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ABSTRACT

Linear bandits have become a cornerstone of online learning and sequential
decision-making, providing solid theoretical foundations for balancing explo-
ration and exploitation. Within this domain, matrix sketching serves as a critical
component for achieving computational efficiency, especially when confronting
high-dimensional problem instances. The sketch-based approaches reduce per-
round complexity from Ω(d2) to O(dl), where d is the dimension and l < d is
the sketch size. However, this computational efficiency comes with a fundamental
pitfall: when the streaming matrix exhibits heavy spectral tails, such algorithms
can incur vacuous linear regret. In this paper, we revisit the regret bounds and
algorithmic design for sketch-based linear bandits. Our analysis reveals that inap-
propriate sketch sizes can lead to substantial spectral error, severely undermining
regret guarantees. To overcome this issue, we propose Dyadic Block Sketching,
a novel multi-scale matrix sketching approach that dynamically adjusts the sketch
size during the learning process. We apply this technique to linear bandits and
demonstrate that the new algorithm achieves sublinear regret bounds without re-
quiring prior knowledge of the streaming matrix properties. It establishes a gen-
eral framework for efficient sketch-based linear bandits, which can be integrated
with any matrix sketching method that provides covariance guarantees. Compre-
hensive experimental evaluation demonstrates the superior utility-efficiency trade-
off achieved by our approach.

1 INTRODUCTION

Multi-Armed Bandits (MAB) is a general framework for modeling sequential decision-making un-
der partial information (Herbert, 1952), which has been widely adopted in various applications,
including recommendation systems (Zhang et al., 2022), public health surveillance (Bastani et al.,
2021), and green security (Xu et al., 2021). We consider the Stochastic Linear Bandit (SLB), a
variant of the MAB under the linear assumption (Auer, 2002; Dani et al., 2007; Abbasi-Yadkori
et al., 2011; Chu et al., 2011). In SLB, at round t, the player selects an arm xt from a decision set
Xt ⊆ Rd, and then observes the reward rt ∈ R. The expected reward E[rt|xt] = x⊤

t θ⋆, where θ⋆
represents unknown coefficients. Utilizing the regularized least squares estimator and upper confi-
dence bounds, the seminal work Abbasi-Yadkori et al. (2011) propose OFUL algorithm and achieve
Õ(d
√
T ) regret bound, where d is the dimension and T denotes the number of rounds, and the

Õ(·)-notation hides logarithmic factors. Notably, OFUL exhibits a complexity of Ω(d2) per step.

In real-world decision-making problems, d can be very large such that traditional linear bandits be-
come computationally prohibitive. Consequently, various studies apply matrix sketching techniques
to eliminate the quadratic dependence on d and enhance efficiency. Yu et al. (2017) use random
projection to map high-dimensional arms to a low m-dimensional subspace, reducing the update
time from Ω(d2) to O(md + m3). Another line of these works is based on a well-known deter-
ministic sketching method – Frequent Directions (FD), which has been proved to offer better the-
oretical guarantees than random projection under the streaming setting (Liberty, 2013; Woodruff,
2014; Ghashami et al., 2016). Kuzborskij et al. (2019) are the first to employ FD to sketch the
covariance matrix in linear bandits, reducing time complexity to O(dl + l2) while achieving an
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Figure 1: (a), (b): Cumulative regret of the compared algorithms, the proposed methods on synthetic
dataset; (c): Scaling of spectral error with rounds on synthetic dataset w.r.t. sketch size l

Õ((1 + ∆T )
3/2(l + d log(1 + ∆T ))

√
T ) regret, where l < d is the sketch size and ∆T represents

the spectral error introduced by matrix sketching. Subsequently, Chen et al. (2020) extended this
work by substituting FD with a robust variant, which reduces the order of the spectral error ∆T and
decouples it from d, yielding a regret bound of Õ((

√
l + d log(1 + ∆T ) +

√
∆T )
√
lT ).

Motivation. However, sketching-based methods suffer from the linear regret pitfall—catastrophic
regret when matrices exhibit heavy spectral tails. Figure 1a, 1b illustrate this phenomenon through
the regret of SOFUL and CBSCFD across different sketch size l. When l = 450, both sketch-
based methods achieve regret comparable to that of the non-sketched OFUL. In stark contrast, when
l = 50, they exhibit near-linear regret growth, demonstrating severe performance degradation. This
discrepancy arises because insufficient size fails to preserve essential spectral information, resulting
in substantial spectral error. The possibility of linear regret contradicts the objective of online learn-
ing, emphasizing the critical need to manage worst-case regret when employing matrix sketching.

Intuitively, avoiding the linear regret pitfall requires calibrating sketch size to the spectral properties
of the matrix. However, existing methods employ single-scale sketching with fixed sketch size
throughout learning. This rigid design creates a dilemma: optimal sketch size depends on spectral
properties that remain unknown until data arrives, yet must be specified before learning begins. Too
small risks catastrophic regret; too large sacrifices computational efficiency—the very motivation
for sketching. This inherent tension raises a critical question: Can we adaptively adjust sketch size
during learning to guarantee sublinear regret without prior knowledge of the streaming matrix?

Contributions. We answer the question affirmatively by developing a novel framework for sketch-
based linear bandits. Our main contributions are summarized as follows.

• Uncovering the impact of spectral error on regret. We revisit the regret bound of sketch-based lin-
ear bandits, focusing on the spectral error induced by matrix sketching. Our analysis reveals that
existing methods are susceptible to linear regret, primarily caused by an insufficient sketch size.

• Controlling approximation error via multi-scale sketching. We propose Dyadic Block Sketching,
a novel matrix sketching method that adaptively adjusts sketch sizes across multiple scales to
control error. We prove that the global error is bounded by a predetermined error ϵ. Additionally,
our method provably tracks the optimal rank-k approximation in the streaming setting, ensuring
efficiency in scenarios with low-rank matrices or light-tailed spectra.

• Achieving sublinear regret. By applying the proposed sketching framework to linear bandits, we
effectively address the issue of linear regret observed in prior works. Our method ensures a sub-
linear regret, even when the streaming matrix is heavy-tailed. Furthermore, it is robust, scalable,
and flexible, achieving diverse regret bounds through various matrix sketching approaches.

Organization. The rest is structured as follows. Section 2 revisits sketching in bandits and high-
lights current pitfalls. Section 3 and Section 4 present our novel multi-scale sketching method and
its application to linear bandits. Section 5 reports the experiments. Finally, Section 6 concludes the
paper. Due to page limits, the notations and all proofs are provided in the appendices.
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2 PRELIMINARIES

Notations. Let [n] = {1, 2, . . . , n}, upper-case bold letters (e.g., A) represent matrix and lower-
case bold letters (e.g., a) represent vectors. We denote by ∥A∥2 and ∥A∥F the spectral and Frobe-
nius norms of A. We define |A| and Tr(A) as the determinant and trace of matrix A. For a positive
semi-definite matrix A, the matrix norm of vector x is defined by ∥x∥A =

√
x⊤Ax. For two

positive semi-definite matrices A and B, we use A ⪰ B to represent that A−B is positive semi-
definite. We use A = UΣV ⊤ to represent the SVD of A, where U ,V denote the left and right
matrices of singular vectors and Σ = diag(σ1, ..., σn) is the diagonal matrix of singular values in the
descending order. We define A[k] = UkΣkV

⊤
k for k ≤ rank(A) as the best rank-k approximation

to A, where Uk ∈ Rn×k and Vk ∈ Rd×k are the first k columns of U and V .

2.1 FREQUENT DIRECTIONS

Frequent Directions (FD) (Liberty, 2013; Ghashami et al., 2016) is a deterministic matrix sketching
technique. Given a streaming matrix X(t) = [x⊤

1 , . . . ,x
⊤
t ]

⊤ ∈ Rt×d, t ∈ [T ], FD maintains a
smaller sketch matrix S(t) ∈ Rl×d to approximate X(t), where l denotes the sketch size. To process
row xt, we first replace the last row of S(t) with xt. Then, we perform SVD on S(t), i.e., S(t) =
U (t)Σ(t)V (t) . Let Σ(t) = diag(σ1, . . . , σd) and σ = σ2

l , where σl is the l-th largest singular value.
Subsequently, we set Σ(t+1) = diag(

√
σ2
1 − σ, . . . ,

√
σ2
l − σ) and S(t+1) = Σ(t+1)V (t).

We provide the pseudo-code of FD in Appendix B.1. FD uses O(dl) space and has an amortized
update time of O(dl). The fundamental property of FD is to bound the covariance error in terms of
the tail eigenvalues of X(T ). This property is formally expressed in the following lemma:

Lemma 1 (Claim 1 of (Liberty, 2013) ). Let X(T ) be the streaming matrix at round T and X
(T )
[k]

denote the matrix consisting of the first k singular vectors of X(T ). Then, it holds that∥∥∥(X(T ))⊤X(T ) − (S(T ))⊤S(T )
∥∥∥
2
≤ ∆T , where ∆T := min

0≤k<ℓ

∥∥X(T ) −X
(T )
[k]

∥∥2
F

ℓ− k
. (1)

2.2 LINEAR BANDITS

We first introduce the basic assumptions for the linear bandits setting. At any round t, the decision
set Xt ⊂ Rd is finite and for all x ∈ Xt, we have ∥x∥2 ≤ L. The reward for choosing arm xt is
defined as rt = x⊤

t θ⋆ + ηt, where θ⋆ is a fixed, unknown vector of real coefficients, and ηt denotes
the conditionally R-subgaussian noise variable. Moreover, the norm ∥θ⋆∥2 is upper bounded by H .

OFUL (Abbasi-Yadkori et al., 2011) utilizes regularized least squares (RLS) to estimate θ⋆ as

A(t) = λId +
(
X(t)

)⊤
X(t), θ̂t =

(
A(t)

)−1 t∑
s=1

rsxs, (2)

where X(t) = [x⊤
1 , . . . ,x

⊤
t ]

⊤ is the matrix containing all the arms selected up to round t and λ is
the regularization. After computing the confidence ellipsoid βt(δ), the arm selection is based on the
upper confidence bound as xt+1 = argmaxx∈Xt

{x⊤θ̂t + βt(δ) · ∥x∥(A(t))−1}.

The objective of the learner is to minimize the cumulative (pseudo) regret (Lattimore & Szepesvári,
2020) over the total T rounds, defined as RegretT =

∑T
t=1 maxx∈Xt

x⊤θ⋆ −
∑T

t=1 x
⊤
t θ⋆.

2.3 SKETCH-BASED LINEAR BANDITS

Note that both the RLS estimator and arm selection require maintaining the inverse of A(t), which
necessitates an update time of Ω(d2). To address this issue, Kuzborskij et al. (2019) proposes a
sketch-based method, SOFUL, which reduces the time-consuming step via matrix sketching.

SOFUL produce a FD sketch S(t) ∈ Rl×d of the streaming matrix X(t). By applying Wood-
bury’s identity, the inverse of the sketched covariance matrix can be written as

(
Â(t)

)−1
=

3
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1
λ

(
Id − (S(t))⊤M (t)S(t)

)
, where M (t) =

(
S(t)(S(t))⊤ + λIl

)−1 ∈ Rl×l is a diagonal matrix
that can be stored efficiently. Notably, (Â(t))−1 can be updated implicitly using the sketch matrix
S(t) and M (t). Since matrix-vector multiplications with S(t) require O(dl) time and matrix-matrix
multiplications with M (t) take O(l2) time, the update cost is reduced from Ω(d2) to O(dl + l2).

Current Pitfalls. Despite its improved efficiency, the sketch-based methods introduce errors in
matrix approximation, which can lead to a vacuous linear regret bound. We begin by presenting the
regret bound of SOFUL, which is characterized in terms of spectral error.

Lemma 2 (Theorem 3 of (Kuzborskij et al., 2019)). Let RegretSOFULT denote the regret of SOFUL,
where the sketch size is l and ∆T is defined in equation 1. With high probability, the regret satisfies

RegretSOFULT = Õ
(
min

{
(1 + ∆T )

3
2 (l + d log(1 + ∆T ))

√
T , T

})
.

The regret bound of SOFUL is tightly linked to spectral error ∆T , which depends on both the
spectral tail of X(T ) and the fixed sketch size l. This bound is meaningful only when ∆T = o(T 1/3).
However, as shown in Figure 1c, if the sketch size is insufficient (e.g., the blue and orange lines),
∆T grows rapidly with the number of rounds, violating this condition and leading to linear regret.

The underlying reason for this phenomenon is that low-regret algorithms must ensure sufficient
exploration by estimating all relevant directions in the parameter space, a concept extensively studied
by Banerjee et al. (2023). Specifically, they showed that when the arm space has a locally convex
surface, the minimum eigenvalue of the covariance matrix satisfies σ2

d = Ω(T q) in expectation,
where q ∈ (0, 1/2] depends on the geometry of the arm space. For the convenience of readers,
we restate this result in Theorem 5 in Appendix C.1. Based on this result, we obtain the following
observation:

Observation 1. Assume the decision set is drawn from a locally convex arm space X . If the sketch
size of SOFUL satisfies l < d − T

1
3−q , then SOFUL incurs vacuous linear regret. Consequently,

when the geometry constant q ≥ 1/3, SOFUL suffers linear regret for any sketch size l < d.

The proof is provided in Appendix C.1. Observation 1 indicates that it is difficult to constrain the
spectral error by presetting a fixed sketch size, since the spectral properties of the streaming matrix
are unknown in advance. In some cases, even allocating SOFUL the maximum sketch size fails to
prevent linear regret. Similarly, other sketch-based methods, such as CBSCFD (Chen et al., 2020),
suffer from the same limitation, as discussed in Appendix C.2. This underscores the necessity of
dynamically adjusting the sketch size to guarantee worst-case sublinear regret.

3 DYADIC BLOCK SKETCHING FOR CONSTRAINED GLOBAL ERROR BOUND

In this section, we propose Dyadic Block Sketching, a novel multi-scale sketching paradigm that
fundamentally departs from single-scale sketching. Inspired by dyadic frameworks in streaming al-
gorithms (Wang et al., 2013; Wei et al., 2016), our method maintains multiple sketches with varying
sizes. A key property is that the global error is governed by ϵ, which is fixed before sketching.

3.1 ALGORITHM DESCRIPTIONS

High-Level Ideas. As illustrated in Figure 2, we partition the streaming data into blocks, with each
block approximated by a matrix sketch. For the initial block, we use a relatively small sketch, and
for each subsequent block, the sketch size is doubled compared to the previous one. The following
lemma shows that any sketch satisfying a covariance error guarantee is decomposable, allowing us
to concatenate the individual sketches to construct an approximation of the entire streaming matrix:

Lemma 3 (Decomposability). Let X = [X⊤
1 , . . . ,X⊤

p ]⊤ with Xi ∈ Rni×d and
∑

i ni = n. If each
Xi admits a sketch Si satisfying ∥X⊤

i Xi − S⊤
i Si∥2 ≤ ϵi∥Xi∥2F , then with S = [S⊤

1 , . . . ,S⊤
p ]⊤

we have ∥X⊤X − S⊤S∥2 ≤
∑p

i=1 ϵi∥Xi∥2F .

Data Structure. The matrix rows are partitioned into blocks, with each block represented as the
struct variable B. Each block is associated with a matrix sketching instance, denoted as B.sketch,

4
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Figure 2: Illustration for Dyadic Block Sketching. For each inactive block i ∈ [B − 1], the sketch
covers the data from ti−1 to ti. For active block B, sketching updates are performed on the new
rows. In Algorithm 1, B⋆ represents the active block B, and L denotes the list of inactive blocks.

which covers a segment of consecutive, non-overlapping rows. Each block is characterized by
two properties: block size and sketch size. The block size is defined as the sum of the squared
norms of the rows contained within the block, i.e., B.BlockSize =

∑
x∈B ∥x∥22. The sketch size,

B.SketchSize, represents the constant sketch size of the sketch matrix associated with the block.

We categorize the blocks into two states: active and inactive. An active block is updated with new
rows, while an inactive block remains unchanged. As shown in Figure 2, there is exactly one active
block at any time. The active block is represented as B⋆, and the list of inactive blocks is denoted
by L. Moreover, we maintain two invariants during the update process for error management:

Invariant 1 (Inactive-Block Condition). Each inactive block either has sketch size no smaller than
its rank, or block size less than ϵl0, where l0 is the initial sketch size and ϵ the error parameter.

Invariant 2 (Maximum Number of Blocks). The number of blocks is at most ⌊log(d/l0 + 1)⌋.

Algorithm 1 presents the pseudo-code of Dyadic Block Sketching. Upon receiving a new row xt,
we first verify that Invariant 2 holds. If the number of blocks reaches its upper limit, any error
introduced by a matrix sketch becomes intolerable, requiring the full preservation of the information.
Concretely, we employ complete rank-1 modifications to update the sketch.

In Lines 8–15, we update the active block and, when necessary, create a new block. The sketch
B⋆.sketch is updated using a chosen matrix sketching method (e.g., FD or RFD; see Appendix B.1).
We introduce a Boolean flag willExcessSketch to check the rank condition in Invariant 1: it
is set to True if inserting the incoming row would cause the block rank to exceed the current sketch
size, and False otherwise. This flag is easily computed by testing the update on a temporary copy
of the sketch B⋆.sketch; for FD, we tentatively add the new row and inspect the shrinking value σ:
if σ = 0 (unchanged from before insertion) we set willExcessSketch to False, otherwise to
True. Line 10 updates the information of the active block when either the block size remains below
the threshold ϵl0 or willExcessSketch is False. Otherwise, we mark the current active block
as inactive, append it to L, initialize a new active block with twice the previous sketch size, and then
insert the incoming row into this new block.

In Lines 16–17, we return a matrix approximation for the current streaming matrix. We query the
sketch matrices S⋆ and M⋆ from the active block B⋆. Since the inactive blocks remain fixed, we can
query the combined results of the sketch matrices from L, denoted as S̃ and M̃ , which are updated
(similar to equation 3) once when a block is marked as inactive. Leveraging the decomposability
property (Lemma 3), we combine the sketches from both the active and inactive blocks as follows:

S(t) =

[
S̃

S⋆

]
, M (t) =

([
M̃ S̃ S⋆⊤

S⋆ S̃⊤ M⋆

]
+ λ I

)−1

. (3)

5
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Algorithm 1 Dyadic Block Sketching

1: Input: Data stream {xt}Tt=1, initial sketch size l0, error parameter ϵ, regularization λ
2: Output: Sketch matrix S(t), M (t)

3: Initialize an empty list L and B⋆.sketch, set B⋆.BlockSize = 0 and B⋆.SketchSize = l0
4: for t = 1 to T given xt do
5: if length(L) ≥ ⌊log(d/l0 + 1)⌋ − 1 then
6: Update

(
S(t+1)

)⊤
S(t+1) =

(
S(t)

)⊤
S(t) + x⊤

t xt using rank-1 modifications
7: else
8: Query willExcessSketch from B⋆.sketch and xt

9: if B⋆.BlockSize + ∥xt∥22 < ϵ · l0 or willExcessSketch is False then
10: Update B⋆.sketch with xt and set B⋆.BlockSize += ∥xt∥22
11: else
12: Set l = B⋆.SketchSize and mark B⋆ as inactive (appending it to L)
13: Initialize a new empty B⋆.sketch and set B⋆.BlockSize = 0, B⋆.SketchSize = 2l
14: Update B⋆.sketch with xt and set B⋆.BlockSize += ∥xt∥22
15: end if
16: Query S⋆,M⋆ from B⋆.sketch and S̃,M̃ from the list L of inactive blocks
17: Compute S(t), M (t) by equation 3
18: end if
19: end for

3.2 ANALYSIS

We now analyze the error guarantee and the space-time complexities of our approach. Let X denote
the streaming matrix and X̃ the subset of rows approximated by inactive blocks. Consider a matrix
sketching algorithm ALG that achieves covariance error ∥X⊤X − S⊤S∥2 ≤ ξ · ∥X∥2F , where S
is the sketch matrix and ξ is a constant. Assume ALG requires ℓξ rows and µξ update time. The
following theorem applies to any matrix sketching method satisfying this error guarantee.

Theorem 1 (Dyadic Block Sketching Guarantee). Given initial sketch size l0, error parameter ϵ,
and a single-scale matrix sketching algorithm ALG, our method produces a sketch S satisfying

∥X⊤X − S⊤S∥2 ≤ 2ϵ. (4)

The space complexity is O
(
d ·
∑B

i=0 ℓ 1

2il0

)
and the per-round update complexity is O

(
µ 1

2Bl0

)
,

where B =
⌈
min

{
log k

l0
,
∥X̃∥2

F

ϵl0

}⌉
with k = rank(X).

The detailed proof is provided in Appendix D.2. Theorem 1 establishes that the global error is
constrained by parameter ϵ, while the complexity depends on the choice of ALG and the number of
blocks B. The value of B grows adaptively during sketching and depends not only on the parameters
l0 and ϵ, but also on the spectral properties of the streaming matrix (e.g., k and ∥X̃∥2F ). To illustrate
how different ALG yield different complexities, we present the following corollary for FD:

Dyadic Block Sketching for FD. We employ FD (Liberty, 2013) as ALG for each block in our
method. With a given covariance error ξ, FD requires ℓξ = O(1/ξ) rows and processes updates at
an amortized cost of µξ = O(d/ξ). The following corollary specializes Theorem 1 to FD:

Corollary 1. Dyadic Block Sketching with FD guarantees the error bound in equation 4, with both
space complexity and amortized update cost O

(
dl0 ·min{k/l0, 2∥X̃∥2

F /(ϵl0)}
)
.

Our method provides a framework for constraining the global error of matrix approximation by
integrating sketches across multiple scales. This mechanism is particularly critical for learning
and optimization algorithms that impose strict accuracy requirements, which the single-scale matrix
sketching method cannot always satisfy. More precisely, as shown in Theorem 1, the error of Dyadic
Block Sketching is governed by a pre-specified parameter ϵ, which can, in principle, be tuned to
arbitrarily small values. When a stringent error tolerance is required, such as ϵ < σ2

d/2 where σd is
the smallest singular value of X , even the largest FD with l = d− 1 cannot meet this constraint.

6
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Furthermore, as the active block’s sketch size grows dyadically, our method closely tracks the opti-
mal rank-k approximation. Once it exceeds k, the spectral error in the active block vanishes. Note
that the full-rank case k = d corresponds to the edge case that triggers rank-1 modifications. This
behavior matches the first term in the complexity bound of Corollary 1 and shows that, in the low-
rank regime, our method attains the optimal FD complexity of O(dk).

Remark 1 (Efficient Implementation). The update costs include calculating SVD to obtain S(t) and
performing matrix multiplication to compute M (t), both of which cost O(dl2), where l is the current
sketch size. In implementation, the amortized cost can be reduced to O(dl) either by doubling space
(detailed in Appendix B.2), or by employing the Gu-Eisenstat procedure (Gu & Eisenstat, 1993).

4 APPLICATION TO LINEAR BANDITS

In this section, we incorporate Dyadic Block Sketching into linear bandits and propose a novel
framework, termed DBSLinUCB. DBSLinUCB guarantees worst-case sublinear regret, independent
of the streaming matrix, and readily extends to other sketch-based approaches.

4.1 ALGORITHM AND REGRET GUARANTEE

We use FD as the base algorithm in Dyadic Block Sketching. First, we present the estimator utilized
in our approach, followed by the derivation of the confidence ellipsoid, which is essential for both
the algorithm design and the regret analysis. Using the upper confidence bound, we then propose a
selection criterion. Finally, we provide the theoretical guarantee on the regret of our method.

Estimator. We adopt a sketch-based RLS estimator, similar to previous work (Kuzborskij et al.,
2019; Chen et al., 2020), with the key difference that we use Algorithm 1 to generate the sketch. Let
X(t) = [x⊤

1 , . . . ,x
⊤
t ]

⊤ ∈ Rt×d denote the matrix containing all the arms selected up to round t.
We utilize the sketch matrix S(t) ∈ RlBt×d and M (t) to approximate X(t), where lBt

is the current
sketch size. The sketched RLS estimator is given by

θ̂t =
(
Â(t)

)−1 t∑
s=1

rsxs,
(
Â(t)

)−1

= 1
λ

(
Id − (S(t))⊤M (t)S(t)

)
. (5)

Confidence Ellipsoid. For the estimator equation 5, we derive the corresponding confidence ellip-
soid, which is a key component in achieving sublinear regret in the worst case.

Theorem 2 (Multi-scale sketched confidence ellipsoid). Following the assumption of linear bandits
in section 2.2. Let Bt be the number of blocks at round t. For any δ ∈ (0, 1), the optimal weight θ⋆
belongs to the set Θt ≡ {θ ∈ Rd : ∥θ − θ̂t∥Â(t) ≤ β̂t(δ)} with probability at least 1− δ, where

β̂t(δ) ≲ R

√
d ln

(
1 +

ϵ

λ

)
+ 2lBt ·

√
1 +

ϵ

λ
+

H(λ+ ϵ)√
λ

.

The proof is provided in Appendix E.1. Importantly, this result departs from the previous single-
scale sketched one ((Kuzborskij et al., 2019), Theorem 2). Here, the ellipsoid is constructed by
leveraging multiple sketches at different scales. We can then define the selection criterion as

xt = argmax
x∈Xt

{
x⊤θ̂t−1 + β̂t−1(δ) · ∥x∥(Â(t−1))

−1

}
. (6)

Complexity. The overall algorithm is summarized in Algorithm 5. The computational cost arises
from three components: updating the sketch via Algorithm 1, computing the sketched RLS estimator
in equation 5, and performing arm selection in equation 6. Let lBt be the sketch size of the active
block at round t. Since both equation 5 and equation 6 require computing (Â(t))−1, we can employ
the sketch-based acceleration discussed in Section 2.3, which costs O(dlBT

+ l2BT
). Combined with

the sketch maintenance cost from Corollary 1, we obtain a total space complexity of O(dlBT
) and

an amortized update complexity of O(dlBT
+ l2BT

), where lBT
= min

{
k, l0 · 2∥X̃∥2

F /(ϵl0)
}

.
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Regret Bound. We demonstrate that the regret bound of DBSLinUCB using FD is as follows:

Theorem 3 (Regret bound of DBSLinUCB-FD). Consider the basic assumptions of linear bandits
outlined in Section 2.2, and assume that L ≥

√
λ. Let the sketch size of the active block at round

t be denoted by lBt
≤ d. Given the error parameter ϵ, the regret of DBSLinUCB-FD satisfies the

following bound with probability at least 1− 1/T :

RegretT = Õ

((
1 +

ϵ

λ

) 3
2 · (d+ lBT

) ·
√
T

)
,

where the constants and logarithmic terms are omitted for brevity. The detailed proof and a concrete
upper bound are provided in Appendix E.2. We now provide a detailed comparison of our method
with the single-scale sketch-based method SOFUL and the non-sketched method OFUL.

SOFUL utilizes FD with a fixed sketch size, achieving Õ((1 + ∆T )
3/2
√
T ) regret bound. As dis-

cussed in Section 2.3, this dependence on the spectral error ∆T introduces a fundamental vulnera-
bility that can lead to linear regret. In contrast, DBSLinUCB achieves a Õ(ϵ3/2

√
T ) regret bound,

which reduces to Õ(
√
T ) when setting ϵ = O(1), matching that of the slower, non-sketched coun-

terpart. Crucially, DBSLinUCB dynamically adjusts its sketch size lBt based on the observed data,
with the final size lBT

= min
{
k, l0 · 2∥X̃∥2

F /(ϵl0)
}

determined by the streaming matrix’s properties.

Given a target order of regret bound, such as Õ(
√
T ), our method can recover the complexity of

SOFUL or OFUL across different streaming data environments. For simplicity, we set l0 = 1.
When the streaming matrix exhibits favorable spectral properties (e.g., low rank k), the optimal
complexity for SOFUL is O(dk) since this yields ∆T = 0. In this case, by setting ϵ < ∥X̃∥2F / log k,
DBSLinUCB achieves the same regret bound and O(dk) complexity as SOFUL, differing only by
constant factors. Conversely, when the streaming matrix exhibits a heavy spectral tail with full rank
k = d, DBSLinUCB adaptively performs rank-1 modifications after a certain number of rounds,
effectively degenerating to the non-sketched method OFUL with complexity O(d2). In this scenario,
our regret bound differs from OFUL’s regret bound only by a constant factor of ϵ3/2.

We therefore view our work as analyzing the trade-off between regret utility and sketching effi-
ciency under streaming matrices with unknown spectral properties. SOFUL and OFUL represent
the two extremes of this trade-off: SOFUL is tailored for matrices with favorable characteristics,
while OFUL is more effective in scenarios with unsatisfactory properties. DBSLinUCB, positioned
between these extremes, provides a flexible solution that can swing to both ends of the spectrum
and generalizes to a wide range of scenarios. In practical applications, SOFUL is better suited for
environments with strict cost constraints, such as microcontrollers (Lin et al., 2023), whereas DB-
SLinUCB excels in settings where maximizing efficiency while maintaining accuracy is essential,
such as in large-scale online recommendation systems (Zhang et al., 2022).

Remark 2 (Practical Guidance of Parameters). The parameters of DBSLinUCB include the error
parameter ϵ and the initial sketch size l0. The regret bound in Theorem 3 is controlled by ϵ, which
allows us to obtain regret bounds of different orders by adjusting its value. In particular, setting ϵ as
a small constant yields the non-sketched Õ(

√
T ) regret bound, as discussed above. More generally,

by choosing ϵ = O
(
T

2γ−1
3

)
, one can achieve an arbitrary sublinear regret bound O(T γ) for any

γ ∈ [0.5, 1). For l0, we recommend selecting a value substantially smaller than d in the absence of
prior knowledge about the streaming matrix, thereby ensuring sufficient exploration. In practice, if
prior information about the effective dimensionality is available (e.g., an estimate l̂), l0 can be chosen
as a fraction of l̂ scaled by a constant. The parameter tuning results are provided in Section 5.

4.2 EXPAND TO OTHER MATRIX SKETCHING METHODS

DBSLinUCB provides a scalable framework for efficient sketch-based linear bandits, capable of
incorporating various matrix sketching methods. Robust Frequent Directions (RFD) is another ma-
trix sketching technique developed to address the rank deficiency issue inherent in FD. It has been
proven to be an ideal sketching method for sequential decision-making problems (Luo et al., 2019;
Chen et al., 2020; Feinberg et al., 2023). We use the RFD (see Algorithm 3) as the sketching method
in Algorithm 1 and derive the following regret bound. The proof is provided in Appendix E.3.
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Theorem 4 (Regret Bound of DBSLinUCB-RFD). Consider the basic assumptions of linear bandits
outlined in Section 2.2, and assume that L ≥

√
λ. Let the sketch size of the active block at round

t be denoted by lBt ≤ d. Given the error parameter ϵ, the regret of DBSLinUCB-RFD satisfies the
following bound with probability at least 1− 1/T :

RegretT = Õ

((
1 +

ϵ

λ

) 1
2 ·
√

lBT
T +

√
dlBT

T

)
.

Compared to Theorem 3, Theorem 4 reduces the order of ϵ from 3/2 to 1/2. Apart from logarith-
mic terms, decoupling d and ϵ further mitigates the impact of ϵ. Since RFD and FD yield identical
error bounds with the same sketch size, DBSLinUCB-FD and DBSLinUCB-RFD share the same
complexity expression, though their hidden constants may differ due to algorithmic details. Replac-
ing FD with RFD is straightforward, but its theoretical analysis is non-trivial. The improved regret
bound stems from two key properties: positive definite monotonicity and well-conditioning, both of
which are demonstrated under decomposability in Appendix E.4. This is, to our knowledge, the first
result to establish these properties within the context of multi-scale sketching.

5 EXPERIMENTS

In this section, we evaluate the performance of DBSLinUCB on the synthetic dataset and several
real-world datasets. The baselines include the non-sketched method OFUL (Abbasi-Yadkori et al.,
2011) and the sketch-based methods SOFUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2020).
All sketch-based methods employed the efficient implementations described in Remark 1. The ex-
perimental setting, additional experiments, and configurations are available in Appendix F.

Online Regression in Synthetic Data. Inspired by the experimental settings in (Chen et al., 2020),
we build synthetic datasets using multivariate Gaussian distributions N (0, Id) with 100 arms and
d = 500 features per context. The true parameter θ⋆ is drawn fromN (0, Id) and is normalized. We
set the sketch size l ∈ {50, 450} for SOFUL and CBSCFD and the initial sketch size l0 = 50 for
DBSLinUCB. We set the error parameter ϵ = 8 for DBSLinUCB.

The experimental results presented in Figures 1a and 1b (Section 1) demonstrate that DBSLinUCB,
using both FD and RFD, consistently outperforms corresponding single-scale sketch-based methods.
Notably, when l = 50, both SOFUL and CBSCFD show significantly worse performance compared
to DBSLinUCB, exhibiting nearly linear regret. In Figure 1c, we report the trajectory of the spectral
error term log(∆T )/ log t over round t. We observe that for insufficient sketch sizes (l = 50, 200),
this term crosses the benchmark line of y = 1/3, indicating that excessive spectral error leads to
linear regret, which aligns with our theoretical analysis. We also evaluate the performance of our
method in terms of matrix approximation in Appendix F.2, showing its ability to limit spectral error.
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Figure 3: (a), (b): Cumulative regret and total running time of DBSLinUCB w.r.t. error parameter ϵ
on MNIST; (c), (d): Pareto frontiers for regret vs. time and regret vs. space on MNIST, illustrating
the utility-efficiency trade-off between the proposed DBSLinUCB and the compared methods.

Online Classification in Real-world Data. We perform online classification on the real-world
dataset MNIST. The dataset contains 60, 000 samples, each with d = 784 features, and there are
M = 10 possible labels. We follow the setup in (Kuzborskij et al., 2019), details in Appendix F.1.
We first investigate the impact of ϵ and the initial sketch size l0 on the performance of DBSLinUCB.
Figures 3a and 3b present the cumulative regret and total running time after 2000 rounds. Our results
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indicate that larger values of ϵ lead to increased regret but improved computational efficiency. With
respect to l0, we observe that larger values yield better regret at the cost of increased runtime. An
interesting observation is that when ϵ is very small, the regret across different sketch sizes becomes
nearly identical. This phenomenon can be attributed to Invariant 2, which constrains the number
of sketching blocks. Under a small ϵ, the algorithm tends to sketch fewer rows and relies more
heavily on non-sketched updates, thereby diminishing the influence of l0 on overall performance.
Furthermore, Figure 3a shows that for relatively small values of ϵ (e.g., ϵ = 2, 4), the actual regret is
not necessarily monotonically increasing. This is because ϵ constrains the upper bound of the matrix
approximation error, while the tightness of this bound may vary with different parameter choices.

We then compare DBSLinUCB variants against OFUL, SOFUL, and CBSCFD. For baseline meth-
ods, we vary sketch size l ∈ [10, 600] across 10 equally-spaced points; for DBSLinUCB, we eval-
uate 10 configurations with ϵ ∈ [2, 25] and l0 ∈ [50, 200]. Figures 3c and 3d present the Pareto
frontiers for regret-efficiency trade-offs. DBSLinUCB demonstrates superior performance across
both dimensions: it consistently dominates SOFUL with up to 40% regret reduction at compara-
ble resource usage, while DBSLinUCB-RFD outperforms CBSCFD across nearly the entire Pareto
frontier. Notably, our method approaches OFUL’s optimal regret (≈ 200) while achieving 60% time
and 80% space reduction in certain configurations. A key advantage of DBSLinUCB is its regret-
robustness, which consistently maintains regret below 300, whereas single-scale methods like SO-
FUL exceed 500 under an insufficient sketch size. Additional experimental results on MNIST and
other real-world datasets are provided in Appendices F.3 and F.4.

6 CONCLUSION

This paper addresses the current pitfall of linear regret in sketch-based linear bandits for the first
time. We propose Dyadic Block Sketching with a constrained global error bound and provide formal
theoretical guarantees. By leveraging Dyadic Block Sketching, we present a framework for efficient
sketch-based linear bandits. Even in the worst-case scenario, our method can achieve sublinear
regret without prior knowledge of the streaming matrix. The experimental evaluations conducted on
both real and synthetic datasets underscore the superior performance of our method.

ETHICS STATEMENT

This work studies algorithmic methods for efficient linear bandits and evaluates them on synthetic
data and the public MNIST dataset. It does not involve human subjects, personally identifiable
information, or sensitive attributes; experiments use non-identifiable benchmarks and simulated data
only. We therefore do not foresee direct risks to privacy or safety. Potential downstream uses
(e.g., recommendation or allocation) could amplify biases present in third-party data; to mitigate
this, we encourage practitioners to pair our sketching framework with careful dataset curation, bias
monitoring, and domain-appropriate safeguards. Computational demands are modest (we report
running times alongside regret to support resource transparency), limiting environmental impact. We
affirm compliance with the ICLR Code of Ethics. Evidence of our experimental setup and datasets
appears in the paper’s experiments section (synthetic and MNIST) and running-time reporting.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility through: (i) full algorithmic descriptions and pseudocode for Dyadic
Block Sketching and the underlying FD/RFD sketches; (ii) precise statements of assumptions and
theorems with complete proofs placed in the appendices; and (iii) detailed experimental settings
(data preprocessing, hyperparameters, and evaluation protocol) for both synthetic data and MNIST.
Specifically, high-level algorithms and composition formulas are given in the main method section;
FD/RFD pseudocode is provided in Appendix B.1; and the paper states that all proofs are included
in the appendices, with experimental details collected in Appendix F. In our submission, we in-
clude an anonymized artifact (source code and scripts) implementing DBSLinUCB with FD/RFD,
configuration files, and seed control to reproduce all figures and tables. See method/algorithm de-
tails and composition (multi-scale sketching), FD/RFD algorithms, statements regarding proofs in
appendices, and experimental details for MNIST and synthetic data.
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USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only as writing assistants for minor language polishing (grammar, clarity, and
style). They were not used for research ideation, mathematical derivations, proof development, ex-
perimental design, data analysis, or code generation. All technical content—including algorithms,
theorems, and proofs—as well as all experiments and results, were created and verified by the au-
thors. The authors accept full responsibility for all content and have checked that no generated text
constitutes plagiarism or factual fabrication.
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A MORE RELATED WORKS

Sketch-based Online Learning. Sketch-based online learning leverages probabilistic (e.g., ran-
dom projections or sampling) and deterministic (e.g., Frequent Directions) matrix sketches to re-
duce per-update time and memory while preserving essential learning information. In Table 1, we
summarize the theoretical results of state-of-the-art sketch-based linear bandit methods and com-
pare them with our approach. Beyond the linear bandit setting, sketching has been employed to
accelerate second-order online gradient methods (Luo et al., 2016; Feinberg et al., 2023), online
kernel learning (Calandriello et al., 2017; Luo et al., 2019), stochastic optimization (Gonen et al.,
2016), and contextual batched bandits (Zhang et al., 2023). To the best of our knowledge, exist-
ing work has almost exclusively relied on single-scale matrix sketching schemes, while systematic
investigations of multi-scale matrix sketching scheduling in online learning remain largely absent.
We believe that extending multi-scale matrix sketching techniques to other online learning settings
offers a promising direction for future research.

Table 1: Comparison of regret bounds, complexities, and sketching methods for sketch-based linear
bandit algorithms. Here d denotes the dimension and T the horizon. For single-scale methods, the
sketch size l is fixed. For multi-scale methods, the sketch size lBT

= min{k, 2∥X̃∥2
F /(ϵl0) · l0} is

dynamically adjusted, where l0 is the initial sketch size and k = rank(X).

Algorithms Regret Bounds Time Space Sketching Method

OFUL (Abbasi-Yadkori et al. (2011)) Õ(d
√
T ) O(d2) O(d2) -

CBRAP (Yu et al. (2017)) Õ(
√
lT + T/

√
l) O(dl + l3) O(dl) Random Projection

SOFUL (Kuzborskij et al. (2019)) Õ((1 + ∆T )
3/2(l + d log(1 + ∆T ))

√
T ) O(dl) O(dl) Single-scale FD

CBSCFD (Chen et al. (2020)) Õ((
√
l + d log(1 + ∆T ) +

√
∆T )
√
lT ) O(dl) O(dl) Single-scale RFD

DBSLinUCB-FD (This work) Õ((1 + ϵ)3/2(d+ lBT
)
√
T ) O(dlBT

) O(dlBT
) Multi-scale FD

DBSLinUCB-RFD (This work) Õ(
√

(1 + ϵ)lBT
T +

√
dlBT

T ) O(dlBT
) O(dlBT

) Multi-scale RFD

Matrix Sketching. Matrix sketching algorithms are typically designed for the unbounded stream-
ing model. In this framework, the algorithm receives rows of a matrix A ∈ Rn×d sequentially over
time. The objective is to maintain a matrix sketch structure that produces an approximation matrix
B ∈ Rl×d with only l rows. The goal is to ensure that the covariance matrix approximation satisfies
B⊤B ≈ A⊤A, meaning that B approximates A well.

Streaming matrix sketching methods can be broadly categorized into three groups: The first ap-
proach is sampling a small subset of matrix rows or columns that approximates the entire ma-
trix (Frieze et al., 2004; Deshpande & Rademacher, 2010). The second approach is randomly com-
bining matrix rows via random projection. Several results are available in the literature, including
random projections and hashing (Achlioptas, 2001; Sarlós, 2006). The third approach employs a
deterministic matrix sketching technique proposed by Liberty (2013), which adapts the well-known
MG algorithm from Misra & Gries (1982) (originally used for approximating item frequencies) to
sketch a streaming matrix by tracking its frequent directions. For further details, we refer readers to
the survey (Woodruff, 2014).

Multi-scale Sketching. Maintaining multiple streaming sketches at different scales is beneficial for
a variety of streaming problems and has been well-studied in the literature. For instance, Wang et al.
(2013) employ a dyadic aggregation structure, expressing a range as a sum of a bounded number
of estimated counts. Additionally, multi-scale sketching has been applied to problems such as the
heavy-hitter problem (Larsen et al., 2019), the sliding-window problem (Wei et al., 2016; Yin et al.,
2024), and persistent sketching (Wei et al., 2015; Zeng et al., 2022). We emphasize that Dyadic
Block Sketching is fundamentally distinct from multi-scale sketching methods studied in streaming
algorithms. Multi-scale sketches in classical streaming settings typically focus on capturing statistics
over a restricted portion of the stream (e.g., a sliding window), and therefore provide relative, data-
dependent error guarantees, much like their single-scale counterparts. In contrast, our method must
accommodate the entire sequence of actions generated by the linear bandit process and aims to
guarantee worst-case regret. This yields a data-independent, absolute error bound at the global
level, rather than a range-specific guarantee.
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B OMITTED ALGORITHMS

In this section, we present the pseudo-code for deterministic matrix sketching (Appendix B.1), an
efficient implementation of Dyadic Block Sketching (Appendix B.2), and the multi-scale sketched
linear bandit framework DBSLinUCB (Appendix B.3).

B.1 PSEUDO-CODE OF DETERMINISTIC MATRIX SKETCHING

Frequent Directions (FD) is a deterministic sketching method (Liberty, 2013; Ghashami et al., 2016).
FD uniquely maintains the invariant that the last row of the sketch matrix, S, is always zero. In each
round, a new row xt is inserted into this last row of S, and the matrix undergoes singular value
decomposition into UΣV ⊤. Subsequently, S is updated to

√
Σ2

l − σI · V ⊤
l , where σ represents

the square of the l-th singular value. Given that the rows of S are orthogonal, M = (SS⊤+λI)−1

remains a diagonal matrix, facilitating efficient maintenance.

The Robust Frequent Directions (RFD) 1 sketching technique is designed to tackle the problem
of rank deficiency (Luo et al., 2019; Chen et al., 2020). RFD enhances the Frequent Directions
(FD) method by maintaining a counter α, which captures the spectral error. More precisely, RFD
approximates X⊤X by S⊤S+αI . The error bound for RFD is equivalent to that of FD, as follows:

Lemma 4 (Theorem 1 of (Chen et al., 2020)). Let X(t) be the streaming matrix at round t, and S(t)

be the sketch matrix and αt be the counter produced by RFD. Define the spectral error as

∆t := min
k<l

∥∥∥X(t) −X
(t)
[k]

∥∥∥2
F

l − k
,

where X
(t)
[k] denotes the matrix consisting of the first k singular vectors of X(T ). Then, it holds that∥∥∥∥(S(t)

)⊤
S(t) + αtI −

(
X(t)

)⊤
X(t)

∥∥∥∥ ≤ ∆T .

Algorithm 2 FD sketch

Input: Data X ∈ RT×d, sketch size l, reg-
ularization λ
Output: Sketch S, M
Initialize S ← 0l×d,M ← 1

λIl
for t = 1 to T do

Append xt to the last row of S
Compute [U ,Σ,V ]← svd(S)
Set σ ← σ2

l

Update S ←
√

Σ2
l − σI · V ⊤

l

Update M ← diag
{

1
λ+σ2

1−σ
, ..., 1

λ

}
end for

Algorithm 3 RFD sketch

Input: Data X ∈ RT×d, sketch size l, reg-
ularization λ
Output: Sketch S, M and counter α
Initialize S ← 0l×d,M ← 1

λIl, α← 0
for t = 1 to T do

Append xt to the last row of S
Compute [U ,Σ,V ]← svd(S)
Set σ ← σ2

l , α← α+ σ

Update S ←
√
Σ2

l − σI · V ⊤
l

Set M ← diag
{

1
λ+σ2

1−σ+α
, ..., 1

λ+α

}
end for

The pseudocode for FD and RFD is given in Algorithms 2 and 3. Within our algorithm, we use
a Boolean flag willExcessSketch to test the rank condition in Invariant 1; it is obtained by
applying the update to a temporary copy of the sketch. However, when the number of rows cur-
rently stored in a block is smaller than its sketch size l (or dimension d), this test is uninformative:
FD/RFD necessarily yields a shrinkage value σ = 0 but no compression would occur. In practice,
we therefore skip the test in this regime and set willExcessSketch to True as a sentinel, so
as to bypass a rank-check; the block is still updated via simple accumulation, and the block size
threshold governs new block generation. Finally, these deterministic matrix sketching methods can
be accelerated by doubling the sketch size. More details can be found in Appendix B.2.

1In the linear bandit literature, this variant is typically referred to as SCFD (Algorithm 1 of (Chen et al.,
2020)), which corresponds to Algorithm 3 in our paper. For consistency, we refer to it as RFD throughout the
paper.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 FAST ALGORITHM OF DYADIC BLOCK SKETCHING

The computational cost of both FD and RFD, as outlined in Algorithms 2 and 3, is primarily de-
termined by the singular value decomposition operations. Specifically, SVD must be performed at
every update, which results in an update complexity of O(dl2). However, this amortized update cost
can be reduced to O(dl) by doubling the sketch size, as discussed in several works (Liberty, 2013;
Luo et al., 2016; Kuzborskij et al., 2019).

Algorithm 4 Fast Dyadic Block Sketching

1: Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization λ
2: Output: Sketch matrix S(t), M (t)

3: Initialize an empty list L and B⋆.sketch
4: Initialize B⋆.BlockSize = 0, B⋆.SketchSize = l0
5: for t = 1 to T do
6: Receive xt

7: if length(L) ≥ ⌊log (d/l0 + 1)⌋ − 1 then
8: Update S(t) with rank-1 modifications.
9: else

10: Query willExcessSketch from B⋆.sketch and xt

11: if B⋆.BlockSize + ∥xt∥2 < ϵ · l0 or willExcessSketch is False then
12: Update B⋆.BlockSize += ∥xt∥2
13: Append xt below B⋆.sketch

14: Query S̃,M̃ from the inactive blocks L
15: if B⋆.sketch have 2 ·B⋆.SketchSize rows then
16: Update B⋆.sketch
17: Query S⋆,M⋆ from B⋆.sketch
18: Compute S(t) and M (t) by equation 3
19: else
20: Combine S(t) =

(
S
S⋆

)
21: Combine M (t) by equation 7
22: end if
23: else
24: Set l = B⋆.SketchSize
25: Mark B⋆ as inactive and append it to L
26: Initialize a new empty B⋆.sketch
27: Set B⋆.BlockSize = 0, B⋆.SketchSize = 2l
28: Append xt below B⋆.sketch and update B⋆.BlockSize += ∥xt∥2

29: Query S̃,M̃ from the inactive blocks L

30: Combine S(t) =

(
S
S⋆

)
31: Combine M (t) by equation 7
32: end if
33: end if
34: end for

In Algorithm 1, at round t, with Bt + 1 blocks, let li denote the sketch size of the i-th block.
This results in an amortized time complexity of O(dl2Bt

), due to the standard SVD process in the
active block. Additionally, the computation of M (t) via matrix multiplication and inversion requires

O

(∑Bt−1
i=0 li · lBt

· d+
(∑Bt

i=0 li

)3)
= O

(
dl2Bt

)
. Similarly, we can improve the efficiency of our

Dyadic Block Sketching method by doubling the sketch size, as detailed in Algorithm 4.
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We perform the SVD step only after adding B⋆.SketchSize rows. Note that within each epoch where
no updates occur, the construction of M (t) can be formulated as

M (t) =

(
M (t−1) + ϕϕ⊤

ξ
−ϕ
ξ

−ϕ⊤

ξ
1
ξ

)
, (7)

where ϕ = M (t−1)S(t−1)x⊤
t and ξ = xtx

⊤
t − xt(S

(t−1))⊤ϕ + α + λ. When the sketching
method is FD, α is set to 0; conversely, when the sketching method is RFD, α serves as the counter
maintained in the RFD sketch.

Given that the size of M (t) is at most twice of the B⋆.SketchSize, the amortized computation time
required for M (t) is limited to O (dlBt

). Additionally, we perform the SVD only after every addition
of B⋆.SketchSize rows, reducing the amortized update time complexity to O (dlBt

).

B.3 PSEUDO-CODE OF DBSLINUCB

We present the pseudo-code for DBSLinUCB in Algorithm 5. DBSLinUCB introduces an inno-
vative framework for sketch-based linear bandits, leveraging the multi-scale sketching technique to
compute the sketched covariance matrix. As demonstrated in Theorems 3 and 4, the regret bound
of DBSLinUCB is parametrized by ϵ, offering a regret guarantee that is both controllable and ad-
justable.

Algorithm 5 DBSLinUCB

1: Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization λ, confidence δ
2: Initialize a Dyadic Block Sketching instance Sketch(S(0),M (0)) with parameters l0, λ, ϵ
3: for t = 1 to T do
4: Get arm set Xt

5: Compute the confidence ellipsoid β̂t−1(δ)

6: Select xt = argmax
x∈Xt

{
x⊤θ̂t−1 + β̂t−1(δ) · ∥x∥(Â(t−1))

−1

}
7: Receive the reward rt
8: Update Sketch(S(t),M (t)) with xt by Algorithm 1
9: Compute

(
Â(t)

)−1
= 1

λ

(
Id − (S(t))⊤M (t)S(t)

)
10: Compute θ̂t =

(
Â(t)

)−1∑t
s=1 rsxs

11: end for

C OMITTED DETAILS FOR SECTION 2

In this section, we provide the omitted details from Section 2. In Section C.1, we present the proof
of Observation 1, which demonstrates that an insufficient sketch size will lead to linear regret. In
Section C.2, we discuss how RFD-based linear bandits are also susceptible to linear regret.

C.1 PROOF OF OBSERVATION 1

Observation 1 follows from Theorem 3.3 of (Banerjee et al., 2023), which shows that in a locally
convex arm space (defined in Definition 3.1 of Banerjee et al. (2023)) the design matrix generated by
any linear bandit algorithm with expected O(

√
T ) regret has a heavy spectral tail. For convenience,

we restate:

Theorem 5 (Theorem 3.3 of (Banerjee et al., 2023)). Let X be a locally convex arm space and let
GT = E

[∑T
t=1 xtx

⊤
t

]
denote the expected design matrix. For any bandit algorithm with expected

regret at most O(
√
T ), there exists q ∈ (0, 1/2] such that

λd(GT ) = Ω(T q).
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The exponent q depends on the geometry of X (e.g., how well the surface approximates a locally
constant Hessian). Since SOFUL essentially sketches the OFUL design-matrix sequence, the spec-
tral error term ∆T in its regret bound inherits this growth.

Fix a sketch size l. By Lemma 1, choosing k = l − 1 gives

∆T =
∥∥X(T ) −X

(T )
[l−1]

∥∥2
F
=

d∑
i=l

σ2
i (X

(T )) ≥ (d− l)σ2
d(X

(T )),

where σi(X
(T )) are the singular values of X(T ) and σ2

d(X
(T )) = λmin

(
(X(T ))⊤X(T )

)
. Taking

expectation and using λd(GT ) = λmin(E[(X(T ))⊤X(T )]), we obtain

E[∆T ] ≥ (d− l)λd(GT ) = Ω
(
(d− l)T q

)
.

Lemma 2 gives

RegretSOFULT = Õ
(
min

{
∆

3/2
T

√
T , T

})
.

Thus if l < d−T 1
3−q , then E[∆T ] ≳ T 1/3 and the bound collapses to the trivial O(T ). In particular,

when the unknown geometry constant q ≥ 1/3, we have E[∆T ] ≳ T 1/3 for any l < d, so SOFUL
suffers linear regret even at the maximal sketch size l = d− 1.

C.2 LINEAR REGRET PITFALLS IN RFD-BASED METHODS

Beyond FD-based approaches such as SOFUL, algorithms based on Robust Frequent Directions
(RFD) are also vulnerable to linear regret when the sketch size is insufficient. Similar to the discus-
sion in Section 2.3, we recall the regret bound of CBSCFD:

Lemma 5 (Theorem 2 of Chen et al. (2020)). Let RegretCBSCFDT denote the regret of CBSCFD with
sketch size l and spectral error ∆T defined in equation 1. With high probability,

RegretCBSCFDT = Õ
(
min

{(√
l + d log(1 + ∆T ) +

√
∆T

)√
lT , T

})
.

Although CBSCFD reduces the dependence on ∆T compared to FD-based methods, it still degen-
erates to linear regret whenever ∆T = Ω(T ). In particular, if the sketch size is chosen without
knowledge of the spectral properties of the streaming matrix, this risk cannot be avoided:

Observation 2. Let X be a locally convex arm space. If the sketch size of CBSCFD satisfies l <
d− T 1−q, then CBSCFD incurs vacuous linear regret.

This highlights a fundamental limitation of single-scale sketching: any fixed sketch size inevitably
ties the spectral error ∆T to the horizon T , making linear regret unavoidable when the spectral
structure of the data is unknown in advance.

D OMITTED PROOFS FOR SECTION 3

In this section, we provide the omitted proofs for Section 3. In Appendix D.1, we prove Lemma 3
of decomposability, which abstracts the key idea of multi-scale matrix sketching. Later, the proof of
Theorem 1 is provided in Appendix D.2.

D.1 PROOF OF LEMMA 3

Since we have X⊤X =
∑p

i=1 X
⊤
i Xi and S⊤S =

∑p
i=1 S

⊤
i Si. Therefore

∥∥X⊤X − S⊤S
∥∥
2
≤

p∑
i=1

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
≤

p∑
i=1

ϵi · ∥Xi∥2F ,

and the Lemma follows.
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D.2 PROOF OF THEOREM 1

We begin by analyzing the number of blocks of Dyadic Block Sketching. Let the stream of rows
form a matrix X ∈ Rn×d. Dyadic Block Sketching partitions the stream into contiguous blocks and
maintains a dyadically growing sketch size. Concretely, let

X⊤ =
[
X⊤

0 , X⊤
1 , . . . , X⊤

B

]
,

where block i contains ni rows (Xi ∈ Rni×d) and stores a sketch Si. We call blocks 0, 1, . . . , B−1
inactive and the last block B active. In the setting of matrix sketching, low–rank detection is only
evaluated once a block has accumulated at least d rows; in particular, whenever detection is triggered,
the corresponding block satisfies ni ≥ d. We analyze the following two cases:

When the streaming matrix is low-rank, i.e., rank(X) = k. By Invariant 1, once the sketch size
exceeds the rank, shrinkage vanishes and the block remains low–rank (i.e., the sketch SB tracks
rank k). Equivalently, the last active level B is the unique integer such that

2B−1l0 ≤ k < 2Bl0,

which yields the tight bounds

log
( k
l0

)
≤ B < log

( k
l0

)
+ 1 =⇒ B =

⌈
log(k/l0)

⌉
.

When the streaming matrix is full-rank, the above derivation shows that the rank-1 modification
is triggered at block index B = ⌈log(d/l0)⌉, which represents the maximum number of blocks
possible in any case. However, when the row norms of the streaming matrix are small or the error
parameter ϵ is relatively large, the actual number of blocks can be strictly smaller.

Assume that the maximum row norm is bounded by ∥x∥22 ≤ L≪ ϵl0. By Invariant 1, we have

ϵl0 − L ≤ ∥Xi∥2F ≤ ϵl0, i = 0, 1, . . . , B − 1.

Let X̃ =
[
X⊤

0 ,X⊤
1 , . . . ,X⊤

B−1

]⊤
collect all rows summarized by inactive blocks. Summing the

above bounds yields

B (ϵl0 − L) ≤ ∥X̃∥2F ≤ B ϵl0 =⇒ ∥X̃∥2F
ϵl0

≤ B ≤ ∥X̃∥2F
ϵl0 − L

,

and therefore we can approximate this case by B =
⌈
∥X̃∥2F /(ϵl0)

⌉
. Combining the low-rank and

full-rank scenarios, the number of blocks is therefore given by

B =
⌈
min

{
log k

l0
,

∥X̃∥2
F

ϵl0

}⌉
.

For the error guarantee, we bound the global error by exploiting the decomposability of blockwise
matrix sketches, as shown in Lemma 3. Without loss of generality, assume the streaming matrix has
rank k. Partition the block indices into

I =
{
i ∈ {0, . . . , B − 1} : ∥Xi∥2F ≤ ϵl0

}
(inactive/approximate blocks)

and
E =

{
i ∈ {0, . . . , B} : sketch size ≥ rank(Xi)

}
(exact-capture blocks).

In particular, by design of the dyadic growth, the sketch size of last active block B alway larger than
k, hence B ∈ E . For every i ∈ E the sketch is exact in the sense that∥∥X⊤

i Xi − S⊤
i Si

∥∥
2
= 0,

since once the sketch size exceeds the rank of block, the best rank-k (or local rank) approximation
is captured exactly. For i ∈ I, Invariant 1 guarantees ∥Xi∥2F ≤ ϵl0, and the i-th block employs a
streaming sketch with error parameter 1/(2il0), implying the per-block spectral error bound∥∥X⊤

i Xi − S⊤
i Si

∥∥
2
≤ 1

2il0
∥Xi∥2F

≤ 1

2il0
(ϵl0)

=
ϵ

2i
.
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Let
S⊤ =

[
S⊤
0 ,S⊤

1 , . . . ,S⊤
B

]
be the concatenated sketch used to approximate X . By Lemma 3, we have∥∥X⊤X − S⊤S

∥∥
2
≤

B∑
i=0

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2

=
∑
i∈I

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
+
∑
i∈E

0

≤
∑
i∈I

ϵ

2i
≤

∞∑
i=0

ϵ

2i
= 2ϵ.

Hence, the global spectral error is bounded by 2ϵ.

For space complexity, note that the i-th block employs a streaming matrix sketch with error parame-
ter 1/(2il0), which requires a sketch size of ℓ1/(2il0). Hence, the total number of rows stored across
all sketches is

B∑
i=0

ℓ1/(2il0),

and the overall space requirement is

O

(
d ·

B∑
i=0

ℓ1/(2il0)

)
.

For update complexity, only the active block needs to be updated at each step. Consequently, the
per-update cost is determined solely by the sketch size of the active block, leading to O

(
µ1/(2Bl0)

)
.

E OMITTED PROOFS FOR SECTION 4

In this section, we first provide a proof of Theorem 2 in Appendix E.1, which is the key theorem
leading to the regret bound of our method when using FD. The proofs for the regret bounds in
Theorem 3 and Theorem 4 are provided in Appendix E.2 and Appendix E.3, respectively. Later, we
illustrate and prove the properties of Dyadic Block Sketching for RFD in Appendix E.4, which are
consistent with the properties of single-scale RFD.

Our key technical contribution is extending the theoretical framework (Kuzborskij et al., 2019; Chen
et al., 2020) from single-scale to multi-scale matrix sketching. In particular, we show that the RLS
estimator can effectively leverage multiple sketches at different scales, where the estimation error
depends on their collective approximation quality. This analytical framework bridges the theoretical
gap between multi-scale sketching and linear bandit algorithms, opening avenues for applying multi-
scale techniques to other online learning problems.

E.1 PROOF OF THEOREM 2

Denote Bt as the number of blocks at round t, and σi as the sum of shrinking singular values in the
sketch of block i. Let lBt

be the sketch size in the active block at round t. According to Algorithm 5,
the approximate covariance matrix is

Â(t) = λI +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i ,

where S
(t)
i is the sketch matrix in block i at round t. Define η⊤

1 , ...,η
⊤
t ∈ Rd is the noise sequence

conditionally R-subgaussian for a fixed constant R and r⊤t = (r1, r2, ..., rt) ∈ Rd is the reward
vector. We begin by noticing that

θ̂t =
(
Â(t)

)−1

X⊤
t rt =

(
Â(t)

)−1

X⊤
t (Xtθ⋆ + ηt) .
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Therefore, we can decompose ∥θ̂t − θ⋆∥2Â(t)
into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + ηt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t ηt︸ ︷︷ ︸
Term 2: Variance Error

.

(8)

Bounding the bias error. We first focus on bounding the first term. We have that(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
.

(9)

In accordance with the decomposability of matrix sketches, as detailed in Lemma 3, we have∥∥∥∥∥X⊤
t Xt −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

∥∥∥∥∥
2

≤
Bt∑
i=1

σi (10)

By Cauchy-Schwartz inequality and the triangle inequality, we have(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
≤

∣∣∣∣∣λ+

Bt∑
i=1

σi

∣∣∣∣∣ · ∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥θ⋆∥(Â(t))

−1

≤ H ·
λ+

∑Bt

i=1 σi√
λ

·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(11)

where the last inequality holds beacause Â(t) ⪰ λI and ∥θ⋆∥2 ≤ H .

Bounding the variance error. Then, we aim to bound the second term. We use the following
self-normalized martingale concentration inequality by (Abbasi-Yadkori et al., 2011).
Proposition 1 (Lemma 9 of (Abbasi-Yadkori et al., 2011)). Assume that η1, ...,ηt is a conditionally
R-subgaussian real-valued stochastic process and X⊤

t = [x⊤
1 , ...,x

⊤
t ] is any stochastic process

such that xi is measurable with respect to the σ-algebra generated by η1, ...,ηt. Then, for any
δ > 0, with probability at least 1− δ, for all t ≥ 0,∥∥X⊤

t ηt

∥∥2
(A(t))

−1 ≤ 2R2 ln

(
1

δ

∣∣∣A(t)
∣∣∣ 12 |λI|− 1

2

)
.

Notice that the variance error can be reformulated as(
θ̂t − θ⋆

)⊤
X⊤

t ηt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t ηt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t ηt

∥∥
(A(t))

−1 ,

(12)

where the last inequality uses Cauchy-Schwartz inequality.
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For any vector a, we have

∥a∥2A(t) − ∥a∥2Â(t) = a⊤
(
A(t) − Â(t)

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

≤
Bt∑
i=1

σi · ∥a∥22.

(13)

Therefore, the ratios of norms on the right-hand side of equation 12 can be bounded as

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

=

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
A(t)∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

+
∑Bt

i=1 σi

∥∥∥θ̂t − θ⋆

∥∥∥2∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√
1 +

∑Bt

i=1 σi

λ
.

(14)

Substituting equation 14 and Proposition 1 into equation 12 gives

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t ηt

∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(15)

Motivated by Abbasi-Yadkori et al. (2011); Kuzborskij et al. (2019), we apply the multi-scale sketch-
based determinant-trace inequality. Compared to the non-sketched version, this inequality depends
on the approximate covariance matrix Â, reflecting the costs associated with the shrinkage due to
multi-scale sketching.

Lemma 6 (Multi-scale sketch-based determinant-trace inequality). For any t ≥ 1, define A(t) =
λI +X⊤

t Xt, and assume ∥xt∥2 ≤ L, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBt
λ

)
.
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Proof.
∑Bt

i=1(S
(t)
i )⊤S

(t)
i has rank at most 2lBt

due to the Dyadic Block Sketching. Since Â(t) =

λI +
∑Bt

i=1(S
(t)
i )⊤S

(t)
i and A(t) ⪯ Â(t) +

∑Bt

i=1 σi · I , we have

∣∣∣A(t)
∣∣∣ ≤ ∣∣∣∣∣Â(t) +

Bt∑
i=1

σi · I

∣∣∣∣∣
≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

∑2lBt
i=1

(
λi

(
Â(t)

)
+
∑Bt

i=1 σi

)
2lBt

2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

λ+

Bt∑
i=1

σi +

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

(
λ+

Bt∑
i=1

σi +
tL2

2lBt

)2lBt

,

where the last inequality holds because

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
≤ Tr

(
X⊤

t Xt

)
=

t∑
s=1

x⊤
s xs ≤ tL2

Therefore, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ ln


(
λ+

∑Bt

i=1 σi

λ

)d−2lBt

·

λ+
∑Bt

i=1 σi +
tL2

2lBt

λ

2lBt


= (d− 2lBt

) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

ln

(
1 +

∑Bt

i=1 σi

λ
+

tL2

2lBt
λ

)

≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ

)
.

According to Lemma 6, we finally bound the variance error term as follows

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t ηt

∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.
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Sum up the bias error and the variance error and divide both sides of equation 8 by ∥θ̂t − θ⋆∥Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ

)

+H ·
λ+

∑Bt

i=1 σi√
λ

≤ R ·
√
1 +

ϵ

λ
·

√
2 ln

(
1

δ

)
+ d ln

(
1 +

ϵ

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ

)
+H · λ+ ϵ√

λ

≲ R

√
d ln

(
1 +

ϵ

λ

)
+ 2lBt ·

√
1 +

ϵ

λ
+

H(λ+ ϵ)√
λ

,

where the second inequality follows from the error bound of Dyadic Block Sketching as stated in
Theorem 1.

E.2 PROOF OF THEOREM 3

Having established the confidence ellipsoid, we now focus on analyzing the regret. We begin with
an analysis of the instantaneous regret. Recall that the optimal arm at round t is defined as x⋆

t =
argmax

x∈Xt

(x⊤θ⋆). On the other hand, the principle of optimism in the face of uncertainty ensures

that (xt, θ̂t−1) = argmax
(x,θ)∈Xt×Θt−1

x⊤θ. By denoting θ̃t as the RLS estimator, we utilize these facts

to establish the bound on the instantaneous regret as follows

(x⋆
t − xt)

⊤
θ⋆ ≤ x⊤

t θ̂t−1 − x⊤
t θ⋆

= x⊤
t

(
θ̂t−1 − θ̃t−1

)
+ x⊤

t

(
θ̃t−1 − θ⋆

)
≤ ∥xt∥(Â(t−1))

−1 ·
(∥∥∥θ̂t−1 − θ̃t−1

∥∥∥
Â(t−1)

+
∥∥∥θ̃t−1 − θ⋆

∥∥∥
Â(t−1)

)
≤ 2β̂t−1(δ) · ∥xt∥(Â(t−1))

−1 .

(16)

Now, we are prepared to establish the upper bound of regret. Utilizing equation 16 and Cauchy-
Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min

{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}

≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min

{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(17)

We further bound the terms in the above. In particular, we formulate β̂T (δ) by Theorem 2 as follows
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β̂T (δ) = R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

)
.

(18)

Besides, we adopt the Sketched leverage scores established by Kuzborskij et al. (2019) as follows

Proposition 2 (Lemma 6 of Kuzborskij et al. (2019)). The sketched leverage scores through sketch-
ing at round T can be upper bounded as

T∑
t=1

min

{
1, ∥xt∥2(Â(t))

−1

}

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
· ln

(∣∣A(T )
∣∣

|λI|

)

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))
.

Combining equation 18, equation 17 and Proposition 2, assuming L ≥
√
λ, we have

RegretT ≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}

≤ L√
λ
·
√
T ·

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))

·

(
R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

))
.

According to Theorem 1, we can bound the spectral error by error ϵ, i.e.,
∑BT

i=1 σi ≤ ϵ. Given that
L ≥

√
λ, the complete regret bound of DBSLinUCB using FD is as follows

RegretT ≤
L√
λ
·
√
T ·
(
1 +

ϵ

λ

)
·
(
d ln

(
1 + ϵ

λ

)
+ 2lBt · ln

(
1 +

TL2

2lBT
λ

))
·

(
R

√
1 +

ϵ

λ
·

√
2 ln

1

δ
+ d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)
+H
√
λ
(
1 +

ϵ

λ

))

≲
L(R+H

√
λ)√

λ
·
(
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))
·
(
1 +

ϵ

λ

) 3
2 √

T .

Ignoring the constants L, R, and H , as well as the logarithmic terms, we simplify the regret bound
to

RegretT
Õ
=
(
1 +

ϵ

λ

) 3
2 · (d+ lBT

) ·
√
T .
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E.3 PROOF OF THEOREM 4

We denote Bt as the number of blocks at round t, and σi as the cumulative shrinking singular values
in the sketch of block i. Let lBt

be the sketch size in the active block at round t. Similarly, our
analysis establishes an intermediate result regarding the confidence ellipsoid.

Theorem 6 (Sketched confidence ellipsoid by RFD). Let θ̂t be the RLS estimate constructed by an
arbitrary policy for linear bandits after t rounds of play. For any δ ∈ (0, 1), the optimal unknown

weight θ⋆ belongs to the set Θt ≡
{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Â(t)
≤ β̂t(δ)

}
with probability at least 1−δ,

where

β̂t(δ) = R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)

+H ·

√√√√λ+

Bt∑
i=1

σi

and

ht =

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

.

Proof. Notice that RFD uses the adaptive regularization term to approximate the covariance matrix,
i.e., Â(t) = λI +

∑Bt

i=1 α
(t)
i I +

∑Bt

i=1(S
(t)
i )⊤S

(t)
i , where S

(t)
i is the sketch matrix in block i and

α
(t)
i is the adaptive regularization term of RFD at round t.

Similarily, we decompose ∥θ̂t − θ⋆∥2Â(t)
into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + ηt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t ηt︸ ︷︷ ︸
Term 2: Variance Error

.

Bounding the bias error. For the bias error term, we have(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
θ⋆

≜
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

(19)

Since Dt = X⊤
t Xt − λI −

∑Bt

i=1 α
(t)
i I −

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , for any unit vector a, we have

∣∣a⊤Dta
∣∣ = ∣∣∣∣∣a⊤

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

∣∣∣∣∣
=

∣∣∣∣∣a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a− λI −

Bt∑
i=1

α
(t)
i I

∣∣∣∣∣ .
(20)
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According to Theroem 1, we can get

0 ≤ a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a ≤

Bt∑
i=1

σi.

Bring the above equation into equation 20, since
∑Bt

i=1 α
(t)
i =

∑Bt

i=1 σi, we can bound the spectral
norm of Dt as follows

∥Dt∥2 ≤ λ+

Bt∑
i=1

σi. (21)

By Cauchy-Schwartz inequality and the triangle inequality, we can bound equation 19 by(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥Dt∥2 · ∥θ⋆∥(Â(t))

−1

≤ H ·

√√√√λ+

Bt∑
i=1

σi ·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(22)

where the last inequality holds because

∥θ⋆∥2(Â(t))
−1 ≤ ∥θ⋆∥22

λmin

(
Â(t)

) ≤ H2

λ+
∑Bt

i=1 σi

.

Bounding the variance error. For the variance error, we have(
θ̂t − θ⋆

)⊤
X⊤

t ηt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t ηt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t ηt

∥∥
(A(t))

−1

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t ηt

∥∥
(A(t))

−1 .

(23)

where the last inequality holds because for any vector a

∥a∥2A(t) − ∥a∥2Â(t) = a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt∑
i=1

σiI

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a−

Bt∑
i=1

σi∥a∥22

≤
Bt∑
i=1

σi∥a∥22 −
Bt∑
i=1

σi∥a∥22

= 0

(24)

By Proposition 1, we can bound the variance error term as follows(
θ̂t − θ⋆

)⊤
X⊤

t ηt

=
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t ηt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t ηt

∥∥
(A(t))

−1

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(25)
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According to equation 24, we have |Â(t)| ≥ |A(t)|. For any t ∈ [T ], since the rank of Â(t) is at
most 2lBt , we can bound the determinant of Â(t) as follows

∣∣∣Â(t)
∣∣∣ ≤ ( Bt∑

i=1

α
(t)
i + λ

)d−2lBt

·
2lBt∏
i=1

λi

(
Â(t)

)

≤

(
Bt∑
i=1

α
(t)
i + λ

)d−2lBt

∑2lBt
i=1 λi

(
Â(t)

)
2lBt

2lBt

=

(
Bt∑
i=1

σi + λ

)d−2lBt

 Bt∑
i=1

σi + λ+

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
Bt∑
i=1

σi + λ

)d−2lBt
((

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

)
+ λ+

TL2

2lBt

)2lBt

,

(26)

where the last inequality satisfies due to

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
=

Bt∑
i=1

Tr
((

S
(t)
i

)⊤
S

(t)
i

)

=

t∑
s=1

Tr(x⊤
s xs)−

Bt∑
i=1

li · σi

≤ TL2 −
Bt∑
i=1

li · σi.

Therefore, the variance error term can be bounded as(
θ̂t − θ⋆

)⊤
X⊤

t ηt

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤

√
2R2 ln

(
1

δ

∣∣∣Â(t)
∣∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ (d− 2lBt

) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

where ht =
∑Bt

i=1 σi −
∑Bt

i=1 li·σi

2lBt
.

Sum up the bias error term and the variance error term and divide both sides by ∥θ̂t − θ⋆∥Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ
+

ht

λ

)
+H ·

√√√√λ+

Bt∑
i=1

σi,

which concludes the proof.
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Next, we start to prove the regret. Similar to the case using FD, since the algorithm uses the principle
of optimism in the face of uncertainty to select the arm, we can bound instantaneous regret by
equation 16. Utilizing equation 16 and Cauchy-Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min

{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}

≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min

{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(27)

We present a lemma of RFD-sketched leverage scores to conclude the proof.

Lemma 7 (Sketch-based leverage scores by RFD).

T∑
t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}
≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
.

Proof. Denote Ct = Â(t−1) + x⊤
t xt. Notice that the first 2lBt eigenvalues of Ct are the same as

Â(t) while the other eigenvalues of Ct are
∑Bt

i=1 α
(t−1)
i + λ. Thus we can obtain

∣∣∣Â(t)
∣∣∣

|Ct|
=

( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

.

For the determinant of Â(t), we have

∣∣∣Â(t)
∣∣∣ = ( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

· |Ct|

=

( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · ∣∣∣∣I +
(
Â(t−1)

)−1

x⊤
t xt

∣∣∣∣
=

( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · (1 + ∥xt∥2(Â(t−1))
−1

)

=

(∑Bt

i=1 σi + λ

λ

)d−2lBt

· |λI| ·
t∏

s=1

(
1 + ∥xs∥2(Â(s−1))

−1

)
.

(28)
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Since min (1, x) ≤ 2 ln (1 + x) for all x ≥ 0, using equation 28, we can derive the following bound

T∑
t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}

≤ 2

T∑
t=1

ln

(
1 + ∥xt∥2(Â(t−1))

−1

)

= 2 · ln

( λ∑BT

i=1 σi + λ

)d−2lBT

·

∣∣∣Â(T )
∣∣∣

|λI|


≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
,

where the last step holds by equation 26 and hT =
∑BT

i=1 σi −
∑BT

i=1 li·σi

2lBT
.

We combine equation 27, Theorem 6 and Lemma 7. Assume L ≥
√
λ, we have

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}

≤ L√
λ
·
√
T ·

√
2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
·

(
H ·

√√√√λ+

BT∑
i=1

σi+

R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

))
.

According to Theorem 1, the accumulated spectral error
∑BT

i=1 σi is bounded by ϵ, and we have

hT =

BT∑
i=1

σi −
∑BT

i=1 li · σi

2lBT

=

BT∑
i=1

(
1− 2i−1

2BT

)
· σi

≤ ϵ ·
BT∑
i=1

(
1− 2i−1

2BT

)
· 1
2i

=

(
1− 2−BT

2BT+1

)
· ϵ

≤ ϵ.
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Therefore, we derive the complete regret bound as follows:

RegretT ≤
L√
λ
·
√
T ·

√
2lBT

· ln
(
1 +

TL2

2lBT
λ
+

ϵ

λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
2 ln

(
1

δ

)
+ d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

ϵ

λ

))

≲
L√
λ
·
√
lBT

T ·

√
2 ln

(
1 +

TL2

2lBT
λ
+

ϵ

λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

ϵ

λ

))
.

Ignoring the constants L, R, and H , as well as the logarithmic terms, we simplify the regret bound
to

RegretT
Õ
=
(
1 +

ϵ

λ

) 1
2 ·
√

lBT
T +

√
dlBT

T .

E.4 PROPERTIES OF DYADIC BLOCK SKETCHING FOR RFD

In this section, we highlight two significant properties of Dyadic Block Sketching for RFD that
elucidate why the regret bound of DBSLinUCB using RFD is improved. Although Robust Frequent
Directions for ridge regression have been studied by Luo et al. (2019), their theory is limited to
single-scale deterministic streaming sketches. We demonstrate that the decomposability of multi-
scale sketching does not alter the properties of RFD.

We begin with the positive definite monotonicity of Dyadic Block Sketching for RFD, which ensures
that the sequence of approximation matrices is per-step optimal.
Theorem 7 (Positive Definite Monotonicity). At round t, denote that the Dyadic Block Sketching
for RFD provides a sketch S(t), we have the following equation(

S(t)
)⊤

S(t) + α(t)I ⪰
(
S(t−1)

)⊤
S(t−1) + α(t−1)I.

Proof. Notice that α(t)I+(S(t))⊤S(t) =
∑Bt

i=1 α
(t)
i I+

∑Bt

i=1(S
(t)
i )⊤S

(t)
i , where S(t)

i is the sketch
matrix in block i and α

(t)
i is the adaptive regularization term of RFD at round t.

Let Q =
[(
S

(t−1)
Bt

)⊤
,x⊤

t

]⊤
, σt is the shrinking singular values of active block at round t, the

shrinking step of RFD provides
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI ⪰

Bt−1∑
i=1

(
S

(t)
i

)⊤
S

(t)
i +Q⊤Q ⪰

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i . (29)

Therefore, for any unit vector a, we have

a⊤
((

S(t)
)⊤

S(t) + α(t)I −
(
S(t−1)

)⊤
S(t−1) + α(t−1)I

)
a

= a⊤

 Bt∑
i=1

α
(t)
i I +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt−1∑
i=1

α
(t−1)
i I −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

= a⊤

 Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

≥ 0,

which concludes the proof.
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Next, we prove that the sketch matrix produced by Dyadic Block Sketching for RFD is better con-
ditioned than those produced by Dyadic Block Sketching for FD and the covariance matrix. In this
context, the α selected by RFD is optimal, as choosing a smaller α would result in a worse condition
number for the approximation matrices.

Theorem 8 (Well-Conditioned Property). Let cond(X) = σmax(X)
σmin(X) be the condition number of

matrix X . At round t, denote that the Dyadic Block Sketching for RFD provides a sketch S(t), we
have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

((
S(t)

)⊤
S(t) + λI

)
,

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

(
X⊤

t Xt + λI
)
.

Proof. Notice that α(t)I+(S(t))⊤S(t) =
∑Bt

i=1 α
(t)
i I+

∑Bt

i=1(S
(t)
i )⊤S

(t)
i , where S(t)

i is the sketch
matrix in block i and α

(t)
i is the adaptive regularization term of RFD at round t. We have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ

λ

= cond
((

S(t)
)⊤

S(t) + λI

)
.

Similarly, we have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
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(
X⊤

t Xt

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
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(
X⊤

t Xt

)
+ λ

λ

≤ cond
(
X⊤

t Xt + λI
)
,

which concludes the proof.

F OMITTED DETAILS FOR SECTION 5

In this section, we provide the omitted details of experiments in section 5. We provide the experi-
mental setups and configurations in Appendix F.1 and additional experiments in F.2, F.3, and F.4.

F.1 EXPERIMENTAL SETUPS

All experiments are performed on a machine with 24-core Intel(R) Xeon(R) Gold 6240R 2.40GHz
CPU and 256 GB memory. We compare our DBSLinUCB with the state-of-the-art linear bandit
algorithms on the synthetic dataset and several well-known classification benchmarks. The training
and testing data are merged into a single dataset, followed by vector normalization based on the l2
norm. Each experiment is performed over 20 different random permutations of the datasets. The
confidence ellipsoid β of all algorithms is searched in {10−4, 10−3, . . . , 1} and λ is searched in
{2× 10−4, 2× 10−3, . . . , 2× 104}.
In the experiments of online classification in real-world data, we follow the experimental setup
in (Kuzborskij et al., 2019). Specifically, we construct the online classification problem within the
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contextual bandit setting as follows: given a dataset with data in M labels, we first choose one cluster
as the target label. In each round, we randomly draw one sample from each label and compose an
arm set of M samples in M contexts. The algorithms choose one sample from the arm set and
observe the reward based on whether the selected sample belongs to the target label. The reward is
1 if the selected sample comes from the target label and 0 otherwise.

F.2 EXPERIMENTS OF MATRIX APPROXIMATION

We evaluate the performance of the proposed Dyadic Block Sketching in terms of matrix approxima-
tion. We compare it with FD (Liberty, 2013). We generated a synthetic dataset with n = 1250 rows
and d = 500 columns. Specifically, each row at ∈ R500 is independently drawn from a multivariate
Gaussian distribution at ∼ N (0, Id), followed by vector normalization based on the l2 norm. We
set the sketch size l0 = 50 for FD and the initial sketch size l0 = 16 for Dyadic Block Sketching.
The spectral norm error is defined as ∥A⊤

t At−S⊤
t St∥2, where At is the streaming matrix at round

t and St is the sketch matrix at round t.
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Figure 4: (a): The spectral norm error w.r.t the error parameter ϵ on synthetic dataset; (b): Compar-
ison among FD and our DBS-FD w.r.t. the error and its upper bound

We first vary the error parameter ϵ ∈ {5, 10, 20}. As illustrated in Figures 4a, we observe that in-
creasing the error parameter ϵ leads to a larger spectral norm error. Then we compare our method
with FD. We set the error parameter ϵ = 10 for Dyadic Block Sketching. Figure 4b presents the
spectral norm error ∥A⊤

t At − S⊤
t St∥2 along with its upper bound for matrix sketching. We ob-

serve that Dyadic Block Sketching provides a constrained global error bound for matrix sketching.
In comparison to FD, the rate of error growth in Dyadic Block Sketching decreases over time, effec-
tively mitigating the linear growth of the spectral tail.

F.3 MORE EXPERIMENTS ON MNIST

In this section, we present additional experimental results on the MNIST dataset, demonstrating our
method’s capability to adaptively adjust to optimal sketch sizes. The evaluation focuses primarily
on FD-based methods for comparison. For the SOFUL algorithm, we evaluate performance across
multiple sketch sizes with l ∈ {20, 100, 150}. For our proposed DBSLinUCB algorithm, we initial-
ize the sketch size at l0 = 50 and configure the error parameter to ϵ = 8. We also report that the
streaming matrix used by all methods is full rank.

Regret Performance. The cumulative regret results demonstrate that DBSLinUCB achieves com-
petitive performance compared to the baseline algorithms. As shown in Figure 5a, DBSLinUCB
maintains regret levels comparable to OFUL, the gold standard algorithm, throughout the 2000
rounds of evaluation on the MNIST dataset. In contrast, SOFUL exhibits significant performance
degradation when configured with insufficient sketch sizes, particularly evident with l = 20 and
l = 100, where the cumulative regret substantially exceeds that of both OFUL and DBSLinUCB.
While SOFUL with l = 150 achieves regret performance similar to OFUL and DBSLinUCB, this
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Figure 5: Cumulative regret and total running time of the compared algorithms, the proposed DB-
SLinUCB on MNIST

configuration requires careful tuning of the sketch size parameter, which presents practical chal-
lenges in real-world applications where the optimal sketch size cannot be determined a priori.

Running Time Efficiency. The computational efficiency analysis presented in Figure 5b reveals
the significant advantage of DBSLinUCB in terms of runtime performance. DBSLinUCB achieves
approximately 14 seconds total running time, representing a substantial improvement over OFUL’s
23 seconds execution time. Even when compared to SOFUL variants, DBSLinUCB maintains com-
petitive efficiency while avoiding the performance trade-offs associated with fixed sketch sizes. SO-
FUL with smaller sketch sizes (l = 20) achieves faster runtime at approximately 9 seconds, but
this comes at the cost of severely degraded regret performance. The results indicate that DBSLin-
UCB successfully addresses the fundamental challenge of balancing computational efficiency with
learning performance, eliminating the need for manual sketch size tuning while maintaining both
competitive regret bounds and superior runtime characteristics.

Space Complexity. Table 2 reports the maximum memory footprint of each algorithm over 2000
rounds on MNIST. DBSLinUCB achieves a 40% reduction in space usage compared to OFUL while
maintaining competitive regret performance. Unlike SOFUL, which requires pre-specifying a fixed
sketch size l, DBSLinUCB adaptively adjusts its sketch dimensions based on the observed data
stream. This adaptive mechanism allows DBSLinUCB to match the space efficiency of SOFUL
with l = 150 while providing stronger robustness guarantees—notably, SOFUL with smaller sketch
sizes (l ∈ {20, 100}) achieves lower memory usage but suffers from degraded regret performance
as shown in previous experiments. The results demonstrate that DBSLinUCB effectively navigates
the space-regret trade-off without requiring prior knowledge of optimal hyperparameters.

Table 2: Comparison of Space Usage on MNIST

Algorithm Sketch Size (l) Max Space (KB)
OFUL N/A 4802.0
SOFUL 20 682.9
SOFUL 100 1528.3
SOFUL 150 2529.3
DBSLinUCB Adaptive 2842.0

F.4 EXPERIMENTS ON ADDITIONAL REAL-WORLD DATA

In this section, we evaluate DBSLinUCB on online classification tasks across multiple real-world
benchmarks beyond MNIST, validating its generalizability and practical effectiveness. Similarly,
the baselines include the non-sketched method OFUL (Abbasi-Yadkori et al., 2011) and the sketch-
based methods SOFUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2020).
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Table 3: Dataset Information

Dataset OpenML ID Instances Features Classes
cnae-9 1468 1080 856 9
MFeat 22 2000 48 10
Spam 44 4601 57 2
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Figure 6: (a),(d): Pareto frontiers for regret vs. time and regret vs. space on cnae-9; (b),(e): Pareto
frontiers for regret vs. time and regret vs. space on MFeat; (c),(f): Pareto frontiers for regret vs.
time and regret vs. space on Spam

Datasets. We conduct experiments on three publicly available multiclass classification datasets
from the OpenML repository (Vanschoren et al., 2013), as detailed in the table 3. The experimental
setup is provided in Appendix F.1. The datasets include cnae-9, MFeat, and Spam, each with
varying numbers of instances, features, and classes. These datasets are utilized to evaluate the
performance of our proposed method across multiclass classification tasks.

Pareto Frontier Analysis. The Pareto frontier evaluation across three datasets (cnae-9, MFeat,
and Spam) reveals the superior trade-off characteristics of our proposed DBSLinUCB methods. As
illustrated in Figure 6, both DBSLinUCB-FD and DBSLinUCB-RFD consistently establish better
positions on the Pareto frontiers for both regret vs. time and regret vs. space trade-offs. Notably, our
methods form well-positioned curves that span a wide range of efficiency levels while maintaining
competitive regret performance, demonstrating the flexibility and adaptability of the dyadic block
sketching approach across different resource constraints.

Adaptation to Low-Dimensional Data. On relatively low-dimensional datasets, particularly on
Spam (Figures 6c and 6f), OFUL serves as a strong baseline with an excellent trade-off between
regret, time, and space. Notably, our DBSLinUCB-RFD variants closely approach the OFUL curve
across multiple configurations. While this demonstrates a clear advantage over single-scale sketch-
ing methods, it also suggests that our method may incur some cost when degenerating to OFUL, a
phenomenon more pronounced in certain low-dimensional settings.

Variants Consistency and Robustness Across multiple datasets (especially in cnae-9, Fig-
ures 6a and 6d), our method achieves similar trade-offs in terms of regret, space, and time for both
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FD and RFD variants. In contrast, single-scale sketching methods, such as SOFUL (FD-based) and
CBSCFD (RFD-based), exhibit significantly different trade-offs (e.g., Figures 6a, 6c, 6d, and 6f).

This performance consistency arises because our method effectively controls global error in matrix
approximation through a unified parameter ϵ, and replacing sketching methods does not result in a
substantial loss of accuracy. This stability highlights the robustness of our dyadic block sketching
framework, offering reliable performance regardless of the selected underlying sketching technique.
Unlike traditional single-scale methods, where the choice between FD and RFD can dramatically
affect performance, our approach ensures consistent outcomes.
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