

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REVISITING MATRIX SKETCHING IN LINEAR BANDITS: ACHIEVING SUBLINEAR REGRET VIA DYADIC BLOCK SKETCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Linear bandits have become a cornerstone of online learning and sequential decision-making, providing solid theoretical foundations for balancing exploration and exploitation. Within this domain, matrix sketching serves as a critical component for achieving computational efficiency, especially when confronting high-dimensional problem instances. The sketch-based approaches reduce per-round complexity from $\Omega(d^2)$ to $O(dl)$, where d is the dimension and $l < d$ is the sketch size. However, this computational efficiency comes with a fundamental pitfall: when the streaming matrix exhibits heavy spectral tails, such algorithms can incur vacuous *linear regret*. In this paper, we revisit the regret bounds and algorithmic design for sketch-based linear bandits. Our analysis reveals that inappropriate sketch sizes can lead to substantial spectral error, severely undermining regret guarantees. To overcome this issue, we propose Dyadic Block Sketching, a novel multi-scale matrix sketching approach that dynamically adjusts the sketch size during the learning process. We apply this technique to linear bandits and demonstrate that the new algorithm achieves *sublinear regret* bounds without requiring prior knowledge of the streaming matrix properties. It establishes a general framework for efficient sketch-based linear bandits, which can be integrated with any matrix sketching method that provides covariance guarantees. Comprehensive experimental evaluation demonstrates the superior utility-efficiency trade-off achieved by our approach.

1 INTRODUCTION

Multi-Armed Bandits (MAB) is a general framework for modeling sequential decision-making under partial information (Herbert, 1952), which has been widely adopted in various applications, including recommendation systems (Zhang et al., 2022), public health surveillance (Bastani et al., 2021), and green security (Xu et al., 2021). We consider the Stochastic Linear Bandit (SLB), a variant of the MAB under the linear assumption (Auer, 2002; Dani et al., 2007; Abbasi-Yadkori et al., 2011; Chu et al., 2011). In SLB, at round t , the player selects an arm \mathbf{x}_t from a decision set $\mathcal{X}_t \subseteq \mathbb{R}^d$, and then observes the reward $r_t \in \mathbb{R}$. The expected reward $\mathbb{E}[r_t | \mathbf{x}_t] = \mathbf{x}_t^\top \boldsymbol{\theta}_*$, where $\boldsymbol{\theta}_*$ represents unknown coefficients. Utilizing the regularized least squares estimator and upper confidence bounds, the seminal work Abbasi-Yadkori et al. (2011) propose OFUL algorithm and achieve $\tilde{O}(d\sqrt{T})$ regret bound, where d is the dimension and T denotes the number of rounds, and the $\tilde{O}(\cdot)$ -notation hides logarithmic factors. Notably, OFUL exhibits a complexity of $\Omega(d^2)$ per step.

In real-world decision-making problems, d can be very large such that traditional linear bandits become computationally prohibitive. Consequently, various studies apply *matrix sketching* techniques to eliminate the quadratic dependence on d and enhance efficiency. Yu et al. (2017) use random projection to map high-dimensional arms to a low m -dimensional subspace, reducing the update time from $\Omega(d^2)$ to $O(md + m^3)$. Another line of these works is based on a well-known deterministic sketching method – Frequent Directions (FD), which has been proved to offer better theoretical guarantees than random projection under the streaming setting (Liberty, 2013; Woodruff, 2014; Ghashami et al., 2016). Kuzborskij et al. (2019) are the first to employ FD to sketch the covariance matrix in linear bandits, reducing time complexity to $O(dl + l^2)$ while achieving an

Figure 1: (a), (b): Cumulative regret of the compared algorithms, the proposed methods on synthetic dataset; (c): Scaling of spectral error with rounds on synthetic dataset w.r.t. sketch size l

$\tilde{O}((1 + \Delta_T)^{3/2}(l + d \log(1 + \Delta_T))\sqrt{T})$ regret, where $l < d$ is the sketch size and Δ_T represents the spectral error introduced by matrix sketching. Subsequently, Chen et al. (2020) extended this work by substituting FD with a robust variant, which reduces the order of the spectral error Δ_T and decouples it from d , [yielding a regret bound of \$\tilde{O}\(\(\sqrt{l + d \log\(1 + \Delta_T\)} + \sqrt{\Delta_T}\)\sqrt{IT}\)\$](#) .

Motivation. However, sketching-based methods suffer from the *linear regret pitfall*—catastrophic regret when matrices exhibit heavy spectral tails. Figure 1a, 1b illustrate this phenomenon through the regret of SOFUL and CBSCFD across different sketch size l . When $l = 450$, both sketch-based methods achieve regret comparable to that of the non-sketched OFUL. In stark contrast, when $l = 50$, they exhibit near-linear regret growth, demonstrating severe performance degradation. This discrepancy arises because insufficient size fails to preserve essential spectral information, resulting in substantial spectral error. The possibility of linear regret contradicts the objective of online learning, emphasizing the critical need to manage worst-case regret when employing matrix sketching.

Intuitively, avoiding the linear regret pitfall requires calibrating sketch size to the spectral properties of the matrix. However, existing methods employ single-scale sketching with *fixed* sketch size throughout learning. This rigid design creates a dilemma: optimal sketch size depends on spectral properties that remain unknown until data arrives, yet must be specified before learning begins. Too small risks catastrophic regret; too large sacrifices computational efficiency—the very motivation for sketching. This inherent tension raises a critical question: *Can we adaptively adjust sketch size during learning to guarantee sublinear regret without prior knowledge of the streaming matrix?*

Contributions. We answer the question affirmatively by developing a novel framework for sketch-based linear bandits. Our main contributions are summarized as follows.

- Uncovering the impact of spectral error on regret. We revisit the regret bound of sketch-based linear bandits, focusing on the spectral error induced by matrix sketching. Our analysis reveals that existing methods are susceptible to linear regret, primarily caused by an insufficient sketch size.
- Controlling approximation error via multi-scale sketching. We propose Dyadic Block Sketching, a novel matrix sketching method that adaptively adjusts sketch sizes across multiple scales to control error. We prove that the global error is bounded by a predetermined error ϵ . Additionally, our method provably tracks the optimal rank- k approximation in the streaming setting, ensuring efficiency in scenarios with low-rank matrices or light-tailed spectra.
- Achieving sublinear regret. By applying the proposed sketching framework to linear bandits, we effectively address the issue of linear regret observed in prior works. Our method ensures a sublinear regret, even when the streaming matrix is heavy-tailed. Furthermore, it is robust, scalable, and flexible, achieving diverse regret bounds through various matrix sketching approaches.

Organization. The rest is structured as follows. Section 2 revisits sketching in bandits and highlights current pitfalls. Section 3 and Section 4 present our novel multi-scale sketching method and its application to linear bandits. Section 5 reports the experiments. Finally, Section 6 concludes the paper. Due to page limits, the notations and all proofs are provided in the appendices.

108 **2 PRELIMINARIES**

110 **Notations.** Let $[n] = \{1, 2, \dots, n\}$, upper-case bold letters (e.g., \mathbf{A}) represent matrix and lower-
 111 case bold letters (e.g., \mathbf{a}) represent vectors. We denote by $\|\mathbf{A}\|_2$ and $\|\mathbf{A}\|_F$ the spectral and Frobenius
 112 norms of \mathbf{A} . We define $|\mathbf{A}|$ and $\text{Tr}(\mathbf{A})$ as the determinant and trace of matrix \mathbf{A} . For a positive
 113 semi-definite matrix \mathbf{A} , the matrix norm of vector \mathbf{x} is defined by $\|\mathbf{x}\|_{\mathbf{A}} = \sqrt{\mathbf{x}^\top \mathbf{A} \mathbf{x}}$. For two
 114 positive semi-definite matrices \mathbf{A} and \mathbf{B} , we use $\mathbf{A} \succeq \mathbf{B}$ to represent that $\mathbf{A} - \mathbf{B}$ is positive semi-
 115 definite. We use $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top$ to represent the SVD of \mathbf{A} , where \mathbf{U}, \mathbf{V} denote the left and right
 116 matrices of singular vectors and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ is the diagonal matrix of singular values in the
 117 descending order. We define $\mathbf{A}_{[k]} = \mathbf{U}_k \Sigma_k \mathbf{V}_k^\top$ for $k \leq \text{rank}(\mathbf{A})$ as the best rank- k approximation
 118 to \mathbf{A} , where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ and $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ are the first k columns of \mathbf{U} and \mathbf{V} .

120 **2.1 FREQUENT DIRECTIONS**

122 Frequent Directions (FD) (Liberty, 2013; Ghashami et al., 2016) is a deterministic matrix sketching
 123 technique. Given a streaming matrix $\mathbf{X}^{(t)} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_t^\top]^\top \in \mathbb{R}^{t \times d}$, $t \in [T]$, FD maintains a
 124 smaller sketch matrix $\mathbf{S}^{(t)} \in \mathbb{R}^{l \times d}$ to approximate $\mathbf{X}^{(t)}$, where l denotes the sketch size. To process
 125 row \mathbf{x}_t , we first replace the last row of $\mathbf{S}^{(t)}$ with \mathbf{x}_t . Then, we perform SVD on $\mathbf{S}^{(t)}$, i.e., $\mathbf{S}^{(t)} =$
 126 $\mathbf{U}^{(t)} \Sigma^{(t)} \mathbf{V}^{(t)}$. Let $\Sigma^{(t)} = \text{diag}(\sigma_1, \dots, \sigma_d)$ and $\sigma = \sigma_l^2$, where σ_l is the l -th largest singular value.
 127 Subsequently, we set $\Sigma^{(t+1)} = \text{diag}(\sqrt{\sigma_1^2 - \sigma}, \dots, \sqrt{\sigma_l^2 - \sigma})$ and $\mathbf{S}^{(t+1)} = \Sigma^{(t+1)} \mathbf{V}^{(t)}$.

128 We provide the pseudo-code of FD in Appendix B.1. FD uses $O(dl)$ space and has an amortized
 129 update time of $O(dl)$. The fundamental property of FD is to bound the covariance error in terms of
 130 the tail eigenvalues of $\mathbf{X}^{(T)}$. This property is formally expressed in the following lemma:

132 **Lemma 1** (Claim 1 of (Liberty, 2013)). *Let $\mathbf{X}^{(T)}$ be the streaming matrix at round T and $\mathbf{X}_{[k]}^{(T)}$
 133 denote the matrix consisting of the first k singular vectors of $\mathbf{X}^{(T)}$. Then, it holds that*

$$135 \quad \left\| (\mathbf{X}^{(T)})^\top \mathbf{X}^{(T)} - (\mathbf{S}^{(T)})^\top \mathbf{S}^{(T)} \right\|_2 \leq \Delta_T, \text{ where } \Delta_T := \min_{0 \leq k < \ell} \frac{\|\mathbf{X}^{(T)} - \mathbf{X}_{[k]}^{(T)}\|_F^2}{\ell - k}. \quad (1)$$

138 **2.2 LINEAR BANDITS**

140 We first introduce the basic assumptions for the linear bandits setting. At any round t , the decision
 141 set $\mathcal{X}_t \subset \mathbb{R}^d$ is finite and for all $\mathbf{x} \in \mathcal{X}_t$, we have $\|\mathbf{x}\|_2 \leq L$. The reward for choosing arm \mathbf{x}_t is
 142 defined as $r_t = \mathbf{x}_t^\top \boldsymbol{\theta}_* + \eta_t$, where $\boldsymbol{\theta}_*$ is a fixed, unknown vector of real coefficients, and η_t denotes
 143 the conditionally R -subgaussian noise variable. Moreover, the norm $\|\boldsymbol{\theta}_*\|_2$ is upper bounded by H .

144 OFUL (Abbasi-Yadkori et al., 2011) utilizes regularized least squares (RLS) to estimate $\boldsymbol{\theta}_*$ as

$$146 \quad \mathbf{A}^{(t)} = \lambda \mathbf{I}_d + (\mathbf{X}^{(t)})^\top \mathbf{X}^{(t)}, \quad \hat{\boldsymbol{\theta}}_t = (\mathbf{A}^{(t)})^{-1} \sum_{s=1}^t r_s \mathbf{x}_s, \quad (2)$$

148 where $\mathbf{X}^{(t)} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_t^\top]^\top$ is the matrix containing all the arms selected up to round t and λ is
 149 the regularization. After computing the confidence ellipsoid $\beta_t(\delta)$, the arm selection is based on the
 150 upper confidence bound as $\mathbf{x}_{t+1} = \arg \max_{\mathbf{x} \in \mathcal{X}_t} \{\mathbf{x}^\top \hat{\boldsymbol{\theta}}_t + \beta_t(\delta) \cdot \|\mathbf{x}\|_{(\mathbf{A}^{(t)})^{-1}}\}$.
 151

152 The objective of the learner is to minimize the cumulative (pseudo) regret (Lattimore & Szepesvári,
 153 2020) over the total T rounds, defined as $\text{Regret}_T = \sum_{t=1}^T \max_{\mathbf{x} \in \mathcal{X}_t} \mathbf{x}^\top \boldsymbol{\theta}_* - \sum_{t=1}^T \mathbf{x}_t^\top \boldsymbol{\theta}_*$.
 154

155 **2.3 SKETCH-BASED LINEAR BANDITS**

157 Note that both the RLS estimator and arm selection require maintaining the inverse of $\mathbf{A}^{(t)}$, which
 158 necessitates an update time of $\Omega(d^2)$. To address this issue, Kuzborskij et al. (2019) proposes a
 159 sketch-based method, SOFUL, which reduces the time-consuming step via matrix sketching.

160 SOFUL produce a FD sketch $\mathbf{S}^{(t)} \in \mathbb{R}^{l \times d}$ of the streaming matrix $\mathbf{X}^{(t)}$. By applying Wood-
 161 bury's identity, the inverse of the sketched covariance matrix can be written as $(\hat{\mathbf{A}}^{(t)})^{-1} =$

162 $\frac{1}{\lambda}(\mathbf{I}_d - (\mathbf{S}^{(t)})^\top \mathbf{M}^{(t)} \mathbf{S}^{(t)})$, where $\mathbf{M}^{(t)} = (\mathbf{S}^{(t)}(\mathbf{S}^{(t)})^\top + \lambda \mathbf{I}_l)^{-1} \in \mathbb{R}^{l \times l}$ is a diagonal matrix
 163 that can be stored efficiently. Notably, $(\widehat{\mathbf{A}}^{(t)})^{-1}$ can be updated implicitly using the sketch matrix
 164 $\mathbf{S}^{(t)}$ and $\mathbf{M}^{(t)}$. Since matrix-vector multiplications with $\mathbf{S}^{(t)}$ require $O(dl)$ time and matrix-matrix
 165 multiplications with $\mathbf{M}^{(t)}$ take $O(l^2)$ time, the update cost is reduced from $\Omega(d^2)$ to $O(dl + l^2)$.
 166

167 **Current Pitfalls.** Despite its improved efficiency, the sketch-based methods introduce errors in
 168 matrix approximation, which can lead to a vacuous linear regret bound. We begin by presenting the
 169 regret bound of SOFUL, which is characterized in terms of spectral error.

170 **Lemma 2** (Theorem 3 of (Kuzborskij et al., 2019)). *Let $\text{Regret}_T^{\text{SOFUL}}$ denote the regret of SOFUL,
 171 where the sketch size is l and Δ_T is defined in equation 1. With high probability, the regret satisfies*
 172

$$173 \text{Regret}_T^{\text{SOFUL}} = \tilde{O}\left(\min\left\{(1 + \Delta_T)^{\frac{3}{2}}(l + d \log(1 + \Delta_T))\sqrt{T}, T\right\}\right). \\ 174$$

175 The regret bound of SOFUL is tightly linked to spectral error Δ_T , which depends on both the
 176 spectral tail of $\mathbf{X}^{(T)}$ and the fixed sketch size l . This bound is meaningful only when $\Delta_T = o(T^{1/3})$.
 177 However, as shown in Figure 1c, if the sketch size is insufficient (e.g., the blue and orange lines),
 178 Δ_T grows rapidly with the number of rounds, violating this condition and leading to linear regret.
 179

180 The underlying reason for this phenomenon is that low-regret algorithms must ensure sufficient
 181 exploration by estimating all relevant directions in the parameter space, a concept extensively studied
 182 by Banerjee et al. (2023). Specifically, they showed that when the arm space has a locally convex
 183 surface, the minimum eigenvalue of the covariance matrix satisfies $\sigma_d^2 = \Omega(T^q)$ in expectation,
 184 where $q \in (0, 1/2]$ depends on the geometry of the arm space. For the convenience of readers,
 185 we restate this result in Theorem 5 in Appendix C.1. Based on this result, we obtain the following
 186 observation:

187 **Observation 1.** *Assume the decision set is drawn from a locally convex arm space \mathcal{X} . If the sketch
 188 size of SOFUL satisfies $l < d - T^{\frac{1}{2}-q}$, then SOFUL incurs vacuous linear regret. Consequently,
 189 when the geometry constant $q \geq 1/3$, SOFUL suffers linear regret for any sketch size $l < d$.*

190 The proof is provided in Appendix C.1. Observation 1 indicates that it is difficult to constrain the
 191 spectral error by presetting a fixed sketch size, since the spectral properties of the streaming matrix
 192 are unknown in advance. In some cases, even allocating SOFUL the maximum sketch size fails to
 193 prevent linear regret. Similarly, other sketch-based methods, such as CBSCFD (Chen et al., 2020),
 194 suffer from the same limitation, as discussed in Appendix C.2. This underscores the necessity of
 195 dynamically adjusting the sketch size to guarantee worst-case sublinear regret.
 196

197 3 DYADIC BLOCK SKETCHING FOR CONSTRAINED GLOBAL ERROR BOUND 198

199 In this section, we propose Dyadic Block Sketching, a novel multi-scale sketching paradigm that
 200 fundamentally departs from single-scale sketching. Inspired by dyadic frameworks in streaming al-
 201 gorithms (Wang et al., 2013; Wei et al., 2016), our method maintains multiple sketches with varying
 202 sizes. A key property is that the global error is governed by ϵ , which is fixed before sketching.
 203

204 3.1 ALGORITHM DESCRIPTIONS

205 **High-Level Ideas.** As illustrated in Figure 2, we partition the streaming data into blocks, with each
 206 block approximated by a matrix sketch. For the initial block, we use a relatively small sketch, and
 207 for each subsequent block, the sketch size is doubled compared to the previous one. The following
 208 lemma shows that any sketch satisfying a covariance error guarantee is decomposable, allowing us
 209 to concatenate the individual sketches to construct an approximation of the entire streaming matrix:

210 **Lemma 3** (Decomposability). *Let $\mathbf{X} = [\mathbf{X}_1^\top, \dots, \mathbf{X}_p^\top]^\top$ with $\mathbf{X}_i \in \mathbb{R}^{n_i \times d}$ and $\sum_i n_i = n$. If each
 211 \mathbf{X}_i admits a sketch \mathbf{S}_i satisfying $\|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 \leq \epsilon_i \|\mathbf{X}_i\|_F^2$, then with $\mathbf{S} = [\mathbf{S}_1^\top, \dots, \mathbf{S}_p^\top]^\top$
 212 we have $\|\mathbf{X}^\top \mathbf{X} - \mathbf{S}^\top \mathbf{S}\|_2 \leq \sum_{i=1}^p \epsilon_i \|\mathbf{X}_i\|_F^2$.*

213 **Data Structure.** The matrix rows are partitioned into blocks, with each block represented as the
 214 struct variable \mathcal{B} . Each block is associated with a matrix sketching instance, denoted as $\mathcal{B}.\text{sketch}$,
 215

Figure 2: Illustration for Dyadic Block Sketching. For each inactive block $i \in [B - 1]$, the sketch covers the data from t_{i-1} to t_i . For active block B , sketching updates are performed on the new rows. In Algorithm 1, \mathcal{B}^* represents the active block B , and \mathcal{L} denotes the list of inactive blocks.

which covers a segment of consecutive, non-overlapping rows. Each block is characterized by two properties: block size and sketch size. The block size is defined as the sum of the squared norms of the rows contained within the block, i.e., $\mathcal{B}.\text{BlockSize} = \sum_{\mathbf{x} \in \mathcal{B}} \|\mathbf{x}\|_2^2$. The sketch size, $\mathcal{B}.\text{SketchSize}$, represents the constant sketch size of the sketch matrix associated with the block.

We categorize the blocks into two states: *active* and *inactive*. An active block is updated with new rows, while an inactive block remains unchanged. As shown in Figure 2, there is exactly one active block at any time. The active block is represented as \mathcal{B}^* , and the list of inactive blocks is denoted by \mathcal{L} . Moreover, we maintain two invariants during the update process for error management:

Invariant 1 (Inactive-Block Condition). *Each inactive block either has sketch size no smaller than its rank, or block size less than ϵl_0 , where l_0 is the initial sketch size and ϵ the error parameter.*

Invariant 2 (Maximum Number of Blocks). *The number of blocks is at most $\lfloor \log(d/l_0 + 1) \rfloor$.*

Algorithm 1 presents the pseudo-code of Dyadic Block Sketching. Upon receiving a new row \mathbf{x}_t , we first verify that Invariant 2 holds. If the number of blocks reaches its upper limit, any error introduced by a matrix sketch becomes intolerable, requiring the full preservation of the information. Concretely, we employ complete rank-1 modifications to update the sketch.

In Lines 8–15, we update the active block and, when necessary, create a new block. The sketch $\mathcal{B}^*.\text{sketch}$ is updated using a chosen matrix sketching method (e.g., FD or RFD; see Appendix B.1). We introduce a Boolean flag `willExcessSketch` to check the rank condition in Invariant 1: it is set to *True* if inserting the incoming row would cause the block rank to exceed the current sketch size, and *False* otherwise. This flag is easily computed by testing the update on a temporary copy of the sketch $\mathcal{B}^*.\text{sketch}$; for FD, we tentatively add the new row and inspect the shrinking value σ : if $\sigma = 0$ (unchanged from before insertion) we set `willExcessSketch` to *False*, otherwise to *True*. Line 10 updates the information of the active block when either the block size remains below the threshold ϵl_0 or `willExcessSketch` is *False*. Otherwise, we mark the current active block as inactive, append it to \mathcal{L} , initialize a new active block with twice the previous sketch size, and then insert the incoming row into this new block.

In Lines 16–17, we return a matrix approximation for the current streaming matrix. We query the sketch matrices \mathbf{S}^* and \mathbf{M}^* from the active block \mathcal{B}^* . Since the inactive blocks remain fixed, we can query the combined results of the sketch matrices from \mathcal{L} , denoted as $\tilde{\mathbf{S}}$ and $\tilde{\mathbf{M}}$, which are updated (similar to equation 3) once when a block is marked as inactive. Leveraging the decomposability property (Lemma 3), we combine the sketches from both the active and inactive blocks as follows:

$$\mathbf{S}^{(t)} = \begin{bmatrix} \tilde{\mathbf{S}} \\ \mathbf{S}^* \end{bmatrix}, \quad \mathbf{M}^{(t)} = \left(\begin{bmatrix} \tilde{\mathbf{M}} & \tilde{\mathbf{S}} \mathbf{S}^{*\top} \\ \mathbf{S}^* \tilde{\mathbf{S}}^\top & \mathbf{M}^* \end{bmatrix} + \lambda \mathbf{I} \right)^{-1}. \quad (3)$$

270

Algorithm 1 Dyadic Block Sketching

```

271 1: Input: Data stream  $\{\mathbf{x}_t\}_{t=1}^T$ , initial sketch size  $l_0$ , error parameter  $\epsilon$ , regularization  $\lambda$ 
272 2: Output: Sketch matrix  $\mathbf{S}^{(t)}$ ,  $\mathbf{M}^{(t)}$ 
273 3: Initialize an empty list  $\mathcal{L}$  and  $\mathcal{B}^*.sketch$ , set  $\mathcal{B}^*.BlockSize = 0$  and  $\mathcal{B}^*.SketchSize = l_0$ 
274 4: for  $t = 1$  to  $T$  given  $\mathbf{x}_t$  do
275 5:   if  $\text{length}(\mathcal{L}) \geq \lfloor \log(d/l_0 + 1) \rfloor - 1$  then
276 6:     Update  $(\mathbf{S}^{(t+1)})^\top \mathbf{S}^{(t+1)} = (\mathbf{S}^{(t)})^\top \mathbf{S}^{(t)} + \mathbf{x}_t^\top \mathbf{x}_t$  using rank-1 modifications
277 7:   else
278 8:     Query  $\text{willExcessSketch}$  from  $\mathcal{B}^*.sketch$  and  $\mathbf{x}_t$ 
279 9:     if  $\mathcal{B}^*.BlockSize + \|\mathbf{x}_t\|_2^2 < \epsilon \cdot l_0$  or  $\text{willExcessSketch}$  is False then
280 10:      Update  $\mathcal{B}^*.sketch$  with  $\mathbf{x}_t$  and set  $\mathcal{B}^*.BlockSize += \|\mathbf{x}_t\|_2^2$ 
281 11:    else
282 12:      Set  $l = \mathcal{B}^*.SketchSize$  and mark  $\mathcal{B}^*$  as inactive (appending it to  $\mathcal{L}$ )
283 13:      Initialize a new empty  $\mathcal{B}^*.sketch$  and set  $\mathcal{B}^*.BlockSize = 0$ ,  $\mathcal{B}^*.SketchSize = 2l$ 
284 14:      Update  $\mathcal{B}^*.sketch$  with  $\mathbf{x}_t$  and set  $\mathcal{B}^*.BlockSize += \|\mathbf{x}_t\|_2^2$ 
285 15:    end if
286 16:    Query  $\mathbf{S}^*, \mathbf{M}^*$  from  $\mathcal{B}^*.sketch$  and  $\tilde{\mathbf{S}}, \tilde{\mathbf{M}}$  from the list  $\mathcal{L}$  of inactive blocks
287 17:    Compute  $\mathbf{S}^{(t)}, \mathbf{M}^{(t)}$  by equation 3
288 18:  end if
289 19: end for

```

290

291

3.2 ANALYSIS

293

We now analyze the error guarantee and the space-time complexities of our approach. Let \mathbf{X} denote the streaming matrix and $\tilde{\mathbf{X}}$ the subset of rows approximated by inactive blocks. Consider a matrix sketching algorithm ALG that achieves covariance error $\|\mathbf{X}^\top \mathbf{X} - \tilde{\mathbf{X}}^\top \mathbf{S}\|_2 \leq \xi \cdot \|\mathbf{X}\|_F^2$, where \mathbf{S} is the sketch matrix and ξ is a constant. Assume ALG requires ℓ_ξ rows and μ_ξ update time. The following theorem applies to *any* matrix sketching method satisfying this error guarantee.

294

Theorem 1 (Dyadic Block Sketching Guarantee). *Given initial sketch size l_0 , error parameter ϵ , and a single-scale matrix sketching algorithm ALG, our method produces a sketch \mathbf{S} satisfying*

295

$$\|\mathbf{X}^\top \mathbf{X} - \mathbf{S}^\top \mathbf{S}\|_2 \leq 2\epsilon. \quad (4)$$

296

The space complexity is $O\left(d \cdot \sum_{i=0}^B \ell_{\frac{1}{2^i l_0}}\right)$ and the per-round update complexity is $O\left(\mu_{\frac{1}{2^B l_0}}\right)$, where $B = \lceil \min\left\{\log \frac{k}{l_0}, \frac{\|\tilde{\mathbf{X}}\|_F^2}{\epsilon l_0}\right\} \rceil$ with $k = \text{rank}(\mathbf{X})$.

297

The detailed proof is provided in Appendix D.2. Theorem 1 establishes that the global error is constrained by parameter ϵ , while the complexity depends on the choice of ALG and the number of blocks B . The value of B grows adaptively during sketching and depends not only on the parameters l_0 and ϵ , but also on the spectral properties of the streaming matrix (e.g., k and $\|\tilde{\mathbf{X}}\|_F^2$). To illustrate how different ALG yield different complexities, we present the following corollary for FD:

298

Dyadic Block Sketching for FD. We employ FD (Liberty, 2013) as ALG for each block in our method. With a given covariance error ξ , FD requires $\ell_\xi = O(1/\xi)$ rows and processes updates at an amortized cost of $\mu_\xi = O(d/\xi)$. The following corollary specializes Theorem 1 to FD:

299

Corollary 1. *Dyadic Block Sketching with FD guarantees the error bound in equation 4, with both space complexity and amortized update cost $O\left(dl_0 \cdot \min\{k/l_0, 2\|\tilde{\mathbf{X}}\|_F^2/(\epsilon l_0)\}\right)$.*

300

301

Our method provides a framework for constraining the global error of matrix approximation by integrating sketches across multiple scales. This mechanism is particularly critical for learning and optimization algorithms that impose strict accuracy requirements, which the single-scale matrix sketching method cannot always satisfy. More precisely, as shown in Theorem 1, the error of Dyadic Block Sketching is governed by a pre-specified parameter ϵ , which can, in principle, be tuned to arbitrarily small values. When a stringent error tolerance is required, such as $\epsilon < \sigma_d^2/2$ where σ_d is the smallest singular value of \mathbf{X} , even the largest FD with $l = d - 1$ cannot meet this constraint.

Furthermore, as the active block's sketch size grows dyadically, our method closely tracks the optimal rank- k approximation. Once it exceeds k , the spectral error in the active block vanishes. Note that the full-rank case $k = d$ corresponds to the edge case that triggers rank-1 modifications. This behavior matches the first term in the complexity bound of Corollary 1 and shows that, in the low-rank regime, our method attains the optimal FD complexity of $O(dk)$.

Remark 1 (Efficient Implementation). The update costs include calculating SVD to obtain $\mathbf{S}^{(t)}$ and performing matrix multiplication to compute $\mathbf{M}^{(t)}$, both of which cost $O(dl^2)$, where l is the current sketch size. In implementation, the amortized cost can be reduced to $O(dl)$ either by doubling space (detailed in Appendix B.2), or by employing the Gu-Eisenstat procedure (Gu & Eisenstat, 1993).

4 APPLICATION TO LINEAR BANDITS

In this section, we incorporate Dyadic Block Sketching into linear bandits and propose a novel framework, termed DBSLinUCB. DBSLinUCB guarantees worst-case sublinear regret, independent of the streaming matrix, and readily extends to other sketch-based approaches.

4.1 ALGORITHM AND REGRET GUARANTEE

We use FD as the base algorithm in Dyadic Block Sketching. First, we present the estimator utilized in our approach, followed by the derivation of the confidence ellipsoid, which is essential for both the algorithm design and the regret analysis. Using the upper confidence bound, we then propose a selection criterion. Finally, we provide the theoretical guarantee on the regret of our method.

Estimator. We adopt a sketch-based RLS estimator, similar to previous work (Kuzborskij et al., 2019; Chen et al., 2020), with the key difference that we use Algorithm 1 to generate the sketch. Let $\mathbf{X}^{(t)} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_t^\top]^\top \in \mathbb{R}^{t \times d}$ denote the matrix containing all the arms selected up to round t . We utilize the sketch matrix $\mathbf{S}^{(t)} \in \mathbb{R}^{l_{B_t} \times d}$ and $\mathbf{M}^{(t)}$ to approximate $\mathbf{X}^{(t)}$, where l_{B_t} is the current sketch size. The sketched RLS estimator is given by

$$\hat{\boldsymbol{\theta}}_t = \left(\hat{\mathbf{A}}^{(t)} \right)^{-1} \sum_{s=1}^t r_s \mathbf{x}_s, \quad \left(\hat{\mathbf{A}}^{(t)} \right)^{-1} = \frac{1}{\lambda} \left(\mathbf{I}_d - (\mathbf{S}^{(t)})^\top \mathbf{M}^{(t)} \mathbf{S}^{(t)} \right). \quad (5)$$

Confidence Ellipsoid. For the estimator equation 5, we derive the corresponding confidence ellipsoid, which is a key component in achieving sublinear regret in the worst case.

Theorem 2 (Multi-scale sketched confidence ellipsoid). *Following the assumption of linear bandits in section 2.2. Let B_t be the number of blocks at round t . For any $\delta \in (0, 1)$, the optimal weight $\boldsymbol{\theta}_*$ belongs to the set $\Theta_t \equiv \{ \boldsymbol{\theta} \in \mathbb{R}^d : \|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_t\|_{\hat{\mathbf{A}}^{(t)}} \leq \hat{\beta}_t(\delta) \}$ with probability at least $1 - \delta$, where*

$$\hat{\beta}_t(\delta) \lesssim R \sqrt{d \ln \left(1 + \frac{\epsilon}{\lambda} \right) + 2l_{B_t}} \cdot \sqrt{1 + \frac{\epsilon}{\lambda}} + \frac{H(\lambda + \epsilon)}{\sqrt{\lambda}}.$$

The proof is provided in Appendix E.1. Importantly, this result departs from the previous single-scale sketched one ((Kuzborskij et al., 2019), Theorem 2). Here, the ellipsoid is constructed by leveraging multiple sketches at different scales. We can then define the selection criterion as

$$\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}_t} \left\{ \mathbf{x}^\top \hat{\boldsymbol{\theta}}_{t-1} + \hat{\beta}_{t-1}(\delta) \cdot \|\mathbf{x}\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}} \right\}. \quad (6)$$

Complexity. The overall algorithm is summarized in Algorithm 5. The computational cost arises from three components: updating the sketch via Algorithm 1, computing the sketched RLS estimator in equation 5, and performing arm selection in equation 6. Let l_{B_t} be the sketch size of the active block at round t . Since both equation 5 and equation 6 require computing $(\hat{\mathbf{A}}^{(t)})^{-1}$, we can employ the sketch-based acceleration discussed in Section 2.3, which costs $O(dl_{B_T} + l_{B_T}^2)$. Combined with the sketch maintenance cost from Corollary 1, we obtain a total space complexity of $O(dl_{B_T})$ and an amortized update complexity of $O(dl_{B_T} + l_{B_T}^2)$, where $l_{B_T} = \min \{k, l_0 \cdot 2^{\|\tilde{\mathbf{X}}\|_F^2 / (\epsilon l_0)}\}$.

378 **Regret Bound.** We demonstrate that the regret bound of DBSLinUCB using FD is as follows:
 379

380 **Theorem 3** (Regret bound of DBSLinUCB-FD). *Consider the basic assumptions of linear bandits
 381 outlined in Section 2.2, and assume that $L \geq \sqrt{\lambda}$. Let the sketch size of the active block at round
 382 t be denoted by $l_{B_t} \leq d$. Given the error parameter ϵ , the regret of DBSLinUCB-FD satisfies the
 383 following bound with probability at least $1 - 1/T$:*

$$384 \text{Regret}_T = \tilde{O} \left(\left(1 + \frac{\epsilon}{\lambda} \right)^{\frac{3}{2}} \cdot (d + l_{B_T}) \cdot \sqrt{T} \right), \\ 385 \\ 386$$

387 where the constants and logarithmic terms are omitted for brevity. The detailed proof and a concrete
 388 upper bound are provided in Appendix E.2. We now provide a detailed comparison of our method
 389 with the single-scale sketch-based method SOFUL and the non-sketched method OFUL.

390 SOFUL utilizes FD with a fixed sketch size, achieving $\tilde{O}((1 + \Delta_T)^{3/2} \sqrt{T})$ regret bound. As dis-
 391 cussed in Section 2.3, this dependence on the spectral error Δ_T introduces a fundamental vul-
 392 nerability that can lead to linear regret. In contrast, DBSLinUCB achieves a $\tilde{O}(\epsilon^{3/2} \sqrt{T})$ regret bound,
 393 which reduces to $\tilde{O}(\sqrt{T})$ when setting $\epsilon = O(1)$, matching that of the slower, non-sketched coun-
 394 terpart. Crucially, DBSLinUCB dynamically adjusts its sketch size l_{B_t} based on the observed data,
 395 with the final size $l_{B_T} = \min \{k, l_0 \cdot 2^{\|\tilde{\mathbf{X}}\|_F^2 / (\epsilon l_0)}\}$ determined by the streaming matrix's properties.
 396

397 Given a target order of regret bound, such as $\tilde{O}(\sqrt{T})$, our method can recover the complexity of
 398 SOFUL or OFUL across different streaming data environments. For simplicity, we set $l_0 = 1$.
 399 When the streaming matrix exhibits favorable spectral properties (e.g., low rank k), the optimal
 400 complexity for SOFUL is $O(dk)$ since this yields $\Delta_T = 0$. In this case, by setting $\epsilon < \|\tilde{\mathbf{X}}\|_F^2 / \log k$,
 401 DBSLinUCB achieves the same regret bound and $O(dk)$ complexity as SOFUL, differing only by
 402 constant factors. Conversely, when the streaming matrix exhibits a heavy spectral tail with full rank
 403 $k = d$, DBSLinUCB adaptively performs rank-1 modifications after a certain number of rounds,
 404 effectively degenerating to the non-sketched method OFUL with complexity $O(d^2)$. In this scenario,
 405 our regret bound differs from OFUL's regret bound only by a constant factor of $\epsilon^{3/2}$.
 406

407 We therefore view our work as analyzing the trade-off between regret utility and sketching effi-
 408 ciency under streaming matrices with unknown spectral properties. SOFUL and OFUL represent
 409 the two extremes of this trade-off: SOFUL is tailored for matrices with favorable characteristics,
 410 while OFUL is more effective in scenarios with unsatisfactory properties. DBSLinUCB, positioned
 411 between these extremes, provides a flexible solution that can swing to both ends of the spectrum
 412 and generalizes to a wide range of scenarios. In practical applications, SOFUL is better suited for
 413 environments with strict cost constraints, such as microcontrollers (Lin et al., 2023), whereas DB-
 414 SLinUCB excels in settings where maximizing efficiency while maintaining accuracy is essential,
 415 such as in large-scale online recommendation systems (Zhang et al., 2022).

416 **Remark 2** (Practical Guidance of Parameters). The parameters of DBSLinUCB include the error
 417 parameter ϵ and the initial sketch size l_0 . The regret bound in Theorem 3 is controlled by ϵ , which
 418 allows us to obtain regret bounds of different orders by adjusting its value. In particular, setting ϵ as
 419 a small constant yields the non-sketched $\tilde{O}(\sqrt{T})$ regret bound, as discussed above. More generally,
 420 by choosing $\epsilon = O(T^{\frac{2\gamma-1}{3}})$, one can achieve an arbitrary sublinear regret bound $O(T^\gamma)$ for any
 421 $\gamma \in [0.5, 1]$. For l_0 , we recommend selecting a value substantially smaller than d in the absence of
 422 prior knowledge about the streaming matrix, thereby ensuring sufficient exploration. In practice, if
 423 prior information about the effective dimensionality is available (e.g., an estimate \hat{l}), l_0 can be chosen
 424 as a fraction of \hat{l} scaled by a constant. The parameter tuning results are provided in Section 5.

425 4.2 EXPAND TO OTHER MATRIX SKETCHING METHODS

426 DBSLinUCB provides a scalable framework for efficient sketch-based linear bandits, capable of
 427 incorporating various matrix sketching methods. Robust Frequent Directions (RFD) is another ma-
 428 trix sketching technique developed to address the rank deficiency issue inherent in FD. It has been
 429 proven to be an ideal sketching method for sequential decision-making problems (Luo et al., 2019;
 430 Chen et al., 2020; Feinberg et al., 2023). We use the RFD (see Algorithm 3) as the sketching method
 431 in Algorithm 1 and derive the following regret bound. The proof is provided in Appendix E.3.

Theorem 4 (Regret Bound of DBSLinUCB-RFD). *Consider the basic assumptions of linear bandits outlined in Section 2.2, and assume that $L \geq \sqrt{\lambda}$. Let the sketch size of the active block at round t be denoted by $l_{B_t} \leq d$. Given the error parameter ϵ , the regret of DBSLinUCB-RFD satisfies the following bound with probability at least $1 - 1/T$:*

$$\text{Regret}_T = \tilde{O} \left(\left(1 + \frac{\epsilon}{\lambda} \right)^{\frac{1}{2}} \cdot \sqrt{l_{B_T} T} + \sqrt{d l_{B_T} T} \right).$$

Compared to Theorem 3, Theorem 4 reduces the order of ϵ from $3/2$ to $1/2$. Apart from logarithmic terms, decoupling d and ϵ further mitigates the impact of ϵ . Since RFD and FD yield identical error bounds with the same sketch size, DBSLinUCB-FD and DBSLinUCB-RFD share the same complexity expression, though their hidden constants may differ due to algorithmic details. Replacing FD with RFD is straightforward, but its theoretical analysis is non-trivial. The improved regret bound stems from two key properties: positive definite monotonicity and well-conditioning, both of which are demonstrated under decomposability in Appendix E.4. This is, to our knowledge, the first result to establish these properties within the context of multi-scale sketching.

5 EXPERIMENTS

In this section, we evaluate the performance of DBSLinUCB on the synthetic dataset and several real-world datasets. The baselines include the non-sketched method OFUL (Abbasi-Yadkori et al., 2011) and the sketch-based methods SOFUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2020). **All sketch-based methods employed the efficient implementations described in Remark 1.** The experimental setting, additional experiments, and configurations are available in Appendix F.

Online Regression in Synthetic Data. Inspired by the experimental settings in (Chen et al., 2020), we build synthetic datasets using multivariate Gaussian distributions $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ with 100 arms and $d = 500$ features per context. The true parameter θ_* is drawn from $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ and is normalized. We set the sketch size $l \in \{50, 450\}$ for SOFUL and CBSCFD and the initial sketch size $l_0 = 50$ for DBSLinUCB. We set the error parameter $\epsilon = 8$ for DBSLinUCB.

The experimental results presented in Figures 1a and 1b (Section 1) demonstrate that DBSLinUCB, using both FD and RFD, consistently outperforms corresponding single-scale sketch-based methods. Notably, when $l = 50$, both SOFUL and CBSCFD show significantly worse performance compared to DBSLinUCB, exhibiting nearly linear regret. In Figure 1c, we report the trajectory of the spectral error term $\log(\Delta_T)/\log t$ over round t . We observe that for insufficient sketch sizes ($l = 50, 200$), this term crosses the benchmark line of $y = 1/3$, indicating that excessive spectral error leads to linear regret, which aligns with our theoretical analysis. We also evaluate the performance of our method in terms of matrix approximation in Appendix F.2, showing its ability to limit spectral error.

Figure 3: (a), (b): Cumulative regret and total running time of DBSLinUCB w.r.t. error parameter ϵ on MNIST; (c), (d): Pareto frontiers for regret vs. time and regret vs. space on MNIST, illustrating the utility-efficiency trade-off between the proposed DBSLinUCB and the compared methods.

Online Classification in Real-world Data. We perform online classification on the real-world dataset MNIST. The dataset contains 60,000 samples, each with $d = 784$ features, and there are $M = 10$ possible labels. We follow the setup in (Kuzborskij et al., 2019), details in Appendix F.1. We first investigate the impact of ϵ and the initial sketch size l_0 on the performance of DBSLinUCB. Figures 3a and 3b present the cumulative regret and total running time after 2000 rounds. Our results

486 indicate that larger values of ϵ lead to increased regret but improved computational efficiency. With
 487 respect to l_0 , we observe that larger values yield better regret at the cost of increased runtime. An
 488 interesting observation is that when ϵ is very small, the regret across different sketch sizes becomes
 489 nearly identical. This phenomenon can be attributed to Invariant 2, which constrains the number
 490 of sketching blocks. Under a small ϵ , the algorithm tends to sketch fewer rows and relies more
 491 heavily on non-sketched updates, thereby diminishing the influence of l_0 on overall performance.
 492 Furthermore, Figure 3a shows that for relatively small values of ϵ (e.g., $\epsilon = 2, 4$), the actual regret is
 493 not necessarily monotonically increasing. This is because ϵ constrains the upper bound of the matrix
 494 approximation error, while the tightness of this bound may vary with different parameter choices.

495 We then compare DBSLinUCB variants against OFUL, SOFUL, and CBSCFD. For baseline meth-
 496 ods, we vary sketch size $l \in [10, 600]$ across 10 equally-spaced points; for DBSLinUCB, we eval-
 497 uate 10 configurations with $\epsilon \in [2, 25]$ and $l_0 \in [50, 200]$. Figures 3c and 3d present the Pareto
 498 frontiers for regret-efficiency trade-offs. DBSLinUCB demonstrates superior performance across
 499 both dimensions: it consistently dominates SOFUL with up to 40% regret reduction at compa-
 500 rable resource usage, while DBSLinUCB-RFD outperforms CBSCFD across nearly the entire Pareto
 501 frontier. Notably, our method approaches OFUL’s optimal regret (≈ 200) while achieving 60% time
 502 and 80% space reduction in certain configurations. A key advantage of DBSLinUCB is its regret-
 503 robustness, which consistently maintains regret below 300, whereas single-scale methods like SO-
 504 FUL exceed 500 under an insufficient sketch size. Additional experimental results on MNIST and
 505 other real-world datasets are provided in Appendices F.3 and F.4.

506 6 CONCLUSION

507 This paper addresses the current pitfall of linear regret in sketch-based linear bandits for the first
 508 time. We propose Dyadic Block Sketching with a constrained global error bound and provide formal
 509 theoretical guarantees. By leveraging Dyadic Block Sketching, we present a framework for efficient
 510 sketch-based linear bandits. Even in the worst-case scenario, our method can achieve sublinear
 511 regret without prior knowledge of the streaming matrix. The experimental evaluations conducted on
 512 both real and synthetic datasets underscore the superior performance of our method.

513 ETHICS STATEMENT

514 This work studies algorithmic methods for efficient linear bandits and evaluates them on synthetic
 515 data and the public MNIST dataset. It does not involve human subjects, personally identifiable
 516 information, or sensitive attributes; experiments use non-identifiable benchmarks and simulated data
 517 only. We therefore do not foresee direct risks to privacy or safety. Potential downstream uses
 518 (e.g., recommendation or allocation) could amplify biases present in third-party data; to mitigate
 519 this, we encourage practitioners to pair our sketching framework with careful dataset curation, bias
 520 monitoring, and domain-appropriate safeguards. Computational demands are modest (we report
 521 running times alongside regret to support resource transparency), limiting environmental impact. We
 522 affirm compliance with the ICLR Code of Ethics. Evidence of our experimental setup and datasets
 523 appears in the paper’s experiments section (synthetic and MNIST) and running-time reporting.

524 REPRODUCIBILITY STATEMENT

525 We facilitate reproducibility through: (i) full algorithmic descriptions and pseudocode for Dyadic
 526 Block Sketching and the underlying FD/RFD sketches; (ii) precise statements of assumptions and
 527 theorems with complete proofs placed in the appendices; and (iii) detailed experimental settings
 528 (data preprocessing, hyperparameters, and evaluation protocol) for both synthetic data and MNIST.
 529 Specifically, high-level algorithms and composition formulas are given in the main method section;
 530 FD/RFD pseudocode is provided in Appendix B.1; and the paper states that all proofs are included
 531 in the appendices, with experimental details collected in Appendix F. In our submission, we in-
 532 clude an anonymized artifact (source code and scripts) implementing DBSLinUCB with FD/RFD,
 533 configuration files, and seed control to reproduce all figures and tables. See method/algorith-
 534 m details and composition (multi-scale sketching), FD/RFD algorithms, statements regarding proofs in
 535 appendices, and experimental details for MNIST and synthetic data.

540 USE OF LARGE LANGUAGE MODELS (LLMs)
541542 LLMs were used only as writing assistants for minor language polishing (grammar, clarity, and
543 style). They were not used for research ideation, mathematical derivations, proof development, ex-
544 perimental design, data analysis, or code generation. All technical content—including algorithms,
545 theorems, and proofs—as well as all experiments and results, were created and verified by the au-
546 thors. The authors accept full responsibility for all content and have checked that no generated text
547 constitutes plagiarism or factual fabrication.

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
597 bandits. In *Advances in Neural Information Processing Systems 24 (NeurIPS)*, pp. 2312–2320,
598 2011.

599 Dimitris Achlioptas. Database-friendly random projections. In *Proceedings of the 29th ACM
600 SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS)*, pp. 274–
601 281, 2001.

603 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine
604 Learning Research*, 3:397–422, 2002.

606 Debangshu Banerjee, Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Exploration
607 in linear bandits with rich action sets and its implications for inference. In *Proceedings of the
608 26th International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 8233–8262,
609 2023.

610 Hamsa Bastani, Kimon Drakopoulos, Vishal Gupta, Ioannis Vlachogiannis, Christos Had-
611 jichristodoulou, Pagona Lagiou, Gkikas Magiorkinis, Dimitrios Paraskevis, and Sotirios Tsiodras.
612 Efficient and targeted COVID-19 border testing via reinforcement learning. *Nature*, 599(7883):
613 108–113, 2021.

614 Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Efficient second-order online kernel
615 learning with adaptive embedding. In *Advances in Neural Information Processing Systems 30
(NeurIPS)*, pp. 6140–6150, 2017.

618 Cheng Chen, Luo Luo, Weinan Zhang, Yong Yu, and Yijiang Lian. Efficient and robust high-
619 dimensional linear contextual bandits. In *Proceedings of the 29th International Joint Conference
620 on Artificial Intelligence (IJCAI)*, pp. 4259–4265, 2020.

621 Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
622 functions. In *Proceedings of the 14th International Conference on Artificial Intelligence and
623 Statistics (AISTATS)*, pp. 208–214, 2011.

625 Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. The price of bandit information for online
626 optimization. In *Advances in Neural Information Processing Systems 20 (NeurIPS)*, pp. 345–352,
627 2007.

628 Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset selec-
629 tion. In *Proceedings of the 51th Annual IEEE Symposium on Foundations of Computer Science
(FOCS)*, pp. 329–338, 2010.

632 Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
633 efficient adaptive regularization with frequent directions. In *Advances in Neural Information
634 Processing Systems 36 (NeurIPS)*, 2023.

635 Alan M. Frieze, Ravi Kannan, and Santosh S. Vempala. Fast monte-carlo algorithms for finding
636 low-rank approximations. *Journal of the ACM*, 51(6):1025–1041, 2004.

638 Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
639 and deterministic matrix sketching. *SIAM Journal on Computing*, 45(5):1762–1792, 2016.

641 Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using sketched
642 preconditioned SVRG. In *Proceedings of the 33nd International Conference on Machine Learn-
643 ing (ICML)*, pp. 1397–1405, 2016.

644 Ming Gu and Stanley C Eisenstat. A stable and fast algorithm for updating the singular value
645 decomposition, 1993.

646 Robbins Herbert. Some aspects of the sequential design of experiments. *Bulletin of the American
647 Mathematical Society*, pp. 527–535, 1952.

648 Ilja Kuzborskij, Leonardo Cella, and Nicolò Cesa-Bianchi. Efficient linear bandits through matrix
 649 sketching. In *Proceedings of the 22nd International Conference on Artificial Intelligence and*
 650 *Statistics (AISTATS)*, pp. 177–185, 2019.

651 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via cluster-
 652 preserving clustering. *Communications of the ACM*, 62(8):95–100, 2019.

653 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

654 Edo Liberty. Simple and deterministic matrix sketching. In *Proceedings of the 19th ACM SIGKDD*
 655 *International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 581–588, 2013.

656 Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. Tiny machine learning:
 657 Progress and futures. *IEEE Circuits and Systems Magazine*, 23(3):8–34, 2023.

658 Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, and John Langford. Efficient second order on-
 659 line learning by sketching. In *Advances in Neural Information Processing Systems 29 (NeurIPS)*,
 660 pp. 902–910, 2016.

661 Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. Robust frequent directions with
 662 application in online learning. *Journal of Machine Learning Research*, 20:45:1–45:41, 2019.

663 Jayadev Misra and David Gries. Finding repeated elements. *Science of computer programming*, 2
 664 (2):143–152, 1982.

665 Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
 666 *Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*,
 667 pp. 143–152, 2006.

668 Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. Openml: networked science in
 669 machine learning. *SIGKDD Explor.*, 15(2):49–60, 2013.

670 Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. Quantiles over data streams: an experimental
 671 study. In *Proceedings of the ACM SIGMOD International Conference on Management of Data*
 672 (*SIGMOD*), pp. 737–748, 2013.

673 Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data sketching. In *Pro-
 674 ceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD)*,
 675 pp. 795–810, 2015.

676 Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix
 677 sketching over sliding windows. In *Proceedings of the ACM SIGMOD International Conference
 678 on Management of Data (SIGMOD)*, pp. 1465–1480, 2016.

679 David P. Woodruff. Sketching as a tool for numerical linear algebra. *Foundations and Trends in
 680 Theoretical Computer Science*, 10(1-2):1–157, 2014.

681 Lily Xu, Elizabeth Bondi, Fei Fang, Andrew Perrault, Kai Wang, and Milind Tambe. Dual-mandate
 682 patrols: Multi-armed bandits for green security. In *Proceedings of the 35th AAAI Conference on*
 683 *Artificial Intelligence (AAAI)*, pp. 14974–14982, 2021.

684 Hanyan Yin, Dongxie Wen, Jiajun Li, Zhewei Wei, Xiao Zhang, Zengfeng Huang, and Feifei Li.
 685 Optimal matrix sketching over sliding windows. *Proc. VLDB Endow.*, 17(9):2149–2161, 2024.

686 Xiaotian Yu, Michael R. Lyu, and Irwin King. CBRAP: contextual bandits with random projection.
 687 In *Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI)*, pp. 2859–2866,
 688 2017.

689 Tianjing Zeng, Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent summaries.
 690 *ACM Transactions on Database Systems*, 47(3):11:1–11:42, 2022.

691 Xiao Zhang, Sunhao Dai, Jun Xu, Zhenhua Dong, Quanyu Dai, and Ji-Rong Wen. Counteracting
 692 user attention bias in music streaming recommendation via reward modification. In *Proceedings
 693 of the 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*
 694 (*KDD*), pp. 2504–2514, 2022.

702 Xiao Zhang, Ninglu Shao, Zihua Si, Jun Xu, Wenhan Wang, Hanjing Su, and Ji-Rong Wen. Reward
703 imputation with sketching for contextual batched bandits. In *Advances in Neural Information
704 Processing Systems 36 (NeurIPS)*, 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756	Appendix: Contents	15
757		
758		
759	A More Related Works	16
760		
761	B Omitted Algorithms	17
762	B.1 Pseudo-code of Deterministic Matrix Sketching	17
763		
764	B.2 Fast Algorithm of Dyadic Block Sketching	18
765	B.3 Pseudo-code of DBSLinUCB	19
766		
767	C Omitted Details for Section 2	19
768		
769	C.1 Proof of Observation 1	19
770	C.2 Linear Regret Pitfalls in RFD-based Methods	20
771		
772	D Omitted Proofs for Section 3	20
773		
774	D.1 Proof of Lemma 3	20
775	D.2 Proof of Theorem 1	21
776		
777	E Omitted Proofs for Section 4	22
778		
779	E.1 Proof of Theorem 2	22
780	E.2 Proof of Theorem 3	26
781	E.3 Proof of Theorem 4	28
782	E.4 Properties of Dyadic Block Sketching for RFD	33
783		
784		
785	F Omitted Details for Section 5	34
786		
787	F.1 Experimental Setups	34
788	F.2 Experiments of Matrix Approximation	35
789	F.3 More Experiments on MNIST	35
790	F.4 Experiments on Additional Real-World Data	36
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810
811
812
A MORE RELATED WORKS

813 **Sketch-based Online Learning.** Sketch-based online learning leverages probabilistic (e.g., ran-
814 dom projections or sampling) and deterministic (e.g., Frequent Directions) matrix sketches to re-
815 duce per-update time and memory while preserving essential learning information. In Table 1, we
816 summarize the theoretical results of state-of-the-art sketch-based linear bandit methods and com-
817 pare them with our approach. Beyond the linear bandit setting, sketching has been employed to
818 accelerate second-order online gradient methods (Luo et al., 2016; Feinberg et al., 2023), online
819 kernel learning (Calandriello et al., 2017; Luo et al., 2019), stochastic optimization (Gonen et al.,
820 2016), and contextual batched bandits (Zhang et al., 2023). To the best of our knowledge, exist-
821 ing work has almost exclusively relied on single-scale matrix sketching schemes, while systematic
822 investigations of multi-scale matrix sketching scheduling in online learning remain largely absent.
823 We believe that extending multi-scale matrix sketching techniques to other online learning settings
824 offers a promising direction for future research.

825 Table 1: Comparison of regret bounds, complexities, and sketching methods for sketch-based linear
826 bandit algorithms. Here d denotes the dimension and T the horizon. For single-scale methods, the
827 sketch size l is fixed. For multi-scale methods, the sketch size $l_{B_T} = \min\{k, 2\|\tilde{\mathbf{X}}\|_F^2/(\epsilon l_0)\} \cdot l_0$ is
828 dynamically adjusted, where l_0 is the initial sketch size and $k = \text{rank}(\mathbf{X})$.

Algorithms	Regret Bounds	Time	Space	Sketching Method
OFUL (Abbasi-Yadkori et al. (2011))	$\tilde{O}(d\sqrt{T})$	$O(d^2)$	$O(d^2)$	-
CBRAP (Yu et al. (2017))	$\tilde{O}(\sqrt{IT} + T/\sqrt{l})$	$O(dl + l^3)$	$O(dl)$	Random Projection
SOFUL (Kuzborskij et al. (2019))	$\tilde{O}((1 + \Delta_T)^{3/2}(l + d \log(1 + \Delta_T))\sqrt{T})$	$O(dl)$	$O(dl)$	Single-scale FD
CBSCFD (Chen et al. (2020))	$\tilde{O}((\sqrt{l} + d \log(1 + \Delta_T) + \sqrt{\Delta_T})\sqrt{IT})$	$O(dl)$	$O(dl)$	Single-scale RFD
DBSLinUCB-FD (This work)	$\tilde{O}((1 + \epsilon)^{3/2}(l + l_{B_T})\sqrt{T})$	$O(dl_{B_T})$	$O(dl_{B_T})$	Multi-scale FD
DBSLinUCB-RFD (This work)	$\tilde{O}(\sqrt{(1 + \epsilon)l_{B_T}T} + \sqrt{dl_{B_T}T})$	$O(dl_{B_T})$	$O(dl_{B_T})$	Multi-scale RFD

830
831 **Matrix Sketching.** Matrix sketching algorithms are typically designed for the unbounded stream-
832 ing model. In this framework, the algorithm receives rows of a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ sequentially over
833 time. The objective is to maintain a matrix sketch structure that produces an approximation matrix
834 $\mathbf{B} \in \mathbb{R}^{l \times d}$ with only l rows. The goal is to ensure that the covariance matrix approximation satisfies
835 $\mathbf{B}^\top \mathbf{B} \approx \mathbf{A}^\top \mathbf{A}$, meaning that \mathbf{B} approximates \mathbf{A} well.

836
837 Streaming matrix sketching methods can be broadly categorized into three groups: The first ap-
838 proach is sampling a small subset of matrix rows or columns that approximates the entire ma-
839 trix (Frieze et al., 2004; Deshpande & Rademacher, 2010). The second approach is randomly com-
840 bining matrix rows via random projection. Several results are available in the literature, including
841 random projections and hashing (Achlioptas, 2001; Sarlós, 2006). The third approach employs a
842 deterministic matrix sketching technique proposed by Liberty (2013), which adapts the well-known
843 MG algorithm from Misra & Gries (1982) (originally used for approximating item frequencies) to
844 sketch a streaming matrix by tracking its frequent directions. For further details, we refer readers to
845 the survey (Woodruff, 2014).

846
847 **Multi-scale Sketching.** Maintaining multiple streaming sketches at different scales is beneficial for
848 a variety of streaming problems and has been well-studied in the literature. For instance, Wang et al.
849 (2013) employ a dyadic aggregation structure, expressing a range as a sum of a bounded number
850 of estimated counts. Additionally, multi-scale sketching has been applied to problems such as the
851 heavy-hitter problem (Larsen et al., 2019), the sliding-window problem (Wei et al., 2016; Yin et al.,
852 2024), and persistent sketching (Wei et al., 2015; Zeng et al., 2022). We emphasize that Dyadic
853 Block Sketching is fundamentally distinct from multi-scale sketching methods studied in streaming
854 algorithms. Multi-scale sketches in classical streaming settings typically focus on capturing statistics
855 over a restricted portion of the stream (e.g., a sliding window), and therefore provide relative, data-
856 dependent error guarantees, much like their single-scale counterparts. In contrast, our method must
857 accommodate the entire sequence of actions generated by the linear bandit process and aims to
858 guarantee worst-case regret. This yields a data-independent, absolute error bound at the global
859 level, rather than a range-specific guarantee.

864 **B OMITTED ALGORITHMS**
865866 In this section, we present the pseudo-code for deterministic matrix sketching (Appendix B.1), an
867 efficient implementation of Dyadic Block Sketching (Appendix B.2), and the multi-scale sketched
868 linear bandit framework DBSLinUCB (Appendix B.3).
869870 **B.1 PSEUDO-CODE OF DETERMINISTIC MATRIX SKETCHING**
871872 Frequent Directions (FD) is a deterministic sketching method (Liberty, 2013; Ghashami et al., 2016).
873 FD uniquely maintains the invariant that the last row of the sketch matrix, \mathbf{S} , is always zero. In each
874 round, a new row \mathbf{x}_t is inserted into this last row of \mathbf{S} , and the matrix undergoes singular value
875 decomposition into $\mathbf{U}\Sigma\mathbf{V}^\top$. Subsequently, \mathbf{S} is updated to $\sqrt{\Sigma_l^2 - \sigma}\mathbf{I} \cdot \mathbf{V}_l^\top$, where σ represents
876 the square of the l -th singular value. Given that the rows of \mathbf{S} are orthogonal, $\mathbf{M} = (\mathbf{S}\mathbf{S}^\top + \lambda\mathbf{I})^{-1}$
877 remains a diagonal matrix, facilitating efficient maintenance.878 The Robust Frequent Directions (RFD)¹ sketching technique is designed to tackle the problem
879 of rank deficiency (Luo et al., 2019; Chen et al., 2020). RFD enhances the Frequent Directions
880 (FD) method by maintaining a counter α , which captures the spectral error. More precisely, RFD
881 approximates $\mathbf{X}^\top \mathbf{X}$ by $\mathbf{S}^\top \mathbf{S} + \alpha\mathbf{I}$. The error bound for RFD is equivalent to that of FD, as follows:882 **Lemma 4** (Theorem 1 of (Chen et al., 2020)). *Let $\mathbf{X}^{(t)}$ be the streaming matrix at round t , and $\mathbf{S}^{(t)}$
883 be the sketch matrix and α_t be the counter produced by RFD. Define the spectral error as*

884
$$\Delta_t := \min_{k < l} \frac{\|\mathbf{X}^{(t)} - \mathbf{X}_{[k]}^{(t)}\|_F^2}{l - k},$$

885
886

887 where $\mathbf{X}_{[k]}^{(t)}$ denotes the matrix consisting of the first k singular vectors of $\mathbf{X}^{(T)}$. Then, it holds that
888

889
$$\left\| \left(\mathbf{S}^{(t)} \right)^\top \mathbf{S}^{(t)} + \alpha_t \mathbf{I} - \left(\mathbf{X}^{(t)} \right)^\top \mathbf{X}^{(t)} \right\| \leq \Delta_T.$$

890
891

892 **Algorithm 2 FD sketch**
893894 **Input:** Data $\mathbf{X} \in \mathbb{R}^{T \times d}$, sketch size l , regularization λ
895 **Output:** Sketch \mathbf{S} , \mathbf{M}
896 Initialize $\mathbf{S} \leftarrow \mathbf{0}^{l \times d}$, $\mathbf{M} \leftarrow \frac{1}{\lambda} \mathbf{I}_l$
897 **for** $t = 1$ **to** T **do**
898 Append \mathbf{x}_t to the last row of \mathbf{S}
899 Compute $[\mathbf{U}, \Sigma, \mathbf{V}] \leftarrow \text{svd}(\mathbf{S})$
900 Set $\sigma \leftarrow \sigma_l^2$
901 Update $\mathbf{S} \leftarrow \sqrt{\Sigma_l^2 - \sigma} \mathbf{I} \cdot \mathbf{V}_l^\top$
902 Update $\mathbf{M} \leftarrow \text{diag} \left\{ \frac{1}{\lambda + \sigma_1^2 - \sigma}, \dots, \frac{1}{\lambda} \right\}$
903 **end for**
904895 **Algorithm 3 RFD sketch**896 **Input:** Data $\mathbf{X} \in \mathbb{R}^{T \times d}$, sketch size l , regularization λ
897 **Output:** Sketch \mathbf{S} , \mathbf{M} and counter α
898 Initialize $\mathbf{S} \leftarrow \mathbf{0}^{l \times d}$, $\mathbf{M} \leftarrow \frac{1}{\lambda} \mathbf{I}_l$, $\alpha \leftarrow 0$
899 **for** $t = 1$ **to** T **do**
900 Append \mathbf{x}_t to the last row of \mathbf{S}
901 Compute $[\mathbf{U}, \Sigma, \mathbf{V}] \leftarrow \text{svd}(\mathbf{S})$
902 Set $\sigma \leftarrow \sigma_l^2$, $\alpha \leftarrow \alpha + \sigma$
903 Update $\mathbf{S} \leftarrow \sqrt{\Sigma_l^2 - \sigma} \mathbf{I} \cdot \mathbf{V}_l^\top$
904 Set $\mathbf{M} \leftarrow \text{diag} \left\{ \frac{1}{\lambda + \sigma_1^2 - \sigma + \alpha}, \dots, \frac{1}{\lambda + \alpha} \right\}$
905 **end for**906 The pseudocode for FD and RFD is given in Algorithms 2 and 3. Within our algorithm, we use
907 a Boolean flag `willExcessSketch` to test the rank condition in Invariant 1; it is obtained by
908 applying the update to a temporary copy of the sketch. However, when the number of rows cur-
909 rently stored in a block is smaller than its sketch size l (or dimension d), this test is uninformative:
910 FD/RFD necessarily yields a shrinkage value $\sigma = 0$ but no compression would occur. In practice,
911 we therefore skip the test in this regime and set `willExcessSketch` to *True* as a sentinel, so
912 as to bypass a rank-check; the block is still updated via simple accumulation, and the block size
913 threshold governs new block generation. Finally, these deterministic matrix sketching methods can
914 be accelerated by doubling the sketch size. More details can be found in Appendix B.2.
915916 ¹In the linear bandit literature, this variant is typically referred to as SCFD (Algorithm 1 of (Chen et al.,
917 2020)), which corresponds to Algorithm 3 in our paper. For consistency, we refer to it as RFD throughout the
918 paper.

918 B.2 FAST ALGORITHM OF DYADIC BLOCK SKETCHING
919

920

921 The computational cost of both FD and RFD, as outlined in Algorithms 2 and 3, is primarily de-
922 termined by the singular value decomposition operations. Specifically, SVD must be performed at
923 every update, which results in an update complexity of $O(dl^2)$. However, this amortized update cost
924 can be reduced to $O(dl)$ by doubling the sketch size, as discussed in several works (Liberty, 2013;
925 Luo et al., 2016; Kuzborskij et al., 2019).

926

927

928 **Algorithm 4** Fast Dyadic Block Sketching

929

```

1: Input: Data stream  $\{\mathbf{x}_t\}_{t=1}^T$ , sketch size  $l_0$ , error parameter  $\epsilon$ , regularization  $\lambda$ 
2: Output: Sketch matrix  $\mathbf{S}^{(t)}$ ,  $\mathbf{M}^{(t)}$ 
3: Initialize an empty list  $\mathcal{L}$  and  $\mathcal{B}^*.sketch$ 
4: Initialize  $\mathcal{B}^*.BlockSize = 0$ ,  $\mathcal{B}^*.SketchSize = l_0$ 
5: for  $t = 1$  to  $T$  do
6:   Receive  $\mathbf{x}_t$ 
7:   if  $\text{length}(\mathcal{L}) \geq \lfloor \log(d/l_0 + 1) \rfloor - 1$  then
8:     Update  $\mathcal{S}^{(t)}$  with rank-1 modifications.
9:   else
10:    Query  $\mathbf{willExcessSketch}$  from  $\mathcal{B}^*.sketch$  and  $\mathbf{x}_t$ 
11:    if  $\mathcal{B}^*.BlockSize + \|\mathbf{x}_t\|^2 < \epsilon \cdot l_0$  or  $\mathbf{willExcessSketch}$  is False then
12:      Update  $\mathcal{B}^*.BlockSize += \|\mathbf{x}_t\|^2$ 
13:      Append  $\mathbf{x}_t$  below  $\mathcal{B}^*.sketch$ 
14:      Query  $\tilde{\mathbf{S}}, \tilde{\mathbf{M}}$  from the inactive blocks  $\mathcal{L}$ 
15:      if  $\mathcal{B}^*.sketch$  have  $2 \cdot \mathcal{B}^*.SketchSize$  rows then
16:        Update  $\mathcal{B}^*.sketch$ 
17:        Query  $\mathbf{S}^*, \mathbf{M}^*$  from  $\mathcal{B}^*.sketch$ 
18:        Compute  $\mathbf{S}^{(t)}$  and  $\mathbf{M}^{(t)}$  by equation 3
19:      else
20:        Combine  $\mathbf{S}^{(t)} = \begin{pmatrix} \mathbf{S} \\ \mathbf{S}^* \end{pmatrix}$ 
21:        Combine  $\mathbf{M}^{(t)}$  by equation 7
22:      end if
23:    else
24:      Set  $l = \mathcal{B}^*.SketchSize$ 
25:      Mark  $\mathcal{B}^*$  as inactive and append it to  $\mathcal{L}$ 
26:      Initialize a new empty  $\mathcal{B}^*.sketch$ 
27:      Set  $\mathcal{B}^*.BlockSize = 0$ ,  $\mathcal{B}^*.SketchSize = 2l$ 
28:      Append  $\mathbf{x}_t$  below  $\mathcal{B}^*.sketch$  and update  $\mathcal{B}^*.BlockSize += \|\mathbf{x}_t\|^2$ 
29:      Query  $\tilde{\mathbf{S}}, \tilde{\mathbf{M}}$  from the inactive blocks  $\mathcal{L}$ 
30:      Combine  $\mathbf{S}^{(t)} = \begin{pmatrix} \mathbf{S} \\ \mathbf{S}^* \end{pmatrix}$ 
31:      Combine  $\mathbf{M}^{(t)}$  by equation 7
32:    end if
33:  end if
34: end for

```

964

965

966

967 In Algorithm 1, at round t , with $B_t + 1$ blocks, let l_i denote the sketch size of the i -th block.
968 This results in an amortized time complexity of $O(dl_{B_t}^2)$, due to the standard SVD process in the
969 active block. Additionally, the computation of $\mathbf{M}^{(t)}$ via matrix multiplication and inversion requires
970 $O\left(\sum_{i=0}^{B_t-1} l_i \cdot l_{B_t} \cdot d + \left(\sum_{i=0}^{B_t} l_i\right)^3\right) = O(dl_{B_t}^2)$. Similarly, we can improve the efficiency of our
971 Dyadic Block Sketching method by doubling the sketch size, as detailed in Algorithm 4.

972 We perform the SVD step only after adding \mathcal{B}^* .SketchSize rows. Note that within each epoch where
 973 no updates occur, the construction of $\mathbf{M}^{(t)}$ can be formulated as
 974

$$975 \mathbf{M}^{(t)} = \begin{pmatrix} \mathbf{M}^{(t-1)} + \frac{\phi\phi^\top}{\xi} & -\frac{\phi}{\xi} \\ -\frac{\phi^\top}{\xi} & \frac{1}{\xi} \end{pmatrix}, \quad (7)$$

978 where $\phi = \mathbf{M}^{(t-1)}\mathbf{S}^{(t-1)}\mathbf{x}_t^\top$ and $\xi = \mathbf{x}_t\mathbf{x}_t^\top - \mathbf{x}_t(\mathbf{S}^{(t-1)})^\top\phi + \alpha + \lambda$. When the sketching
 979 method is FD, α is set to 0; conversely, when the sketching method is RFD, α serves as the counter
 980 maintained in the RFD sketch.
 981

982 Given that the size of $\mathbf{M}^{(t)}$ is at most twice of the \mathcal{B}^* .SketchSize, the amortized computation time
 983 required for $\mathbf{M}^{(t)}$ is limited to $O(d\mathbf{l}_{B_t})$. Additionally, we perform the SVD only after every addition
 984 of \mathcal{B}^* .SketchSize rows, reducing the amortized update time complexity to $O(d\mathbf{l}_{B_t})$.
 985

986 B.3 PSEUDO-CODE OF DBSLinUCB

987 We present the pseudo-code for DBSLinUCB in Algorithm 5. DBSLinUCB introduces an inno-
 988 vative framework for sketch-based linear bandits, leveraging the multi-scale sketching technique to
 989 compute the sketched covariance matrix. As demonstrated in Theorems 3 and 4, the regret bound
 990 of DBSLinUCB is parametrized by ϵ , offering a regret guarantee that is both controllable and ad-
 991 justable.
 992

993 **Algorithm 5** DBSLinUCB

995 1: **Input:** Data stream $\{\mathbf{x}_t\}_{t=1}^T$, sketch size l_0 , error parameter ϵ , regularization λ , confidence δ
 996 2: Initialize a Dyadic Block Sketching instance Sketch($\mathbf{S}^{(0)}$, $\mathbf{M}^{(0)}$) with parameters l_0, λ, ϵ
 997 3: **for** $t = 1$ **to** T **do**
 998 4: Get arm set \mathcal{X}_t
 999 5: Compute the confidence ellipsoid $\widehat{\beta}_{t-1}(\delta)$
 1000 6: Select $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}_t} \left\{ \mathbf{x}^\top \widehat{\theta}_{t-1} + \widehat{\beta}_{t-1}(\delta) \cdot \|\mathbf{x}\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}} \right\}$
 1001 7: Receive the reward r_t
 1002 8: Update Sketch($\mathbf{S}^{(t)}$, $\mathbf{M}^{(t)}$) with \mathbf{x}_t by Algorithm 1
 1003 9: Compute $(\widehat{\mathbf{A}}^{(t)})^{-1} = \frac{1}{\lambda} \left(\mathbf{I}_d - (\mathbf{S}^{(t)})^\top \mathbf{M}^{(t)} \mathbf{S}^{(t)} \right)$
 1004 10: Compute $\widehat{\theta}_t = (\widehat{\mathbf{A}}^{(t)})^{-1} \sum_{s=1}^t r_s \mathbf{x}_s$
 1005 11: **end for**
 1006

1008 C OMITTED DETAILS FOR SECTION 2

1009 In this section, we provide the omitted details from Section 2. In Section C.1, we present the proof
 1010 of Observation 1, which demonstrates that an insufficient sketch size will lead to linear regret. In
 1011 Section C.2, we discuss how RFD-based linear bandits are also susceptible to linear regret.
 1012

1013 C.1 PROOF OF OBSERVATION 1

1014 Observation 1 follows from Theorem 3.3 of (Banerjee et al., 2023), which shows that in a locally
 1015 convex arm space (defined in Definition 3.1 of Banerjee et al. (2023)) the design matrix generated by
 1016 any linear bandit algorithm with expected $O(\sqrt{T})$ regret has a heavy spectral tail. For convenience,
 1017 we restate:
 1018

1019 **Theorem 5** (Theorem 3.3 of (Banerjee et al., 2023)). *Let \mathcal{X} be a locally convex arm space and let
 1020 $\overline{\mathbf{G}}_T = \mathbb{E}[\sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t^\top]$ denote the expected design matrix. For any bandit algorithm with expected
 1021 regret at most $O(\sqrt{T})$, there exists $q \in (0, 1/2]$ such that*

$$1022 \lambda_d(\overline{\mathbf{G}}_T) = \Omega(T^q).$$

1026 The exponent q depends on the geometry of \mathcal{X} (e.g., how well the surface approximates a locally
 1027 constant Hessian). Since SOFUL essentially sketches the OFUL design-matrix sequence, the spec-
 1028 tral error term Δ_T in its regret bound inherits this growth.

1029 Fix a sketch size l . By Lemma 1, choosing $k = l - 1$ gives

$$1031 \quad \Delta_T = \|\mathbf{X}^{(T)} - \mathbf{X}_{[l-1]}^{(T)}\|_F^2 = \sum_{i=l}^d \sigma_i^2(\mathbf{X}^{(T)}) \geq (d-l) \sigma_d^2(\mathbf{X}^{(T)}),$$

$$1032$$

$$1033$$

1034 where $\sigma_i(\mathbf{X}^{(T)})$ are the singular values of $\mathbf{X}^{(T)}$ and $\sigma_d^2(\mathbf{X}^{(T)}) = \lambda_{\min}((\mathbf{X}^{(T)})^\top \mathbf{X}^{(T)})$. Taking
 1035 expectation and using $\lambda_d(\bar{\mathbf{G}}_T) = \lambda_{\min}(\mathbb{E}[(\mathbf{X}^{(T)})^\top \mathbf{X}^{(T)}])$, we obtain

$$1037 \quad \mathbb{E}[\Delta_T] \geq (d-l) \lambda_d(\bar{\mathbf{G}}_T) = \Omega((d-l)T^q).$$

$$1038$$

1039 Lemma 2 gives

$$1040 \quad \text{Regret}_T^{\text{SOFUL}} = \tilde{O}\left(\min\{\Delta_T^{3/2}\sqrt{T}, T\}\right).$$

$$1041$$

$$1042$$

1043 Thus if $l < d - T^{\frac{1}{3}-q}$, then $\mathbb{E}[\Delta_T] \gtrsim T^{1/3}$ and the bound collapses to the trivial $O(T)$. In particular,
 1044 when the unknown geometry constant $q \geq 1/3$, we have $\mathbb{E}[\Delta_T] \gtrsim T^{1/3}$ for any $l < d$, so SOFUL
 1045 suffers linear regret even at the maximal sketch size $l = d - 1$.

1047 C.2 LINEAR REGRET PITFALLS IN RFD-BASED METHODS

1049 Beyond FD-based approaches such as SOFUL, algorithms based on Robust Frequent Directions
 1050 (RFD) are also vulnerable to linear regret when the sketch size is insufficient. Similar to the discus-
 1051 sion in Section 2.3, we recall the regret bound of CBSCFD:

1052 **Lemma 5** (Theorem 2 of Chen et al. (2020)). *Let $\text{Regret}_T^{\text{CBSCFD}}$ denote the regret of CBSCFD with
 1053 sketch size l and spectral error Δ_T defined in equation 1. With high probability,*

$$1054 \quad \text{Regret}_T^{\text{CBSCFD}} = \tilde{O}\left(\min\left\{(\sqrt{l + d \log(1 + \Delta_T)} + \sqrt{\Delta_T})\sqrt{lT}, T\right\}\right).$$

$$1055$$

$$1056$$

1057 Although CBSCFD reduces the dependence on Δ_T compared to FD-based methods, it still degen-
 1058 erates to linear regret whenever $\Delta_T = \Omega(T)$. In particular, if the sketch size is chosen without
 1059 knowledge of the spectral properties of the streaming matrix, this risk cannot be avoided:

1060 **Observation 2.** *Let \mathcal{X} be a locally convex arm space. If the sketch size of CBSCFD satisfies $l <$
 1061 $d - T^{1-q}$, then CBSCFD incurs vacuous linear regret.*

1063 This highlights a fundamental limitation of single-scale sketching: any fixed sketch size inevitably
 1064 ties the spectral error Δ_T to the horizon T , making linear regret unavoidable when the spectral
 1065 structure of the data is unknown in advance.

1066 D OMITTED PROOFS FOR SECTION 3

1069 In this section, we provide the omitted proofs for Section 3. In Appendix D.1, we prove Lemma 3
 1070 of decomposability, which abstracts the key idea of multi-scale matrix sketching. Later, the proof of
 1071 Theorem 1 is provided in Appendix D.2.

1073 D.1 PROOF OF LEMMA 3

1075 Since we have $\mathbf{X}^\top \mathbf{X} = \sum_{i=1}^p \mathbf{X}_i^\top \mathbf{X}_i$ and $\mathbf{S}^\top \mathbf{S} = \sum_{i=1}^p \mathbf{S}_i^\top \mathbf{S}_i$. Therefore

$$1077 \quad \|\mathbf{X}^\top \mathbf{X} - \mathbf{S}^\top \mathbf{S}\|_2 \leq \sum_{i=1}^p \|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 \leq \sum_{i=1}^p \epsilon_i \cdot \|\mathbf{X}_i\|_F^2,$$

$$1078$$

$$1079$$

and the Lemma follows.

1080 D.2 PROOF OF THEOREM 1
1081

1082 We begin by analyzing the number of blocks of Dyadic Block Sketching. Let the stream of rows
1083 form a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$. Dyadic Block Sketching partitions the stream into contiguous blocks and
1084 maintains a dyadically growing sketch size. Concretely, let

$$1085 \mathbf{X}^\top = [\mathbf{X}_0^\top, \mathbf{X}_1^\top, \dots, \mathbf{X}_B^\top],$$

1086 where block i contains n_i rows ($\mathbf{X}_i \in \mathbb{R}^{n_i \times d}$) and stores a sketch \mathbf{S}_i . We call blocks $0, 1, \dots, B-1$
1087 inactive and the last block B active. In the setting of matrix sketching, low-rank detection is only
1088 evaluated once a block has accumulated at least d rows; in particular, whenever detection is triggered,
1089 the corresponding block satisfies $n_i \geq d$. We analyze the following two cases:
1090

1091 When the streaming matrix is low-rank, i.e., $\text{rank}(\mathbf{X}) = k$. By Invariant 1, once the sketch size
1092 exceeds the rank, shrinkage vanishes and the block remains low-rank (i.e., the sketch \mathbf{S}_B tracks
1093 rank k). Equivalently, the last active level B is the unique integer such that

$$1094 2^{B-1}l_0 \leq k < 2^B l_0,$$

1095 which yields the tight bounds

$$1096 \log\left(\frac{k}{l_0}\right) \leq B < \log\left(\frac{k}{l_0}\right) + 1 \implies B = \lceil \log(k/l_0) \rceil.$$

1099 When the streaming matrix is full-rank, the above derivation shows that the rank-1 modification
1100 is triggered at block index $B = \lceil \log(d/l_0) \rceil$, which represents the maximum number of blocks
1101 possible in any case. However, when the row norms of the streaming matrix are small or the error
1102 parameter ϵ is relatively large, the actual number of blocks can be strictly smaller.

1103 Assume that the maximum row norm is bounded by $\|\mathbf{x}\|_2^2 \leq L \ll \epsilon l_0$. By Invariant 1, we have

$$1104 \epsilon l_0 - L \leq \|\mathbf{X}_i\|_F^2 \leq \epsilon l_0, \quad i = 0, 1, \dots, B-1.$$

1106 Let $\widetilde{\mathbf{X}} = [\mathbf{X}_0^\top, \mathbf{X}_1^\top, \dots, \mathbf{X}_{B-1}^\top]^\top$ collect all rows summarized by inactive blocks. Summing the
1107 above bounds yields

$$1108 B(\epsilon l_0 - L) \leq \|\widetilde{\mathbf{X}}\|_F^2 \leq B \epsilon l_0 \implies \frac{\|\widetilde{\mathbf{X}}\|_F^2}{\epsilon l_0} \leq B \leq \frac{\|\widetilde{\mathbf{X}}\|_F^2}{\epsilon l_0 - L},$$

1111 and therefore we can approximate this case by $B = \lceil \|\widetilde{\mathbf{X}}\|_F^2 / (\epsilon l_0) \rceil$. Combining the low-rank and
1112 full-rank scenarios, the number of blocks is therefore given by

$$1113 B = \left\lceil \min \left\{ \log \frac{k}{l_0}, \frac{\|\widetilde{\mathbf{X}}\|_F^2}{\epsilon l_0} \right\} \right\rceil.$$

1115 For the error guarantee, we bound the global error by exploiting the decomposability of blockwise
1116 matrix sketches, as shown in Lemma 3. Without loss of generality, assume the streaming matrix has
1117 rank k . Partition the block indices into

$$1118 \mathcal{I} = \{i \in \{0, \dots, B-1\} : \|\mathbf{X}_i\|_F^2 \leq \epsilon l_0\} \quad (\text{inactive/approximate blocks})$$

1119 and

$$1120 \mathcal{E} = \{i \in \{0, \dots, B\} : \text{sketch size} \geq \text{rank}(\mathbf{X}_i)\} \quad (\text{exact-capture blocks}).$$

1122 In particular, by design of the dyadic growth, the sketch size of last active block B is always larger than
1123 k , hence $B \in \mathcal{E}$. For every $i \in \mathcal{E}$ the sketch is exact in the sense that

$$1124 \|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 = 0,$$

1125 since once the sketch size exceeds the rank of block, the best rank- k (or local rank) approximation
1126 is captured exactly. For $i \in \mathcal{I}$, Invariant 1 guarantees $\|\mathbf{X}_i\|_F^2 \leq \epsilon l_0$, and the i -th block employs a
1127 streaming sketch with error parameter $1/(2^i l_0)$, implying the per-block spectral error bound
1128

$$1129 \|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 \leq \frac{1}{2^i l_0} \|\mathbf{X}_i\|_F^2 \\ 1130 \leq \frac{1}{2^i l_0} (\epsilon l_0) \\ 1131 = \frac{\epsilon}{2^i}.$$

1134 Let

$$\mathbf{S}^\top = [\mathbf{S}_0^\top, \mathbf{S}_1^\top, \dots, \mathbf{S}_B^\top]$$

1135 be the concatenated sketch used to approximate \mathbf{X} . By Lemma 3, we have

$$\begin{aligned} \|\mathbf{X}^\top \mathbf{X} - \mathbf{S}^\top \mathbf{S}\|_2 &\leq \sum_{i=0}^B \|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 \\ &= \sum_{i \in \mathcal{I}} \|\mathbf{X}_i^\top \mathbf{X}_i - \mathbf{S}_i^\top \mathbf{S}_i\|_2 + \sum_{i \in \mathcal{E}} 0 \\ &\leq \sum_{i \in \mathcal{I}} \frac{\epsilon}{2^i} \leq \sum_{i=0}^{\infty} \frac{\epsilon}{2^i} = 2\epsilon. \end{aligned}$$

1146 Hence, the global spectral error is bounded by 2ϵ .1147 For space complexity, note that the i -th block employs a streaming matrix sketch with error parameter $1/(2^i l_0)$, which requires a sketch size of $\ell_{1/(2^i l_0)}$. Hence, the total number of rows stored across all sketches is

$$\sum_{i=0}^B \ell_{1/(2^i l_0)},$$

1153 and the overall space requirement is

$$O\left(d \cdot \sum_{i=0}^B \ell_{1/(2^i l_0)}\right).$$

1158 For update complexity, only the active block needs to be updated at each step. Consequently, the 1159 per-update cost is determined solely by the sketch size of the active block, leading to $O(\mu_{1/(2^B l_0)})$.

1161 E OMITTED PROOFS FOR SECTION 4

1163 In this section, we first provide a proof of Theorem 2 in Appendix E.1, which is the key theorem 1164 leading to the regret bound of our method when using FD. The proofs for the regret bounds in 1165 Theorem 3 and Theorem 4 are provided in Appendix E.2 and Appendix E.3, respectively. Later, we 1166 illustrate and prove the properties of Dyadic Block Sketching for RFD in Appendix E.4, which are 1167 consistent with the properties of single-scale RFD.

1168 Our key technical contribution is extending the theoretical framework (Kuzborskij et al., 2019; Chen 1169 et al., 2020) from single-scale to multi-scale matrix sketching. In particular, we show that the RLS 1170 estimator can effectively leverage multiple sketches at different scales, where the estimation error 1171 depends on their collective approximation quality. This analytical framework bridges the theoretical 1172 gap between multi-scale sketching and linear bandit algorithms, opening avenues for applying multi- 1173 scale techniques to other online learning problems.

1174 E.1 PROOF OF THEOREM 2

1175 Denote B_t as the number of blocks at round t , and $\bar{\sigma}_i$ as the sum of shrinking singular values in the 1176 sketch of block i . Let l_{B_t} be the sketch size in the active block at round t . According to Algorithm 5, 1177 the approximate covariance matrix is

$$\widehat{\mathbf{A}}^{(t)} = \lambda \mathbf{I} + \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)},$$

1183 where $\mathbf{S}_i^{(t)}$ is the sketch matrix in block i at round t . Define $\boldsymbol{\eta}_1^\top, \dots, \boldsymbol{\eta}_t^\top \in \mathbb{R}^d$ is the noise sequence 1184 conditionally R-subgaussian for a fixed constant R and $\mathbf{r}_t^\top = (r_1, r_2, \dots, r_t) \in \mathbb{R}^d$ is the reward 1185 vector. We begin by noticing that

$$\widehat{\boldsymbol{\theta}}_t = \left(\widehat{\mathbf{A}}^{(t)} \right)^{-1} \mathbf{X}_t^\top \mathbf{r}_t = \left(\widehat{\mathbf{A}}^{(t)} \right)^{-1} \mathbf{X}_t^\top (\mathbf{X}_t \boldsymbol{\theta}_* + \boldsymbol{\eta}_t).$$

1188 Therefore, we can decompose $\|\hat{\theta}_t - \theta_\star\|_{\hat{A}^{(t)}}^2$ into two parts as follows
 1189

$$\begin{aligned}
 & \|\hat{\theta}_t - \theta_\star\|_{\hat{A}^{(t)}}^2 \\
 &= (\hat{\theta}_t - \theta_\star)^\top \hat{A}^{(t)} (\hat{\theta}_t - \theta_\star) \\
 &= (\hat{\theta}_t - \theta_\star)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top (\mathbf{X}_t \theta_\star + \eta_t) - \theta_\star \right) \\
 &= \underbrace{(\hat{\theta}_t - \theta_\star)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top \mathbf{X}_t \theta_\star - \theta_\star \right)}_{\text{Term 1: Bias Error}} + \underbrace{(\hat{\theta}_t - \theta_\star)^\top \mathbf{X}_t^\top \eta_t}_{\text{Term 2: Variance Error}}. \tag{8}
 \end{aligned}$$

1200 **Bounding the bias error.** We first focus on bounding the first term. We have that
 1201

$$\begin{aligned}
 & (\hat{\theta}_t - \theta_\star)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top \mathbf{X}_t \theta_\star - \theta_\star \right) \\
 &= (\hat{\theta}_t - \theta_\star)^\top \left(\hat{A}^{(t)} \right)^{\frac{1}{2}} \left(\hat{A}^{(t)} \right)^{-\frac{1}{2}} \left(\mathbf{X}_t^\top \mathbf{X}_t \theta_\star - \hat{A}^{(t)} \theta_\star \right) \\
 &= (\hat{\theta}_t - \theta_\star)^\top \left(\hat{A}^{(t)} \right)^{\frac{1}{2}} \left(\hat{A}^{(t)} \right)^{-\frac{1}{2}} \left[(\mathbf{A}^{(t)} - \hat{A}^{(t)}) \theta_\star - \lambda \theta_\star \right]. \tag{9}
 \end{aligned}$$

1209 In accordance with the decomposability of matrix sketches, as detailed in Lemma 3, we have
 1210

$$\left\| \mathbf{X}_t^\top \mathbf{X}_t - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right\|_2 \leq \sum_{i=1}^{B_t} \bar{\sigma}_i \tag{10}$$

1214 By Cauchy-Schwartz inequality and the triangle inequality, we have

$$\begin{aligned}
 & (\hat{\theta}_t - \theta_\star)^\top \left(\hat{A}^{(t)} \right)^{\frac{1}{2}} \left(\hat{A}^{(t)} \right)^{-\frac{1}{2}} \left[(\mathbf{A}^{(t)} - \hat{A}^{(t)}) \theta_\star - \lambda \theta_\star \right] \\
 &\leq \left| \lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right| \cdot \left\| \hat{\theta}_t - \theta_\star \right\|_{\hat{A}^{(t)}} \cdot \left\| \theta_\star \right\|_{(\hat{A}^{(t)})^{-1}} \\
 &\leq H \cdot \frac{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i}{\sqrt{\lambda}} \cdot \left\| \hat{\theta}_t - \theta_\star \right\|_{\hat{A}^{(t)}}, \tag{11}
 \end{aligned}$$

1223 where the last inequality holds because $\hat{A}^{(t)} \succeq \lambda \mathbf{I}$ and $\|\theta_\star\|_2 \leq H$.
 1224

1225 **Bounding the variance error.** Then, we aim to bound the second term. We use the following
 1226 self-normalized martingale concentration inequality by (Abbasi-Yadkori et al., 2011).

1227 **Proposition 1** (Lemma 9 of (Abbasi-Yadkori et al., 2011)). *Assume that η_1, \dots, η_t is a conditionally
 1228 R -subgaussian real-valued stochastic process and $\mathbf{X}_t^\top = [\mathbf{x}_1^\top, \dots, \mathbf{x}_t^\top]$ is any stochastic process
 1229 such that \mathbf{x}_i is measurable with respect to the σ -algebra generated by η_1, \dots, η_t . Then, for any
 1230 $\delta > 0$, with probability at least $1 - \delta$, for all $t \geq 0$,*

$$\left\| \mathbf{X}_t^\top \eta_t \right\|_{(\mathbf{A}^{(t)})^{-1}}^2 \leq 2R^2 \ln \left(\frac{1}{\delta} \left| \mathbf{A}^{(t)} \right|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right).$$

1234 Notice that the variance error can be reformulated as
 1235

$$\begin{aligned}
 (\hat{\theta}_t - \theta_\star)^\top \mathbf{X}_t^\top \eta_t &= (\hat{\theta}_t - \theta_\star)^\top \left(\mathbf{A}^{(t)} \right)^{-\frac{1}{2}} \left(\mathbf{A}^{(t)} \right)^{\frac{1}{2}} \mathbf{X}_t^\top \eta_t \\
 &\leq \left\| \hat{\theta}_t - \theta_\star \right\|_{\hat{A}^{(t)}} \cdot \frac{\left\| \hat{\theta}_t - \theta_\star \right\|_{\mathbf{A}^{(t)}}}{\left\| \hat{\theta}_t - \theta_\star \right\|_{\hat{A}^{(t)}}} \cdot \left\| \mathbf{X}_t^\top \eta_t \right\|_{(\mathbf{A}^{(t)})^{-1}}, \tag{12}
 \end{aligned}$$

1241 where the last inequality uses Cauchy-Schwartz inequality.

1242 For any vector \mathbf{a} , we have
 1243

$$\begin{aligned}
 1245 \quad \|\mathbf{a}\|_{\mathbf{A}^{(t)}}^2 - \|\mathbf{a}\|_{\widehat{\mathbf{A}}^{(t)}}^2 &= \mathbf{a}^\top (\mathbf{A}^{(t)} - \widehat{\mathbf{A}}^{(t)}) \mathbf{a} \\
 1246 \quad &= \mathbf{a}^\top \left(\mathbf{X}^\top \mathbf{X} - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \mathbf{a} \\
 1247 \quad &\leq \sum_{i=1}^{B_t} \bar{\sigma}_i \cdot \|\mathbf{a}\|_2^2.
 \end{aligned} \tag{13}$$

1254 Therefore, the ratios of norms on the right-hand side of equation 12 can be bounded as
 1255

$$\begin{aligned}
 1258 \quad \frac{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\mathbf{A}^{(t)}}}{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}} &= \sqrt{\frac{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\mathbf{A}^{(t)}}^2}{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}^2}} \\
 1260 \quad &\leq \sqrt{\frac{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}^2 + \sum_{i=1}^{B_t} \bar{\sigma}_i \|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|^2}{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}^2}} \\
 1262 \quad &\leq \sqrt{1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda}}.
 \end{aligned} \tag{14}$$

1271 Substituting equation 14 and Proposition 1 into equation 12 gives
 1272

$$\begin{aligned}
 1276 \quad \|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}} \cdot \frac{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\mathbf{A}^{(t)}}}{\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}} \cdot \|\mathbf{X}_t^\top \boldsymbol{\eta}_t\|_{(\mathbf{A}^{(t)})^{-1}} \\
 1278 \quad &\leq \sqrt{1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2R^2 \ln \left(\frac{1}{\delta} |\mathbf{A}^{(t)}|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right)} \cdot \|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}.
 \end{aligned} \tag{15}$$

1285 Motivated by Abbasi-Yadkori et al. (2011); Kuzborskij et al. (2019), we apply the multi-scale sketch-
 1286 based determinant-trace inequality. Compared to the non-sketched version, this inequality depends
 1287 on the approximate covariance matrix $\widehat{\mathbf{A}}$, reflecting the costs associated with the shrinkage due to
 1288 multi-scale sketching.
 1289

1290 **Lemma 6** (Multi-scale sketch-based determinant-trace inequality). *For any $t \geq 1$, define $\mathbf{A}^{(t)} =$
 1291 $\lambda \mathbf{I} + \mathbf{X}_t^\top \mathbf{X}_t$, and assume $\|\mathbf{x}_t\|_2 \leq L$, we have*
 1292

$$\ln \left(\frac{|\mathbf{A}^{(t)}|}{|\lambda \mathbf{I}|} \right) \leq d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t} \lambda} \right).$$

1296 *Proof.* $\sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)}$ has rank at most $2l_{B_t}$ due to the Dyadic Block Sketching. Since $\widehat{\mathbf{A}}^{(t)} =$
 1297 $\lambda \mathbf{I} + \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)}$ and $\mathbf{A}^{(t)} \preceq \widehat{\mathbf{A}}^{(t)} + \sum_{i=1}^{B_t} \bar{\sigma}_i \cdot \mathbf{I}$, we have
 1298

$$\begin{aligned}
 1300 \quad |\mathbf{A}^{(t)}| &\leq \left| \widehat{\mathbf{A}}^{(t)} + \sum_{i=1}^{B_t} \bar{\sigma}_i \cdot \mathbf{I} \right| \\
 1301 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\frac{\sum_{i=1}^{2l_{B_t}} (\lambda_i (\widehat{\mathbf{A}}^{(t)}) + \sum_{i=1}^{B_t} \bar{\sigma}_i)}{2l_{B_t}} \right)^{2l_{B_t}} \\
 1302 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{\text{Tr} \left(\sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right)}{2l_{B_t}} \right)^{2l_{B_t}} \\
 1303 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1304 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1305 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1306 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1307 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1308 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1309 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1310 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1311 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1312 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1313 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1314 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1315 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1316 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1317 \quad &\leq \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i \right)^{d-2l_{B_t}} \cdot \left(\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \\
 1318 \quad &\leq \text{Tr} \left(\sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \leq \text{Tr} (\mathbf{X}_t^\top \mathbf{X}_t) = \sum_{s=1}^t \mathbf{x}_s^\top \mathbf{x}_s \leq tL^2
 \end{aligned}$$

1315 where the last inequality holds because
 1316

$$\text{Tr} \left(\sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \leq \text{Tr} (\mathbf{X}_t^\top \mathbf{X}_t) = \sum_{s=1}^t \mathbf{x}_s^\top \mathbf{x}_s \leq tL^2$$

1321 Therefore, we have
 1322

$$\begin{aligned}
 1323 \quad \ln \left(\frac{|\mathbf{A}^{(t)}|}{|\lambda \mathbf{I}|} \right) &\leq \ln \left\{ \left(\frac{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right)^{d-2l_{B_t}} \cdot \left(\frac{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i + \frac{tL^2}{2l_{B_t}}}{\lambda} \right)^{2l_{B_t}} \right\} \\
 1324 \quad &= (d - 2l_{B_t}) \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} + \frac{tL^2}{2l_{B_t} \lambda} \right) \\
 1325 \quad &\leq d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t} \lambda} \right).
 \end{aligned}$$

1333 \square

1334 According to Lemma 6, we finally bound the variance error term as follows
 1335

$$\begin{aligned}
 1336 \quad &\left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \cdot \frac{\left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\mathbf{A}^{(t)}}}{\left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}}} \cdot \left\| \mathbf{X}_t^\top \boldsymbol{\eta}_t \right\|_{(\mathbf{A}^{(t)})^{-1}} \\
 1337 \quad &\leq \sqrt{1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2R^2 \ln \left(\frac{1}{\delta} |\mathbf{A}^{(t)}|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \\
 1338 \quad &\leq R \cdot \sqrt{1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t} \lambda} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}}.
 \end{aligned}$$

1350 Sum up the bias error and the variance error and divide both sides of equation 8 by $\|\hat{\theta}_t - \theta_\star\|_{\hat{\mathbf{A}}^{(t)}}$
 1351 simultaneously, we have
 1352

$$\begin{aligned}
 1353 \|\hat{\theta}_t - \theta_\star\|_{\hat{\mathbf{A}}^{(t)}} &\leq R \cdot \sqrt{1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t} \lambda} \right)} \\
 1354 &\quad + H \cdot \frac{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i}{\sqrt{\lambda}} \\
 1355 &\leq R \cdot \sqrt{1 + \frac{\epsilon}{\lambda}} \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\epsilon}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t} \lambda} \right)} + H \cdot \frac{\lambda + \epsilon}{\sqrt{\lambda}} \\
 1356 &\lesssim R \sqrt{d \ln \left(1 + \frac{\epsilon}{\lambda} \right) + 2l_{B_t}} \cdot \sqrt{1 + \frac{\epsilon}{\lambda}} + \frac{H(\lambda + \epsilon)}{\sqrt{\lambda}},
 \end{aligned}$$

1364 where the second inequality follows from the error bound of Dyadic Block Sketching as stated in
 1365 Theorem 1.
 1366

1368 E.2 PROOF OF THEOREM 3

1370 Having established the confidence ellipsoid, we now focus on analyzing the regret. We begin with
 1371 an analysis of the instantaneous regret. Recall that the optimal arm at round t is defined as $\mathbf{x}_t^* =$
 1372 $\arg \max_{\mathbf{x} \in \mathcal{X}_t} (\mathbf{x}^\top \theta_\star)$. On the other hand, the principle of optimism in the face of uncertainty ensures
 1373

1374 that $(\mathbf{x}_t, \hat{\theta}_{t-1}) = \arg \max_{(\mathbf{x}, \theta) \in \mathcal{X}_t \times \Theta_{t-1}} \mathbf{x}^\top \theta$. By denoting $\tilde{\theta}_t$ as the RLS estimator, we utilize these facts
 1375 to establish the bound on the instantaneous regret as follows
 1376

$$\begin{aligned}
 1377 (\mathbf{x}_t^* - \mathbf{x}_t)^\top \theta_\star &\leq \mathbf{x}_t^\top \hat{\theta}_{t-1} - \mathbf{x}_t^\top \theta_\star \\
 1378 &= \mathbf{x}_t^\top (\hat{\theta}_{t-1} - \tilde{\theta}_{t-1}) + \mathbf{x}_t^\top (\tilde{\theta}_{t-1} - \theta_\star) \\
 1379 &\leq \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}} \cdot \left(\|\hat{\theta}_{t-1} - \tilde{\theta}_{t-1}\|_{\hat{\mathbf{A}}^{(t-1)}} + \|\tilde{\theta}_{t-1} - \theta_\star\|_{\hat{\mathbf{A}}^{(t-1)}} \right) \\
 1380 &\leq 2\hat{\beta}_{t-1}(\delta) \cdot \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}}. \tag{16}
 \end{aligned}$$

1384 Now, we are prepared to establish the upper bound of regret. Utilizing equation 16 and Cauchy-
 1385 Schwartz inequality, we derive the following bound
 1386

$$\begin{aligned}
 1387 \text{Regret}_T &= \sum_{t=1}^T \max_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \theta_\star - \sum_{t=1}^T \mathbf{x}_t^\top \theta_\star \\
 1388 &\leq 2 \sum_{t=1}^T \min \left\{ HL, \hat{\beta}_{t-1}(\delta) \cdot \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 1389 &\leq 2 \sum_{t=1}^T \hat{\beta}_{t-1}(\delta) \min \left\{ \frac{L}{\sqrt{\lambda}}, \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 1390 &\leq 2 \cdot \max \left\{ 1, \frac{L}{\sqrt{\lambda}} \right\} \cdot \hat{\beta}_T(\delta) \cdot \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 1391 &\leq 2 \cdot \max \left\{ 1, \frac{L}{\sqrt{\lambda}} \right\} \cdot \hat{\beta}_T(\delta) \cdot \sqrt{T \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\hat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right\}}. \tag{17}
 \end{aligned}$$

1402 We further bound the terms in the above. In particular, we formulate $\hat{\beta}_T(\delta)$ by Theorem 2 as follows
 1403

$$\begin{aligned}
\hat{\beta}_T(\delta) &= R \sqrt{1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2 \ln \frac{1}{\delta} + d \ln \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)} \\
&\quad + H \sqrt{\lambda} \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right).
\end{aligned} \tag{18}$$

Besides, we adopt the Sketched leverage scores established by Kuzborskij et al. (2019) as follows

Proposition 2 (Lemma 6 of Kuzborskij et al. (2019)). *The sketched leverage scores through sketching at round T can be upper bounded as*

$$\begin{aligned}
&\sum_{t=1}^T \min \left\{1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t)})^{-1}}^2\right\} \\
&\leq 2 \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) \cdot \ln \left(\frac{|\mathbf{A}^{(T)}|}{|\lambda \mathbf{I}|}\right) \\
&\leq 2 \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) \cdot \left(d \ln \left(\frac{1 + \sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)\right).
\end{aligned}$$

Combining equation 18, equation 17 and Proposition 2, assuming $L \geq \sqrt{\lambda}$, we have

$$\begin{aligned}
\text{Regret}_T &\leq 2 \cdot \max \left\{1, \frac{L}{\sqrt{\lambda}}\right\} \cdot \hat{\beta}_T(\delta) \cdot \sqrt{T \sum_{t=1}^T \min \left\{1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2\right\}} \\
&\leq \frac{L}{\sqrt{\lambda}} \cdot \sqrt{T} \cdot \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) \cdot \left(d \ln \left(\frac{1 + \sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)\right) \\
&\quad \cdot \left(R \sqrt{1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}} \cdot \sqrt{2 \ln \frac{1}{\delta} + d \ln \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)}\right. \\
&\quad \left.+ H \sqrt{\lambda} \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda}\right)\right).
\end{aligned}$$

According to Theorem 1, we can bound the spectral error by error ϵ , i.e., $\sum_{i=1}^{B_T} \bar{\sigma}_i \leq \epsilon$. Given that $L \geq \sqrt{\lambda}$, the complete regret bound of DBSLinUCB using FD is as follows

$$\begin{aligned}
\text{Regret}_T &\leq \frac{L}{\sqrt{\lambda}} \cdot \sqrt{T} \cdot \left(1 + \frac{\epsilon}{\lambda}\right) \cdot \left(d \ln \left(\frac{1 + \epsilon}{\lambda}\right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)\right) \\
&\quad \cdot \left(R \sqrt{1 + \frac{\epsilon}{\lambda}} \cdot \sqrt{2 \ln \frac{1}{\delta} + d \ln \left(1 + \frac{\epsilon}{\lambda}\right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)} + H \sqrt{\lambda} \left(1 + \frac{\epsilon}{\lambda}\right)\right) \\
&\lesssim \frac{L(R + H\sqrt{\lambda})}{\sqrt{\lambda}} \cdot \left(d \ln \left(1 + \frac{\epsilon}{\lambda}\right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda}\right)\right) \cdot \left(1 + \frac{\epsilon}{\lambda}\right)^{\frac{3}{2}} \sqrt{T}.
\end{aligned}$$

Ignoring the constants L , R , and H , as well as the logarithmic terms, we simplify the regret bound to

$$\text{Regret}_T \stackrel{\mathcal{O}}{=} \left(1 + \frac{\epsilon}{\lambda}\right)^{\frac{3}{2}} \cdot (d + l_{B_T}) \cdot \sqrt{T}.$$

1458 E.3 PROOF OF THEOREM 4
1459

1460 We denote B_t as the number of blocks at round t , and $\bar{\sigma}_i$ as the cumulative shrinking singular values
1461 in the sketch of block i . Let l_{B_t} be the sketch size in the active block at round t . Similarly, our
1462 analysis establishes an intermediate result regarding the confidence ellipsoid.

1463 **Theorem 6** (Sketched confidence ellipsoid by RFD). *Let $\hat{\theta}_t$ be the RLS estimate constructed by an
1464 arbitrary policy for linear bandits after t rounds of play. For any $\delta \in (0, 1)$, the optimal unknown
1465 weight θ_* belongs to the set $\Theta_t \equiv \left\{ \theta \in \mathbb{R}^d : \left\| \theta - \hat{\theta}_t \right\|_{\hat{A}^{(t)}} \leq \hat{\beta}_t(\delta) \right\}$ with probability at least $1 - \delta$,
1466 where*

$$1468 \hat{\beta}_t(\delta) = R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{tL^2}{2l_{B_t}\lambda} + \frac{h_t}{\lambda} \right)} \\ 1469 \\ 1470 + H \cdot \sqrt{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i}$$

1471 and

$$1472 h_t = \sum_{i=1}^{B_t} \bar{\sigma}_i - \frac{\sum_{i=1}^{B_t} l_i \cdot \bar{\sigma}_i}{2l_{B_t}}.$$

1473 *Proof.* Notice that RFD uses the adaptive regularization term to approximate the covariance matrix,
1474 i.e., $\hat{A}^{(t)} = \lambda \mathbf{I} + \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} + \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)}$, where $\mathbf{S}_i^{(t)}$ is the sketch matrix in block i and
1475 $\alpha_i^{(t)}$ is the adaptive regularization term of RFD at round t .

1476 Similarly, we decompose $\left\| \hat{\theta}_t - \theta_* \right\|_{\hat{A}^{(t)}}^2$ into two parts as follows

$$1477 \begin{aligned} & \left\| \hat{\theta}_t - \theta_* \right\|_{\hat{A}^{(t)}}^2 \\ &= (\hat{\theta}_t - \theta_*)^\top \hat{A}^{(t)} (\hat{\theta}_t - \theta_*) \\ &= (\hat{\theta}_t - \theta_*)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top (\mathbf{X}_t \theta_* + \eta_t) - \theta_* \right) \\ &= \underbrace{(\hat{\theta}_t - \theta_*)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top \mathbf{X}_t \theta_* - \theta_* \right)}_{\text{Term 1: Bias Error}} + \underbrace{(\hat{\theta}_t - \theta_*)^\top \mathbf{X}_t^\top \eta_t}_{\text{Term 2: Variance Error}}. \end{aligned}$$

1478 **Bounding the bias error.** For the bias error term, we have

$$1479 \begin{aligned} & (\hat{\theta}_t - \theta_*)^\top \hat{A}^{(t)} \left((\hat{A}^{(t)})^{-1} \mathbf{X}_t^\top \mathbf{X}_t \theta_* - \theta_* \right) \\ &= (\hat{\theta}_t - \theta_*)^\top (\hat{A}^{(t)})^{\frac{1}{2}} (\hat{A}^{(t)})^{-\frac{1}{2}} (\mathbf{X}_t^\top \mathbf{X}_t \theta_* - \hat{A}^{(t)} \theta_*) \\ &= (\hat{\theta}_t - \theta_*)^\top (\hat{A}^{(t)})^{\frac{1}{2}} (\hat{A}^{(t)})^{-\frac{1}{2}} \left(\mathbf{X}_t^\top \mathbf{X}_t - \lambda \mathbf{I} - \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \theta_* \\ &\triangleq (\hat{\theta}_t - \theta_*)^\top (\hat{A}^{(t)})^{\frac{1}{2}} (\hat{A}^{(t)})^{-\frac{1}{2}} \mathbf{D}_t \cdot \theta_* \end{aligned} \tag{19}$$

1480 Since $\mathbf{D}_t = \mathbf{X}_t^\top \mathbf{X}_t - \lambda \mathbf{I} - \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)}$, for any unit vector \mathbf{a} , we have

$$1481 \begin{aligned} \left| \mathbf{a}^\top \mathbf{D}_t \mathbf{a} \right| &= \left| \mathbf{a}^\top \left(\mathbf{X}_t^\top \mathbf{X}_t - \lambda \mathbf{I} - \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \mathbf{a} \right| \\ &= \left| \mathbf{a}^\top \left(\mathbf{X}_t^\top \mathbf{X}_t - \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)} \right) \mathbf{a} - \lambda \mathbf{I} - \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} \right|. \end{aligned} \tag{20}$$

1512 According to Theroem 1, we can get
 1513

$$1514 \quad 0 \leq \mathbf{a}^\top \left(\mathbf{X}_t^\top \mathbf{X}_t - \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} \right) \mathbf{a} \leq \sum_{i=1}^{B_t} \bar{\sigma}_i.$$

1517 Bring the above equation into equation 20, since $\sum_{i=1}^{B_t} \alpha_i^{(t)} = \sum_{i=1}^{B_t} \bar{\sigma}_i$, we can bound the spectral
 1518 norm of \mathbf{D}_t as follows

$$1519 \quad \|\mathbf{D}_t\|_2 \leq \lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i. \quad (21)$$

1522 By Cauchy-Schwartz inequality and the triangle inequality, we can bound equation 19 by

$$1523 \quad \begin{aligned} & \left(\hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \left(\hat{\mathbf{A}}^{(t)} \right)^{\frac{1}{2}} \left(\hat{\mathbf{A}}^{(t)} \right)^{-\frac{1}{2}} \mathbf{D}_t \cdot \boldsymbol{\theta}_* \\ 1524 & \leq \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}} \cdot \|\mathbf{D}_t\|_2 \cdot \left\| \boldsymbol{\theta}_* \right\|_{(\hat{\mathbf{A}}^{(t)})^{-1}} \\ 1525 & \leq H \cdot \sqrt{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i} \cdot \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}}, \end{aligned} \quad (22)$$

1531 where the last inequality holds because

$$1532 \quad \left\| \boldsymbol{\theta}_* \right\|_{(\hat{\mathbf{A}}^{(t)})^{-1}}^2 \leq \frac{\|\boldsymbol{\theta}_*\|_2^2}{\lambda_{\min}(\hat{\mathbf{A}}^{(t)})} \leq \frac{H^2}{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i}.$$

1536 **Bounding the variance error.** For the variance error, we have

$$1537 \quad \begin{aligned} & \left(\hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \mathbf{X}_t^\top \boldsymbol{\eta}_t = \left(\hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \left(\mathbf{A}^{(t)} \right)^{-\frac{1}{2}} \left(\mathbf{A}^{(t)} \right)^{\frac{1}{2}} \mathbf{X}_t^\top \boldsymbol{\eta}_t \\ 1538 & \leq \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}} \cdot \frac{\left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\mathbf{A}^{(t)}}}{\left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}}} \cdot \left\| \mathbf{X}_t^\top \boldsymbol{\eta}_t \right\|_{(\mathbf{A}^{(t)})^{-1}} \\ 1539 & \leq \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}} \cdot \left\| \mathbf{X}_t^\top \boldsymbol{\eta}_t \right\|_{(\mathbf{A}^{(t)})^{-1}}. \end{aligned} \quad (23)$$

1545 where the last inequality holds because for any vector \mathbf{a}

$$1547 \quad \begin{aligned} & \|\mathbf{a}\|_{\mathbf{A}^{(t)}}^2 - \|\mathbf{a}\|_{\hat{\mathbf{A}}^{(t)}}^2 = \mathbf{a}^\top \left(\mathbf{X}^\top \mathbf{X} - \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} - \sum_{i=1}^{B_t} \bar{\sigma}_i \mathbf{I} \right) \mathbf{a} \\ 1548 & = \mathbf{a}^\top \left(\mathbf{X}^\top \mathbf{X} - \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} \right) \mathbf{a} - \sum_{i=1}^{B_t} \bar{\sigma}_i \|\mathbf{a}\|_2^2 \\ 1549 & \leq \sum_{i=1}^{B_t} \bar{\sigma}_i \|\mathbf{a}\|_2^2 - \sum_{i=1}^{B_t} \bar{\sigma}_i \|\mathbf{a}\|_2^2 \\ 1550 & = 0 \end{aligned} \quad (24)$$

1556 By Proposition 1, we can bound the variance error term as follows

$$1558 \quad \begin{aligned} & \left(\hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \mathbf{X}_t^\top \boldsymbol{\eta}_t \\ 1559 & = \left(\hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \left(\mathbf{A}^{(t)} \right)^{-\frac{1}{2}} \left(\mathbf{A}^{(t)} \right)^{\frac{1}{2}} \mathbf{X}_t^\top \boldsymbol{\eta}_t \\ 1560 & \leq \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}} \cdot \left\| \mathbf{X}_t^\top \boldsymbol{\eta}_t \right\|_{(\mathbf{A}^{(t)})^{-1}} \\ 1561 & \leq \sqrt{2R^2 \ln \left(\frac{1}{\delta} |\mathbf{A}^{(t)}|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right)} \cdot \left\| \hat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\hat{\mathbf{A}}^{(t)}}. \end{aligned} \quad (25)$$

According to equation 24, we have $|\widehat{\mathbf{A}}^{(t)}| \geq |\mathbf{A}^{(t)}|$. For any $t \in [T]$, since the rank of $\widehat{\mathbf{A}}^{(t)}$ is at most $2l_{B_t}$, we can bound the determinant of $\widehat{\mathbf{A}}^{(t)}$ as follows

$$\begin{aligned}
 |\widehat{\mathbf{A}}^{(t)}| &\leq \left(\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda \right)^{d-2l_{B_t}} \cdot \prod_{i=1}^{2l_{B_t}} \lambda_i(\widehat{\mathbf{A}}^{(t)}) \\
 &\leq \left(\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda \right)^{d-2l_{B_t}} \left(\frac{\sum_{i=1}^{2l_{B_t}} \lambda_i(\widehat{\mathbf{A}}^{(t)})}{2l_{B_t}} \right)^{2l_{B_t}} \\
 &= \left(\sum_{i=1}^{B_t} \bar{\sigma}_i + \lambda \right)^{d-2l_{B_t}} \left[\sum_{i=1}^{B_t} \bar{\sigma}_i + \lambda + \frac{\text{Tr} \left(\left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} \right)}{2l_{B_t}} \right]^{2l_{B_t}} \\
 &\leq \left(\sum_{i=1}^{B_t} \bar{\sigma}_i + \lambda \right)^{d-2l_{B_t}} \left(\left(\sum_{i=1}^{B_t} \bar{\sigma}_i - \frac{\sum_{i=1}^{B_t} l_i \cdot \bar{\sigma}_i}{2l_{B_t}} \right) + \lambda + \frac{TL^2}{2l_{B_t}} \right)^{2l_{B_t}}, \tag{26}
 \end{aligned}$$

where the last inequality satisfies due to

$$\begin{aligned}
 \text{Tr} \left(\sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} \right) &= \sum_{i=1}^{B_t} \text{Tr} \left(\left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} \right) \\
 &= \sum_{s=1}^t \text{Tr}(\mathbf{x}_s^\top \mathbf{x}_s) - \sum_{i=1}^{B_t} l_i \cdot \bar{\sigma}_i \\
 &\leq TL^2 - \sum_{i=1}^{B_t} l_i \cdot \bar{\sigma}_i.
 \end{aligned}$$

Therefore, the variance error term can be bounded as

$$\begin{aligned}
 &\left(\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right)^\top \mathbf{X}_t^\top \boldsymbol{\eta}_t \\
 &\leq \sqrt{2R^2 \ln \left(\frac{1}{\delta} |\mathbf{A}^{(t)}|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \\
 &\leq \sqrt{2R^2 \ln \left(\frac{1}{\delta} |\widehat{\mathbf{A}}^{(t)}|^{\frac{1}{2}} |\lambda \mathbf{I}|^{-\frac{1}{2}} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \\
 &\leq R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + (d - 2l_{B_t}) \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_t} \lambda} + \frac{h_t}{\lambda} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \\
 &\leq R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_t} \lambda} + \frac{h_t}{\lambda} \right)} \cdot \left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}},
 \end{aligned}$$

where $h_t = \sum_{i=1}^{B_t} \bar{\sigma}_i - \frac{\sum_{i=1}^{B_t} l_i \cdot \bar{\sigma}_i}{2l_{B_t}}$.

Sum up the bias error term and the variance error term and divide both sides by $\|\widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_*\|_{\widehat{\mathbf{A}}^{(t)}}$ simultaneously, we have

$$\left\| \widehat{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_* \right\|_{\widehat{\mathbf{A}}^{(t)}} \leq R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_t} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_t} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_t} \lambda} + \frac{h_t}{\lambda} \right)} + H \cdot \sqrt{\lambda + \sum_{i=1}^{B_t} \bar{\sigma}_i},$$

which concludes the proof. \square

1620
 1621 Next, we start to prove the regret. Similar to the case using FD, since the algorithm uses the principle
 1622 of optimism in the face of uncertainty to select the arm, we can bound instantaneous regret by
 1623 equation 16. Utilizing equation 16 and Cauchy-Schwartz inequality, we derive the following bound
 1624

$$\begin{aligned}
 \text{Regret}_T &= \sum_{t=1}^T \max_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \boldsymbol{\theta}_* - \sum_{t=1}^T \mathbf{x}_t^\top \boldsymbol{\theta}_* \\
 &\leq 2 \sum_{t=1}^T \min \left\{ HL, \widehat{\beta}_{t-1}(\delta) \cdot \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 &\leq 2 \sum_{t=1}^T \widehat{\beta}_{t-1}(\delta) \min \left\{ \frac{L}{\sqrt{\lambda}}, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 &\leq 2 \cdot \max \left\{ 1, \frac{L}{\sqrt{\lambda}} \right\} \cdot \widehat{\beta}_T(\delta) \cdot \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}} \right\} \\
 &\leq 2 \cdot \max \left\{ 1, \frac{L}{\sqrt{\lambda}} \right\} \cdot \widehat{\beta}_T(\delta) \cdot \sqrt{T \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right\}}.
 \end{aligned} \tag{27}$$

1640
 1641 We present a lemma of RFD-sketched leverage scores to conclude the proof.
 1642

1643 **Lemma 7** (Sketch-based leverage scores by RFD).

$$\sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right\} \leq 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{h_T}{\lambda} \right).$$

1644
 1645
 1646 *Proof.* Denote $\mathbf{C}_t = \widehat{\mathbf{A}}^{(t-1)} + \mathbf{x}_t^\top \mathbf{x}_t$. Notice that the first $2l_{B_t}$ eigenvalues of \mathbf{C}_t are the same as
 1647 $\widehat{\mathbf{A}}^{(t)}$ while the other eigenvalues of \mathbf{C}_t are $\sum_{i=1}^{B_t} \alpha_i^{(t-1)} + \lambda$. Thus we can obtain
 1648

$$\frac{|\widehat{\mathbf{A}}^{(t)}|}{|\mathbf{C}_t|} = \left(\frac{\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda}{\sum_{i=1}^{B_{t-1}} \alpha_i^{(t-1)} + \lambda} \right)^{d-2l_{B_t}}.$$

1649
 1650
 1651 For the determinant of $\widehat{\mathbf{A}}^{(t)}$, we have

$$\begin{aligned}
 |\widehat{\mathbf{A}}^{(t)}| &= \left(\frac{\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda}{\sum_{i=1}^{B_{t-1}} \alpha_i^{(t-1)} + \lambda} \right)^{d-2l_{B_t}} \cdot |\mathbf{C}_t| \\
 &= \left(\frac{\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda}{\sum_{i=1}^{B_{t-1}} \alpha_i^{(t-1)} + \lambda} \right)^{d-2l_{B_t}} \cdot |\widehat{\mathbf{A}}^{(t-1)}| \cdot \left| \mathbf{I} + (\widehat{\mathbf{A}}^{(t-1)})^{-1} \mathbf{x}_t^\top \mathbf{x}_t \right| \\
 &= \left(\frac{\sum_{i=1}^{B_t} \alpha_i^{(t)} + \lambda}{\sum_{i=1}^{B_{t-1}} \alpha_i^{(t-1)} + \lambda} \right)^{d-2l_{B_t}} \cdot |\widehat{\mathbf{A}}^{(t-1)}| \cdot \left(1 + \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right) \\
 &= \left(\frac{\sum_{i=1}^{B_t} \bar{\sigma}_i + \lambda}{\lambda} \right)^{d-2l_{B_t}} \cdot |\lambda \mathbf{I}| \cdot \prod_{s=1}^t \left(1 + \|\mathbf{x}_s\|_{(\widehat{\mathbf{A}}^{(s-1)})^{-1}}^2 \right).
 \end{aligned} \tag{28}$$

1674 Since $\min(1, x) \leq 2 \ln(1 + x)$ for all $x \geq 0$, using equation 28, we can derive the following bound
 1675

$$\begin{aligned}
 1676 \quad & \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right\} \\
 1677 \quad & \leq 2 \sum_{t=1}^T \ln \left(1 + \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right) \\
 1678 \quad & = 2 \cdot \ln \left(\left(\frac{\lambda}{\sum_{i=1}^{B_T} \bar{\sigma}_i + \lambda} \right)^{d-2l_{B_T}} \cdot \frac{|\widehat{\mathbf{A}}^{(T)}|}{|\lambda \mathbf{I}|} \right) \\
 1679 \quad & \leq 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{h_T}{\lambda} \right),
 \end{aligned}$$

1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690 where the last step holds by equation 26 and $h_T = \sum_{i=1}^{B_T} \bar{\sigma}_i - \frac{\sum_{i=1}^{B_T} l_i \cdot \bar{\sigma}_i}{2l_{B_T}}$. \square
 1691

1692
 1693
 1694
 1695
 1696 We combine equation 27, Theorem 6 and Lemma 7. Assume $L \geq \sqrt{\lambda}$, we have
 1697

$$\begin{aligned}
 1698 \quad \text{Regret}_T &= \sum_{t=1}^T \max_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \boldsymbol{\theta}_* - \sum_{t=1}^T \mathbf{x}_t^\top \boldsymbol{\theta}_* \\
 1699 \quad &\leq 2 \cdot \max \left\{ 1, \frac{L}{\sqrt{\lambda}} \right\} \cdot \widehat{\beta}_T(\delta) \cdot \sqrt{T \sum_{t=1}^T \min \left\{ 1, \|\mathbf{x}_t\|_{(\widehat{\mathbf{A}}^{(t-1)})^{-1}}^2 \right\}} \\
 1700 \quad &\leq \frac{L}{\sqrt{\lambda}} \cdot \sqrt{T} \cdot \sqrt{2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{h_T}{\lambda} \right)} \cdot \left(H \cdot \sqrt{\lambda + \sum_{i=1}^{B_T} \bar{\sigma}_i} + \right. \\
 1701 \quad &\quad \left. R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\sum_{i=1}^{B_T} \bar{\sigma}_i}{\lambda} \right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{h_T}{\lambda} \right)} \right).
 \end{aligned}$$

1711
 1712
 1713 According to Theorem 1, the accumulated spectral error $\sum_{i=1}^{B_T} \bar{\sigma}_i$ is bounded by ϵ , and we have
 1714

$$\begin{aligned}
 1715 \quad h_T &= \sum_{i=1}^{B_T} \bar{\sigma}_i - \frac{\sum_{i=1}^{B_T} l_i \cdot \bar{\sigma}_i}{2l_{B_T}} \\
 1716 \quad &= \sum_{i=1}^{B_T} \left(1 - \frac{2^{i-1}}{2^{B_T}} \right) \cdot \bar{\sigma}_i \\
 1717 \quad &\leq \epsilon \cdot \sum_{i=1}^{B_T} \left(1 - \frac{2^{i-1}}{2^{B_T}} \right) \cdot \frac{1}{2^i} \\
 1718 \quad &= \left(1 - \frac{2 - B_T}{2^{B_T+1}} \right) \cdot \epsilon \\
 1719 \quad &\leq \epsilon.
 \end{aligned}$$

1728 Therefore, we derive the complete regret bound as follows:
1729

$$\begin{aligned}
1730 \text{Regret}_T &\leq \frac{L}{\sqrt{\lambda}} \cdot \sqrt{T} \cdot \sqrt{2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{\epsilon}{\lambda} \right)} \cdot \left(H \cdot \sqrt{\lambda + \epsilon} + \right. \\
1731 &\quad \left. R \cdot \sqrt{2 \ln \left(\frac{1}{\delta} \right) + d \ln \left(1 + \frac{\epsilon}{\lambda} \right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{\epsilon}{\lambda} \right)} \right) \\
1732 &\lesssim \frac{L}{\sqrt{\lambda}} \cdot \sqrt{l_{B_T}T} \cdot \sqrt{2 \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{\epsilon}{\lambda} \right)} \cdot \left(H \cdot \sqrt{\lambda + \epsilon} + \right. \\
1733 &\quad \left. R \cdot \sqrt{d \ln \left(1 + \frac{\epsilon}{\lambda} \right) + 2l_{B_T} \cdot \ln \left(1 + \frac{TL^2}{2l_{B_T}\lambda} + \frac{\epsilon}{\lambda} \right)} \right). \\
1734 \\
1735 \\
1736 \\
1737 \\
1738 \\
1739 \\
1740 \\
1741
\end{aligned}$$

1741 Ignoring the constants L , R , and H , as well as the logarithmic terms, we simplify the regret bound
1742 to
1743

$$1744 \text{Regret}_T \stackrel{\tilde{O}}{=} \left(1 + \frac{\epsilon}{\lambda} \right)^{\frac{1}{2}} \cdot \sqrt{l_{B_T}T} + \sqrt{dl_{B_T}T}.$$

1747 E.4 PROPERTIES OF DYADIC BLOCK SKETCHING FOR RFD

1749 In this section, we highlight two significant properties of Dyadic Block Sketching for RFD that
1750 elucidate why the regret bound of DBSLinUCB using RFD is improved. Although Robust Frequent
1751 Directions for ridge regression have been studied by Luo et al. (2019), their theory is limited to
1752 single-scale deterministic streaming sketches. We demonstrate that the decomposability of multi-
1753 scale sketching does not alter the properties of RFD.

1754 We begin with the positive definite monotonicity of Dyadic Block Sketching for RFD, which ensures
1755 that the sequence of approximation matrices is per-step optimal.

1757 **Theorem 7** (Positive Definite Monotonicity). *At round t , denote that the Dyadic Block Sketching
1758 for RFD provides a sketch $\mathbf{S}^{(t)}$, we have the following equation*

$$1759 \left(\mathbf{S}^{(t)} \right)^\top \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} \succeq \left(\mathbf{S}^{(t-1)} \right)^\top \mathbf{S}^{(t-1)} + \alpha^{(t-1)} \mathbf{I}.$$

1761 *Proof.* Notice that $\alpha^{(t)} \mathbf{I} + (\mathbf{S}^{(t)})^\top \mathbf{S}^{(t)} = \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} + \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^\top \mathbf{S}_i^{(t)}$, where $\mathbf{S}_i^{(t)}$ is the sketch
1762 matrix in block i and $\alpha_i^{(t)}$ is the adaptive regularization term of RFD at round t .

1764 Let $\mathbf{Q} = \left[(\mathbf{S}_{B_t}^{(t-1)})^\top, \mathbf{x}_t^\top \right]^\top$, σ_t is the shrinking singular values of active block at round t , the
1765 shrinking step of RFD provides

$$1766 \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} + \sigma_t \mathbf{I} \succeq \sum_{i=1}^{B_t-1} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} + \mathbf{Q}^\top \mathbf{Q} \succeq \sum_{i=1}^{B_t-1} \left(\mathbf{S}_i^{(t-1)} \right)^\top \mathbf{S}_i^{(t-1)}. \quad (29)$$

1767 Therefore, for any unit vector \mathbf{a} , we have

$$\begin{aligned}
1768 \mathbf{a}^\top \left(\left(\mathbf{S}^{(t)} \right)^\top \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} - \left(\mathbf{S}^{(t-1)} \right)^\top \mathbf{S}^{(t-1)} + \alpha^{(t-1)} \mathbf{I} \right) \mathbf{a} \\
1769 &= \mathbf{a}^\top \left(\sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} + \sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} - \sum_{i=1}^{B_t-1} \alpha_i^{(t-1)} \mathbf{I} - \sum_{i=1}^{B_t-1} \left(\mathbf{S}_i^{(t-1)} \right)^\top \mathbf{S}_i^{(t-1)} \right) \mathbf{a} \\
1770 &= \mathbf{a}^\top \left(\sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^\top \mathbf{S}_i^{(t)} + \sigma_t \mathbf{I} - \sum_{i=1}^{B_t-1} \left(\mathbf{S}_i^{(t-1)} \right)^\top \mathbf{S}_i^{(t-1)} \right) \mathbf{a} \\
1771 &\geq 0,
\end{aligned}$$

1772 which concludes the proof. □

Next, we prove that the sketch matrix produced by Dyadic Block Sketching for RFD is better conditioned than those produced by Dyadic Block Sketching for FD and the covariance matrix. In this context, the α selected by RFD is optimal, as choosing a smaller α would result in a worse condition number for the approximation matrices.

Theorem 8 (Well-Conditioned Property). *Let $\text{cond}(\mathbf{X}) = \frac{\sigma_{\max}(\mathbf{X})}{\sigma_{\min}(\mathbf{X})}$ be the condition number of matrix \mathbf{X} . At round t , denote that the Dyadic Block Sketching for RFD provides a sketch $\mathbf{S}^{(t)}$, we have*

$$\begin{aligned} \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} + \lambda \mathbf{I} \right) &\leq \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \lambda \mathbf{I} \right), \\ \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} + \lambda \mathbf{I} \right) &\leq \text{cond} \left(\mathbf{X}_t^{\top} \mathbf{X}_t + \lambda \mathbf{I} \right). \end{aligned}$$

Proof. Notice that $\alpha^{(t)} \mathbf{I} + (\mathbf{S}^{(t)})^{\top} \mathbf{S}^{(t)} = \sum_{i=1}^{B_t} \alpha_i^{(t)} \mathbf{I} + \sum_{i=1}^{B_t} (\mathbf{S}_i^{(t)})^{\top} \mathbf{S}_i^{(t)}$, where $\mathbf{S}_i^{(t)}$ is the sketch matrix in block i and $\alpha_i^{(t)}$ is the adaptive regularization term of RFD at round t . We have

$$\begin{aligned} \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} + \lambda \mathbf{I} \right) &= \frac{\sigma_{\max} \left(\sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^{\top} \mathbf{S}_i^{(t)} \right) + \lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}}{\lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}} \\ &\leq \frac{\sigma_{\max} \left(\sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^{\top} \mathbf{S}_i^{(t)} \right) + \lambda}{\lambda} \\ &= \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \lambda \mathbf{I} \right). \end{aligned}$$

Similarly, we have

$$\begin{aligned} \text{cond} \left(\left(\mathbf{S}^{(t)} \right)^{\top} \mathbf{S}^{(t)} + \alpha^{(t)} \mathbf{I} + \lambda \mathbf{I} \right) &= \frac{\sigma_{\max} \left(\sum_{i=1}^{B_t} \left(\mathbf{S}_i^{(t)} \right)^{\top} \mathbf{S}_i^{(t)} \right) + \lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}}{\lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}} \\ &\leq \frac{\sigma_{\max} \left(\mathbf{X}_t^{\top} \mathbf{X}_t \right) + \lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}}{\lambda + \sum_{i=1}^{B_t} \alpha_i^{(t)}} \\ &\leq \frac{\sigma_{\max} \left(\mathbf{X}_t^{\top} \mathbf{X}_t \right) + \lambda}{\lambda} \\ &\leq \text{cond} \left(\mathbf{X}_t^{\top} \mathbf{X}_t + \lambda \mathbf{I} \right), \end{aligned}$$

which concludes the proof. \square

F OMITTED DETAILS FOR SECTION 5

In this section, we provide the omitted details of experiments in section 5. We provide the experimental setups and configurations in Appendix F.1 and additional experiments in F.2, F.3, and F.4.

F.1 EXPERIMENTAL SETUPS

All experiments are performed on a machine with 24-core Intel(R) Xeon(R) Gold 6240R 2.40GHz CPU and 256 GB memory. We compare our DBSLinUCB with the state-of-the-art linear bandit algorithms on the synthetic dataset and several well-known classification benchmarks. The training and testing data are merged into a single dataset, followed by vector normalization based on the l_2 norm. Each experiment is performed over 20 different random permutations of the datasets. The confidence ellipsoid β of all algorithms is searched in $\{10^{-4}, 10^{-3}, \dots, 1\}$ and λ is searched in $\{2 \times 10^{-4}, 2 \times 10^{-3}, \dots, 2 \times 10^4\}$.

In the experiments of online classification in real-world data, we follow the experimental setup in (Kuzborskij et al., 2019). Specifically, we construct the online classification problem within the

1836 contextual bandit setting as follows: given a dataset with data in M labels, we first choose one cluster
 1837 as the target label. In each round, we randomly draw one sample from each label and compose an
 1838 arm set of M samples in M contexts. The algorithms choose one sample from the arm set and
 1839 observe the reward based on whether the selected sample belongs to the target label. The reward is
 1840 1 if the selected sample comes from the target label and 0 otherwise.
 1841

1842 F.2 EXPERIMENTS OF MATRIX APPROXIMATION

1843
 1844 We evaluate the performance of the proposed Dyadic Block Sketching in terms of matrix approximation.
 1845 We compare it with FD (Liberty, 2013). We generated a synthetic dataset with $n = 1250$ rows
 1846 and $d = 500$ columns. Specifically, each row $\mathbf{a}_t \in \mathbb{R}^{500}$ is independently drawn from a multivariate
 1847 Gaussian distribution $\mathbf{a}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, followed by vector normalization based on the l_2 norm. We
 1848 set the sketch size $l_0 = 50$ for FD and the initial sketch size $l_0 = 16$ for Dyadic Block Sketching.
 1849 The spectral norm error is defined as $\|\mathbf{A}_t^\top \mathbf{A}_t - \mathbf{S}_t^\top \mathbf{S}_t\|_2$, where \mathbf{A}_t is the streaming matrix at round
 1850 t and \mathbf{S}_t is the sketch matrix at round t .
 1851

1864 Figure 4: (a): The spectral norm error w.r.t the error parameter ϵ on synthetic dataset; (b): Compar-
 1865 ison among FD and our DBS-FD w.r.t. the error and its upper bound
 1866

1867 We first vary the error parameter $\epsilon \in \{5, 10, 20\}$. As illustrated in Figures 4a, we observe that in-
 1868 creasing the error parameter ϵ leads to a larger spectral norm error. Then we compare our method
 1869 with FD. We set the error parameter $\epsilon = 10$ for Dyadic Block Sketching. Figure 4b presents the
 1870 spectral norm error $\|\mathbf{A}_t^\top \mathbf{A}_t - \mathbf{S}_t^\top \mathbf{S}_t\|_2$ along with its upper bound for matrix sketching. We
 1871 observe that Dyadic Block Sketching provides a constrained global error bound for matrix sketching.
 1872 In comparison to FD, the rate of error growth in Dyadic Block Sketching decreases over time, effec-
 1873 tively mitigating the linear growth of the spectral tail.
 1874

1875 F.3 MORE EXPERIMENTS ON MNIST

1876 In this section, we present additional experimental results on the MNIST dataset, demonstrating our
 1877 method’s capability to adaptively adjust to optimal sketch sizes. The evaluation focuses primarily
 1878 on FD-based methods for comparison. For the SOFUL algorithm, we evaluate performance across
 1879 multiple sketch sizes with $l \in \{20, 100, 150\}$. For our proposed DBSLinUCB algorithm, we initial-
 1880 ize the sketch size at $l_0 = 50$ and configure the error parameter to $\epsilon = 8$. [We also report that the](#)
 1881 [streaming matrix used by all methods is full rank](#).
 1882

1883 **Regret Performance.** The cumulative regret results demonstrate that DBSLinUCB achieves com-
 1884 petitive performance compared to the baseline algorithms. As shown in Figure 5a, DBSLinUCB
 1885 maintains regret levels comparable to OFUL, the gold standard algorithm, throughout the 2000
 1886 rounds of evaluation on the MNIST dataset. In contrast, SOFUL exhibits significant performance
 1887 degradation when configured with insufficient sketch sizes, particularly evident with $l = 20$ and
 1888 $l = 100$, where the cumulative regret substantially exceeds that of both OFUL and DBSLinUCB.
 1889 While SOFUL with $l = 150$ achieves regret performance similar to OFUL and DBSLinUCB, this

Figure 5: Cumulative regret and total running time of the compared algorithms, the proposed DB-SLinUCB on MNIST

configuration requires careful tuning of the sketch size parameter, which presents practical challenges in real-world applications where the optimal sketch size cannot be determined a priori.

Running Time Efficiency. The computational efficiency analysis presented in Figure 5b reveals the significant advantage of DBSLinUCB in terms of runtime performance. DBSLinUCB achieves approximately 14 seconds total running time, representing a substantial improvement over OFUL’s 23 seconds execution time. Even when compared to SOFUL variants, DBSLinUCB maintains competitive efficiency while avoiding the performance trade-offs associated with fixed sketch sizes. SOFUL with smaller sketch sizes ($l = 20$) achieves faster runtime at approximately 9 seconds, but this comes at the cost of severely degraded regret performance. The results indicate that DBSLinUCB successfully addresses the fundamental challenge of balancing computational efficiency with learning performance, eliminating the need for manual sketch size tuning while maintaining both competitive regret bounds and superior runtime characteristics.

Space Complexity. Table 2 reports the maximum memory footprint of each algorithm over 2000 rounds on MNIST. DBSLinUCB achieves a 40% reduction in space usage compared to OFUL while maintaining competitive regret performance. Unlike SOFUL, which requires pre-specifying a fixed sketch size l , DBSLinUCB adaptively adjusts its sketch dimensions based on the observed data stream. This adaptive mechanism allows DBSLinUCB to match the space efficiency of SOFUL with $l = 150$ while providing stronger robustness guarantees—notably, SOFUL with smaller sketch sizes ($l \in \{20, 100\}$) achieves lower memory usage but suffers from degraded regret performance as shown in previous experiments. The results demonstrate that DBSLinUCB effectively navigates the space-regret trade-off without requiring prior knowledge of optimal hyperparameters.

Table 2: Comparison of Space Usage on MNIST

Algorithm	Sketch Size (l)	Max Space (KB)
OFUL	N/A	4802.0
SOFUL	20	682.9
SOFUL	100	1528.3
SOFUL	150	2529.3
DBSLinUCB	Adaptive	2842.0

F.4 EXPERIMENTS ON ADDITIONAL REAL-WORLD DATA

In this section, we evaluate DBSLinUCB on online classification tasks across multiple real-world benchmarks beyond MNIST, validating its generalizability and practical effectiveness. Similarly, the baselines include the non-sketched method OFUL (Abbasi-Yadkori et al., 2011) and the sketch-based methods SOFUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2020).

Table 3: Dataset Information

Dataset	OpenML ID	Instances	Features	Classes
cnae-9	1468	1080	856	9
MFeat	22	2000	48	10
Spam	44	4601	57	2

Figure 6: (a),(d): Pareto frontiers for regret vs. time and regret vs. space on cnae-9; (b),(e): Pareto frontiers for regret vs. time and regret vs. space on MFeat; (c),(f): Pareto frontiers for regret vs. time and regret vs. space on Spam

Datasets. We conduct experiments on three publicly available multiclass classification datasets from the OpenML repository (Vanschoren et al., 2013), as detailed in the table 3. The experimental setup is provided in Appendix F.1. The datasets include cnae-9, MFeat, and Spam, each with varying numbers of instances, features, and classes. These datasets are utilized to evaluate the performance of our proposed method across multiclass classification tasks.

Pareto Frontier Analysis. The Pareto frontier evaluation across three datasets (cnae-9, MFeat, and Spam) reveals the superior trade-off characteristics of our proposed DBSLinUCB methods. As illustrated in Figure 6, both DBSLinUCB-FD and DBSLinUCB-RFD consistently establish better positions on the Pareto frontiers for both regret vs. time and regret vs. space trade-offs. Notably, our methods form well-positioned curves that span a wide range of efficiency levels while maintaining competitive regret performance, demonstrating the flexibility and adaptability of the dyadic block sketching approach across different resource constraints.

Adaptation to Low-Dimensional Data. On relatively low-dimensional datasets, particularly on Spam (Figures 6c and 6f), OFUL serves as a strong baseline with an excellent trade-off between regret, time, and space. Notably, our DBSLinUCB-RFD variants closely approach the OFUL curve across multiple configurations. While this demonstrates a clear advantage over single-scale sketching methods, it also suggests that our method may incur some cost when degenerating to OFUL, a phenomenon more pronounced in certain low-dimensional settings.

Variants Consistency and Robustness Across multiple datasets (especially in cnae-9, Figures 6a and 6d), our method achieves similar trade-offs in terms of regret, space, and time for both

1998 FD and RFD variants. In contrast, single-scale sketching methods, such as SOFUL (FD-based) and
1999 CBSCFD (RFD-based), exhibit significantly different trade-offs (e.g., Figures 6a, 6c, 6d, and 6f).

2000
2001 This performance consistency arises because our method effectively controls global error in matrix
2002 approximation through a unified parameter ϵ , and replacing sketching methods does not result in a
2003 substantial loss of accuracy. This stability highlights the robustness of our dyadic block sketching
2004 framework, offering reliable performance regardless of the selected underlying sketching technique.
2005 Unlike traditional single-scale methods, where the choice between FD and RFD can dramatically
2006 affect performance, our approach ensures consistent outcomes.

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051