variable x. The `2-norm of a vector x is ‖x‖ =

√∑n
i=1 x

2
i . The spectral norm of a matrix

A is ‖A‖. The Frobenius norm of a matrix A is ‖A‖F =
√
〈A,A〉. Cs,pL (S) represents the class of

s-th smooth and p-th L-smooth functions over the set S . bdiag(A1,A2, · · · ,Al) is a block diagonal
matrix with diagonal blocks A1,A2, · · · ,Al.

We are interested in fine-tuning large LLMs (Ding et al., 2023). These models typically comprise
multiple layers, with trainable parameter vectors represented as w =

[
wT

1 ,w
T
2 , . . . ,w

T
l

]T ∈ Rd,
where wi denotes the flattened parameter vector from the i-th layer and d is the number of model
parameters. Then training these models involves optimizing the following problem:

minw L(w), (1)
where L(·) denotes the loss function.

Zeroth-Order Optimization. ZO optimization is BP-free and estimates gradients via random
perturbations. A classical gradient estimator is the simultaneous perturbation stochastic approximation
(SPSA) (Spall, 1992), which is defined as

∇̂L(w;B) =
L(w + εz;B)− L(w − εz;B)

2ε
z, (2)

where L(w;B) is the loss on a minibatch B of size B uniformly sampled from the training dataset D,
z ∈ Rd represents a random perturbation sampled from N (0, Id), and ε is the perturbation scale.

The SPSA in Eqn. (2) is an unbiased gradient estimator of the desired gradient∇Ez[L(w+εz)] (Nes-
terov & Spokoiny, 2017). It only requires two forward passes to estimate the gradient and eliminates

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the need for BP computation, resulting in substantial savings in computation cost and GPU memory
usage. With this estimated gradient, it is easy to integrate with existing FO optimizers like SGD and
develop corresponding ZO optimizers, such as ZO-SGD defined as:

wt+1 = wt − ηt∇̂L(wt;Bt), (3)

where ηt > 0 is the learning rate at iteration t. To boost memory efficiency, MeZO (Malladi et al.,
2023) implements ZO-SGD via in-place operations and employs a single random seed to facilitate
efficient perturbation regeneration, significantly reducing memory overhead.

Random Subspace Optimization. Recent theoretical work (Nozawa et al., 2024; Roberts & Royer,
2023) has explored using low-dimensional perturbations in random subspaces to reduce gradient
variances and enhance convergence rates. The key to random subspace methods is the generation of
the perturbation vector z̃ within a subspace spanned by P :

z̃ = Pz, (4)

where P ∈ Rd×q is a random projection matrix with entries drawn from N (0, 1), z ∈ Rq is a
low-dimensional random perturbation vector sampled from N (0, Iq), and q < d is the dimension of
the subspace. Thus, the gradient estimator in the subspace is given as follows:

∇̂L(w,P ;B) =
L(w + εPz;B)− L(w − εPz;B)

2ε
Pz. (5)

LLMs have a large model size, and thus their training and fine-tuning parameters can be very high-
dimensional. This results in an excessively large matrix P which is q times larger than the model size
d in full-parameter tuning (Aghajanyan et al., 2021) and is also large in other fine-tuning schemes e.g.,
LoRA (Hu et al., 2022). Consequently, this approach significantly increases memory requirements
and computational complexity. Therefore, it is crucial to develop an efficient subspace construction
strategy with minimal memory consumption for LLM fine-tuning.

4 METHODOLOGY

Here we first elaborate on our SubZero, a powerful ZO framework designed for LLM fine-tuning.
Then we present how to integrate SubZero into four representative fine-tuning schemes.

4.1 RANDOM SUBSPACE OPTIMIZATION FOR LLM FINE-TUNING

Our intuition is that exploring update directions in a low-dimensional subspace may result in a
reduced variance of the estimated gradient compared to the estimation in the vanilla space as used in
MeZO. Inspired by (Zhao et al., 2024a; Nozawa et al., 2024; Roberts & Royer, 2023), we propose the
random Subspace Zeroth-order (SubZero) optimization framework tailored for LLM fine-tuning. This
framework reduces gradient estimation variance, and minimizes the memory overhead associated
with gradient estimation, such as the memory overhead caused by the projection matrix P in Eqn. (5)
used in (Nozawa et al., 2024; Roberts & Royer, 2023).

Layer-wise Random Subspace Perturbation. LLMs primarily consist of dense layers that perform
matrix multiplication. We denote the trainable parameters of the i-th layer in matrix form as
Wi ∈ Rmi×ni . Then we will explain how to design its low-rank perturbation Z̃i ∈ Rmi×ni .

We propose a low-rank perturbation strategy for model parameter matrix of each layer, contrasting
with previous random subspace methods that focus on the entire model’s parameters (Nozawa et al.,
2024; Roberts & Royer, 2023). At each iteration, we generate a low-dimensional random matrix
Zi ∈ Rr×r, where r � min{mi, ni}, and perform QR decomposition on two random matrices
to create projection matrices Ui ∈ Rmi×r and Vi ∈ Rni×r (see Algorithm 1). Both Ui and Vi
are column-orthogonal matrices. Our experiments in Table 6 indicate that using Gaussian random
projection matrices yields worse performance than using our designed column-orthogonal matrices.
Then we combine these three matrices to yield a low-rank perturbation as follows:

Z̃i = UiZiV
T
i , (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Z̃i is the perturbation matrix in a subspace spanned by Ui and Vi, and Zi represents the
low-dimensional random perturbation matrix with entries sampled from N (0, 1).

Let the model consist of l layers, with the parameter matrix set defined asW = {Wi}li=1 and the
perturbation matrix set as Z̃ = {Z̃i}li=1. Similar to Eqns. (2) and (5), we compute the loss difference:

ρ =
L(W + εZ̃;B)− L(W − εZ̃;B)

2ε
. (7)

Note that multiplying a set by a scalar means that the scalar is multiplied by each element in the
set. The addition of two sets means that the corresponding elements are added. This is only for
mathematical expression, and ρ in Eqn. (7) can be calculated by two forward passes through all the
layers in practice. Then we obtain the gradient estimate for the i-th layer as

∇̂L(Wi;B) = ρZ̃i = ρUiZiV
T
i . (8)

In Sec. 5, we analyze the effectiveness of this new gradient estimation (8). Specifically, Theorem 1
proves the close distance between our gradient estimate (8) and the vanilla gradient computed by BP
in FO methods, while Theorem 2 shows smaller variance and angle error of our gradient estimate in
Eqn. (8) compared to the gradient estimate (2) in MeZO (Malladi et al., 2023). See more theoretical
details in Sec. 5.

Then, one can use estimated gradient in (8) to replace the gradient in any FO optimizer such as SGD:

W t+1
i = W t

i − ηt∇̂L(W t
i ;Bt) = W t

i − ηtρtU t
iZ

t
iV

t
i
T
. (9)

Here we choose SGD as the default optimizer of SubZero. Theorem 3 in Sec. 5 guarantees the
convergence of SubZero with SGD as basic optimizer and gives its convergence rate. The choice
of FO optimizers is orthogonal to ZO optimization. However, some empirical work indicates that
adaptive optimizers like Adam (Kingma & Ba, 2015) do not necessarily enhance convergence of ZO
approaches during LLM fine-tuning (Zhang et al., 2024; Guo et al., 2024). Also, there are other ZO
optimizers that utilize stochastic momentum (Jiang et al., 2024) and second-order information (Zhao
et al., 2024b) to facilitate faster convergence. While SubZero can be applied with other FO and ZO
optimizers, we leave a comprehensive evaluation of these approaches for future work.

Table 1: Comparison of memory cost be-
tween SubZero and representative optimiz-
ers in full-parameter tuning scheme with
RoBERTa-large on SST-2. “Mem." repre-
sents the total GPU memory cost.
Method Mem. (GB)
SGD 6.063
MeZO (Malladi et al., 2023) 2.683
S-RGF (Nozawa et al., 2024) 23.845
SubZero 2.690

We compare the memory overhead of SubZero with
the existing random subspace method S-RGF (Nozawa
et al., 2024) using identical experimental settings,
including layer-wise perturbation and matching sub-
space dimension, with all methods utilizing the SGD
optimizer. As shown in Table 1, S-RGF’s memory
usage is roughly four times greater than SGD and 8.8
times that of MeZO (Malladi et al., 2023), while our
SubZero’s memory usage is comparable to MeZO. See
more experimental comparison on OPT-13B in Table 5
of Sec. 6.

Lazy Low-rank Subspace Update. According to Eqn. (9), at the t-th iteration, the gradient estimate
of the parameter matrix in the i-th layer, ∇̂L(W t

i ;Bt), lies within a subspace defined by the projection
matrices U t

i and V t
i . Specifically, U t

i spans the column subspace, while V t
i determines the row

subspace, with both matrices generated iteratively, leading to extra computational overhead to LLM
fine-tuning.

However, for LLM fine-tuning, enhancing the computational efficiency and the accuracy of gradient
subspace approximation is crucial. An excessively short update interval for Ui and Vi, such as
generating them iteratively, can incur high computational costs and limit exploration of the gradient
subspace they established. Conversely, a long interval may result in inaccuracies in subspace approxi-
mation and fail to capture the evolving nature of the gradient subspace. Inspired by Galore (Zhao
et al., 2024a), we propose a lazy subspace update strategy that periodically regenerates the projection
matrices Ui and Vi. Specifically, these matrices are generated at the first iteration of every T0 > 1
training iterations and remain unchanged for the subsequent T0 − 1 iterations (see lines 4-7 in
Algorithm 3). We utilize QR decomposition on two different random matrices for generating the
column-orthogonal matrices Ui and Vi, as summarized in Algorithm 1. This lazy subspace update
strategy is both efficient and effective in all our experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 GenerateProjMatrix(m,n, r)

Input: size of parameter matrix m × n,
rank r.

1: Generate random matrices R1 ∈
Rm×r and R2 ∈ Rn×r whose entries
are sampled from N (0, 1)

2: U , _← QR_Decomposition(R1)
3: V , _← QR_Decomposition(R2)
4: return U , V

Algorithm 2 PerturbParams(W,U ,V, r, ε, s)
Input: model parameter setW , projection matrix sets
U and V , rank r, perturbation scale ε, seed s.

1: Reset random number generator with seed s
2: for i = 1, 2, . . . , l do
3: Generate the perturbation matrix Zi ∈ Rr×r

whose entries are sampled from N (0, 1)
4: Wi ←Wi + εUiZiV

T
i

5: return W

Algorithm 3 SubZero
Input: parameter matrix in the i-th layer Wi ∈ Rmi×ni , i = 1, 2, . . . , l, loss L, step budget T ,

perturbation scale ε, learning rate schedule {ηt}, subspace change frequency T0, rank r.
1: for t = 0, 1, . . . , T − 1 do
2: Sample a minbatch Bt ⊂ D and a random seed st
3: for i = 1, 2, . . . , l do
4: if t mod T0 ≡ 0 then
5: U t

i ,V t
i ← GenerateProjMatrix(mi, ni, r)

6: else
7: U t

i ← U t−1
i , V t

i ← V t−1
i

8: // Note thatWt = {W t
i }li=1, U t = {U t

i }li=1, Vt = {V t
i }li=1

9: Wt ← PerturbParams (Wt,U t, Vt, r, ε, st), `t+ ← L(Wt;Bt)
10: Wt ← PerturbParams (Wt,U t, Vt, r,−2ε, st), `t− ← L(Wt;Bt)
11: Wt ← PerturbParams (Wt,U t, Vt, r, ε, st)
12: ρt←

(
`t+ − `t−

)
/(2ε)

13: Reset random number generator with seed st
14: for i = 1, 2, . . . , l do
15: Regenerate the perturbation matrix Zt

i ∈ Rr×r whose entries are sampled from N (0, 1)

16: W t+1
i ←W t

i − ηtρt
(
U t
iZ

t
iV

t
i
T
)

17: return Wt+1

SubZero maintains just three small matrices per layer: a perturbation matrix Zi ∈ Rr×r, and two
column-orthogonal matrices Ui ∈ Rmi×r and Vi ∈ Rni×r. This design enhances memory efficiency,
as r is generally much smaller than the size of the corresponding parameter matrix Wi ∈ Rmi×ni

(i.e., r � min{mi, ni}). Morover, we employ in-place operations and per-layer parameter updates to
estimate gradients and update parameters in parallel (see Appendix A.4). Consequently, SubZero uses
significantly less GPU memory than previous methods while achieving similar or better performance.
For example, fine-tuning OPT-1.3B (Zhang et al., 2022) on SST-2 (Socher et al., 2013b) using SGD
(without momentum) in full-parameter scheme as shown in Table 3, SubZero requires only 6.8GB
GPU memory, compared to 11.5GB for SGD, yielding a 1.6× improvement in memory efficiency,
similar as illustrated in Fig. 1 (d).

Now we are ready to summarize the overall algorithm of SubZero in Algorithm 3. Each training
iteration consists of three main steps. First, it obtains the projection matrices U t

i and V t
i using

Algorithm 1 or directly adopts previous ones. Next, it computes the loss value difference ρ with
Eqn. (7) by applying Algorithm 2 to perturb all parameter matrices. Finally, SubZero updates all
parameter matrices layer by layer, following Eqn. (9).

4.2 INTEGRATION INTO FINE-TUNING SCHEMES

We describe the integration of SubZero into full-parameter tuning (Aghajanyan et al., 2021) and
three promient PEFT schemes: LoRA (Hu et al., 2022), prefix tuning (Li & Liang, 2021), and
prompt tuning (Lester et al., 2021). Typically, SubZero can be easily incorporated into these fine-
tuning schemes. However, it encounters a challenge with extremely non-square parameter matrices,
which have far more rows than columns or vice versa. This issue is particularly prevalent in LoRA,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which employs two low-rank matrices Ai ∈ Rmi×k and Bi ∈ Rk×ni to approximate a full matrix
W ′

i ∈ Rmi×ni , with k � min{mi, ni}, e.g., k = 8 while min{mi, ni} = 2048 used in (Zhang
et al., 2024). Consequently, it is impossible to find a smaller rank r � k to compute the gradient
estimates of Ai and Bi using Eqn. (6), imposing a challenge when applying SubZero to this scenario.

To overcome this limitation, we propose a reshaping strategy that transforms the original non-square
matrix into an approximate square matrix. For instance, we reshape Ai ∈ Rmi×k into A′i ∈ Rm′i×k′

such that mik = m′ik
′ and m′i is close to k′. This reshaping allows us to apply Eqn. (6) to find a low-

rank perturbation with rank r significantly smaller than min{m′i, k′}, demonstrating the applicability
of SubZero in the scenario. Table 8 in Sec. 6.4 shows the effectiveness of this reshaping strategy.

5 THEORETICAL ANALYSIS

In this section, we theoretically analyze why SubZero can reduce the variance of gradient estimates
and accelerate convergence. Before the analysis, we first define some necessary notations:

P = bdiag(V1⊗U1, · · · ,Vl⊗Ul), z=[vec(Z1)T, . . . , vec(Zl)
T]T, z̃=[vec(Z̃1)T, . . . , vec(Z̃l)

T]T.

Then we first state the main theoretical results on our gradient estimation in Eqn. (8).
Theorem 1. For the gradient estimation in Eqn. (8), the following two properties hold.
a) By using gradient estimation in (8), our estimated gradient ĝε(x,P , z) is equivalent to

ĝε(x,P , z) =
f(x + εPz)− f(x− εPz)

2ε
Pz, (10)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P TP = Iq with d =
∑l
i=1mini and q = lr2.

b) Let z ∼ N (0, Iq), and f ∈ C2,2
L2

(Rd). Then we have

Φ(x) = ‖Ez[ĝε(x,P , z)]− PP T∇f(x)‖2 ≤
ε2

6
L2(q + 4)2.

See its proof in Appendix A.5. Theorem 1 (a) provides the equivalent form (10) of our gradient
estimation (8). By comparing this with the gradient estimation (5) in random subspace optimiza-
tion (Nozawa et al., 2024; Roberts & Royer, 2023), we observe significant differences. First, our
gradient estimation (10) accounts for the layer-wise structure of the network, requiring the projection
matrix P to be block-diagonal, whereas in random subspace optimization, P is not. Additionally,
our method introduces a layer-wise low-rank perturbation matrix, reflected by the block-diagonal
structure of P , with lazy updates to the column and row spaces defined by Ui and Vi. In contrast,
random subspace optimization simply requires P to be random. These distinctions highlight the key
differences between our gradient estimation and existing methods in random subspace optimization.

Theorem 1 (b) guarantees that the distance Φ(x) between the expected gradient estimate and the BP
gradient in the subspace spanned by P is small. Moreover, by setting ε = 1

q+4 , the distance Φ(x) is
bounded by a constant L2/6, independent of the parameter dimension d. This implies that the error
in our gradient estimation does not scale with the extremely high parameter dimensions of LLMs,
providing highly accurate gradient estimation—crucial for optimizing LLMs.

Next, we utilize a strictly convex quadratic loss to further analyze our gradient estimation in Eqn. (10).
This choice is motivated by the fact that, after pretraining, the LLM parameters tend to converge
toward a local minimum within a local basin, which can be well-approximated by a quadratic
loss (Neyshabur et al., 2020).
Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where H ∈ Rd×d is positive definite. We have

Ez[ĝε(x,P , z)] = PP T∇f(x), (11)

Ez[‖ĝε(x,P , z)‖2] = (q + 2)‖P T∇f(x)‖2, (12)

Ez

[
〈∇f(x), ĝε(x,P , z)〉2

‖P T∇f(x)‖2‖ĝε(x,P , z)‖2

]
=

1

q
. (13)

See its proof in Appendix A.5. Theorem 2 demonstrates several advantageous properties of our
gradient estimation on the quadratic function. First, Eqn. (11) establishes the equivalence between

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance of fine-tuning OPT-13B on SuperGLUE with various experimental settings
(with 1000 examples). AVG: average score of all tasks.

Task type ———————— classification ———————— – multiple choice – — generation —
Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP AVG.
SGD(FT) 94.9 82.3 85.7 78.4 65.3 65.8 74.2 90.0 82.4 88.0 35.5 76.6

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6 53.3
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6 62.8
LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1 52.1

MeZO(FT) 92.1 71.5 71.4 74.4 61.5 60.0 60.1 87.0 82.0 84.2 31.2 70.5
S-MeZO(FT) 92.3 76.9 75.0 76.5 61.1 58.2 63.3 87.0 71.2 77.9 31.9 70.1
SubZero(FT) 92.1 74.0 73.2 75.3 65.4 60.8 61.0 88.0 82.3 84.5 32.0 71.5
MeZO(LoRA) 92.2 74.4 69.6 75.2 64.4 59.7 58.2 87.0 82.0 82.9 31.0 70.6
S-MeZO(LoRA) 90.8 62.2 75.0 72.9 51.9 55.8 56.4 86.0 69.9 76.4 31.7 66.3
SubZero(LoRA) 93.8 75.5 71.4 76.1 65.4 60.3 60.3 89.0 81.9 83.7 31.3 71.7

the expected gradient estimation and the BP gradient within the subspace spanned by our projection
matrix P . Second, Eqn. (12) shows that, in this subspace, the variance of the gradient estimation
scales linearly with the subspace dimension q. In contrast, the variance of gradient estimation (2) in
MeZO depends linearly on the model’s parameter dimension d, which is significantly larger than q.
Finally, Eqn. (13) reveals that the expected cosine similarity between our estimated gradient and the
BP gradient within the subspace depends only on the subspace dimension q � d, indicating that our
gradient estimation provides a highly accurate parameter update direction.

Building upon the above results, we can prove the convergence of our SubZero.

Theorem 3. Let x∗ = arg minx∈Rd f(x), where f ∈ C1,1
L1

(Rd) and f is convex. Suppose Ek =

(e0, · · · , ek) where ek ∼ N (0, Iq), η = 1
4(q+4)L1

, φ0 = f(x0), φk = EEk−1
[f (xk)] , k ≥ 1 where

{xk}k>0 is the sequence generated by Algorithm 3. For a fixed P , then after N = O(qε) training
iterations, we have

1

N + 1

N∑
k=0

(φk − f∗) ≤ ε.

See its proof in Appendix A.5. Theorem 3 guarantees the convergence of our SubZero when the
projection matrix P is fixed. Note, here we follow the approach of Galore (Zhao et al., 2024a), and
assume a fixed projection matrix for simplicity. This convergence result can also be extended to cases
where the projection matrix is lazily updated. Since lazy updates involve keeping the projection fixed
over each periodic interval, we can prove convergence within each such period.

6 EXPERIMENTS

In this section, we present comprehensive experiments to evaluate the effectiveness of SubZero. We
conduct our experiments using medium-sized masked LLMs (RoBERTa-large (Liu et al., 2019)) and
large-scale autoregressive LLMs (OPT-1.3B and 13B (Zhang et al., 2022), LLaMA2-7B (Touvron
et al., 2023), and Mistral-7B (Jiang et al., 2023)). Our exploration covers full-parameter tuning
(FT) (Aghajanyan et al., 2021) and three PEFT schemes: LoRA (Hu et al., 2022), prefix tuning (Li
& Liang, 2021), and prompt tuning (Lester et al., 2021). For comparison, we include leading ZO
methods, such as MeZO (Malladi et al., 2023) and S-MeZO (Liu et al., 2024), alongside inference-
only memory-efficient baselines like zero-shot, in-context learning (ICL) (Brown et al., 2020), and
linear probing (LP) (Kumar et al., 2022). We also use the FO optimizer SGD as a benchmark. Since
appropriate prompts are critical for ZO optimization (Malladi et al., 2023; Zhang et al., 2024), all
experiments incorporate prompt templates, which are detailed in Appendix A.1.

6.1 PERFORMANCE WITH DIFFERENT EXPERIMENTAL SETTINGS

Following the settings in MeZO (Malladi et al., 2023), we evaluated SubZero using OPT-13B on
the SuperGLUE benchmark (Wang et al., 2019), which covers a diverse range of tasks, including
classification, multiple-choice, and generation, as outlined in Table 2. For each task, we randomly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance of fine-tuning LLaMA2-7B and Mistral-7B on CB, and OPT-1.3B on SST-2.

LLaMA2-7B Mistral-7B OPT-1.3B
FT LoRA Prefix Prompt FT LoRA Prefix Prompt FT LoRA Prefix Prompt

SGD 69.6 75.0 69.6 69.6 73.2 75.0 69.6 62.5 93.2 93.0 93.1 90.7

MeZO 64.3 73.2 69.6 60.7 62.5 69.6 58.3 57.1 92.3 92.8 91.6 85.9
SubZero 71.4 75.0 76.8 66.1 64.3 73.2 64.3 62.5 93.4 92.9 92.2 89.1

Table 4: Fine-tuning performance comparison between SubZero and MeZO on RoBERTa-large and
OPT-13B with non-differentiable objectives.

Model RoBERTa-large OPT-13B
Task SST-2 SST-5 SNLI MNLI SQuAD
Zero-shot 79.0 35.5 50.2 48.8 46.2
Cross entropy (Adam) 93.9 55.9 88.7 83.8 84.2

Cross entropy (MeZO) 92.9 53.2 83.0 77.0 84.2
Cross entropy (SubZero) 92.9 54.0 84.7 77.1 84.5
Accuracy/F1 (MeZO) 92.4 46.5 81.9 73.9 80.2
Accuracy/F1 (SubZero) 92.7 47.1 83.0 74.8 81.1

sampled 1000 examples for training, 500 for validation, and 1000 for testing. The ZO methods were
applied to both full-parameter tuning (FT) and LoRA fine-tuning schemes, running for 20K steps.

Table 2 presents the key findings, highlighting the best-performing ZO method in bold. The results
show that ZO techniques significantly outperform baseline approaches like zero-shot, in-context
learning, and linear probing, underscoring their ability to enhance a pre-trained model’s performance
on downstream tasks.

From Table 2, one can also observer that SubZero consistently surpasses MeZO across all tasks
and fine-tuning methods. For instance, SubZero boosts MeZO’s accuracy from 61.1% to 65.4%
on the WSC task (+4.3%) under FT, and from 58.2% to 60.3% on MultiRC using LoRA (+2.1%).
S-MeZO demonstrated competitive performance on several classification tasks. However, SubZero
outperformed S-MeZO in 6 out of 11 tasks with FT and 9 out of 11 tasks with LoRA. Additionally,
SubZero’s average score across all tasks was higher than S-MeZO’s, which displayed inconsistent
performance due to its selective parameter masking based on pre-determined thresholds—an approach
that lacked robustness in practice. Moreover, S-MeZO’s performance in the LoRA scheme was
particularly poor, highlighting the need for more adaptive sparse masking strategies.

We further extended our evaluation of SubZero using OPT-1.3B, LLaMA2-7B, and Mistral-7B in FT
and three PEFT schemes: LoRA, prefix tuning, and prompt tuning. As shown in Table 3, SubZero
outperformed MeZO across all models and fine-tuning schemes. Notably, while MeZO struggled
in the prompt tuning scheme, SubZero excelled, achieving performance levels that closely matched
those of the SGD optimizer.

6.2 PERFORMANCE WITH NON-DIFFERENTIABLE OBJECTIVES

Following MeZO (Malladi et al., 2023), we respectively apply SubZero to fine-tune RoBERTa-large
and OPT-13B using two non-differentiable objectives: accuracy and F1. As a baseline, we also report
results using the cross-entropy objective with Adam. As shown in Table 4, SubZero consistently
outperforms MeZO across both non-differentiable objectives and the cross-entropy benchmark,
demonstrating its effectiveness across varying optimization goals.

6.3 MEMORY USAGE AND WALL-CLOCK TIME ANALYSIS

Table 5 compares the memory consumption and wall-clock time of ZO methods (MeZO and SubZero),
SGD, and inference-only approaches (zero-shot and in-context learning (ICL)) using OPT-13B. Since
inference-only methods do not involve fine-tuning, they have zero wall-clock time and their memory
usage reflects only the inference load. For fine-tuning, all methods were run for 20K steps. The
ZO methods, including SubZero, achieved over a 1.8× reduction in memory usage compared to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

SGD. Notably, SubZero’s memory footprint closely aligns with MeZO’s, while offering improved
performance.

Although SubZero introduces additional computational overhead for generating projection matrices
via QR decomposition, this extra time represents less than 5% of the total wall-clock time. It is
important to note that due to differences in how steps are defined between ZO methods and SGD,
direct wall-clock time comparisons between the two are not entirely meaningful.

Table 5: Memory usage (GB) and wall-clock time (minutes) of fine-tuning OPT-13B, with SGD’s
batch size being 8 for SQuAD and 16 for other tasks.

Task SST-2 WIC SQuAD
Method Mem. Time Mem. Time Mem. Time
Zero-shot/ICL 24.2 0 24.8 0 27.2 0
SGD(FT) 48.9 190.3 48.9 257.3 122.7 623.7

MeZO(FT) 26.1 324.9 26.6 370.5 37.4 670.2
SubZero(FT) 26.5 337.3 27.1 385.3 37.8 690.5

MeZO(LoRA) 26.1 123.9 26.6 171.6 37.4 476.7
SubZero(LoRA) 26.1 130.3 26.6 179.7 37.4 486.5

6.4 ABLATION STUDY

We conducted a thorough investigation of the effectiveness of our proposed techniques. Table 6
shows that using a column-orthogonal projection matrix significantly outperforms a Gaussian random
projection matrix, primarily due to the low-rank structure of the perturbation matrices. This low-rank
perturbation is key to improving the quality of gradient estimation.

Next, Table 7 explores the effects of subspace rank r and update frequency T0 in Algorithm 3. The
results demonstrate that SubZero is robust to variations in the subspace rank. However, performance
drops sharply when the update frequency is too low, as the optimization becomes constrained to a
single subspace for too long, limiting its adaptability.

Finally, Table 8 underscores the critical role of the reshaping strategy for handling highly non-square
perturbation matrices, essential for ensuring effective perturbations in different layers of the model.
Together, these results highlight the improvements brought by our design choices, particularly in terms
of projection and reshaping strategies, and their impact on SubZero’s robustness and performance.

Table 6: Orthogonal or ran-
dom projection matrix.
Dataset Ortho. Accuracy

RTE 7 67.5
3 74.0

WSC 7 59.6
3 65.1

Table 7: Subspace change
frequency T0 and rank r.
T0 \ r 32 64 128

500 72.6 70.0 72.2
1000 73.6 71.8 74.0
2000 72.2 73.3 72.2

20000 70.4 71.1 68.6

Table 8: Reshaping strategy for
non-square matrices on SST-2 with
OPT-1.3B in PEFT schemes.

Method LoRA Prefix Prompt

MeZO 92.8 91.6 85.9
SubZero(w/o) 92.1 89.4 74.2
SubZero(w/) 92.9 92.2 89.1

7 CONCLUSION

We have demonstrated that SubZero effectively fine-tunes large LLMs across various tasks and
schemes with a memory cost comparable to that of inference. Extra experiments indicate that
SubZero can optimize non-differentiable objectives. Our theory explains how SubZero reduces the
variance of gradient estimates and accelerates convergence.

Limitation. In addition to the SGD optimizer, we have yet to explore combining SubZero with other
first-order optimizers, such as Adam. While SubZero is also compatible with other memory-efficient
techniques like parameter quantization (Li et al., 2024), we have not thoroughly investigated the
practical effects of these combinations. We will leave these explorations for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics and the International Joint Conference on Natural Language
Processing, pp. 7319–7328, 2021.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):
185–196, 1993.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth PASCAL recognizing
textual entailment challenge. In Proceedings of the Second Text Analysis Conference, 2009.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 632–642, 2015.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, pp. 1877–1901, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv:1604.06174, 2016.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Proceedings of the International Conference on Machine Learning Challenges: Eval-
uating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entailment,
2005.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung 23,
2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022a.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In Proceedings of the International Conference on Learning Representations, 2022b.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 2368–2378, 2019.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. In Proceedings of the International
Conference on Machine Learning, 2024.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, 2007.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of LLMs with extreme
sparsity. arXiv:2406.02913, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of the
International Conference on Learning Representations, 2022.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
Advances in Neural Information Processing Systems, 25, 2012.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In Proceedings of the International Conference on
Machine Learning, pp. 3100–3109. PMLR, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7B. arXiv:2310.06825, 2023.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi
Liu, and Xiaobao Song. ZO-AdaMU optimizer: Adapting perturbation by the momentum and
uncertainty in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 18363–18371, 2024.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 252–262, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. A stochastic subspace approach
to gradient-free optimization in high dimensions. Computational Optimization and Applications,
79(2):339–368, 2021.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. In Proceedings of the International
Conference on Learning Representations, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pp. 3045–3059, 2021.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Proceedings of the International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics and the
International Joint Conference on Natural Language Processing, pp. 4582–4597, 2021.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse MeZo:
Less parameters for better performance in zeroth-order LLM fine-tuning. arXiv:2402.15751, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Yurii Nesterov. Lectures on Convex Optimization. Springer, 2nd edition, 2018.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
Advances in Neural Information Processing Systems, 33:512–523, 2020.

Ryota Nozawa, Pierre-Louis Poirion, and Akiko Takeda. Zeroth-order random subspace algorithm
for non-smooth convex optimization. arXiv:2401.13944, 2024.

Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1267–1273, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Lindon Roberts and Clément W Royer. Direct search based on probabilistic descent in reduced
spaces. SIAM Journal on Optimization, 33(4):3057–3082, 2023.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In Proceedings of the AAAI Spring Symposium
Series, 2011.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolo Fusi. Tag-LLM:
Repurposing general-purpose LLMs for specialized domains. In Proceedings of the International
Conference on Machine Learning, pp. 44759–44773, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2013a.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, 2013b.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv:1908.09203, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation for
accelerated deep learning with reduced overfitting. In Proceedings of the International Conference
on Machine Learning, pp. 3299–3308, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. arXiv: 1905.00537, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018.

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios Mouchtaris, and Zheng Zhang. AdaZeta:
Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-
tuning. arXiv:2406.18060, 2024.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
ReCoRD: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint 1810.12885, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In
Proceedings of the International Conference on Machine Learning, pp. 59173–59190, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings of
the International Conference on Machine Learning, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order fine-
tuning without pain for LMMs: A Hessian informed zeroth-order optimizer. arXiv:2402.15173,
2024b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPT TEMPLATES

For autoregressive LLMs, we have three task types: classification, multiple-choice, and question
answering. We adopt the prompt templates for various tasks in (Malladi et al., 2023), which are
summarized in Table 9. For masked LLMs, we also adopt the prompt templates in (Malladi et al.,
2023) and present them in Table 10.

Table 9: The prompt templates used in the OPT-1.3B, OPT-13B, LLama2-7B, and Mistral-7B
experiments.

Task Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes or No

CB cls. Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sentence1>
<sentence2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 10: The prompt templates used in RoBERTa-large experiments. C is the number of classification
categories.

Task C Type Prompt

SST-2 2 sentiment cls. <sentence1> It was great/terrible
SST-5 5 sentiment cls. <sentence1> It was great/good/okay/bad/terrible
MNLI 3 NLI <sentence1> ? Yes/Maybe/No , <sentence2>
SNLI 3 NLI <sentence1> ? Yes/Maybe/No , <sentence2>

A.2 DATASETS

Following (Malladi et al., 2023), we use SuperGLUE (Wang et al., 2019) for OPT experiments,
including BoolQ (Clark et al., 2019), CB (de Marneffe et al., 2019), COPA (Roemmele et al., 2011),
MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018), RTE (Dagan et al., 2005; Bar Haim

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), WiC (Pilehvar & Camacho-Collados,
2019), and WSC (Levesque et al., 2012). We also utilize SST-2 (Socher et al., 2013a) and two
question answering (QA) datasets, SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019).

For LLama2-7B and Mistral-7B, we use CB (de Marneffe et al., 2019) in the full-parameter tuning
and three PEFT schemes. For OPT-1.3B, we utilize SST-2 (Socher et al., 2013a) in the full-parameter
tuning and three PEFT schemes.

For RoBERTa-large, we consider classification datasets: SST-2 (Socher et al., 2013a), SST-5 (Socher
et al., 2013a), MNLI (Williams et al., 2018), and SNLI (Bowman et al., 2015). Following Malladi
et al. (2023), the test set has 1000 examples for fast iteration, while we have 512 examples per class
for both training and validation.

A.3 HYPERPARAMETERS

Using a larger batch size can consistently reduce the variance in ZO optimization, thus enhancing
fine-tuning performance (Malladi et al., 2023; Gautam et al., 2024; Yang et al., 2024). However, this
increase in batch size also raises the time for forward passes and significantly elevates memory usage.
We focus on developing ZO methods that minimize variance and improve performance with small
batch sizes, with a default setting of 16. In some SGD experiments, like on MultiRC and SQuAD,
the batch size is reduced to 8 due to limited GPU resources.

Consistent with previous studies (Malladi et al., 2023; Zhang et al., 2024; Liu et al., 2024; Yang et al.,
2024), we employ SGD without momentum by default to maintain memory efficiency. SGD utilizes
linear learning scheduling, while all ZO methods apply a constant learning rate, with weight decay
set to 0.

For RoBERTa, we run Adam for 1K steps and ZO methods for 100K steps. In the rest experiments,
we run Adam for 5 epochs and SGD and ZO methods for 20K steps.

We follow previous work to set the hyperparameters in the PEFT schemes (Malladi et al., 2023;
Zhang et al., 2024). For LoRA, the rank is set to 8 and α is set to 16. For prefix tuning, the length of
prefix tokens is set to 5, and we initialize these tunable representations by randomly sampling tokens
from the vocabulary and then passing them through the LLM to get their keys and values at different
attention layers. For prompt tuning, the length of prompt virtual tokens is set to 10, and the prompt
tokens are initialized with actual token values from the model’s embedding.

We present the hyperparameter search grids in Tables 11 and 12 to assist with result reproduction.
For OPT-1.3B, we utilize the same hyperparameter settings as in Table 12. For Roberta-large, we use
a learning rate of {1e-6, 5e-6} and ε=1e-3 for MeZO and SubZero, with a batch size of 64. The rank
for SubZero is set to {8, 16, 24}, and subspace change frequency is adjusted to {1000, 2000}.

A.4 IMPLEMENTATION DETAILS

We use one A800 GPU with the PyTorch 2.1.0+CUDA 11.8 framework for ZO methods and, if
needed, two A800 GPUs for SGD.

The gradient estimation in SubZero is applicable to parameter matrices, while LLMs mainly consist
of dense layers. For other trainable parameters, such as biases and layer normalization parameters,
we recommend using the gradient estimation in MeZO (Malladi et al., 2023), as these layers contain
fewer parameters.

We introduce two useful strategies to implement our SubZero efficiently in memory.

In-place Operation. As indicated in Eqn. (7), directly computing the loss difference ρ requires
twice the memory of inference, as it must store both the parameter matrix setW and the perturbation
matrix set Z̃ . To mitigate this, we draw inspiration from MeZO and utilize in-place operations. By
employing the random seed trick, we store a random seed to compute ρ (see lines 9-12 in Algorithm 3
and Algorithm 2) and regenerate the low-dimensional perturbation matrices Z1,Z2, · · · ,Zl (see line
15 in Algorithm 3). Consequently, the memory cost for fine-tuning with SubZero is nearly equivalent
to that of inference (see Table 1 and Table 5).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: The hyperparameter search grids for OPT-13B. For each task, we run 20K steps for ZO
methods (MeZO, S-MeZO, and SubZero) and 5 epochs for SGD. We record the best model checkpoint
based on the validation loss every 500 training steps.

Experiment Hyperparameters Values

MeZO(FT)
batch size 16

learning rate {1e-7, 2e-7, 5e-7, 1e-6}
ε 1e-3

MeZO(LoRA)
batch size 16

learning rate {1.5e-5, 3e-5, 5e-5}
ε 1e-3

S-MeZO(FT) batch size 16
learning rate {1e-6, 5e-6}

ε 1e-3
sparse rate 0.75

S-MeZO(LoRA) batch size 16
learning rate {5e-5, 1e-4, 1e-3}

ε 1e-3
Sparse rate 0.75

SubZero(FT)
batch size 16

learning rate {1e-7, 2e-7, 5e-7, 1e-6}
ε 1e-3

rank {32, 64, 128, 256 }
subspace change frequency {500, 1000, 2000}

SubZero(LoRA)
batch size 16

learning rate {1.5e-5, 3e-5, 5e-5}
ε 1e-3

rank {4, 8, 16}
subspace change frequency {500, 1000, 2000}

SGD(FT) batch size 16
Learning rate {1e-4, 1e-3, 5e-3}

Per-layer Weight Update. FO optimizers update all model parameters after BP by storing the
entire gradients in memory. In contrast, ZO optimizers like SubZero calculate gradient estimates by
first determining the loss value difference from two forward passes, then calculating the gradient
estimate for each layer using this difference along with the layer’s perturbation. To reduce memory
usage during training, we can implement the parameter update with optimizer.step() after
calculating the gradient estimate for each layer.

SubZero significantly reduces GPU memory consumption with the two implementation strategies. It
should note that we use the per-layer weight update strategy for MeZO in all experiments.

To simplify hyperparameter tuning, we employ a norm alignment trick, allowing SubZero to directly
utilize hyperparameter settings, such as the learning rate, from MeZO (Malladi et al., 2023). For a
random perturbation matrix Z ∈ Rm×n, and its low-rank approximation is Ẑ = UZ ′V T, where
U ∈ Rm×r, V ∈ Rn×r, and Z ′ ∈ Rr×r. If Z and Z ′ are Gaussian random matrices, and U and V
are column-orthogonal matrices, then we have:

E[‖Z‖F] =

√
m× n
r2

E
[
‖Ẑ‖F

]
.

Define µ =
√

m×n
r2 . Let MeZO’s learning rate be η and perturbation scale be ε. There are two equiv-

alent approaches to obtain the perturbation for SubZero. The first approach involves multiplying the
random low-dimensional perturbation matrix by µ, with SubZero adopting MeZO’s hyperparameters

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 12: The hyperparameter search grids for LLama2-7B and Mistral-7B. For each task, we run
20K steps for ZO methods (MeZO and SubZero) and 5 epochs for SGD. We record the best model
checkpoint based on the validation loss every 500 training steps.

Experiment Hyperparameters Values

MeZO(FT)
batch size 16

learning rate {1e-7, 5e-7, 1e-6}
ε 1e-3

MeZO(LoRA)
batch size 16

learning rate {1e-6, 5e-6, 1e-5, 3e-5}
ε 1e-3

MeZO(Prefix)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-1

MeZO(Prompt)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-1

SubZero(FT)
batch size 16

learning rate {1e-7, 5e-7, 1e-6}
ε 1e-3

rank {24, 48}
subspace change frequency 1000

SubZero(LoRA)
batch size 16

learning rate {1e-6, 5e-6, 1e-5, 3e-5}
ε 1e-3

rank {4, 8}
subspace change frequency 1000

SubZero(Prefix)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-1

rank {4, 8}
subspace change frequency 1000

SubZero(Prompt)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-1

rank {16, 24}
subspace change frequency 1000

SGD(FT) batch size 16
Learning rate {1e-5, 1e-4, 1e-3, 5e-3}

directly: η′ = η and ε′ = ε. The second approach keeps the random low-dimensional perturbation
matrix fixed and sets SubZero’s learning rate and perturbation scale as follows:

η′ = ηµ2, ε′ = εµ.

We argue that norm alignment is crucial for SubZero, as changing the rank r affects the norm of the
gradient estimate, complicating the fine-tuning of the associated learning rate.

S-MeZO (Liu et al., 2024), a new ZO method, aims to improve MeZO’s performance and convergence
speed. However, its source code and detailed layer-wise hyperparameter configurations have not been
released. Yang et al. (2024) reproduce S-MeZO using a fixed sparsity ratio for each layer, selected
based on the best overall result shown in Fig. 6 of their paper. So we perform S-MeZO with this
non-official implementation code available at https://github.com/yifanycc/AdaZeta.

18

https://github.com/yifanycc/AdaZeta

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 PROOFS

In practice, SubZero employs smaller and layer-specific low-rank perturbation matrices instead
of a large model-scale projection matrix. However, it is more convenient to prove SubZero’s
properties using a model-scale projection. Fortunately, the following lemma shows that the low-rank
perturbation matrix for each layer can be represented as a layer-scale projection matrix, which is
column orthogonal.

Lemma 1. Let Z̃ = UZV T, where U ∈ Rm×r,Z ∈ Rr×r,V ∈ Rn×r, and UTU = V TV = Ir.
Then we have vec(Z̃) = P vec(Z) and P TP = Ir2 , where P = V ⊗U .

Proof. Since vec(UZV T) = (V ⊗U)vec(Z), we only need to show (V ⊗U)T(V ⊗U) = Ir2 .
In fact

(V ⊗U)T(V ⊗U) = (V T ⊗UT)(V ⊗U) = (V TV)⊗ (UTU) = Ir ⊗ Ir = Ir2 .

The proof is completed.

We can also demonstrate that the low-rank perturbation matrices across all layers can be represented
as a model-scale projection matrix. We first give the following lemma.
Lemma 2. Let a block diagonal matrix P = bdiag(P1,P2, · · · ,Pl) and z̃i = Pizi, where
P T
i Pi = Ir2 and i = 1, 2, . . . , l. Then we have z̃ = Pz, where z̃ = [z̃T

1 , . . . , z̃
T
l]T, z = [zT

1 ,
. . . , zT

l]T and P TP = Ilr2 .

Proof. It is easy to check that z̃ = Pz. Besides, we have

P TP = bdiag(P T
1 , . . . ,P

T
l)bdiag(P1, . . . ,Pl) = bdiag(P T

1 P1, . . . ,P
T
l Pl) = Ilr2 .

The proof is completed.

We may define P = bdiag(V1 ⊗ U1,V2 ⊗ U2, · · · ,Vl ⊗ Ul) that satisfies P TP = I , z =

[vec(Z1)T, vec(Z2)T, . . . , vec(Zl)
T]T, and z̃ = [vec(Z̃1)T, vec(Z̃2)T, . . . , vec(Z̃l)

T]T. Then ac-
cording to Lemma 2, the perturbation vector of SubZero is z̃ = Pz, which is similar as existing
random subspace methods in Eqn. (4), but with SubZero’s projection matrix being block diagonal
and column orthogonal.

To prove Theorem 1 and Theorem 2, we first introduce some definitions and lemmas about Gaussian
distribution.
Defination 1. We say z is a standard n-dimensional Gaussian vector (denote by z ∼ N (0, In)), if
its probability density function p(z) = 1

κe
− 1

2‖z‖
2

, where κ > 0 satisfies
∫
Rn

1
κe
− 1

2‖z‖
2

dz = 1.

Defination 2. Let z ∼ N (0, In). We say x is a chi-square random variable with degrees of freedom
n (denote by x ∼ χ2(n)), if x = ‖z‖2.

Lemma 3. Let z ∼ N (0, In). For any orthogonal (n× n)-matrix Q and continuous function f , we
have Ez[f(z)] = Ez[f(Qz)].

Lemma 4. If x ∼ χ2(n), then we have

Ex[x] = n, Varx[x] = 2n.

Lemma 5. (Nesterov & Spokoiny, 2017) Let f ∈ C2,2
L2

(Rn). Then for all x,y ∈ Rn, we have

|f(y)− f(x)− 〈∇f(x),y − x〉 − 1

2
〈∇2f(x)(y − x),y − x〉| ≤ L2

6
‖y − x‖3.

Lemma 6. (Nesterov & Spokoiny, 2017) Let z ∼ N (0, In). For 0 ≤ t ≤ 2, we have

Ez[‖z‖t] ≤ nt/2.

For t ≥ 2, we have

nt/2 ≤ Ez[‖z‖t] ≤ (n+ t)t/2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma 7. Let z ∼ N (0, In). For all y ∈ Rn, we have

Ez[‖〈y, z〉z‖2] = (n+ 2)‖y‖2.

Proof. Note that for any orthogonal (n× n)-matrix Q, we have

‖〈y,Qz〉Qz‖2 = ‖〈QTy, z〉z‖2, ‖QTy‖ = ‖y‖.

In accordance with Lemma 3, we can set y = [1, 0, . . . , 0]T, and only need to prove Ez[‖〈y, z〉z‖2] =
n+ 2. Equipped with Lemma 4, we get

Ez[‖〈y, z〉z‖2] = Ez

[
n∑
i=1

z2
1z

2
i

]
=

n∑
i=1

Ez[z2
1z

2
i] = Ez1

[z4
1] + Ez1

[z2
1]

n∑
i=2

Ez[z2
i] = n+ 2.

The proof is completed.

Theorem 1. For the gradient estimation in Eqn. (8), the following two properties hold.
a) By using gradient estimation in (8), our estimated gradient ĝε(x,P , z) is equivalent to

ĝε(x,P , z) =
f(x + εPz)− f(x− εPz)

2ε
Pz, (10)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P TP = Iq with d =
∑l
i=1mini and q = lr2.

b) Let z ∼ N (0, Iq), and f ∈ C2,2
L2

(Rd). Then we have

Φ(x) = ‖Ez[ĝε(x,P , z)]− PP T∇f(x)‖2 ≤
ε2

6
L2(q + 4)2.

Proof. a) Evidently, the conclusion is established based on Lemma 1 and Lemma 2.

b)

Let az(τ) = f(x + τz)− f(x)− τ〈∇f(x), z〉 − τ2

2 〈∇
2f(x)z, z〉. Lemma 5 implies that

|az(±ε)| ≤ ε3

6
L2‖z‖3.

Note that

Ez[ĝε(x,P , z)]− PP T∇f(x)

=
P

2κε

∫
Rq

[f(x + εPz)− f(x− εPz)− 2ε〈∇f(z),Pz〉]ze− 1
2‖z‖

2

dz.

Therefore, in accordance with Lemma 6, we have

‖Ez[ĝε(x,P , z)]− PP T∇f(x)‖

≤ 1

2κε

∫
Rq

|f(x + εPz)− f(x− εPz)− 2ε〈∇f(z),Pz〉|‖z‖e− 1
2‖z‖

2

dz

=
1

2κε

∫
Rq

|aPz(ε)− aPz(−ε)|‖z‖e− 1
2‖z‖

2

dz

≤ ε2L2

6κ

∫
Rq

‖z‖4e− 1
2‖z‖

2

dz ≤ ε2

6
L2(q + 4)2.

The proof is completed.

Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where H ∈ Rd×d is positive definite. We have

Ez[ĝε(x,P , z)] = PP T∇f(x), (11)

Ez[‖ĝε(x,P , z)‖2] = (q + 2)‖P T∇f(x)‖2, (12)

Ez

[
〈∇f(x), ĝε(x,P , z)〉2

‖P T∇f(x)‖2‖ĝε(x,P , z)‖2

]
=

1

q
. (13)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. It is easy to check that ĝε(x,P , z) = P 〈P T∇f(x), z〉z. Thus we have Ez[ĝε(x,P , z)] =
PP T∇f(x). Combined with Lemma 7, we get Ez[‖ĝε(x,P , z)‖2] = (q + 2)‖P T∇f(x)‖2. Note
that for any orthogonal (q × q)-matrix Q, we have

Ez

[
〈∇f(x), ĝε(x,P , z)〉2

‖P T∇f(x)‖2‖ĝε(x,P , z)‖2

]
= Ez

[
〈P T∇f(x), z〉2

‖P T∇f(x)‖2‖z‖2

]
= Ez

[
〈P T∇f(x),Qz〉2

‖P T∇f(x)‖2‖Qz‖2

]
= Ez

[
〈QTP T∇f(x), z〉2

‖QTP T∇f(x)‖2‖z‖2

]
.

In accordance with Lemma 3, we can set P T∇f(x) = [1, 0, . . . , 0]T. Thus we have

Ez

[
〈∇f(x), ĝε(x,P , z)〉2

‖P T∇f(x)‖2‖ĝε(x,P , z)‖2

]
= Ez

[
z2
1

‖z‖2

]
=

1

q
.

The proof is completed.

Lemma 8. Let h(y) = f(x + Py), where f ∈ C1,1
L1

(Rd) and f is convex, and P TP = I , then we
have h ∈ C1,1

L1
(Rq) and h is convex.

Proof. Note that convexity is an affine-invariant property (Nesterov, 2018), if f is convex, we can
obtain that h is also convex.

The following proves that if f is first L1-smooth, then h is also first L1-smooth. For any y1 ∈ Rq
and y2 ∈ Rq , we have

‖∇h(y1)−∇h(y2)‖ =
∥∥P T∇(f(x + Py1)− P T∇(f(x + Py2)

∥∥
≤
∥∥P T

∥∥ ‖∇(f(x + Py1)−∇(f(x + Py2)‖
≤ L1 ‖P (y1 − y2)‖
= L1 ‖y1 − y2‖

The proof is completed.

Theorem 3. Let x∗ = arg minx∈Rd f(x), where f ∈ C1,1
L1

(Rd) and f is convex. Suppose Ek =

(e0, · · · , ek) where ek ∼ N (0, Iq), η = 1
4(q+4)L1

, φ0 = f(x0), φk = EEk−1
[f (xk)] , k ≥ 1 where

{xk}k>0 is the sequence generated by Algorithm 3. For a fixed P , then after N = O(qε) training
iterations, we have

1

N + 1

N∑
k=0

(φk − f∗) ≤ ε.

Proof. In accordance with Lemma 8, we can transform the original problem f ∈ C1,1
L1

(Rd) into
h ∈ C1,1

L1
(Rq) through affine transformation h(y) = f(x+Py). The subsequent convergence proof

can directly refer to Theorem 8 in (Nesterov & Spokoiny, 2017).

The proof is completed.

21

