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Abstract

Chaotic dynamics, commonly seen in weather systems and fluid turbulence, are1

characterized by their sensitivity to initial conditions, which makes accurate predic-2

tion challenging. Recent approaches have been focused on developing data-driven3

models that preserve invariant statistics over long horizons since many chaotic4

systems observe dissipative behaviors and ergodicity. Although these methods5

have shown empirical success, many of the models are still prone to generating6

unbounded trajectories, leading to invalid statistics evaluation. In this paper, we7

propose a novel neural network architecture that simultaneously learns a dissipa-8

tive dynamics emulator that guarantees to generate bounded trajectories and an9

energy-like function that governs the dissipative behavior. More specifically, by10

leveraging control-theoretic ideas, we derive algebraic conditions based on the11

learned energy-like function that ensure asymptotic convergence to an invariant12

level set. Using these algebraic conditions, our proposed model enforces dissipativ-13

ity through an explicit convex quadratic projection layer, which provides formal14

trajectory boundedness guarantees. Furthermore, the invariant level set provides15

an outer estimate for the strange attractor, which is known to be very difficult16

to characterize due to its complex geometry. We demonstrate the capability of17

our model in producing bounded long-horizon trajectory forecasts that preserve18

invariant statistics and characterizing the attractor, for chaotic dynamical systems19

including Lorenz 63 and the Kuramoto-Sivashinsky equation.20

1 Introduction21

Chaos, characterized by exponential divergence after infinitesimal initial perturbations, is ubiquitous22

in a variety of complex dynamical systems, including climate models [Lorenz, 1963] and turbulence23

in fluids [Kuramoto, 1978, Ashinsky, 1988]. The exponential separation makes it challenging to24

accurately predict trajectories of chaotic systems. However, many chaotic systems of practical interest25

across various domains, including weather models and fluid dynamics [Lorenz, 1963, Kuramoto,26

1978], turn out to be dissipative, meaning that their trajectories converge to a bounded and positively27

invariant set, often referred to as a strange attractor [Stuart and Humphries, 1998]. Moreover,28

trajectories of dissipative chaos will visit almost every state on the attractor, resulting in ergodicity29

and invariant statistics [Guckenheimer and Holmes, 2013]. Consequently, rather than seeking30

pointwise-accurate predictions, the primary goal in modeling dissipative chaotic systems becomes31

capturing these invariant statistics over long forecast horizons.32

Recent data-driven efforts have shown remarkable empirical success in building surrogate models33

that accelerate inference while preserving the long-term invariant statistics of dissipative chaos.34

These methods span a wide spectrum of structural assumptions and model complexity. On one35

end, structured nonlinear regression introduces physically motivated multi-level models to fit time36

series data efficiently [Majda et al., 2001, Majda and Harlim, 2012]. At the other end, deep learning37

approaches rely on the representation power of neural networks to directly model complex chaotic38

behavior from raw data, while incorporating knowledge of shared physical system behaviors as39
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specific architecture choices or regularization schemes [Li et al., 2020, Raissi et al., 2019, Brunton40

and Kutz, 2022, Lu et al., 2021, Kochkov et al., 2021, Page et al., 2024]. Hybrid approaches leverage41

autoencoder architectures to latent representation spaces where the dynamics evolve in simpler forms,42

with inspirations from Koopman theory [Koopman, 1931], Dynamic mode decomposition [Kutz et al.,43

2016], PCA [Pearson, 1901], etc. Beyond one-step prediction, recurrent sequential models have44

also been explored to promote stability and improve forecast accuracy using more input information45

[Mikhaeil et al., 2022, Vlachas et al., 2018, Sangiorgio and Dercole, 2020]. In addition to standard46

recurrent models, a specific recurrent network architecture design for time series prediction, known47

as reservoir computing (RC), has demonstrated improved performance in reconstructing attractors in48

chaos and preserving invariant statistics [Lu et al., 2018, Vlachas et al., 2020, Bollt, 2021].49

To predict statistical properties on the attractor, data-driven models must generate arbitrarily long50

trajectories during inference to sufficiently sample the invariant measure. In practice, these models51

adopt an autoregressive paradigm that iteratively predicts the next state from its own prior outputs,52

making them vulnerable to drifting outside the region of training data. Consequently, even though53

these models often demonstrate strong empirical performance in preserving invariant statistics,54

they are still prone to producing unbounded trajectories and invalid statistical forecasts. For more55

structured models such as multi-level quadratic regression models, theoretical analysis in [Majda56

and Yuan, 2012] establishes pathological instability in their statistical solutions. A fundamental57

difficulty in using RNNs to model chaotic systems is revealed in [Mikhaeil et al., 2022], where it was58

mathematically proved that the gradients of RNNs diverge during the training process. Although it59

is generally difficult to theoretically analyze the behaviors of data-driven machine learning models,60

they are also found to generate diverging trajectories resulting in invalid statistical solutions. Recent61

advanced time-series modeling approaches such as RCs and Fourier Neural Operators have been62

reported to experience the same fundamental issue in practice [Lu et al., 2018, Pathak et al., 2017,63

Li et al., 2022]. Thus, whether models rely heavily on explicit physical constraints or are purely64

data-driven, the common challenge is ensuring stable long-range rollouts.65

A variety of methods have been proposed to mitigate unbounded trajectories in data-driven forecasting66

of chaotic systems. Within reservoir computing (RC), noise-inspired regularization [Wikner et al.,67

2022] and architectural pruning [Haluszczynski et al., 2020] have shown empirical improvement in68

stability over long horizons. Beyond RC-specific techniques, some approaches prioritize learning69

invariant statistics over short-time trajectory prediction by matching Lyapunov exponents and fractal70

dimensions [Platt et al., 2023], or by adding statistics-based regularization [Jiang et al., 2024, Schiff71

et al., 2024]. These methods often require prior knowledge of the systems that might be difficult72

to acquire; while they reduce occurrences of finite-time blowups in practice, they still lack formal73

guarantees of boundedness. More rigorous approaches have been proposed to directly enforce74

energy conservation or dissipation, such as adding energy conservation terms in multi-level quadratic75

regression models [Majda and Harlim, 2012] or by carefully modifying the learned flow of neural76

operators in a pre-specified region of state space [Li et al., 2022]. However, these methods can require77

restrictive model structures, substantial domain knowledge, or both. As a result, a gap remains in78

establishing general-purpose boundedness guarantees without heavily relying on system-specific79

hyperparameter tuning or prior knowledge.80

In this paper, we present a neural network architecture that is inherently dissipative, ensuring bounded81

trajectories over arbitrarily long horizons. Rather than relying on system-specific domain knowledge,82

our approach learns both the underlying dynamics and the governing energy function directly from83

data, and naturally aligns the model’s behavior with fundamental energy dissipation principles84

through projection. In particular, we leverage Lyapunov stability theory [Khalil, 2002] to characterize85

dissipativity and derive efficient algebraic conditions, embed these conditions into the model through86

a dissipativity projection layer to guarantee stability during training and inference, and regularize87

the volume of the learned level set to obtain an outer approximation of the strange attractor. We88

illustrate this framework using the Lorenz 63 system, and then demonstrate its effectiveness in89

preserving invariant statistics and generating bounded trajectories for the Kuramoto-Sivashinsky90

equation, highlighting its scalability and applicability in chaotic benchmarks.91
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2 Problem Formulation92

Consider a chaotic dynamical system described with a PDE of the form,93

∂tw = F (x,w, ∂xw, ∂xxw, ...) , (t, x) ∈ [0, T ]× X
w(0, x) = w0(x), x ∈ X
B [w] (t, x) = 0, (t, x) ∈ [0, T ]× ∂X

(1)

Here, w(t, x) represents the n-dimensional state of the dynamical system at any time t ∈ [0, T ] and94

position x ∈ X ⊆ Rd, w0(x) is the initial condition defined on the full spatial domain x ∈ X, and95

B [w] (t, x) is the boundary condition defined on the spatial boundary ∂X. We adopt a discrete-time96

formulation of this problem,97

wt+1(x) = G(wt(x), x), (t, x) ∈ {0, 1, 2, ...N} × X (2)

where wt = w(t, ·) : X → R represents the state of the dynamical system at any position x ∈ X98

at time step t. We focus on PDEs that govern dissipative chaotic systems, as many physically99

relevant chaotic systems inherently exhibit dissipative behavior. The goal is to learn a neural operator100

G∗(θ) that emulates the true dynamics G. As discussed in Section 1, the chaotic nature of the101

dynamics makes long-term pointwise predictions inherently unreliable. Additionally, the trajectories102

of dissipative dynamics converge to a statistically invariant strange attractor, where the dynamics103

exhibit ergodicity. This motivates our focus on ensuring G∗(θ) captures the statistical properties of104

the true dynamics, rather than attempting to replicate pointwise predictions over long time horizons.105

A predicted trajectory is generated by iteratively applying G∗(θ) to predict states from prior output106

states, causing the model to encounter regions of state space not necessarily observed during training.107

Approximation errors on these unseen states can accumulate upon iterative composition of G∗(θ).108

This, compounded with the system’s intrinsic exponentially divergent behavior, can lead to trajectory109

blow-up in finite time, compromising the model’s ability to reproduce meaningful statistical behavior.110

Because dissipativity is an inherent property of our systems of interest, it is natural to incorporate this111

property directly into the model. That is, we aim to learn the operator G∗(θ) that enforces dissipative112

convergence to a strange attractor, thereby emulating system dynamics and enforcing long-term113

boundedness.114

3 Dissipative Dynamics: A Control-theoretic Perspective115

To develop models with inherent dissipativity, we first need to understand theoretical conditions that116

make a dynamical system dissipative. In this section, we focus on deriving algebraic conditions that117

are computationally efficient through the connection between dissipativity and energy, which are118

crucial for our proposed architecture that guarantees dissipativity.119

For a discrete-time infinite-dimensional dynamical system in (2) whose solution at any time t is in120

the L2 space, wt ∈ L2, we first formalize the concept of dissipativity in the following definition.121

Definition 1. We say that the system in (2) is dissipative if there exists a bounded (with respect to L2

norm) and positively invariant set M ⊂ L2 such that

lim
t→∞

dist(wt,M) = 0, dist(wt,M) = inf
y∈M

∥wt − y∥

In other words, every trajectory of the system will converge to M asymptotically, and stays within M122

once it enters. M is said to be globally asymptotically stable.123

Intuitively, a dissipative system is one that continuously loses energy, until its trajectories eventually124

enter and remain within a bounded region of M in its state space. For chaotic PDEs, this bounded125

region is its strange attractor. While many attempts have been made to characterize the strange126

attractor mathematically [Stuart and Humphries, 1998], these characterizations are typically abstract127

and computationally intractable [Milnor, 1985]. Given our goal of enforcing dissipativity in neural128

network models, it is crucial to first derive computationally efficient descriptions for the bounded set129

M , which then defines dissipative behaviors of the predicted dynamics.130

In control theory, the concept of Lyapunov functions has been used extensively to formalize asymptotic131

stability of dynamical systems, which are also known as “energy-like” functions due to strong132
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connections with the mechanical energy of the system. More importantly, by leveraging the level set133

of such functions, numerous computationally tractable conditions have been derived and extensively134

used in designing practical controllers to ensure a system’s asymptotic stability to equilibrium points135

[Khalil, 2002]. We apply the same strategy here by ensuring dissipativity towards a level set of the136

energy function, instead of analyzing the complex strange attractor. In the following proposition, we137

generalize the notion of asymptotic stability with respect to an equilibrium point to a level set of a138

Lyapunov function, which yields computationally efficient conditions that ensure dissipativity in a139

dynamical system.140

Proposition 1 (set asymptotic stability). For an infinite-dimensional dynamical system in (2), suppose141

there exists a non-negative-valued continuously differentiable function V : L2 → R+ and a constant142

c > 0, such that143

(i) ∀wt /∈ M(c) = {w ∈ L2 : V (w) ≤ c}, V (wt+1) ≤ αV (wt), 0 < α < 1

(ii) ∀wt ∈ M(c) = {w ∈ L2 : V (w) ≤ c}, V (wt+1) ≤ c

(iii) V is radially unbounded, i.e., V (w) → ∞ as ∥w∥ → ∞
Then the system (2) is dissipative, where the level set M(c) is globally asymptotically stable.144

Figure 1: (A) An illustration of the conditions in Proposition 1, where the trajectory loses energy
over time and enters an invariant level set. (B) Illustration of the fact that an inherently dissipative
model would have an effectively smaller search space for parameters due to its alignment with true
dynamics in dissipativity.

As illustrated in Figure 1(A), the conditions in Proposition 1 guide any solution starting outside the145

level set M(c) to lose energy exponentially due to the α factor, therefore entering the level set in finite146

time and remaining inside thereafter. A detailed proof for Proposition 1 is included in Appendix A.147

Despite the simplicity of the algebraic conditions derived in Proposition 1, overall the conditions148

still obtain a form of “if-else” condition, which might not be straightforward to enforce in a neural149

network that requires differentiability for backpropagation. To resolve this issue, we unify conditions150

(i) and (ii) in the above proposition into the following single inequality constraint which involves a151

ReLU activation and the α ∈ (0, 1) used in condition (3):152

V (wt+1)− α [V (wt) + ReLU (c− V (wt))] ≤ 0 (3)

Note that the reformulation here is equivalent, up to scaling the level set constant by α. More153

specifically, the inequality (3) reduces to V (wt+1) ≤ αV (wt) when V (wt) /∈ M(c), and reduces to154

V (wt+1) ≤ αc when V (wt) ∈ M(c). As a result, under the assumption for V made in Proposition 1,155

the reformulated constraint ensures that the system is dissipative and the level set M(c) is globally156

asymptotically stable.157

4 Methodology158

To achieve the goal of building a neural network prediction model that ensures the trajectory it159

generates always stays bounded, we now introduce a framework that learns dissipative dynamics by160
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design, based on the control-theoretic conditions derived in Section 3. As illustrated in Figure 1(B),161

learning an inherently dissipative prediction model conceptually limits the parameter search to a162

smaller space that is always aligned with physical properties of the true dynamics. Compared to163

unconstrained models which might search over parameters that lead to unstable behaviors, our164

approach makes the training process more efficient.165

Our methodology is built on two key components: 1) a learnable Lyapunov functional V (w) that166

represents the system’s energy, and 2) a custom dissipative projection layer that strictly enforces the167

constraint in (3). In addition to the learned model being dissipative, our framework is also able to168

produce an outer-estimate (the level set M(c)) for the complex strange attractor without any prior169

knowledge of the system’s invariant statistics, which is known difficult to be characterized. In what170

follows, we discuss the details of our architecture design and training procedure.171

4.1 Architecture Design with Boundedness Guarantees172

We propose a neural network architecture that simultaneously learns the dynamics operator in173

Equation (2) and an energy-like Lyapunov functional V , which together guarantee the dissipativity174

conditions in Proposition 1 through the construction of a dissipative projection layer. Following175

common practices in learning operators in function spaces [Lu et al., 2021, Kovachki et al., 2023,176

Li et al., 2022], we consider a discretized spatial domain where the queried spatial location x ∈ X177

is sampled from a finite set Xd consisting of n grid points, i.e., x ∈ Xd ⊂ X and the cardinality178

of Xd is n. As an example, if the spatial domain X = [0, 2π], a fixed grid on X can be n evenly179

sampled points, Xd = {k 2π
n−1 : k = 0, 1, ..., n − 1}. Under the grid setting, the function wt ∈ L2180

can be effectively represented as a n–dimensional vector, which is a collection of solution values at181

every grid points wt := {w(t, x) : x ∈ Xd} ∈ Rn. Consequently, the L2 norm of wt is reduced to a182

standard 2–norm in Rn.183

As illustrated in Figure 2(A), our model is composed of two learnable components:184

1. An unconstrained dynamics emulator Ĝ, which approximates the true dynamics operator185

G. The backbone model for the emulator Ĝ can be any neural operator that maps between186

function spaces. Here we choose to use DeepONet proposed in [Lu et al., 2021].187

2. A quadratic Lyapunov functional V (w) = (w−wc)
TQ(w−wc), which serves as the energy188

function. The learnable parameters include a positive definite matrix Q of size n–by–n and189

a center vector wc ∈ Rn.190

Figure 2: (A) An overview of the proposed model architecture. The input, current time solution wt,
is fed into an unconstrained neural operator (NO) emulator Ĝ to produce a preliminary prediction
ŵt+1 and a learned energy functional V to compute its energy V (wt). The dissipative projection
layer modifies ŵt+1 to produce a final output w∗

t+1 that satisfies the dissipative energy constraint in
(3). (B) Illustration of the convex quadratic projection for a constraint in the form of V (w) ≤ b. The
equality projection maps any point not on the ellipsoid boundary w to a boundary point w̄ in closed
form (for both w1, w2). The quadratic projection is only active for when the constraint is violated, so
w2 is projected while w1 is left unchanged.

These components are integrated into a dissipative projection layer, which modifies the output of191

the unconstrained emulator Ĝ to produce an operator G∗ that maps the current solution wt to the192

predicted solution at the next time step w∗
t+1. By construction, the dissipative projection layer ensures193
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the condition in (3) is satisfied, which guarantees the predicted dynamical system w∗
t+1 = G∗(wt)194

is dissipative. As a direct consequence of Definition 1, all trajectories generated by the predicted195

dynamical systems in an autoregressive manner are guaranteed to be bounded.196

We now summarize the main theoretical guarantees our framework provides in the following theorem:197

Theorem 1. Let the learned dynamics be defined by the operator w∗
t+1 = G∗(w∗

t ), which is composed198

of an unconstrained neural operator emulator Ĝ and a dissipative projection layer. Let the learned199

energy-like function be a quadratic Lyapunov functional V (w) = (w − wc)
TQ(w − wc) with200

learnable center wc ∈ Rn and a symmetric positive definite matrix Q ∈ Sn++. If for any state wt,201

the dissipative projection layer ensures that the final model output w∗
t+1 satisfies the constraint:202

V (w∗
t+1) ≤ α[V (wt) +ReLU(c− V (wt))] for c > 0 and 0 < α < 1, then the learned dynamical203

system is dissipative. Consequently, the level set M(c) is globally asymptotically stable, and all204

trajectories generated by the learned dynamics are guaranteed to be bounded.205

4.2 Convex Quadratic Projection Layer206

The quadratic form of the Lyapunov functional V (w) motivates the development of a convex quadratic207

projection layer that projects the model predictions onto a feasible set of trajectories where the208

dynamics are dissipative. We introduce a differentiable convex quadratic projection layer shown209

in Figure 2(B) that can handle constraints of the form (w − wc)
TQ(w − wc) ≤ b, where b can210

be a constant or an arbitrary function of the model input. This form is equivalent to (3), with211

b = α [V (wt) +ReLU(c− V (wt))].212

The convex quadratic constraint projection is illustrated in Figure 2. The general strategy is to define213

a projection w̄ of the model output ŵ onto the equality constraint V (w̄) = b and selectively project214

points that violate the constraint V (ŵ) ≤ b onto their respective equality projection. For positive215

definite Q, there exists an explicit form for the projection of ŵ onto the equality constraint V (w̄) = b.216

That is, for the quadratic Lyapunov function described in Section 4.1, the projection217

w̄ = w0 +
√
b
(
LT

)−1 ŵ

||ŵ||2
(4)

satisfies the equation V (w̄) = b, where L is the Cholesky decomposition of Q such that LLT = Q.218

To ensure that this equality projection is only active when the constraint is violated, the final output219

w∗ is calculated as an interpolation between the projected (w̄) and non-projected (ŵ) outputs.220

w∗(x) = γ(b, V (ŵ))ŵ(x) + [1− γ(b, V (ŵ))] w̄(x) (5)

Ideally, γ(b, V (ŵ)) is an indicator function that is 1 when V (ŵt) ≤ b and 0 when V (ŵt) > b. In221

practice, we use a differentiable function γ(b, V (ŵ)) = sigmoid [k(b− V (ŵ)]. In doing so, we trade222

off strict adherence to the constraint for model tractability, although a large value for k pushes the223

projection closer to strict constraint enforcement. We use k = 100 for all experiments.224

4.3 Training with Invariant Set Volume Regularization225

We construct the training dataset as a collection of N input-output pairs, denoted as226

{(wi, wnext,i)}Ni=1, where the input wi is the current time step solution and the output wnext,i227

is the next time step solution based on the true dynamics. During training, each input wi is mapped228

to a predicted output w∗
next,i, and the loss is computed relative to the true next state wnext,i. The229

dynamic loss is defined as the average mean squared error (MSE) between the predicted outputs230

{w∗
next,i}Ni=1 and the ground truth future states {wnext,i}Ni=1.231

While the convex quadratic projection layer enforces dissipativity and convergence to a level set232

M(c), it does not inform how to choose an appropriate level set that characterizes the attractor. The233

goal is to learn the energy functional V (w) such that the resulting ellipsoid is a tight outer estimate234

of the attractor. To this end, we include a regularization loss in the loss function that penalizes large235

ellipsoid volumes.236

Loss =
1

N

N∑
i=1

∥w∗
next,i − wnext,i∥22 + λ

1√
det(Q)

, (6)

where Q is defined in Section 4.1 and λ > 0 is a regularization hyperparameter.237
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5 Numerical Experiments238

5.1 Lorenz 63239

We first apply our methodology to the classic Lorenz 63 system, a three-dimensional model of240

atmospheric convection originally proposed by Lorenz [Lorenz, 1963]. Its low dimensionality241

makes it ideal for visualizing the system’s strange attractor and dissipative flow. The governing242

dynamics is described as the following ordinary differential equation (ODE), where parameters243

σ = 10.0, ρ = 28.0, β = 8/3 generate chaotic behaviors, and w ∈ R3 is the system state,244

ẇ1 = σ(w2 − w1), ẇ2 = w1(ρ− w3)− w2, ẇ3 = w1w2 − βw3.

This system can be viewed as a special case of an infinite-dimensional dynamical system where245

the spatial domain consists of just three discrete points. In this simplified context, backbone neural246

operators like the Fourier Neural Operator [Kovachki et al., 2023] and DeepONet [Lu et al., 2021]247

reduce to a simple multilayer perceptron (MLP). Accordingly, we constructed our unconstrained248

neural operator emulator, Ĝ, as a feedforward neural network with 6 hidden layers, each containing249

150 neurons.250

The training data was generated from a single long trajectory with a sampling interval of 0.05 seconds,251

initialized at a random state outside the strange attractor. To evaluate the trained MLP, we generated a252

test trajectory by starting from a new initial condition unseen during training, and iteratively applying253

the model w∗
t+1 = G∗(wt) for 40,000 steps.254

(a) Long-term trajectory rollout. (b) Learned energy level V (wt). (c) Learned flow field dynamics.

Figure 3: Lorenz 63 prediction results. (a) A 40,000-step trajectory generated by the model from an
unseen initial condition (orange) compared to the ground truth attractor (blue). The learned invariant
ellipsoid (red) is a tight outer-estimate of the strange attractor. (b) The energy of the predicted
trajectory quickly drops below the energy level c, and remains bounded by c. (c) The learned flow
field on the w1-w2 plane, showing that vectors correctly point inwards across the ellipsoid boundary.

The results for the Lorenz 63 system illustrate our model’s ability to learn stable, dissipative dynamics255

and characterize the strange attractor. Figure 3a shows a 40,000-step trajectory generated from an256

initial condition not seen during training. The model’s prediction (orange) accurately recovers the257

geometry of the true attractor formed by the ground truth trajectory (blue). Crucially, the learned258

invariant ellipsoid (red) serves as a tight outer-estimate of the attractor, validating the effectiveness259

of our volume regularization. The learned energy function evaluations on both prediction and true260

trajectories are visualized in Figure 3b, which validates that the energy level of the true system is261

indeed bounded by the level set parameter c, and that the learned model is dissipative as it quickly262

loses energy and remains in the invariant set. Figure 3c further visualizes this dissipative behavior by263

showing the learned flow field on the w1 − w2 plane. The vector fields along the boundary of the264

learned ellipsoid all point inwards, ensuring that the set is positively invariant. Together, these results265

validate our framework’s capacity to produce bounded long-horizon forecasts while simultaneously266

learning a meaningful energy function that characterizes the system’s attractor.267
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5.2 Kuramoto-Sivashinsky268

To demonstrate the effectiveness of our proposed architecture on predicting long-horizon trajectories269

of chaotic PDEs, we consider the one-dimensional chaotic Kuramoto-Sivashinsky equation.270

wt + wxx + wxxxx +
1

2
(w2)x = 0, (t, x) ∈ [0,∞)× [0, L]

w(0, x) = w0(x), x ∈ [0, L]
(7)

We train on a dataset consisting of six trajectories starting from random initial conditions, where271

L = 32π is chosen to generate chaotic behaviors. Each trajectory has snapshots every 1 second272

for 500 seconds, and each snapshot has a spatial resolution of 512. We use a validation set of two273

trajectories with the same spatial and temporal discretization as the training data set. Two DeepONet274

architectures are trained on the same dataset, one with the added projection layer discussed in275

Section 4.2 and one vanilla model without. For both models, the DeepONet branch network consists276

of three convolutional layers of output dimension 32, 64,128, and two fully connected layers, each277

with 256 neurons. The trunk network consists of four fully connected layers, each with 256 neurons.278

To test the trained models with and without projection, we iteratively compose each of the trained279

models repeatedly for 2000 time steps to characterize the statistical properties, starting from an280

unseen random initial condition. Figure 4(a) validates that our model with dissipative projection281

generates bounded trajectory prediction that recovers the flow patterns seen in the true trajectory, while282

the predictions from the unconstrained model blow up. Not only does our proposed methodology283

produce bounded dynamics, it successfully replicates statistical properties of the true dynamics.284

As observed in Figure 4(b), our projected model samples a similar attractor to the true dynamics,285

indicating convergence to the strange attractor, while the unconstrained model produces a distribution286

that is sparse across a larger state space. We include additional energy and statistical property287

comparisons between the ground truth, our model, and the unconstrained model in Appendix B, to288

further demonstrate the effectiveness of our approach in preserving invariant statistics.289
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Figure 4: KS prediction results. (a) Comparison of ground truth trajectory with predictions from
vanilla and projected model. Trajectories are visualized for 1000 seconds after a transient period of
500 seconds. The vanilla model blows up, while the projected model stays bounded. (b) Projection of
trajectories onto the first two PCA modes. The projected model and ground truth sample the strange
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A Proof for Theoretical Results377

Proof for Proposition 1. By definition, condition (ii) implies that M(c) is indeed an positively in-378

variant set. Since V is radially unbounded, for any α > 0, we can find rα such that V (w) > α for all379

∥w∥ > rα. Therefore, any level set of V is bounded as {x : V (w) ≤ α} ⊂ B(rα). Thus, M(c) is380

both positively invariant and bounded.381

Based on the positive invariance property, any trajectory starting with w0 ∈ M(c) will always stays382

within M(c), meaning that limt→∞ dist(wt,M(c)) = 0 is satisfied.383

Consider a trajectory {w′
t}t∈N that starts outside of the level set, i.e. w′

0 /∈ M(c) and V (w′
0) > c > 0.384

Suppose the trajectory never enters M(c), i.e., ∀t ∈ N, V (w′
t) > c. Using condition (i), we have385

V (w′
t+1) ≤ αV (w′

t), which implies V (w′
t) ≤ αtV (w′

0). For any t ≥ logα

(
c

V (w′
0)

)
, V (w′

t) ≤ c386

which contradicts the prior assumption. In fact, the trajectory {w′
t}t∈N will enter M(c) in finite time387

at most logα
(

c
V (w′

0)

)
steps.388

Proof for Theorem 1. The dissipativity of the learned dynamics and global asymptotic stability of389

the level set M(c) is a direct consequence of Proposition 1 and the equivalence of the inequality390

constraint in (3).391

Note that for the predicted trajectory under the learned dynamics, at any time t > 0, V (w∗
t ) is strictly392

bounded by max{V (w0), c}, which implies V (w∗
t ) ≤ V (w0). Let z = w∗

t−wc, the constraint can be393

rewritten as zTQz ≤ V (w0). Since Q is positive definite, we have λmin(Q)∥z∥2 ≤ zTQz ≤ V (w0).394

Thus w∗
t will always be bounded with respect to its L2 norm.395

B Additional Numerical Results for Kuramoto-Sivashinsky396
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Figure 5: Energy V (w) over time for the vanilla model and our projected model compared with the
ground truth. It is observed that the energy blows up for the vanilla model, while the energy of the
projected trajectory remains bounded.
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Figure 6: Probability distributions of the state w sampled in time for the true dynamics, vanilla
model, and dissipative projection model. The curve for the vanilla model (model without projection)
sits at just above 0, as the divergent trajectory samples many points on an unbounded domain. The
distribution for the projected model is similar to that of the ground truth.
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