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ABSTRACT

Learning to optimize is an approach that leverages training data to accelerate the
solution of optimization problems. Many approaches use unrolling to parametrize
the update step and learn optimal parameters. Although L2O has shown empiri-
cal advantages over classical optimization algorithms, memory restrictions often
greatly limit the unroll length and learned algorithms usually do not provide con-
vergence guarantees. In contrast, we introduce a novel method employing a greedy
strategy that learns iteration-specific parameters by minimizing the function value
at the next iteration. This enables training over significantly more iterations while
maintaining constant GPU memory usage. We parameterize the update such that
parameter learning corresponds to solving a convex optimization problem at each
iteration. In particular, we explore preconditioned gradient descent with multiple
parametrizations including a novel convolutional preconditioner. With our learned
algorithm, convergence in the training set is proved even when the preconditioner
is neither symmetric nor positive definite. Convergence on a class of unseen func-
tions is also obtained, ensuring robust performance and generalization beyond
the training data. We test our learned algorithms on two inverse problems, image
deblurring and Computed Tomography, on which learned convolutional precondi-
tioners demonstrate improved empirical performance over classical optimization
algorithms such as Nesterov’s Accelerated Gradient Method and the quasi-Newton
method L-BFGS.

1 INTRODUCTION

We consider the optimization problem
min
x

f(x), (1)

with the assumption that f : X → R is convex, L-smooth and bounded below, where X is a Hilbert
space. Classic optimization methods are built in a theoretically justified manner, with guarantees on
their performance and convergence properties. For example, Nesterov’s Accelerated Gradient Method
(NAG) (Nesterov, 1983) accelerates classical first-order algorithms using momentum. However,
practitioners often concentrate on problems within a much smaller class. For example, in reconstruct-
ing images from blurred observations y generated by a blurring operator A, one might minimize a
function from the class:

F =

{
f : X → R : f(x) =

1

2
∥Ax− y∥2 + S(x), y ∼ P(Y)

}
, (2)

where S : X → R is a chosen regularizer and P(Y) is some probability distribution on Y detailing
the observations y of interest. Learning to optimize (L2O) uses data to learn how to minimize
functions f ∈ F in a small number of iterations. Typically, the solution at each iteration t is updated
by a parametrized function Gθ : X × X → X (i.e. the update rule) as dependent on parameters θt at
iteration t as

xt+1 = xt −Gθt(xt,∇f(xt)). (3)

Unrolling algorithms (Monga et al., 2021) directly parametrize the update step as a neural network,
often taking the previous iterates of the solution updates and the gradients as input arguments to the
neural network. For some T > 0, the parameters θ = (θ0, · · · , θT ) can be learned to minimise the
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loss

L(θ) = E
f∈F

[
T+1∑
t=1

f(xt)

]
. (4)

Learned optimization algorithms often lack convergence guarantees, including many that use RNNs
(Andrychowicz et al., 2016; Metz et al., 2019) or Reinforcement learning (Li & Malik, 2016). Liu
et al. (2023) consider methods of the form xt+1 = xt −Gt∇f(xt) + bt, for f : Rn → R, a diagonal
matrix Gt ∈ Rn×n, and a vector bt ∈ Rn. The Gt and bt are constructed using the outputs of neural
networks. However, their method does not guarantee convergence to a minimizer.

Other approaches achieve provable convergence, which can be enforced with safeguarding (Heaton
et al., 2023), or constructing convergent algorithms by learning parameters within a provably con-
vergent set (Banert et al., 2020; 2024). Tan et al. (2023a;b) learn mirror maps using input-convex
neural networks within the mirror descent optimization algorithm such that the algorithm is provably
convergent. Lastly, Sucker et al. (2024) and Sambharya & Stellato (2024) consider applying the
PAC-Bayes framework to L2O.

Unlike NAG, Newton’s method accelerates convergence by applying the inverse Hessian to the
gradient, which can be costly in practice. Quasi-Newton methods like BFGS (Nocedal & Wright,
2006b) approximate the Hessian, and L-BFGS (Liu & Nocedal, 1989) is used when BFGS is too
memory-intensive. Similarly, we aim to accelerate the optimization by learning a preconditioner Gt

in the update xt+1 = xt −Gt∇f(xt).

Adaptive algorithms improve optimization during use. For example, Armijo line-search (Armijo,
1966) seeks to find a good step size at each iteration, while methods like AdaGrad (Duchi et al., 2011)
and optimal diagonal preconditioners (Qu et al., 2024) adapt preconditioners. Online optimization
(Hazan et al., 2016), with methods such as Coin Betting (Orabona & Pál, 2016) and Adaptive Bound
Optimization (McMahan & Streeter, 2010), offers a game-theoretic perspective to optimization.

1.1 CONTRIBUTIONS

Our paper contributes in the following ways:

• A novel approach to L2O that learns parameters at each iteration sequentially, using a greedy
approach by minimizing the function value at the next iteration. This enables training over
significantly more iterations while maintaining constant GPU memory usage: Section 3.

• Convergence in the training set is proved even when the preconditioner is neither symmetric
nor positive definite: Section 4. Furthermore, convergence is proved on a class of unseen
functions under certain conditions using soft constraints for parameter learning.

• Learning parameters is a convex optimization problem for ’linear parametrizations’ of Gt,
enabling training that is significantly faster, with closed-form solutions for least-squares
functions: Section 5.

• A novel parametrization of Gt as a convolution operator. At iteration t we learn a convo-
lutional kernel κt such that Gtx = κt ∗ x. This parametrization is shown to outperform
Nesterov’s Accelerated Gradient and L-BFGS on test data: Section 6.

In Section 6, we validate our learned algorithms on two inverse problems: image deblurring and
Computed Tomography (CT). Inverse problems represent a crucial class of optimization problems
that appear in important fields such as medical imaging and machine learning. Many such problems
have an associated forward operator which is highly ill-conditioned, making them an ideal test for
optimization algorithms.

2 NOTATION

Let X be a Hilbert space with corresponding field R and norm ∥ · ∥. A function f : X → R is
convex if for all x, y ∈ X and for all α ∈ [0, 1] f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). A
function f : X → R is L-smooth with parameter L > 0 if its gradient is Lipschitz continuous, i.e.,
if for all x, y ∈ X , ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥. A function f : X → R is bounded below if
there exists some M ∈ R such that f(x) ≥ M for all x ∈ X . We say that f ∈ FL if f is convex,
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L-smooth, and bounded below. We assume that the Hilbert space X has dimension dim(X ) = n and,
therefore, admits a finite orthonormal basis {e1, · · · , en}. For x ∈ X and j ∈ {1, · · · , n}, define
[x]j := ⟨x, ej⟩. For x, y ∈ X , define the pointwise product x⊙ y by [x⊙ y]j = [x]j [y]j . For Hilbert
spaces X and Y , denote the space of linear operators from X to Y by L(X ,Y). If Y = X , we
write L(X ). For example, if X = Rn, L(X ) is the space of n× n matrices. Denote the adjoint of
A ∈ L(X ,Y) by A∗, meaning that for x ∈ X , y ∈ Y , ⟨Ax, y⟩ = ⟨x,A∗y⟩. Denote by I ∈ L(X ) the
identity operator: I(x) = x for all x ∈ X .

3 GREEDY LEARNING TO OPTIMIZE OF PRECONDITIONED GRADIENT
DESCENT

This section introduces the proposed method: greedy learning to optimize. Firstly, we introduce
how we parametrize the optimization algorithm as preconditioned gradient descent. Next, we detail
our training data and define a loss function with which we learn parameters. We then provide an
algorithm of how parameters are learned sequentially using a greedy approach. Lastly, we show how
our learned algorithm is applied to unseen functions.

At each iteration t ∈ {0, 1, 2, · · · }, we parametrize the linear operator Gt using a Hilbert space Θ
and learn parameters θt ∈ Θ in the update

xt+1 = xt −Gθt∇f(xt). (5)

The following propositions show that it is possible to obtain convergence after just one iteration
of the update (5). Firstly, we show that it is possible to even when G is a pointwise operator, i.e.
Gx := p⊙ x for some p ∈ X .

Proposition 1. Assume that f : X → R is convex, continuously differentiable, and has a global
minimum, and take any initial point x0 ∈ X . Then there exists p ∈ X such that, x0 − p⊙∇f(x0) ∈
argminx f(x).

While the pointwise parametrization obtains convergence after one iteration for one function, for an
arbitrary linear operator G ∈ L(X ), under certain conditions, one can obtain convergence after one
iteration for multiple functions.

Proposition 2. For k ∈ {1, · · · , N}, assume that fk : X → R is convex, continuously differentiable,
and has a global minimum, with any initial point x0

k ∈ X . Assume that the set of gradients
{∇f1(x

0
1), · · · ,∇fN (x0

N )} is linearly independent. Then if N ≤ n, there exists an operator
P ∈ L(X ) such that x0

k − P∇fk(x
0
k) ∈ argminx fk(x), for all k ∈ {1, · · · , N}.

Propositions 1 and 2 motivate learning θt by considering the function values only at the next
iteration. In order to learn the parameters θt for t ∈ {0, 1, 2, · · · }, we use a training dataset of
functions T := {f1, · · · , fN}, with fk ∈ FLk

for k ∈ {1, · · · , N}, with corresponding initial points
X0 := {x0

1, · · · , x0
N}.

We consider learning parameters using a regularizer R : Θ → R so that undesirable properties are
penalized. At iteration t, we solve the optimization problem

θt ∈ argmin
θ

{
gt,λt

(θ) :=
1

N

N∑
k=1

fk(x
t
k −Gθ∇fk(x

t
k)) + λtR(θ)

}
, (6)

for some regularization parameter λt ≥ 0, which is used to balance the importance of the regularizer.
Such a strategy is greedy, as learning refers to tuning the parameters θt considering only the function
values at the next iteration, fk(xt+1

k ). The sequential training procedure for parameter learning is
detailed in Algorithm 1. For unrolling with a standard implementation of backpropagation, GPU
memory requirements scale linearly with the number of training iterations. However, with our greedy
method, once the parameters θt and the next iterates xt+1

k for k ∈ {1, · · · , N} have been calculated,
θt is no longer required to be stored on the GPU, and can be saved to disk. Therefore GPU memory is
constant with increasing training iterations for our greedy method. Suppose that training is terminated
after iteration T , having learned the parameters θ0, · · · , θT . To minimise an unseen function f with
initial point x0, we propose Algorithm 2.
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Algorithm 1 Training algorithm for greedy parameter learning in preconditioned gradient descent

1: Input: Functions f1, · · · fN , initial points x0
1, · · · , x0

N , final iteration T , regularization parame-
ters λ0, · · · , λT ≥ 0.

2: for t = 0, 1, 2, . . . , T do
3: θt ∈ argminθ gt,λt(θ)
4: for k = 1, 2, . . . , N do
5: xt+1

k = xt
k −Gθt∇fk(x

t
k)

6: end for
7: end for
8: Output: Learned parameters θ0, · · · , θT .

Algorithm 2 Learned algorithm applied to a new function f

1: Input: Function f with initial point x0.
2: for t = 0, 1, 2, . . . do
3: if t ≤ T then
4: xt+1 = xt −Gθt∇f(xt)
5: else
6: xt+1 = xt −GθT∇f(xt)
7: end if
8: end for
9: Output: xt+1.

4 CONVERGENCE RESULTS

This section contains convergence results for our learned Algorithm 2. Firstly, in Theorem 1
convergence is obtained on training functions as T → ∞, without the need for the learned operators
Gθt to have properties such as being symmetric or positive definite. Following this, in Theorem
2 we show convergence results with rates for a class of unseen functions if λt is asymptotically
non-vanishing. Before we present the convergence results, we require the following definitions, the
first of which provides a condition for which the update rule (5) generalizes gradient descent (GD):
xt+1 = xt − αt∇f(xt) for αt > 0.
Definition 1. We say that the family (Gθ) is GGD (generalizes gradient descent) if for all α > 0,
there exist parameters θ such that

Gθ = αI. (7)

Parametrizations that satisfy the GGD property are shown in section 5. Let τ = 1/Ltrain, where
Ltrain = max{L1, · · · , LN} is the largest smoothness coefficient in the training data set. This choice
of step size in gradient descent ensures convergence for all functions fk ∈ T . From this point
forward, we assume (Gθ) is GGD, meaning there exists some θ̃ such that Gθ̃ = τI . Furthermore, the
GGD property can be leveraged to establish provable convergence for a set of unseen functions by
introducing a penalty when the parameters deviate significantly from θ̃. With this purpose, we define
R(θ) in (6) as

R(θ) :=
1

2
∥θ − θ̃∥2. (8)

The next definition is to ensure the parametrized algorithm adopts the convergence properties of
gradient descent on the training data.
Definition 2. We say that θt is BGD (better than gradient descent) with regularization parameter
λt if

gt,λt
(θt) ≤ gt,λt

(θ̃) = gt,0(θ̃) =
1

N

N∑
k=1

fk
(
xt
k − τ∇fk(x

t
k)
)
. (9)

In section 5 we introduce parameterizations Gθ for which the BGD property is easily obtained during
training.
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4.1 CONVERGENCE ON TRAINING DATA

Theorem 1. Convergence on training data. Suppose that λt ≥ 0 and (θt)
∞
t=0 is a BGD sequence

of parameters. Then with Algorithm (1), we have ∇fk(x
t
k) → 0 as t → ∞ for all k ∈ {1, · · · , N}.

Note that in particular, this means that convergence in training is obtained even when λt = 0 for all t.
Therefore, the learned preconditioners Gt are never necessarily positive-definite. Convergence rates
can also be obtained for training data, see Appendix Section 4.

4.2 CONVERGENCE ON UNSEEN DATA

We now show convergence on unseen data. Firstly, we show that if the regularization parameters λt

are eventually non-vanishing, then the learned parameters tend towards θ̃.

Lemma 1. If lim inft→∞ λt > 0 and (θt)
∞
t=0 is BGD, then θt → θ̃ as t → ∞.

This result is useful to ensure convergence on unseen data as if G : Θ → L(X ) is continuous, then
under the same conditions, Gθt → Gθ̃ = τI as t → ∞, i.e. our learned algorithm gets close to GD
for large t. The idea is that we start with a method that fits the data very well leading to quick initial
convergence, but in the interest of safety, over time we become closer to an algorithm with proved
convergence, with Gθt positive-definite eventually.
Theorem 2. Convergence on unseen data for regularized parameter learning
Assume that G : Θ → L(X ) is continuous, θt is BGD and lim inft→∞ λt > 0. Then, there exists a
final training iteration T such that for all f ∈ FLtrain and any starting point x0, using Algorithm 2
(which depends on T ), we have ∇f (xt) → 0 as t → ∞.

Note that all training functions fk ∈ T satisfies fk ∈ FLk
⊆ FLtrain , and therefore Theorem 2 holds

for all training functions. In practice, provable convergence can be verified during training. At
iteration T , the regularization parameter λT may be selected large enough such that ∥GθT − τI∥ < τ ,
which guarantees convergence. A proof is provided with Proposition 6 in the Appendix. The
following theorem presents the convergence rate obtained for test functions.
Theorem 3. Convergence rates on unseen data for regularized parameter learning
Under the same assumptions as Theorem 2 and if (xt)

∞
t=1 is a bounded sequence then there exists a

constant C > 0, such that

f(xt)− f(x∗) ≤ C

t
. (10)

This result gives the worst-case convergence rate of the learned algorithm. In Section 6 we will see
that the empirical performance of the learned algorithms may exceed that of NAG and L-BFGS.

5 LINEAR PARAMETRIZATIONS

In this section, we consider ’linear parametrizations’ of G, defined below.
Definition 3. We call G a linear parameterization if G : Θ → L(X ) is a linear map. This means
there exists a linear operator Bt

k ∈ L(Θ,X ) such that

Gθ∇fk(x
t
k) = Bt

kθ. (11)

The motivation is that when G is a linear parametrization, each optimization problem (6) is convex
(as it is the composition of a convex function with a linear function (Beck, 2014)). Therefore,
learning comprises solving a sequence of convex optimization problems. In this case, there exist
fast, provably convergent algorithms to find global solutions. Due to the speed of training enabled
by linear parameterizations, we are able to learn algorithms up to significantly higher iterations. In
Section 6, we see this enables algorithms to be learned up to iterations where a pre-selected tolerance
has been satisfied. Four examples of linear parametrizations of G are provided in Table 1. These
parametrizations are used for the numerical experiments in Section 6. Due to the convexity of gt,λt

,
the BGD property is easily verified during training for each parametrization.
Lemma 2. All parametrizations Gθ in Table 1 satisfy the GGD property (7), and are all continuous
with respect to their parameters.

5
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Table 1: Examples of linear parametrizations

Label Description parametrization # parameters
(PS) Scalar step size Gαt

= αtI, αt ∈ R 1
(PP) Pointwise operator Gpt

x = pt ⊙ x, pt, x ∈ X dim(X )
(PC) Image convolution Gκtx = κt∗x, κt ∈ Rm1×m2 m1m2

(PF) Full linear operator GPt
= Pt ∈ L(X ) dim(X )2

Corollary 1. If the assumptions from Theorem 2 are satisfied, then for linear parametrizations in
Table 1, we obtain the convergence results. Furthermore, if the sequence (xt)

∞
t=1 is bounded in

Algorithm 2, we obtain the convergence rates as in Theorem 3.

5.1 CLOSED-FORM SOLUTIONS

If each function fk ∈ T can be written as a least-squares function, then the parameters θt at iteration
t have a closed-form solution.

Proposition 3. For k ∈ {1, · · · , N}, let fk : X → R be given by fk(x) =
1
2∥Akx − yk∥2, with

corresponding yk ∈ Y , for a Hilbert space Y , and linear operator Ak ∈ L(X ,Y). For a linear
parametrization G, let Bt

k be given as in (11). Then θt given by

θt =

(
λtIΘ +

1

N

N∑
k=1

(AkB
t
k)

∗(AkB
t
k)

)†(
λtθ̃ +

1

N

N∑
k=1

(Bt
k)

∗∇fk(x
t
k)

)
(12)

is a solution to (6), where M† represents the Moore–Penrose pseudoinverse of a linear operator M .

Note that we recover the closed-form equation for exact line search for a scalar step size (Nocedal
& Wright, 2006a) with λt = 0, N = 1 for the parametrization (PS) in Table 1. Therefore the
optimization problem (6) can be seen as an extension of exact line search to include linear opera-
tors. Calculations for the closed-form solutions for the parametrizations in Table 1 are detailed in
Appendix Section 5. In general, we require optimization algorithms to approximate θt. Due to the
optimization problem being convex, we provide gradient calculations and smoothness constants for
these parametrizations in Appendix Section E.1. Therefore, we do not require step size tuning for
learning parameters θt.

6 NUMERICAL EXPERIMENTS

The optimization problem. In this section, we test the four linear parametrizations in Table 1 on two
inverse problems in imaging: image deblurring and CT. We consider linear inverse problems, defined
by receiving an observation y ∈ Y , generated from a ground-truth xtrue via some linear forward
operator A : X → Y , such that y = Axtrue + ε, where ε ∈ Y is some random noise, and the goal
is to recover xtrue. In this case, we create observations from given ground-truth data as described
above. Once these observations have been created, the ground-truth data are no longer used. For
both experiments, X = Rh1×h2 ,Y = Rh3×h4 for h1, h2, h3, h4 ∈ N, and ε is noise sampled from a
zero-mean Gaussian distribution. To approximate xtrue from y, we solve

min
x

{
f(x) :=

1

2
∥Ax− y∥2 + αHϵ(x)

}
, (13)

for a fixed regularization parameter α. The regularizer Hϵ is the Huber Total Variation (Rudin et al.,
1992; Huber, 1992) defined by

Hϵ(x) =

h1,h2∑
i,j=1

hϵ

(√
(Dx)2i,j,1 + (Dx)2i,j,2

)
, hε(s) =

{
1
2ϵs

2, if |s| ≤ ϵ

|s| − ϵ
2 , otherwise,

(14)

where finite difference operator D : Rh1×h2 → Rh1×h2×2 is defined in Chambolle & Pock (2016).
Note that this choice of regularizer makes the function f non-quadratic. We take ϵ = 0.01 and

6
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normalize the forward operator in both cases so that ∥A∥ = 1. Then, each function f is L-smooth,
where L = 1 + 8α

ϵ (Chambolle & Pock, 2016).

Learning parameters. For each parametrization in Table 1, to learn parameters θt we apply NAG for
solving the optimization problem 6. We initialize as θ0t = θ̃ for t = 0, and θ0t = θt−1 for t > 0. NAG
is stopped when ∥∇gt,λt

(θℓt)∥/∥∇gt,λt
(θ0t )∥ < 10−3, or when ℓ = ℓstop = 5000. For both problems,

we use a training set of 100 functions for parametrizations (PS), (PP), and (PC). For (PF), the model
is trained using 1000 functions and is only implemented for the small-scale CT problem. Testing
is performed on a separate set of 100 functions for all parametrizations. The learned convolutional
kernels (PC) have dimensions h1 × h2, matching the size of the images in X .

Evaluation. Given a dataset of functions f1, . . . , fN , the mean value at iteration t is defined as
F (xt) = 1

N

∑N
k=1 fk(x

t
k). Furthermore, we define "function optimality" for a function f with

minimizer x∗
f at iteration t by (f(xt)− f(x∗

f ))/(f(x0)− f(x∗
f )). For a function f , its approximate

minimizer x∗
f ∈ X is calculated using NAG. For a dataset of functions, we visualize the maximum

and minimum function optimality over the dataset and the function optimality for F . The learned
algorithms are compared to NAG with backtracking (Beck & Teboulle, 2009) and L-BFGS with the
Wolfe conditions (Wolfe, 1969). Computations were performed on an Nvidia RTX 3600 12GB GPU.

6.1 IMAGE DEBLURRING

Problem details. The forward operator A in (13) is a Gaussian blur with a 5× 5 kernel size and a
standard deviation σ = 1.5. We use the STL-10 dataset (Coates et al., 2011) with greyscale images
of size 96× 96 as X . The noise ε is modeled with a standard deviation of 2.5× 10−3, and we set
α = 10−5, resulting in L = 1.008. The initial point x0 = y ∈ Y = X is chosen as the observation.

Training details. Training with the greedy method was performed up to iteration T = 250 with
λt = 0 for all t for the parametrizations (PS), (PP), (PC). This means 250 parameters were learned
for (PS) and 2304000 for both (PP) and (PC). The total training time for (PS) was 2.8 minutes, 17
minutes for (PP) and 9.2 hours for (PC).

Visualising learned preconditioners. Figure 1a shows that the learned scalar parameters (PS)
eventually fluctuate around 2/L, which is outside of the range of provable convergence of gradient
descent with a constant step size. Despite this, the learned algorithm leads to convergence on
training data as t → ∞ by Theorem 1. In Figure 1b, we also see negative values for the pointwise
parametrization (PP). The learned convolutional kernels (PC) in Figure 1c also contain positive and
negative values and are predominantly weighted towards the center, suggesting that information from
neighboring pixels is prioritized over more distant ones. As the number of iterations increases, the
kernels exhibit increasing similarity, though no formal convergence result for θt has been established
when λt = 0.

(a) (b) (c)

Figure 1: Learned parameters for the image deblurring problem with λt = 0 for all t ∈ {0, 1, · · · , T}.
(a) Learned scalar parameters (PS) for t ∈ {0, 1, · · · , 200} compared to 2/L. (b) Learned
96 × 96 pointwise operators (PP) restricted to the interval [−10, 10], against iteration t for
t ∈ {0, 1, 2, 10, 100}. (c) Learned 96 × 96 convolutional kernels (PC) restricted to the interval
[−20, 20], against iteration t for t ∈ {0, 1, 2, 10, 100}.

Learned algorithm performance. Figure 2a shows that the learned parametrizations (PS), (PP), and
(PC) generalize well to unseen data due to the closeness of the train and test curves. (PP) performs
comparably to (PS) for this example, despite having an equal number of parameters as (PC), which
captures global information of the image, rather than only pixel-level details. Note that (PC) reaches
the tolerance of 10−7 before training completes, as our method allows us to learn an algorithm that
runs for sufficient iterations to meet a pre-specified tolerance. Figure 2b shows (PC) significantly
outperforms both NAG and L-BFGS on the test data, reaching a tolerance of 10−7 in just over 100
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iterations on average, compared with about 600 for L-BFGS and NAG. We also see that the worst-case
performance of (PC) outperforms the best-case performance of NAG and L-BFGS. Figure 2c shows
(PC) also outperforms other algorithms when considering wall-clock time. Appendix Section F.1
explores the impact of different kernel sizes on the performance of (PC), and Appendix Section F.5
shows the number of iterations to reach a specified tolerance for different algorithms.

Comparison to a hand-crafted convolutional preconditioner. In Figures 2b and 2c we also evaluate
a hand-crafted convolutional algorithm. In particular, we consider the preconditioner (δI +A∗A)−1

for δ = 0.2, which corresponds to a convolution with the kernel shown in Appendix Section F.2. We
evaluate the update rule given by xt+1 = xt − γt(δI +A∗A)−1∇f(xt) for a function f and a scalar
step γt found using backtracking line search, and denote this algorithm PGD. Figures 2b and 2c show
that the learned convolutional algorithm significantly outperforms this hand-crafted algorithm.

Regularization. We use regularization at iteration T for the parametrizations (PS) and (PP) to ensure
convergence when applying Algorithm 2 to further iterations. The (PC) parametrization was not
considered as it has already reached a suitable tolerance within the training iterations. As discussed in
Section 4, we may select λT large enough to guarantee convergence. We find λT = 4.012×10−7 and
λT = 1.953× 10−9 guarantee convergence for (PS) and (PP), respectively. Figure 2d shows that the
learned algorithm diverges when learned without regularization, but converges if the regularization
parameter λT is chosen large enough.

(a) (b) (c) (d)

Figure 2: (a) Performance of the learned methods on training versus test data within training iterations.
(b) Test performance versus benchmark optimization algorithms within training iterations. Intervals
around each mean represent maximum and minimum values over the dataset. (c) Comparison with
Wall-clock time on test data. (d) Performance on training data beyond training iterations for the (PP)
and (PS) learned with and without guaranteed convergence. The vertical black line indicates the final
training iteration T .

Reconstruction comparison. Figure 3 demonstrates that the learned convolutional algorithm
achieves high-quality image reconstruction in 10 iterations, whereas NAG produces lower-quality
reconstructions at the same point.

Greedy learning vs unrolling. We now compare the time taken for training with the greedy learning
approach versus unrolling. For unrolling, we fix T = 10 iterations and jointly learn the parameters
θ0, · · · , θT (all initialized as θ̃) in the update rule (5) with the (PC) parametrization. The same
training dataset as the greedy method is used with a batch size of 4 and the loss function defined in
equation (4). Parameters are learned using Adam (Kingma, 2014), with the learning rate selected
via grid search. The unrolling method was trained for 29900 epochs, taking approximately 27 hours.
Figure 4 shows similar performance, although the greedy approach took considerably less time with
only 22 minutes to learn parameters.

(a) Observation (b) NAG itera-
tion 10

(c) (PC) iteration
10

Figure 3: A Comparison of reconstructions for the
deblurring problem.

Figure 4: Performance of the learned unrolled
algorithm versus the greedy learned algorithm
on test data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 COMPUTED TOMOGRAPHY

Now the forward operator A in (13) is the Radon transform in 2D and we simulate CT measurements
using ODL (Adler et al., 2017) with a parallel-beam geometry and projection angles evenly distributed
over a 180-degree range. For the dataset, we use ground-truth images in the SARS-CoV-2 CT-scan
dataset (Soares et al., 2020), and in optimization take the initial point x0 = 0 ∈ X .

6.2.1 LARGE-SCALE CT PROBLEM

Problem details. We use 360 projection angles and take X = R256×256 and Y = R360×360. The
noise ε is modeled with standard deviation 10−3, and we set α = 10−6, resulting in L = 1.0008.

Training details. Greedy training was performed up to iteration T = 200 with λt = 0 for all
iterations t for the (PS), (PP), and (PC) parametrizations. The total time for training (PS) was about
33 minutes, for (PP) was about 10 hours, and (PC) took approximately 53 hours.

Visualising learned preconditioners. Figure 5a shows that the learned convolutional kernels for the
CT problem contain both positive and negative values, and are predominantly weighted toward the
center of the kernel. Figure 5b shows that the learned pointwise operators look similar to images in
the SARS-CoV-2 dataset, and exhibit oscillations between consecutive iterations, with many values
falling outside the interval (0, 2/L). Likewise, Figure 5c shows that the learned scalar values again
fluctuate above and below 2/L, similar to the behavior observed for the deblurring problem.

Learned algorithm performance. Figures 5f and 5g show that the learned convolutional algorithm
achieves a good reconstruction faster than NAG. Furthermore, Figure 6a shows that the learned
parametrizations (PS), (PP), and (PC) generalize well to unseen data for the CT problem. Similar to
the deblurring problem, Figure 6b shows that the learned (PC) parametrization outperforms NAG
and L-BFGS on the CT test data, reaching a tolerance of 10−8 in an average of approximately 90
iterations, compared with over 150 for both L-BFGS and NAG. However, we see that the worst-case
performance of (PC) does not beat the best-case performance of NAG and L-BFGS. However, Figure
6c shows that the worst-case wall-clock time for the learned convolutional algorithm to reach a
tolerance of 10−8 is less than the best-case wall-clock time for NAG.

(a) (b) (c)

(d) (e) (f) (g)

Figure 5: (a) Learned kernels restricted to the interval [−20, 20] for t ∈ {0, 2, 10, 25, 100}, cropped
to the center 32× 32. Uncropped images are shown in Appendix Section F.4. (b) Learned pointwise
operators for t ∈ {5, 6, 7, 8} restricted to [−5, 5]. Extended iterations are shown in Appendix Section
F.4. (c) Learned scalars for t ∈ {0, 1, · · · , 100}. (d) Example CT observation. (e) Reconstruction by
minimizing (13). (f) (PC) reconstruction at iteration 20. (g) NAG reconstruction at iteration 20.

6.2.2 SMALL-SCALE CT PROBLEM

Problem details. We use 90 projection angles and extract 40 × 40 pixel crops from the center of
each ground-truth image in the dataset. The noise ε is modeled with a standard deviation of 10−2,
and we set α = 10−4, resulting in L = 1.08.

Training details. Greedy training was performed up to iteration T = 200 with λt = 0 for all
iterations t for the (PS), (PP), and (PC) parametrizations. The total time for training (PS) was about
10 minutes, for (PP) was about 67 minutes, and (PC) took approximately 10 hours. For the (PF)
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(a) (b) (c)

Figure 6: Performance of learned algorithms for the large-scale CT problem. (a) Train versus test set
performance of the learned parameterizations. (b) Test performance versus benchmark optimization
algorithms. (c) Wall-clock time test performance versus benchmark optimization algorithms.

parametrization, training was performed up to iteration T = 11 with λt = 0 for all t. Furthermore,
the (PF) parametrization was trained with regularization such that λt = 10−10 for t < T = 101
iterations. At iteration 101, the learned operator GθT satisfied ∥GθT − τI∥ < τ , guaranteeing
convergence on iterations t ≥ T . For each iteration t, solving the optimization problem (6) with the
(PF) parametrization took one hour.

Learned algorithm performance. Figure 7a shows that the learned parametrizations (PS), (PP), and
(PC) generalize well to unseen data for the CT problem. Again the learned (PC) parametrization
outperforms NAG and L-BFGS on the CT test data as shown by Figure 7b, reaching a tolerance
of 10−10 in approximately 30 iterations, compared with about 80 for L-BFGS and NAG. Figure
7c shows that (PC) also outperforms in terms of wall-clock time. Learned preconditioners and
reconstruction comparisons can be found in Appendix Section F.3.

Full operators. The full parametrization (PF) shows signs of overfitting, as it does not generalize well
to test data. It performs well in the first two iterations, but then diverges. The (PF) parametrization
with regularization mitigates this issue, as the generalization performance is seen to improve. Figure
7b shows it initially converges quickly but its speed decreases later due to regularization. This is
because, with increasing iterations, the learned update gets closer to gradient descent.

(a) (b) (c)

Figure 7: Performance of learned algorithms for the small-scale CT problem. (a) Train versus test set
performance of the learned parameterizations. (b) Test performance versus benchmark optimization
algorithms. (c) Wall-clock test performance versus benchmark optimization algorithms.

7 CONCLUSIONS

Our contribution is a novel L2O approach for minimizing unconstrained convex problems with
differentiable objective functions. Our method employs a greedy strategy to learn a linear operator at
each iteration of an optimization algorithm, meaning that GPU memory requirements are constant
with the number of training iterations. Parameter learning in our framework corresponds to solving
convex optimization problems, enabling the use of fast algorithms. Both factors allow training over a
large number of training iterations, which would otherwise be prohibitively expensive. Furthermore,
we obtain convergence results on the training set even when the preconditioner is neither symmetric
nor positive definite, and for a class of unseen functions under certain conditions. The numerical
results on imaging inverse problems demonstrate that our approach with a novel convolutional
parametrization outperforms NAG and L-BFGS.
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A LIMITATIONS

The main limitation of our method lies in the fact that we learn

B FURTHER NOTATION

The following notation is required in this section.

A function f : X → R is strongly convex with parameter µ > 0 if f − µ
2 ∥ · ∥

2 is convex. We say
f ∈ FL,µ if f ∈ FL and f is µ-strongly convex.

If dim(X ) = n and dim(Y) = m, denote an orthonormal basis of X by {e1, · · · , en}, and an
orthonormal basis of Y by {ẽ1, · · · , ẽn}, then A can be uniquely determined by mn scalars γij for
i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}: A(ei) =

∑n
j=1 γij ẽj , and denote [A]ij = γij . For x, y ∈ X ,

define the pointwise product x⊙ y by

[x⊙ y]j = [x]j [y]j . (15)

. Denote 1 ∈ X to be such that [1]j = 1 for j ∈ {1, · · · , n}. For operators A,B ∈ L(X ), and
elements x, y, z ∈ X , define the linear operators A⊙B and x⊗ y by

[A⊙B]ij := [A]ij [B]ij , (16)
(x⊗ y)z := ⟨y, z⟩x, (17)

with the property that
[x⊗ y]qi = ⟨y, ei⟩⟨x, eq⟩ = [x]q[y]i. (18)

For two linear operators A,B ∈ L(X ), define A⊗B by

[A⊗B]ij,kl = [A]ik[B]jl. (19)

For a linear operator A ∈ L(X ) and x ∈ X ,

[Ax]i =

n∑
j=1

[A]ij [x]j . (20)

C PROOFS FOR SECTION 3

Proposition 4. Assume that f : X → R is convex, continuously differentiable, and has a global
minimum. Then for a point z ∈ X if there exists some x∗ ∈ argminx f(x) such that [z]i = [x∗]i,
then [∇f(z)]i = 0.

Proof. Let g : R → R be defined by g(t) := f(z+ tei), then g is convex as for α ∈ [0, 1], t1, t2 ∈ R,
we have g(αt1 + (1−α)t2) = f(α(z+ t1ei) + (1−α)(z+ t2ei)) ≤ αg(t1) + (1−α)g(t2). Note
that g′(0) = [∇f(z)]i. Assume there exists δ ̸= 0 such that g(δ) < g(0), then g(δ) < g(0) = f(z),
which is a contradiction of x∗ being an optimal point, as one can take z = x∗. Therefore g achieves a
minimum at t = 0, then [∇f(z)]i = 0.

Proof of Proposition 1. Choose the vector p ∈ X such that

[p]i =

{
[x0−x∗]i
[∇f(x0)]i

, if [∇f(x0)]i ̸= 0,

0, otherwise,
(21)

and let I = {i : [∇f(x0)]i ̸= 0} Then for any i ∈ I , we have

[x0 − p⊙∇f(x0)]i = [x0]i − [p]i[∇f(x0)]i

= [x0]i −
[x0 − x∗]i
[∇fk(x0)]i

[∇f(x0)]i

= [x∗]i.

Thus, by proposition 4, [∇f(x0 − p ⊙ ∇f(x0))]i = 0, for all i ∈ I , and similarly [∇f(x0 −
p ⊙ ∇f(x0))]i = 0, for all i /∈ I , and therefore ∇f(x0 − p ⊙ ∇f(x0)) = 0, meaning that
x0 − p⊙∇f(x0) ∈ argminx f(x) as required.
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Proof of Proposition 2. We require
x∗
1 = x0

1 − P∇f1(x
0
1),

...
x∗
N = x0

N − P∇fN (x0
N ).

Each of these equations gives n linear equations in n2 unknowns. There are N such equations and so
we have nN linear equations in n2 unknowns. Rewritten, these read

P
[
∇f1(x

0
1)| · · · |∇fN (x0

N )
]
=
[
x0
1 − x∗

1| · · · |x0
N − x∗

N

]
. (22)

Such a P exists if nN ≤ n2, which is equivalent to N ≤ n, and if the columns of[
∇f1(x

0
1)| · · · |∇fN (x0

N )
]

are linearly independent.

D PROOFS FOR SECTION 4

The following lemma is required to prove the convergence of our learned method.
Lemma 3. Define F : XN → R by

F (x) =
1

N

N∑
k=1

fk(xk), x = (x1, x2, . . . , xN ) ∈ XN . (23)

Then

1. Each fk ∈ FLk
implies F ∈ FLF

, with LF = 1
NLtrain where Ltrain = max{L1, · · · , LN}.

2. Each fk ∈ FLk,µk
implies F ∈ FL,µF

with µF = 1
N µmin where µmin = min{µ1, · · · , µN}.

Proof. We have

∇F (x) =
1

N
(∇f1(x1), · · · ,∇fN (xN )) , (24)

and for any y ∈ XN ,

∥x− y∥ =

√√√√ N∑
k=1

∥xk − yk∥2.

Then

∥∇F (x)−∇F (y)∥ =
1

N

√√√√ N∑
k=1

∥∇fk(xk)−∇fk(yk)∥2

≤ 1

N

√√√√ N∑
k=1

L2
k ∥xk − yk∥2 (Lk-smoothness of fk.)

≤ max{L1, · · · , LN}
N

∥x− y∥,

which proves 1.
For strong convexity, it is required to show that x 7→ (F (x) − min{µ1,··· ,µN}

N ∥x∥2) is convex. We
have

F (x)− min{µ1, · · · , µN}
N

∥x∥2 =
1

N

N∑
k=1

(fk(xk)−min{µ1, · · · , µN}∥xk∥2). (25)

Notice that due to the strong convexity of fk for all k, and that µk ≥ min{µ1, · · · , µN},

xk 7→ (fk(xk)−min{µ1, · · · , µN}∥xk∥2) (26)

is convex. Therefore the function x 7→ (F (x) − min{µ1,··· ,µN}
N ∥x∥2) is convex as it is the sum of

convex functions, as required.
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Theorem 1. Convergence on training data.
Suppose λt ≥ 0. If θt is BGD then with Algorithm (1), we have

∇fk(x
t
k) → 0 as t → ∞, (27)

for all k ∈ {1, · · · , N}.
Bonus: Convergence rates
Furthermore, if we denote

x0 = (x0
1, · · · , x0

N ), x∗ = (x∗
1, · · · , x∗

N ), (28)

then

F (xt)− F (x∗) ≤ max{L1, · · · , LN}
2tN

∥x0 − x∗∥2. (29)

If, in addition, each fk is µk-strongly convex, then we have linear convergence given by

F (xt)− F (x∗) ≤
(
1− max{L1, · · · , LN}

min{µ1, · · · , µN}

)t

(F (x0)− F (x∗)). (30)

Note that this result gives a worst-case convergence bound among train functions. However, provable
convergence is still acquired. Also, note that this is not an issue for a function class with constant
smoothness and strongly convex parameters.

Proof. As θt is BGD, we have that

F (xt+1) = gt,λt(θt) ≤ gt,λt(θ̃)

=
1

N

N∑
k=1

fk
(
xt
k − τ∇fk(x

t
k)
)

= F
(
xt − τ

(
∇f1(x

t
1), · · · ,∇fN (xt

N )
))

= F (xt − τN∇F (xt))

= F (xt − τF∇F (xt)) ,

where τF = 1
LF

.

F is LF -smooth as each fk is Lk-smooth and µ-strongly convex if each fk is µk-strongly convex,
where

LF =
max{L1, · · · , LN}

N

µF =
min{µ1, · · · , µN}

N
.

Using standard properties of L-smoothness and µ-strong convexity we have that

F (xt+1) ≤ F (xt)−
1

2LF
∥∇F (xt)∥2, (31)

∥∇F (xt)∥2 ≥ 2µF (F (xt+1)− F (x∗)), if F is µF -strongly convex (32)

and therefore, using standard convergence rate results of gradient descent (Nesterov et al., 2018), we
have

F (xt)− F (x∗) ≤ LF

2t
∥x0 − x∗∥2, (33)

as F is LF -smooth. If F is also µF -strongly convex we have

F (xt)− F (x∗) ≤
(
1− LF

µF

)t

(F (x0)− F (x∗)). (34)

In both cases, we have that ∥∇F (xt)∥2 = 1
N2

∑N
k=1 ∥∇fk(x

t
k)∥2 → 0 as t → ∞, which implies

that ∇fk(x
t
k) → 0 as t → ∞ for all k ∈ {1, · · · , N}.
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We have proved convergence for the mean of our train functions. The following proposition proves
the same convergence rate holds for each function in our training set.
Proposition 5. Suppose we have a convergence rate for F of

F (xt)− F ∗ ≤ Cρ(t), (35)

for some constant C > 0. Then the convergence rate for all fk ∈ T is given by

fk(x
t
k)− f∗

k ≤ cρ(t), (36)

for some constant c > 0.

Proof. Let k ∈ {1, · · · , N}. Note that by the definition of F , we have that

fk(x
t
k)− f∗

k ≤
N∑
i=1

fi(x
t
i)− f∗

i (37)

= N(F (xt)− F ∗) (38)
≤ NCρ(t) (39)
= cρ(t), (40)

for c = NC.

D.1 UNSEEN DATA

Proof of Lemma 1. Firstly,

gt,λt(θ̃) =
1

N

N∑
k=1

fk
(
xt
k − τ∇fk(x

t
k)
)
→ 1

N

N∑
k=1

f∗
k as t → ∞. (41)

Note also that as (θt)∞t=0 is a BGD sequence of parameters then 1
N

∑N
k=1 f

∗
k ≤ gt,λt

(θt) ≤ gt,λt
(θ̃)

and so gt,λt
(θt) → 1

N

∑N
k=1 f

∗
k as t → ∞ as gt,λt

(θt) ≥ 1
N

∑N
k=1 f

∗
k . Furthermore,

gt,λt
(θ̃)− gt,λt

(θt) = −λt

2
∥θt − θ̃∥2 + 1

N

N∑
k=1

fk
(
xt
k − τ∇fk(x

t
k)
)

− 1

N

N∑
k=1

fk(x
t
k −Gθt∇fk(x

t
k))).

Therefore,

0 = lim
t→∞

gt,λt
(θ̃)− gt,λt

(θt) = lim
t→∞

−λt

2
∥θt − θ̃∥2. (42)

Now, lim inft→∞ λt > 0 implies that

λ

2
∥θt − θ̃∥2 → 0 as t → ∞. (43)

In particular, θt → θ̃ as t → ∞, as required.

Lemma 4. Suppose lim inft→∞ λt > 0, G : Θ → L(X ) is continuous and at each training iteration
θt is BGT . Then for any ν such that 0 ≤ ν < τ , there exists an iteration T such that

∥GθT − τI∥ ≤ ν < τ. (44)

Proof. By Lemma 1, θt → θ̃ as t → ∞, therefore as Gθ is continuous in θ we have Gθt → τI as
t → ∞. Therefore for any ν > 0 there exists some iteration T > 0 such that

∥Gθt − τI∥ ≤ ν (45)

for all t ≥ T , in particular for t = T .
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Proof of Theorem 2. By Lemma 4, for any tolerance ν < τ there exists an iteration T such that

∥GθT − τI∥ ≤ ν. (46)

Let
GθT = τI +M, (47)

then
∥M∥ ≤ ν. (48)

Using L-smoothness of f , we have

f(x−GθT∇f(x)) ≤ f(x)− ⟨GθT∇f(x),∇f(x)⟩+ L

2
∥GθT∇f(x)∥2

= f(x)−
〈
GθT∇f(x),∇f(x)− L

2
GθT∇f(x)

〉
= f(x)−

〈
(τI +M)∇f(x),∇f(x)− L

2
(τI +M)∇f(x)

〉
= f(x)−

〈
τ∇f(x) +M∇f(x),∇f(x)− L

2
τ∇f(x)− L

2
M∇f(x)

〉
= f(x)−

〈
τ∇f(x) +M∇f(x),

(
1− Lτ

2

)
∇f(x)− L

2
M∇f(x)

〉
= f(x)− τ

(
1− Lτ

2

)
∥∇f(x)∥2 + L

2
∥M∇f(x)∥2

− (1− τL) ⟨∇f(x),M∇f(x)⟩

≤ f(x)− τ

(
1− Lτ

2

)
∥∇f(x)∥2 + Lν2

2
∥∇f(x)∥2 + ν |1− τL| ∥∇f(x)∥2

= f(x)−
(
τ

(
1− τL

2

)
− Lν2

2
− ν |1− τL|

)
∥∇f(x)∥2

= f(x)− c(ν, L, τ) ∥∇f(x)∥2 ,
where

c(ν, L, τ) = τ

(
1− τL

2

)
− Lν2

2
− ν |1− τL|

=
L

2

(
1

L
− ν −

∣∣∣∣ 1L − τ

∣∣∣∣)(ν +

∣∣∣∣ 1L − τ

∣∣∣∣+ 1

L

)
.

Therefore
f(xt+1) ≤ f(xt)− c(ν, L, τ) ∥∇f(x)∥2 . (49)

Note that ν +
∣∣ 1
L − τ

∣∣+ 1
L > 0, so for c(ν, L, τ) to be positive, we require

1

L
− ν −

∣∣∣∣ 1L − τ

∣∣∣∣ > 0. (50)

Case 1 - 1
L ≥ τ

Then we require
τ − ν > 0 ⇐⇒ ν < τ, (51)

which is true as we take ν ∈ [0, τ).
Case 2 - 1

L < τ
Then we require

2

L
− ν − τ > 0 ⇐⇒ 1

L
>

τ + ν

2
. (52)

To conclude both cases, we have ν < τ and therefore as 1
τ < 1

τ+ν , we require only case 2 to be
satisfied for c(ν, L, τ) > 0:

L <
2

τ + ν
. (53)

In particular, any L ≤ Ltrain satisfies this inequality for any ν ∈ [0, τ).
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Proposition 6. Assume that G : Θ → L(X ) is continuous. Then at any iteration t there exists λt ≥ 0

and a constant L̃ > 0 such that for all f ∈ FL̃ and any starting point x0, using Algorithm 2 gives
∇f (xt) → 0 as t → ∞.

Proof. Take ν ∈ (0, τ). Define h(λ) = ∥Gargminθ gt,λ(θ) − τI∥ − ν for gt,λ(θ) as in (6). Note that
limλ→∞ h(λ) = −ν < 0. If h(0) < 0 then we are done as for λt = 0, the corresponding learned
parameters θt satisfy ∥Gθt − τI∥ < ν, leading to a provably convergent algorithm for f ∈ FL̃ for
some L̃ > 0. Else, suppose that h(0) > 0. Then as h is continuous in λ, there exists some λ such
that h(λ) < 0.

At the final training iteration T , to find a λT that is large enough to ensure convergence, we start at
an initial point λ = 10−6 and find ϕ ∈ argminθ gT,λ(θ). If ∥Gϕ − τI∥ < τ , then increase λ by a
multiple and re-evalute. Repeat until this inequality no longer holds, and take λT to be the most recent
λ such that ∥Gϕ − τI∥ < τ . Else if λ = 10−6 and ϕ ∈ argminθ gT,λ(θ) satisfies ∥Gϕ − τI∥ > τ
then reduce λ by a multiple and re-evaluate until ∥Gϕ − τI∥ < τ , then take λT = λ. For the (PS)
parametrization we take the multiple to be 5, and for the (PP) parametrization, we take this multiple
to be 2.

Proof of Theorem 3. Define D = maxt=0,1,···{∥xt − x∗∥}, which is finite as (xt) is bounded. Due
to the convexity of f and the Cauchy-Schwarz inequality, we have that

f(xt)− f(x∗) ≤ ⟨∇f(xt), xt − x∗⟩
≤ ∥∇f(xt)∥∥xt − x∗∥
≤ D∥∇f(xt)∥.

Therefore

∥∇f(xt)∥2 ≥ 1

D2
(f(xt)− f(x∗))2, (54)

and for t ≥ T we have

f(xt+1) ≤ f(xt)− c(ν, L, τ)∥∇f(xt)∥2

≤ f(xt)−
c(ν, L, τ)

D2
(f(xt)− f(x∗))2.

Denote ∆t = f(xt+T )− f(x∗), then in the spirit of (Nesterov et al., 2018), we have for all t ≥ 0

∆t+1 ≤ ∆t −
c

D2
∆2

t

=⇒ 1

∆t
≤ 1

∆t+1
− c

D2

∆t

∆t+1
≤ 1

∆t+1
− c

D2

=⇒ c

D2
+

1

∆t
≤ 1

∆t+1
.

Taking a summation gives

t−1∑
k=0

c

D2
≤

t−1∑
k=0

(
1

∆k+1
− 1

∆k

)
=⇒ c

D2
t ≤ 1

∆t
− 1

∆0
.

Therefore

∆t ≤
1

1
∆0

+ c
D2 t

=
D2∆0

D2 + c∆0t
≤ D2∆0

c∆0t
=

D2/c

t
,

as required.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E PROOFS FOR SECTION 5

Proof of Lemma 2. 1. For scalar step sizes, Gθ = θI , take θ̃ = τ .

2. For a pointwise parametrization, Gθx = θ ⊙ x, take θ̃ = τ1.

3. For full operator parametrization, Gθ = θ ∈ L(X ), take θ̃ = τI .

4. For the convolutional parametrization, Gθx = θ ∗ x, take

θ(i, j) =

{
τ, if i = j = 0,

0, otherwise.
(55)

Gθ are clearly continuous in θ for all listed parametrizations.

Proof of Corollary 1. With any parametrization in Table 1, G : Θ → L(X ) is continuous by Lemma
2. For Theorem 2 to hold, we then need θt is BGD and lim inft→∞ λt > 0, which are both assumed.
For Theorem 3, we only further require (xt)

∞
t=1, which is also assumed.

Proof of Proposition 3. Because this problem is convex, if a solution θ is found by differentiating
the objective function and equating equal to zero, this is a global minimizer. First, note that

fk(x
t
k −Bt

kθ) =
1

2
∥Ak(x

t
k −Bt

kθ)− yk∥2

=
1

2
∥Akx

t
k − yk∥2 +

1

2
∥ −AkB

t
kθ∥2 + ⟨−AkB

t
kθ,Akx

t
k − yk⟩

=
1

2
∥Akx

t
k − yk∥2 +

1

2
∥AkB

t
kθ∥2 − ⟨θ, (Bt

k)
∗∇fk(x

t
k)⟩.

Now,

∇θ

{
1

N

N∑
k=1

fk(x
t
k −Bt

kθ) +
λt

2
∥θ − θ̃∥2

}

=
1

N

N∑
k=1

(AkB
t
k)

∗(AkB
t
kθ)− (Bt

k)
∗∇fk(x

t
k) + λt(θ − θ̃)

is equal to zero if and only if(
1

N

N∑
k=1

(AkB
t
k)

∗(AkB
t
k) + λtIΘ

)
θ = λtθ̃ +

1

N

N∑
k=1

(Bt
k)

∗∇fk(x
t
k).

A bonus proposition regarding the uniqueness of optimal parameters.
Proposition 7. gt,λt

(θ) has a unique global minimizer θ∗t if at least one of the following are satisfied:

• λt > 0,

• fk is twice continuously differentiable for k ∈ {1, · · · , N}, and there exists some j ∈
{1, · · · , N} for which both Bt

j is injective and also fj is µj-strongly convex.

Proof. Case 1 - λt > 0
1
N

∑N
k=1(AkB

t
k)

∗(AkB
t
k) is self-adjoint and positive semi-definite as it is the sum of self-adjoint

operators, 1
N

∑N
k=1(AkB

t
k)

∗(AkB
t
k) + λtI is a self-adjoint, positive-definite operator and therefore

invertible.
Case 2 - λt = 0
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If each fk is twice continuously differentiable; then gt,λt
is twice continuously differentiable. It is

then sufficient to show there exists m > 0 such that

∇2gt,λt
(θ) ⪰ mI, (56)

for all θ, as this implies that gt,λt is strongly convex and has a unique global minimizer. Note that

∇2gt,λt
(θ) =

1

N

N∑
k=1

(Bt
k)

∗∇2fk(x
t
k −Bt

kθ)B
t
k. (57)

Note that

⟨v,∇2gt,λt(θ)v⟩ = ⟨v, 1

N

N∑
k=1

(Bt
k)

∗∇2fk(x
t
k −Bt

kθ)B
t
kv⟩ (58)

=
1

N

N∑
k=1

⟨v, (Bt
k)

∗∇2fk(x
t
k −Bt

kθ)B
t
kv⟩ (59)

=
1

N

N∑
k=1

⟨Bt
kv,∇2fk(x

t
k −Bt

kθ)B
t
kv⟩. (60)

(61)

Each fk is convex and so for all v ∈ X ,

⟨v,∇2fk(x
t
k −Bt

kθ)v⟩ ≥ 0, (62)

and fj is µj-strongly convex, therefore

⟨v,∇2fj(v
j
t −Bt

jθ)v⟩ ≥ µj∥v∥2. (63)

For v ∈ X ,

⟨v,∇2gt,λt(θ)v⟩ ≥
1

N
µjv

T (Bt
j)

∗Bt
jv

≥
(

1

N
µjρ

j
min

)
∥v∥2,

where ρjmin is the minimum eigenvalue of M t
j = (Bt

j)
∗Bt

j (a symmetric linear operator). Due to the
symmetry of M t

j , ρjmin ≥ 0 and is greater than zero if and only if Bt
j is injective. As Bt

j is injective,
then ρjmin > 0 and therefore gt,λt(θ) is strongly-convex.

Proposition 7 applied to least-square functions.
Corollary 2. Uniqueness of optimal parameters in the least-squares case
When our fk can be written as least-squares functions fk(x) = 1

2∥Akx− yk∥2, then gt,λt
(θ) has a

unique global minimizer θ∗t if at least one of the following are satisfied:

• λt > 0,

• there exists some j ∈ {1, · · · , N} for which both Bt
j and Aj are injective.

Proof. If Aj is injective then A∗
jAj is invertible which means that fj(x) = 1

2∥Ajx−yj∥2 is strongly
convex.

Proposition 8. pt given by

pt =

(
λtIΘ +

1

N

N∑
k=1

(
∇fk(x

t
k)⊗∇fk(x

t
k)
)
⊙ (A∗

kAk)

)†(
λtθ̃ +

1

N

N∑
k=1

∇fk(x
t
k)⊙∇fk(x

t
k)

)
(64)

is a solution to (6) with the pointwise parametrization Gptx = pt ⊙ x for any x ∈ X .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. Define for x ∈ X ,

Bt
kx = ∇fk(x

t
k)⊙ x

then, for x ∈ X , (Bt
k)

∗(x) = Bt
k(x). Now,

(AkB
t
k)

∗(AkB
t
k)p = (Bt

k)
∗ (A∗

kAkB
t
kp
)

= ∇fk(x
t
k)⊙

(
A∗

kAk(∇fk(x
t
k)⊙ p)

)
.

Now,

[∇fk(x
t
k)⊙

(
A∗

kAk(∇fk(x
t
k)⊙ p)

)
]j

= [∇fk(x
t
k)]j [A

∗
kAk(∇fk(x

t
k)⊙ p)]j , by (15)

= [∇fk(x
t
k)]j

n∑
i=1

[∇fk(x
t
k)⊙ p]i[A

∗
kAk]ji, by (20)

=

n∑
i=1

[∇fk(x
t
k)]i[p]i[∇fk(x

t
k)]j [A

∗
kAk]ji, by (15).

Secondly, [((
∇fk(x

t
k)⊗∇fk(x

t
k)
)
⊙ (A∗

kAk)
)
p
]
j

=

n∑
i=1

[p]i[
(
∇fk(x

t
k)⊗∇fk(x

t
k)
)
⊙ (A∗

kAk)]ji, by (20)

=

n∑
i=1

[p]i[∇fk(x
t
k)⊗∇fk(x

t
k)]ji[A

∗
kAk]ji, by (16)

=

n∑
i=1

[p]i[∇fk(x
t
k)]j [∇fk(x

t
k)]i[A

∗
kAk]ji by (19)

= [∇fk(x
t
k)⊙

(
A∗

kAk(∇fk(x
t
k)⊙ p)

)
]j , by (18).

Finally,

λtθ̃ +
1

N

N∑
k=1

(Bt
k)

∗∇fk(x
t
k) = λtθ̃ +

1

N

N∑
k=1

∇fk(x
t
k)⊙∇fk(x

t
k).

Then the result follows from proposition 3.

Proposition 9. Let Bt
k : L(X ) → X be such that for any linear operator P ∈ L(X ), we have

Bt
k(P ) = P∇fk(x

t
k). Then its adjoint (Bt

k)
∗ : X → L(X ) is given by

(Bt
k)

∗(w) = ∇fk(x
t
k)⊗ w, (65)

for any element w ∈ X . Then θt equal to(
λtIΘ +

1

N

N∑
k=1

(A∗
kAk)⊗ (∇fk(x

t
k)⊗∇fk(x

t
k))

)†(
λtθ̃ +

1

N

N∑
k=1

∇fk(x
t
k)⊗∇fk(x

t
k)

)
,

(66)
is a solution to (6) for the full operator parametrization.
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Proof. θt ∈ L(X ) and we require θt∇fk(x
t
k) = Bt

k(θt), so can take Bt
k(θt) = θt∇fk(x

t
k). For the

adjoint,

⟨Bt
k(P ), w⟩ =

n∑
i=1

[P∇fk(x
t
k)]i[w]i (67)

=

n∑
i=1

n∑
j=1

[P ]ij [∇fk(x
t
k)]j [w]i (68)

= ⟨P, (Bt
k)

∗w⟩ (69)

=

n∑
i=1

n∑
j=1

[P ]ij [(B
t
k)

∗w]ij , (70)

and therefore [(Bt
k)

∗w]ij = wi[∇fk(x
t
k)]j , which means (Bt

k)
∗(w) = w ⊗∇fk(x

t
k). Now,

[(AkB
t
k)

∗(AkB
t
k)θ]ij = [(Bt

k)
∗(A∗

kAkB
t
kθ)]ij

= [(A∗
kAkB

t
kθ)⊗∇fk(x

t
k)]ij

= [∇fk(x
t
k)]j [A

∗
kAkB

t
kθ]i, by (18)

= [∇fk(x
t
k)]j

n∑
q=1

[A∗
kAk]iq[B

t
kθ]q

= [∇fk(x
t
k)]j

n∑
q=1

[A∗
kAk]iq

n∑
ℓ=1

[θ]qℓ[∇fk(x
t
k)]ℓ, (definition of Bt

k).

Similarly,

[((A∗
kAk)⊗ (∇fk(x

t
k)⊗∇fk(x

t
k)))θ]ij

=

n∑
q,ℓ=1

[(A∗
kAk)⊗ (∇fk(x

t
k)⊗∇fk(x

t
k))]ij,qℓ[θ]qℓ

=

n∑
q,ℓ=1

[A∗
kAk]iq[∇fk(x

t
k)⊗∇fk(x

t
k)]jℓ[θ]qℓ, by (19)

=

n∑
q,ℓ=1

[A∗
kAk]iq[∇fk(x

t
k)]j [∇fk(x

t
k)]ℓ[θ]qℓ

= [(AkB
t
k)

∗(AkB
t
k)θ]ij ,

as required, due to [A∗
kAk]jq = [A∗

kAk]qj .

Proposition 10. If each fk can be written as a least-squares function fk(x) =
1
2∥Akx− yk∥2, then

αt can be given as

αt =
λtθ̃ +

1
N

∑N
k=1 ∥∇fk(x

t
k)∥2

λt +
1
N

∑N
k=1 ∥Ak∇fk(xt

k)∥2
, (71)

if λt > 0 or Aj∇fj(x
t
j) ̸= 0 for some j ∈ {1, · · · , N}.

Proof. Take Bt
k : R → X such that

Bt
k(α) = α∇fk(x

t
k).

Then for α ∈ R

⟨Bt
k(α), w⟩ = ⟨α∇fk(x

t
k), w⟩ = α⟨∇fk(x

t
k), w⟩.
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Therefore
(Bt

k)
∗(w) = ⟨∇fk(x

t
k), w⟩. (72)

then general formula 3 gives the desired result as

(Bt
k)

∗(A∗
kAkB

t
k(α)) = α⟨∇fk(x

t
k), A

∗
kAk∇fk(x

t
k)⟩ = α∥Ak∇fk(x

t
k)∥2,

(Bt
k)

∗(∇fk(x
t
k)) = ⟨∇fk(x

t
k),∇fk(x

t
k)⟩ = ∥∇fk(x

t
k)∥2.

Then the result follows from proposition 3.

Proposition 11. For n1, n2 ∈ N, let X = Rn1×n2 . Define Bt
k : X → X be such that for any

convolutional kernel κ ∈ X , we have Bt
k(κ) = κ ∗ ∇fk(x

t
k). Then its adjoint (Bt

k)
∗ : X → X is

given by

(Bt
k)

∗(w) = w ∗ ∇fk(xt
k), (73)

where for x ∈ X ,
x(k, l) = x(−k,−l). (74)

Proof. For the adjoint of Bt
k, we have

⟨Bt
k(κ), w⟩ = ⟨κ ∗ ∇fk(x

t
k), w⟩ (75)

=
∑
i,j

[κ ∗ ∇fk(x
t
k)](i, j)w(i, j) (76)

=
∑
i,j

∑
k,l

κ(k, l)[∇fk(x
t
k)](i− k, j − l)w(i, j) (77)

=
∑
i,j

∑
k,l

κ(k, l)[∇fk(x
t
k)](i, j)w(i+ k, j + l) (78)

=
∑
i,j

∑
k,l

κ(k, l)[∇fk(x
t
k)](i, j)w(i+ k, j + l) (79)

=
∑
i,j

[∇fk(x
t
k)](i, j)

∑
k,l

κ(k, l)w(i+ k, j + l)

 (80)

=
∑
i,j

[∇fk(x
t
k)](i, j)

∑
k,l

κ(−k,−l)w(i− k, j − l)

 (81)

= ⟨∇fk(x
t
k), κ ∗ w⟩, (82)

where κ(k, l) = κ(−k,−l).

E.1 APPROXIMATING OPTIMAL LINEAR PARAMETERS

For general functions fk, a closed-form solution does not exist for calculating linear parameters.
Instead, we require an optimization algorithm to approximate these quantities. With information
of ∇gt,λt(θ), and Lgt,λt

, the Lipschitz constant of ∇gt,λt(θ), one can use any first-order convex
optimization algorithm, such as gradient descent, Nesterov accelerated gradient (Nesterov et al.,
2018), or stochastic optimization methods such as SGD, and SVRG (Gower et al., 2020) (especially
for large N , due to both speed and memory considerations) to approximate θ∗t . For example, one can
start at an initial point θ0t at iteration t and update via gradient descent

θw+1
t = θwt − 1

Lgt,λt

∇gt,λt
(θwt ). (83)

The following result illustrates how ∇gt,λt(θ) and Lgt,λt
can be calculated.
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Proposition 12. For a general linear parametrization G, the gradient of gt,λt
with respect to θ and

its associated Lipschitz constant can be calculated as

∇gt,λt
(θ) = λt(θ − θ̃)− 1

N

N∑
k=1

(Bt
k)

∗∇fk(x
t
k −Gθ∇fk(x

t
k)), (84)

Lgt,λt
= λt +

1

N

N∑
k=1

Lk∥Bt
k∥2. (85)

Proof. As

gt,λt(θ) =
1

N

N∑
k=1

fk(x
t
k −Gθ∇fk(x

t
k)) +

λt

2
∥θ − θ̃∥2

=
1

N

N∑
k=1

fk(x
t
k −Bt

kθ) +
λt

2
∥θ − θ̃∥2,

then by the chain rule

∇gt,λt
(θ) = − 1

N

N∑
k=1

(Bt
k)

∗∇fk(x
t
k −Bt

kθ) + λt(θ − θ̃), (86)

as required. To calculate the smoothness constant, we have

∥∇gt,λt
(θ1)−∇gt,λt

(θ2)∥

=

∥∥∥∥∥λt(θ1 − θ2) +
1

N

N∑
k=1

(Bt
k)

∗(∇fk(x
t
k −Bt

kθ2)−∇fk(x
t
k −Bt

kθ2))

∥∥∥∥∥
≤ λt∥θ1 − θ2∥+

1

N

N∑
k=1

∥∥(Bt
k)

∗(∇fk(x
t
k −Bt

kθ2)−∇fk(x
t
k −Bt

kθ1))
∥∥

≤ λt∥θ1 − θ2∥+
1

N

N∑
k=1

∥Bt
k∥
∥∥∇fk(x

t
k −Bt

kθ2)−∇fk(x
t
k −Bt

kθ1)
∥∥

≤ λt∥θ1 − θ2∥+
1

N

N∑
k=1

Lk∥Bt
k∥
∥∥Bt

k(θ1 − θ2)
∥∥

≤

(
λt +

1

N

N∑
k=1

Lk∥Bt
k∥2
)
∥θ1 − θ2∥

Due to the properties of the triangle inequality, the Cauchy-Schwarz inequality, and the operator
norm, this bound is tight. Therefore the Lipschitz constant of ∇gt,λt

(θ) is given by

λt +
1

N

N∑
k=1

Lk∥Bt
k∥2 (87)

as required.

Using this general result, we can calculate these values for specific parametrizations of G.
Corollary 3. Suppose each fk ∈ FLk

.
Pointwise parametrization
For the pointwise parametrization, θ ∈ X , and

∇gt,λt
(θ) = λt(θ − θ̃)− 1

N

N∑
k=1

∇fk(x
t
k − θ ⊙∇fk(x

t
k))⊙∇fk(x

t
k), (88)
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and an upper bound of the Lipschitz constant of ∇θg is given by

L∇θg = λt +
1

N

N∑
k=1

Lk(max{|[∇fk(x
t
k)]1|, · · · , |[∇fk(x

t
k)]n|})2. (89)

Full operator parametrization
In this case we have θ ∈ L(X ). The gradient of gt,λt

(θ) is given by

∇gt,λt
(θ) = λt(θ − θ̃)− 1

N

N∑
k=1

∇fk(x
t
k − θ∇fk(x

t
k))⊗∇fk(x

t
k), (90)

and an upper bound of the Lipschitz constant of ∇gt,λt(θ) is given by

λt +
1

N

N∑
k=1

Lk

∥∥∇fk(x
t
k)
∥∥2 . (91)

Scalar step size
We now take θ ∈ R. The derivative of gt,λt

with respect to θ is given by

g′t,λt
(θ) = λt(θ − θ̃)− 1

N

N∑
k=1

⟨∇fk(x
t
k − θ∇fk(x

t
k)),∇fk(x

t
k)⟩, (92)

and the Lipschitz constant of g′(θ) is given by

λt +
1

N

N∑
k=1

Lk∥∇fk(x
t
k)∥2. (93)

Convolution
In this case we have θ ∈ Rn1×n2 . The gradient of gt,λt

(θ) is given by

∇gt,λt
(θ) = λt(θ − θ̃)− 1

N

N∑
k=1

∇fk(x
t
k −Gθ∇fk(x

t
k)) ∗ ∇fk(xt

k). (94)

Proof. Pointwise parametrization

In this case, we have θ ∈ X and Bt
k(x) = ∇fk(x

t
k) ⊙ x and (Bt

k)
∗(x) = Bt

kx for x ∈ X .
Furthermore,

∥Bt
k∥ = max

x̸=0

∥x⊙∇fk(x
t
k))∥

∥x∥
= max

x ̸=0

√∑n
i=1[x]

2
i [∇fk(xt

k)]
2
i∑n

i=1[x]
2
i

≤ max
q

|[∇fk(x
t
k)]q|max

x ̸=0

√∑n
i=1[x]

2
i∑n

i=1[x]
2
i

= max{|[∇fk(x
t
k)]1|, · · · , |[∇fk(x

t
k)]n|}.

Full operator parametrization

In the case of the full operator parametrization, we have (Bt
k)

∗(w) = w ⊗ ∇fk(x
t
k). Therefore,

using Proposition 12 gives (90). For the Lipschitz constant, note that

∥Bt
k(P )∥ = ∥P∇fk(x

t
k)∥ ≤ ∥P∥∥∇fk(x

t
k)∥,

and therefore

∥Bt
k∥ = max

P ̸=0

∥Bt
k(P )∥
∥P∥

≤ ∥∇fk(x
t
k)∥.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Scalar step size
Let Bt

k be defined for any α ∈ R by Bt
k(α) = α∇fk(x

t
k), then for an element w ∈ X , (Bt

k)
∗(w) =

⟨∇fk(x
t
k), w⟩. Furthermore,

∥Bt
k(α)∥ = ∥α∇fk(x

t
k)∥

= |α|∥∇fk(x
t
k)∥,

and so

∥Bt
k∥ = max

α ̸=0

∥Bt
k(α)∥
|α|

= ∥∇fk(x
t
k)∥.

Convolution
For the gradient,

(Bt
k)

∗(∇fk(x
t
k −Gθ∇fk(x

t
k))) = ∇fk(x

t
k −Gθ∇fk(x

t
k)) ∗ ∇fk(xt

k).

For any chosen linear parametrization, one can approximate the operator norm of Bt
k using the power

method (Golub & Van Loan, 2013). The following table summarises the previous propositions:

Table 2: Example parametrization properties

Parametrization Equations
Pointwise • θ̃ = τ1 ∈ X

• Bt
k(x) = ∇fk(x

t
k)⊙ x, (Bt

k)
∗(x) = Bt

k(x)

• ∇gt,λt(θ) = λt(θ− θ̃)− 1
N

∑N
k=1 ∇fk(x

t
k − θ⊙∇fk(x

t
k))⊙∇fk(x

t
k)

• Lgt,λt
≤ λt +

1
N

∑N
k=1 Lk(max{|∇fk(xk)1|, . . . , |∇fk(xk)n|})2

Full operator • θ̃ = τI ∈ L(X )
• Bt

k(P ) = P∇fk(x
t
k), (B

t
k)

∗(w) = w ⊗∇fk(x
t
k)

• ∇gt,λt(θ) = λt(θ − θ̃)− 1
N

∑N
k=1 ∇fk(x

t
k − θ∇fk(x

t
k))⊗∇fk(x

t
k)

• Lgt,λt
≤ λt +

1
N

∑N
k=1 Lk∥∇fk(x

t
k)∥2

Scalar • θ̃ = τ ∈ R
• Bt

k(α) = α∇fk(x
t
k), (B

t
k)

∗(w) = ⟨w,∇fk(x
t
k)⟩

• g′t,λt
(θ) = λt(θ − θ̃)− 1

N

∑N
k=1⟨∇fk(x

t
k − θ∇fk(x

t
k)),∇fk(x

t
k)⟩

• Lgt,λt
= λt +

1
N

∑N
k=1 Lk∥∇fk(x

t
k)∥2

Convolution
• θ̃(i, j) =

{
τ, if i = j = 0,

0, otherwise.
• Bt

k(κ) = κ ∗ ∇fk(x
t
k), (B

t
k)

∗(κ) = κ ∗ ∇fk(xt
k)

• g′t,λt
(θ) = λt(θ − θ̃)− 1

N

∑N
k=1 ∇fk(x

t
k − θ ∗ ∇fk(x

t
k)) ∗ ∇fk(xt

k)

F ADDITIONAL NUMERICAL RESULTS

F.1 ABLATION STUDY: SIZE OF LEARNED KERNELS

Figure 8 shows that many of the learned convolutional algorithms outperform NAG for the deblurring
problem. We see that the 5 × 5 kernels significantly outperform the NAG kernels and perform
similarly to the 7× 7 kernels.Furthermore, we see similar performance for the 11× 11 kernels and
the 96× 96 kernels.
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Figure 8: Test performance of different kernel sizes in the convolutional parametrisation, averaged
over the test dataset in the deblurring problem. Tested kernel sizes are 3× 3, 5× 5, 7× 7, 11× 11,
3× 3, 96× 96.

F.2 INVERSE KERNEL

For the operator A given by a Gaussian blur with standard deviation 1.5 and kernel size 5× 5, and a
constant δ = 0.2, the operator (δI +A∗A)−1 corresponds to a convolution with the kernel gives as
in Figure 9.

Figure 9: The kernel corresponding to the operator (δI +A∗A)−1.

F.3 SMALL-SCALE CT EXTRA RESULTS

Visualising learned preconditioners. Figure 10 shows that the learned scalar values again eventually
fluctuate above and below 2/L, similar to the behavior observed for the deblurring problem. The
learned pointwise operators also exhibit oscillations between consecutive iterations, with many values
falling outside the interval (0, 2/L). Likewise, the learned convolutional kernels for the CT problem
contain both positive and negative values, are predominantly weighted toward the center of the kernel,
and become increasingly similar as the iterations progress.

(a) (b)

(c) (d) (e)

Figure 10: (a) Learned scalars for t ∈ {0, 1, · · · , 100}. (b) Learned pointwise operators for t ∈
{4, 5, 6, 7, 8}. (c) Learned kernels restricted to the interval [−5, 5], for t ∈ {0, 1, 3, 5, 10}. (d)
Example CT observation. (e) Reconstruction by minimizing 13.

Reconstruction comparison. Figure 11 demonstrates that the learned parametrization (PC) achieves
high-quality reconstructions with significantly fewer iterations compared to NAG for the small-
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scale CT problem. Also, note that the regularized (PF) parametrization achieves a good visual
reconstruction after only two iterations while also providing guaranteed convergence.

Figure 11: Left: An example reconstruction for the small-scale CT problem. Right: The abso-
lute difference between the final reconstruction and the intermediate reconstruction for the full
parametrization with regularization at iteration 2, the convolutional parametrization at iteration 10,
and for NAG at iterations 10 and 70.

F.4 LARGE-SCALE CT EXTRA RESULTS

In Figure 12 we see that the entire learned kernels for the large-scale CT problem are heavily weighted
towards the center.

Figure 12: Learned kernels restricted to the interval [−20, 20], for t ∈ {0, 2, 10, 25, 100}.

Figure 13: Learned pointwise operators restricted to the interval [−5, 5], for t ∈
{0, 1, 2, 3, 4, 10, 25, 100}.

F.5 TOLERANCE TABLES

Table 3: The first row shows error thresholds for the deblurring problem. The entries in the table show
the number of required iterations to fall below the respective error threshold. "na" means that the
threshold was not reached within 250 iterations for learned algorithms and 1000 iterations otherwise.

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Learned Convolution 1 1 2 6 21 51 102 182
NAG 3 16 59 134 240 374 568 866
L-BFGS 3 15 51 130 253 416 599 892
PGD 2 5 58 263 878 na na an
Learned Scalar 3 30 na na na na na na
Backtracking GD 3 31 308 na na na na an
Learned Pointwise 3 53 na na na na na na
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Table 4: The first row shows error thresholds for the large-scale CT problem. The entries in the
table show the number of required iterations to fall below the respective error threshold. "na" means
that the threshold was not reached within 200 iterations for learned algorithms and 1000 iterations
otherwise.

10−3 10−4 10−5 10−6 10−7 10−8 10−9

Learned Convolution 2 4 7 11 30 81 140
NAG 5 11 21 37 63 163 277
L-BFGS 4 9 19 36 64 142 304
Backtracking GD 6 16 49 135 354 na na
Learned Pointwise 2 12 45 146 na na na
Learned Scalar 4 15 46 128 na na na

Table 5: The first row shows error thresholds for the small-scale CT problem. The entries in the
table show the number of required iterations to fall below the respective error threshold. "na" means
that the threshold was not reached within 200 iterations (or 100 in the case of the Full Regularized
parametrization).

10−3 10−4 10−5 10−6 10−7 10−8 10−9

Learned Convolution 2 4 6 9 12 17 25
L-BFGS 4 8 15 26 40 56 76
NAG 4 8 15 25 37 54 87
Full Regularized 1 2 2 17 88 na na
Backtracking GD 6 13 28 68 136 na na
Learned Scalar 3 9 24 59 115 190 na
Learned Pointwise 2 8 24 59 118 194 na
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