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Assertion-based verification is a technique to ensure that a circuit design con-
forms to its specification and help detect errors early in the design process.
It is enabled by powerful industry and open-source model-checking tools
that automatically prove or disprove an assertion for a given circuit design.
Formalizing a circuits requirement, however, involves a significant manual
effort by verification engineers to translate requirements in natural language
into a formal assertion language. In this extended abstract, we introduce a
framework that utilizes Large Language Models (LLMs) pre-trained on natu-
ral language and code to improve verification productivity by automating
the formalization process. In particular, we report on the current progress
of developing nl12sva, a framework for circuit-aware translations of natural
language to the most frequently used assertion language, SystemVerilog
Assertions (SVA). We introduce a methodology that (1) generates the SVA
for a specific circuit out of a generic circuit property in natural language and
(2) implements a model checker and human in the loop that interactively
provides feedback to the verification engineer and the underlying LLM to
facilitate debugging the design.

1 INTRODUCTION

Ensuring the correct operation of critical hardware components
in all possible scenarios requires more than just testing. Formal
verification techniques are necessary to prove or disprove, in the form
of a counter-example, critical requirements on hardware designs [1,
3, 32]. Fortunately, the hardware domain is amenable to verification
and constitutes a decidable problem for many practical languages
(e.g., [8,9, 14, 19, 29]). Model checking tools, such as Jaspergold [27]
and Pono [17], are available to address the verification problem and
scale to real-world examples.

In order to effectively apply formal verification, however, a formal
specification is required that semantically captures the requirement
and serves as an input to model-checking tools. Among the avail-
able specification languages, SystemVerilog Assertions (SVA) [29]
is a widely used language that enables verification engineers to
define complex properties, constraints, and requirements for the
design under verification in a concise manner. For example, consider
the following SVA that verifies the correctness of a memory write
operation:

1 assert property (

2 @(posedge clk) disable iff (~reset_n)

3 (addr == OxDEADBEEF) && (wr_en == 1'b1) &&
(data == 32'hCAFEBABE)

4 |-> (mem[addr] == 32'hCAFEBABE));
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This assertion checks that if the address is 0xDEADBEEF, the
write-enable signal is high, and the input data is 32’hCAFEBABE,
then the memory location at address 0OxXDEADBEEF should also
contain the same value 32’hCAFEBABE.

Formalizing requirements given in natural language to SVA can
be a time-consuming and error-prone task. It often requires manual
decomposition of the requirements in order to scale to complex de-
signs. Recent advances in deep learning have shown great potential
in assisting or even outperforming humans in various natural lan-
guage processing tasks, e.g., [7, 24, 33, 35], including translation [6].
Our framework leverages the abilities of deep neural networks to
facilitate the translation of natural language requirements to SVA,
thus reducing the burden on verification engineers and improving
the quality of the formal specifications. Specifically, we propose
a framework called n12sva, which utilizes Large Language Mod-
els (LLMs) (e.g., [2, 18]) to translate natural language descriptions
of hardware requirements into equivalent SVA statements for spe-
cific circuit designs under verification. The framework builds on
nl2spec [4] a recently released tool to interactively translate natural
language to temporal logics. We report on the current progress of
extending prior work to the n12sva framework.

The nl2sva framework provides two key contributions. First, a
methodology to take the circuit design into account while translating
a natural language requirement. For example generally stating that
“unless reset, the output signal is assigned to the input signal” has
a different meaning for different circuit designs, and needs to be
instantiated accordingly. We utilize the abilities of LLMs to do in-
context learning [2] and interactively adjust the prompt during the
formalization and verification process. Our prompting methodology
formulates the generated SVA into sub-translation for users to edit,
delete, or add new entries [4]. In the future, we envision a prepro-
cessing step that extracts key components of the circuits to provide
the underlying large language models with concise information
during inference, including, for example, module names, input and
output wire names, and other meta information.

Second, we implement a seamless feedback loop utilizing a model
checker that automatically checks the assertions on the design under
verification and provides feedback to both the verification engineer
and the large language model. By doing so, the engineer can adjust
bugs or omissions in the SVA formalization and the LLM can attempt
to debug the circuit design once the SVA captures the intended
meaning.

Ultimately, n12sva aims to utilize current advances in deep learn-
ing to improve verification productivity by automatically providing
circuit-aware translations to SystemVerilog Assertions.
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2 BACKGROUND

We provide a brief background of SystemVerilog Assertions as the
formalization language for the design’s requirements and the Large
Language Models component, in our case GPT-4.

2.1 SystemVerilog Assertion (SVA)

SystemVerilog Assertions (SVA) is an expressive language exten-
sion introduced in the SystemVerilog hardware description and
verification language. The primary goal of SVA is to enhance the
verification process by enabling exhaustive, automated checks of
design behavior and ensuring that the implemented design meets
the desired specifications.

SVA properties are expressed using a combination of Boolean
operators and temporal operators, along with expressions and vari-
ables from the design under verification. The basic syntax of an SVA
is as follows:

1 assert property_name
2 [(property_specifier)] property_expression;

Where property_name is a unique identifier for the property,
property_specifier is an optional specifier that can be used to
specify things like clock domains or assertion severity, and
property_expression is the actual SVA property expression.

An SVA expression is based on temporal logic [20]. The seman-
tics of SVA is defined over an infinite execution trace, which is a
sequence of states through the hardware circuit. An SVA property
is true if it holds for all possible traces of the design that satisfy the
constraints specified in the property.

SVA provides the standard temporal operators for specifying
properties, including the following.

o always: asserts that a property holds for all states in a trace

e eventually: asserts that a property holds at some stage in a
trace

o until: asserts that a property holds until another property
becomes true

e next (##1): asserts that a property holds at the next state in a
trace

In addition to these temporal operators, SVA also provides Boolean
operators for combining expressions, including A, V, -, and &, as
well as many more programming constructs.

2.2 Large Language Models (LLMs)

LLMs are large neural networks typically consisting of up to 176
billion parameters. They are pre-trained on massive amounts of data,
such as “The Pile” [10]. Examples of LLMs include the GPT [22] and
BERT [6] model families, open-source models, such as T5 [23] and
Bloom [25], or commercial models, such as GPT-4 [18]. LLMs are
Transformers [28], which is the state-of-the-art neural architecture
for natural language processing. Additionally, Transformers have
shown remarkable performance when being applied to classical
problems in verification (e.g., [5, 11, 15, 26]), reasoning (e.g., [16, 36]),
as well as the auto-formalization [21] of mathematics and formal
specifications (e.g., [12, 13, 34]).

We currently use GPT-4[18] as the large language model back-
end in our nl12sva framework. The framework and our prompting
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Fig. 1. A high-level overview of the n12sva framework.

methodology, however, are agnostic to the underlying machine
learning model. A common technique to obtain high performance
with a limited amount of labeled data is so-called “few-shot prompt-
ing” [2], which we also adopted in nl12sva. The language model
is presented a natural language description of the task usually ac-
companied by a few examples that demonstrate the input-output
behavior. Our framework is based on this technique and extends
the recent interactive prompting methodology in [4].

3 THE NL2SVA FRAMEWORK
3.1 Overview

Figure 1 shows an overview of the implementation of nl12sva. The
framework consists of the following components. At the base of the
framework lies an LLM (e.g., GPT-4 [18] or BLOOM [25]) serving as
the basic translation engine to handle natural language. The LLM
translates the circuit under verification and the specifications in
natural langauge into an array of intermediate representations. An
interactive engine handles these intermediate representations to
provide feedback to an oracle (e.g., a developer) and automatically
initiating the verification process by querying a model checker.

The intermediate representations consist of circuit metainforma-
tion like input/output signals, a natural language sub-translations
that a developer can leverage for debugging, and the current candi-
date SVA. A sub-translation is a decomposition of the requirement
that maps the formalization back to parts of the natural language
input. The final output of the framework is an SVA that is approved
by the oracle, which is automatically passed to the model checking
backend. The solid lines show the forward pass in the framework
and the dotted lines show the feedback pass.

In the forward pass, users can upload their circuit designs in Ver-
ilog and provide circuit specifications (e.g., functional correctness
properties, ordering properties, or security properties) in natural
language. The framework automatically generates the prompt for
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the LLM and passes it to the underlying LLM. After parsing the
response from LLM, the framework generates the intermediate rep-
resentations for the circuits, natural language sub-translations and
SVA. Users can then optionally check the generated SVA directly
on their circuits using the model checker.

In the feedback pass, users have the option to make edits to the
natural language sub-translations and even adjust the input circuit
properties. If the model checker disproves the generated SVA, users
can fix their circuit designs and retry.

3.2 Demonstrative Example

A key component of nl2sva is the ability to instantiate generic
circuit requirements for specific circuit designs under verification.
We implemented the automatic parsing and prompting (left side
of Figure 1). As a demonstrative example, we provide an initial
experiment on a toy example. Extending the experiments to real-
world examples is planned as a next step.

We will show how to generate SVAs on two different circuits for
the same natural language circuit property. In this example, we want
to translate the functional property "Unless reset, the output signal
is assigned to the last input signal" on both a finite state machine
shown in Appedix A.1 and a D-Flip-Flop shown in Appendix A.2.
Note that even with the same natural language input, the two output
SVAs are considerably different.

For the finite state machine circuit, we received the following:

1 assert property @(posedge clk)
2 (if (!reset) valid === $past(c));

Listing 1. FSM translation

For the D-Flip-Flop circuit, we received the following:

1 assert property (@(posedge clk)
2 (lasync_reset) |-> (Q === $past(D)));

Listing 2. DFF translation

We inserted the above FSM translation 1 at the end of the FSM circuit
A.1 and the above DFF translation 2 at the end of the DFF circuit
A.2 right before endmodule. A model checking tool can then be run
on the design including the inserted assertion. As a next step in the
development of the n12sva framework, we plan to incorporate the
automatic SVA checking, which is currently under development. We
ran JasperGold manually, with both assertions being proven.

From our experiments, we observe that the LLM clearly is capable
of instantiating the toy generic natural language requirement to
specific toy circuit designs. For example, it automatically maps
"reset” from the natural language circuit property input to reset
signal in the FSM circuit and async_reset signal in the DFF circuit.
It also clearly knows that the output signal is valid in FSM and
Q in DFF. The language model is also able to write syntactically
correct SVA without any tutorial (as it has been extensively trained
on it) and in our case, the translation is also semantically correct.
However, due to the inherent nondeterminism in LLMs, it produces
different syntax for two circuits, although both are semantically
correct.

3.3 Implementation and Challenges

The framework is implemented in Python 3 and flask framework [30].
By default, we use GPT4 [18] as the LLM and JasperGold [27] as
the model checker, but the framework is agnostic to the underlying
tools. We extended the frontend of [4] to handle the human feed-
back. The frontend web interface (see Figure 2 in the appendix) has
four important elements: "Prompt", "Circuit in Verilog", "Subtransla-
tions", and "Final Result". The tool takes a natural language circuit
property as input and output concrete SVA under the context of
specific circuit designs along with sub-translations. Users can also
optionally add sub-translations and adjust model hyper-parameters
(model temperature and the number of sampling tries). To take in
human feedback, users can edit, delete and add sub-translations
from the frontend.

Currently under development is providing the model checker
feedback to the language model and the user. The backend also han-
dles prompt generation, API calls to the LLM, and post-processing
of LLM feedback, i.e., selecting the most promising translation based
on model confidence score.

To generate high-quality SVA translations, we use the “few-shot
prompting” [2] technique. The body of the prompt consists of a
fixed prompt and an interactive prompt. The minimal fixed prompt
shown in Appendix B includes only one simple circuit design and
four translation examples. And the interactive prompt includes the
user-uploaded circuit, natural language circuit property, and the
optional sub-translation. In the few-shot examples, we adopt the
"chain-of-thought" [31] technique to help LLM reason. The purpose
of the fixed prompt is to show LLM how to produce a useful response
in the format we expect. Hence, we append the interactive prompt
to the end of the fixed prompt so we can expect the LLM to fill in
the translated SVA the same way we do in the fixed prompt. In our
case, we can expect the LLM-translated SVA to be right after So the
final SVA translation is and end with the FINISH token.

We are susceptible to outside computational resources and API
limitations. For example, the default GPT-4 API only supports up
to 8192 tokens of context memory. This means that for complex
circuit designs, we have to manually decompose large circuits into
smaller independent modules to feed into the framework. For future
work, we plan to implement a preprocessing step that automatically
extracts only the necessary information of the circuit for the LLM
to succeed in the translation task. We plan to conduct more experi-
ments on real-work circuit designs and collect more feedback from
the framework users. To enhance the generated SVA quality, we will
continue to improve our prompting techniques and even formulate
the model checker generated counter-examples to feedback to the

LLM.

4 CONCLUSION

In this extended abstract, we have introduced nl2sva, a framework
that enables the translation of natural language specifications to
SystemVerilog Assertions (SVA). We have provided an overview of
the current state of development, described its implementation and
highlighted the current challenges, especially handling large circuit
designs.
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CIRCUITS
Finite State Machine

module fsm_example (
input clk,
input reset,
input c,
output valid

)

parameter [3:0]
idle = 3'do,
one_str = 3'd1,
zero_str = 3'd2,

valid_str = 3'd4,
invalid_str = 3'd3;

reg [2:0] state, nxt_state;

always @(c or state or reset) begin
if (reset) begin

nxt_state = idle;
valid = 0;
end else begin
valid = 0;
case(state)
idle: if (c) begin
nxt_state = one_str;
end else begin
nxt_state = idle;
end
one_str: if (c) begin
nxt_state = one_str;
end else begin
nxt_state = zero_str;
end
zero_str: if (c) begin
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nxt_state =
valid_str;
end else begin
nxt_state = zero_str
end
begin
if (c) begin
nxt_state =
valid_str;
end else begin
nxt_state =
invalid_str

valid_str:

end
valid = 1;
end
invalid_str: begin
nxt_state =
invalid_str;
valid = 0;
end
default: nxt_state = 3'bx;
endcase
end
end
always @(posedge clk) begin
state <= nxt_state;

s« end
ss endmodule
A.2  D-Flip-Flop
1 module RisingEdge_DFlipFlop_AsyncResetHigh(D,
clk,async_reset,Q);
2 input D; // Data input
3 input clk; // clock input
4+ input async_reset; // asynchronous reset high
level
5 output reg Q; // output Q
¢ always @(posedge clk or posedge async_reset)
7  begin
8 if(async_reset==1"'Db1)
9 Q <= 1'b0;
10 else
11 Q <= D;
12 end
13 endmodule
B  PROMPT

Following is the design for tff:

module tff (
input wire clk,
input wire reset,
input wire T,
output wire Q

N

reg Q_reg;

23
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always @(posedge clk or posedge reset) begin
if (reset) begin
Q_reg <= 1'b0;
end else begin
if (T) begin
Q_reg <= ~Q_reg;
end
end
end
assign Q = Q_reg;
endmodule

Natural Language: on falling clock ticks, if
reset is true then ouput is true in the
next one or two cycles.

Explanation: "reset" from the input translates

to the atomic proposition restn in the
tff module and "output" translates to the
atomic proposition Q in the tff module.
The clock tick is the atomic proposition
clk in the tff module.

Explanation: ##[1:2] Q means that Q is true

on the next clock, or on the one following

(or both). |-> is the implication
operator, so this assertion checks that
whenever restn is asserted, Q must be
asserted on the next clock, or the
following clock.

on falling clock edge" translates to @(

negedge clk).

Explanation dictionary: {"on falling clock

ticks":"@(negedge clk)", "if then ..."
:"|->", in the next one or two cycles"":"
##[1:21", "reset":"restn", "output":"q"}

So the final SVA translation is assert
property (@(negedge clk) restn |-> ##[1:2]
Q) .FINISH

Natural Language: all inputs are never true at
the same time during any point of

simulation.

Explanation: there are three inputs: clk,
reset, T. There is one ouput: Q.

Explanation dictionary: {"all three inputs":
clk && reset && T", "never true": "!"}

So the final SVA translation is assert
property (!(clk && reset && T)).FINISH

Natural Language: at least two inputs are true
at the same time during any point of
simulation.

Explanation dictionary: {"least two inputs":
(clk && reset) || (reset && T) || (clk &&
™"}

So the final SVA translation is assert
property ((clk && reset) || (reset && T)
Il (clk && T)).FINISH

Natural Language: The circuit output is always
valid.
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Explanation: The circuit is valid when the
output (Q) either remains the same or
toggles when the input (T) is high during
a rising edge of the clock.

So the final SVA translation is assert

property @(posedge clk) (T === 1'Db1)

Q_reg ===
|-> (Q_reg

~$past(Q_reg)) ##1 (T ===

$past(Q_reg)).FINISH

[=> (
1'b0)
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