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Abstract

Reliably and efficiently generating structured out-
puts has become a critical capability for mod-
ern language model (LM) applications. Con-
strained decoding has emerged as the dominant
technology across sectors for enforcing structured
outputs during generation. Despite its growing
adoption, little has been done with the system-
atic evaluation of the behaviors and performance
of constrained decoding. Constrained decod-
ing frameworks have standardized around JSON
Schema as a structured data format, with most
uses guaranteeing constraint compliance given
a schema. However, there is poor understand-
ing of the effectiveness of the methods in prac-
tice. We present an evaluation framework to
assess constrained decoding approaches across
three critical dimensions: efficiency in generat-
ing constraint-compliant outputs, coverage of di-
verse constraint types, and quality of the gen-
erated outputs. To facilitate this evaluation, we
introduce JSONSchemaBench, a collection of
10K real-world JSON schemas that encompass
a wide range of constraints with varying com-
plexity. We pair the benchmark with the existing
official JSON Schema Test Suite and evaluate
six state-of-the-art constrained decoding frame-
works, including Guidance, Outlines, Llamacpp,
XGrammar, OpenAI, and Gemini. Our work
provides actionable insights for improving con-
strained decoding frameworks and structured gen-
eration tasks, setting a new standard for evaluating
constrained decoding and structured generation.
Code is available at https://github.com/guidance-
ai/jsonschemabench.
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Figure 1. Comparison across various constrained-decoding frame-
works by efficiency (speed of output generation), coverage (sup-
port for JSON Schema features), and quality (effects on underlying
task accuracy). Guidance outperforms other frameworks on these
dimensions.

1. Introduction
The rapid advancements in LMs in recent years have sig-
nificantly broadened their applications, extending beyond
natural language tasks to more complex challenges such as
web navigation (Yao et al., 2023b), data extraction (Polak &
Morgan, 2024), and tool use (Schick et al., 2023). Unlike
traditional natural language processing (NLP) tasks where
the output is aimed at review by humans, output in these ap-
plications is often consumed by machines such as controller
and service APIs. The machine-oriented nature of these
applications requires LMs to generate structured outputs
that strictly adhere to predefined formats and constraints.
However, the LM generation process is probabilistic and
does not provide guarantees on the output’s structure, mak-
ing it challenging to deploy LMs in applications requiring
structured inputs and high reliability.

The methodology of constrained decoding, a technique that
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integrates constraints into the decoding process of LMs, has
been developed to address the need to adapt LM generations
to the challenge of providing structured output. Constrained
decoding intervenes in the decoding process of LMs by
masking out invalid tokens based on given constraints and
prefix tokens. This intervention guides the LM to sample
only from valid tokens, ensuring that the final output per-
fectly conforms to a predefined structure.

The strong demand for structured generation (Liu et al.,
2024) has led to the development of various constrained-
decoding frameworks1, such as Guidance (Guidance
AI, 2023), Outlines (Willard & Louf, 2023), XGram-
mar (Dong et al., 2024) and the grammar module of Lla-
macpp (Gerganov & al., 2023) These frameworks provide
broad support for different types of constraints, minimal
overhead, and compatibility with various LM ecosystems,
facilitating the adoption of constrained decoding in real-
world applications.

JSON Schema offers a high level, domain-specific way to
define constraints for JSON data, a widely adopted data
interchange format. As a result, JSON Schema has emerged
as a key specification language for constrained decoding.
Commercial LM providers, such as OpenAI, have embraced
constrained decoding by incorporating support for JSON
Schema directly into their APIs. These integrations high-
light the emergence of JSON Schema as an industry-wide
standard for specifying constraints on structured outputs,
ensuring compatibility across diverse applications. Despite
the growing adoption of constrained decoding for structured
generation, several issues and questions persist:
Q1: Efficiency: Does constrained decoding slow down or
speed up the generation process? Which framework is the
most efficient?
Q2: Coverage: The JSON Schema specification has an
evolving and expansive feature set. How well do existing
constrained decoding frameworks support these features?
Q3: Quality: While constrained decoding guarantees that
LM outputs conform to a desired structure, does it negatively
affect the semantic quality of outputs?

To answer these questions, we need to study constrained-
decoding methods with a large-scale, diverse, and real-world
collection of user-defined structures. To evaluate the per-
formance of constrained decoding frameworks, we intro-
duce JSONSchemaBench, a collection of 10K real-world
JSON schemas from various sources, Organized into 10
datasets of varying complexity and diversity, the benchmark
spans domains such as function signatures, service APIs,
and system configurations. We evaluate six state-of-the-
art constrained decoding frameworks, including Guidance,
Outlines, Llamacpp, XGrammar, OpenAI, and Gemini, on

1We use the terms constrained decoding framework and gram-
mar engine interchangeably.

JSONSchemaBench. We pair this real-world schema dataset
with the official JSON Schema Test Suite (JSON Schema
Org, 2024) in order to extract detailed insights into coverage
of JSON Schema functionality across these frameworks,
and to further evaluate them with considerations of end-
to-end task accuracy in the context of multiple real-world
tasks. Altogether, our evaluation takes three aspects into
consideration: efficiency, coverage, and quality. We define
specific metrics to measure these three functional aspects
and evaluate constrained decoding frameworks against them.
Through extensive experiments, we converge on the follow-
ing findings as illustrated in Figure 1. (1) Constrained decod-
ing can speed up the generation process by 50% compared
to unconstrained decoding. (2) Frameworks demonstrate
significant differences in their actual support for real-world
JSON schemas, with the best framework supporting twice
as many schemas as the worst. (3) Constrained decoding
consistently improves the performance of downstream tasks
up to 4%, even for tasks with minimal structure like GSM8k.

Contributions Our contributions are three-fold:

• We assemble JSON schemas from various sources and
organize them into a benchmark, JSONSchemaBench,
to facilitate the evaluation of constrained decoding
frameworks on JSON schema.

• We propose a fine-grained evaluation framework to as-
sess the versatility of constrained decoding frameworks
in handling diverse JSON schema features, including
declared coverage, empirical coverage, and compliance
rate.

• We evaluate six state-of-the-art constrained decod-
ing frameworks on JSONSchemaBench, uncovering
their strengths and limitations in generating schema-
compliant JSON outputs and analyzing their impact on
downstream tasks.

2. Background and Related Work
JSON Schema is a meta-language that describes the structure
of JSON data. It is capable of expressing a wide variety
of constraints, such as the types of JSON object properties,
the length of JSON arrays or the pattern that a JSON string
must match. The syntax and capabilities of JSON Schema
are defined in the JSON Schema specification (Wright et al.,
2022), which defines a large number of keywords, each of
which may be used or combined with other keywords within
a schema to enforce constraints like the ones mentioned.
JSON Schema is widely used in the software ecosystem, and
previous work has been done to collect extensive examples
of JSON Schemas with a focus both on real-world use as
well as on overall correctness.
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Baazizi et al. (2021) collected over 6,000 JSON schemas
from publicly available GitHub repositories. Attouche et al.
(2022) used it alongside additional collected JSON schemas
in order to evaluate a witness generation algorithm for
JSON Schema. Separately, the official JSON Schema Test
Suite (JSON Schema Org, 2024) is a collection of manually
created test cases, maintained by the JSON Schema core
team, which exercises a large portion of the functionality
defined in the JSON Schema specification. It was originally
written to assist implementers of JSON Schema validation
tools with testing their compliance against the specification,
and therefore contains a wide variety of examples for each
of JSON Schema’s keywords, including in edge case scenar-
ios. Notably, Bowtie (Bowtie, 2025) leverages the test suite
as a foundation for comparing and understanding different
implementations of the JSON Schema specification across
programming languages. Taken together, these two datasets
form a large number of examples both of JSON Schema’s
diverse feature set as well as its use in the wild.

Algorithm 1 Constrained Decoding
Require: Constraint C, LLM f , Prompt x
Ensure: Output o adhering to C
1: o← []
2: loop
3: C.update(o) . advance state of C
4: m← C.mask() . compute mask
5: v ← f(x+ o) . compute logits
6: v′ ← m� v
7: t← decode(α′) . sample
8: if t = EOS then
9: break

10: end if
11: o.append(t)
12: end loop
13: return o . output

Constrained decoding (Deutsch et al., 2019; Shin et al.,
2021; Scholak et al., 2021; Poesia et al., 2022; Wang et al.;
Geng et al., 2023) refers to methods that guide the gener-
ation process of language models (LMs) by masking out
tokens that do not adhere to predefined constraints at each
step. Recently, highly optimized grammar-constrained de-
coding frameworks (Guidance AI, 2023; Beurer-Kellner
et al., 2023; Willard & Louf, 2023; Kuchnik et al., 2023;
Zheng et al., 2024; Dong et al., 2024) have been developed
to improve the efficiency and usability of constrained decod-
ing.

The evaluation of constrained decoding remains an under-
explored topic, with no consensus on what defines the ef-
fectiveness of constrained decoding. While some research
has pursued comparisons of constrained decoding with un-
constrained LMs (Roy et al., 2024; Tang et al., 2024; Yao
et al., 2023a), the studies to date fail to provide comparisons
across different constrained decoding frameworks. The

benchmarks employed have either narrowly focused on spe-
cific tasks or rely on formal-grammar–based artificial setups,
that have unclear relevance to real-world use cases.

3. The JSONSchemaBench
Our goal is to design a benchmark that is (1) diverse enough
to cover the most common constraint types encountered
in real-world applications, (2) large enough to provide a
reliable evaluation, and (3) equipped with fair and multidi-
mensional metrics to ensure comprehensive assessments.

3.1. Data Collection

We start with the 6K JSON schemas collected by (Baazizi
et al., 2021) from publicly available GitHub repositories,
and with the set of schemas from the JSON Schema Test
Suite (JSON Schema Org, 2024). We further collect JSON
schemas from other sources, such as the JSON Schema
Store (Schema Store Org, 2014), the GlaiveAI function
calling dataset V2 (GlaiveAI, 2024), and from Kubernetes
configuration files (Kubernetes, 2022). We filter out invalid
schemas and standardize the schemas to ensure that they
conform to the version of JSON Schema declared2 in each
schema The GitHub JSON schemas collection from (Baazizi

Dataset Category Count

GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164

Total 9558

Table 1. Schema collection metadata.

et al., 2021) contains schemas of varying complexity and
diversity, ranging from simple type constraints to complex
constraints with nested objects and arrays. For more fine-
grained evaluation, we split the data into five collections
based on the schema size: trivial, small, medium, large, ultra.
The suites finalized after all collection and processing are
listed in Table 1. We excluded GitHub-Trivial and GitHub-
Ultra from the experiments as they were too easy or too hard.
However, we retained these datasets in the benchmark, with
GitHub-Ultra serving as an aspirational target for future
advancements. For more information on post-processing

2The $schema keyword, defined in the JSON Schema specifi-
cation, allows any schema to self-identify which version of JSON
Schema it is written for.
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and dataset splitting, we refer the reader to Appendix A.

4. Efficiency
Naı̈ve implementations of constrained decoding add over-
head to the standard LM inference process, including a per-
step mask computation and an optional one-time grammar
compilation. However, several optimizations can signifi-
cantly reduce this overhead. For instance, mask computa-
tion can run in parallel with the LM’s forward pass, and
grammar compilation can be performed concurrently with
pre-filling computations (Guidance AI, 2023; Dong et al.,
2024). Other optimizations such as grammar caching and
constraint-based speculative decoding (GuidanceAI, 2024b;
Beurer-Kellner et al., 2023; Kurt, 2024a) can further reduce
overhead.

Metrics We break down the efficiency evaluation into the
following components:

• Grammar Compilation Time (GCT): The time
spent on grammar compilation.

• Time to First Token (TTFT): Time from the start of
generation to the production of the first token.

• Time per Output Token (TPOT): Average time to
generate each token after the first.

4.1. Setup

The efficiency experiment depends on both the size of the
model and the tokenizer’s vocabulary size. We used Llama-
3.1-8B-Instruct with the Llamacpp inference engine as
backend for Outlines, Guidance, and Llamacpp. As XGram-
mar doesn’t support Llamacpp as backend , we add an ad-
ditional experiment with the Hugging Face Transformers
inference engine for XGrammar. All experiments are con-
ducted on a single NVIDIA A100-SXM4-80GB GPU with
AMD EPYC 7543 (12 cores) CPU. The batch size is set
to 1 for all experiments. Additional details about setup are
provided in the Appendix E.

Addressing coverage bias. The efficiency metrics are
meaningful only for instances that a grammar engine can
process. Different engines exhibit varying levels of schema
coverage, with some engines handling a wider range of
schemas than others. Engines with lower coverage often
process simpler, shorter schemas, which naturally compile
and generate faster. As a result, averaging efficiency met-
rics across covered instances can introduce bias favoring
engines with lower coverage. For a more detailed discussion
on coverage, see Section 5. To ensure fairness, we calculate
efficiency metrics on the intersection of covered instances
across all engines.

Dataset Framework GCT
(s)

TTFT
(s)

TPOT
(ms)

GlaiveAI LM only NA 0.10 15.40
Guidance 0.00 0.24 6.37
Llamacpp 0.05 0.20 29.98
Outlines 3.48 3.65 30.33

GitHub LM only NA 0.10 15.83
Easy Guidance 0.00 0.34 7.44

Llamacpp 0.05 0.18 27.22
Outlines 3.71 3.97 39.78

Snowplow LM only NA 0.11 16.23
Guidance 0.00 0.28 6.55
Llamacpp 0.05 0.20 28.90
Outlines 3.91 4.14 42.66

GitHub LM only NA 0.20 16.68
Medium Guidance 0.01 0.54 7.57

Llamacpp 0.06 0.30 29.08
Outlines 8.05 8.38 46.57

Kubernetes LM only NA 0.16 15.32
Guidance 0.01 0.45 9.47
Llamacpp 0.05 0.28 28.04
Outlines 5.29 5.55 46.10

Table 2. Efficiency metrics for different engines with LlamaCpp
as the inference engine. GCT: Grammar Compilation Time,
TTFT: Time to First Token, TPOT: Time Per Output Token. Bold
values indicate the smallest in each column for GCT, TTFT, and
TPOT. All values are median of the samples. Results for the
GitHub Hard and Washington Post datasets are provided in Ap-
pendix E.

Grammar compilation time. There are notable differ-
ences in grammar compilation times between the engines.
Both Guidance and Llamacpp dynamically compute their
constraints during token generation, leading to minimal
grammar compilation time. In the middle, XGrammar does
include a non-trivial compilation step, but they are able
to largely mitigate its impact by running it concurrently
with prompt pre-filling. Finally Outlines, which converts
JSON schemas into regular-expression based constraints,
has significantly higher compilation time.

Time per output token. While Outlines and Llamacpp
demonstrate substantially lower throughput than the LM-
only approach, Guidance achieves even higher efficiency,
which it accomplishes by fast-forwarding 3 certain gener-
ation steps with its guidance acceleration (GuidanceAI,
2024b). Comparing Guidance and XGrammar with the HF
Transformers backend shows that Guidance has a signifi-
cantly better TPOT.

3See Tables12 and 13 for the number of tokens fast-forwarded.
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Dataset Framework GCT
(s)

TTFT
(s)

TPOT
(ms)

GlaiveAI Guidance 0.01 0.36 36.92
XGrammar 0.12 0.30 66.78

GitHub Guidance 0.01 0.37 42.03
Easy XGrammar 0.11 0.33 65.57

GitHub Guidance 0.01 0.55 44.21
Medium XGrammar 0.20 0.48 65.51

GitHub Guidance 0.01 0.73 35.88
Hard XGrammar 0.30 0.65 65.20

Table 3. As XGrammar doesn’t support llama.cpp, we add an addi-
tional experiment with the Hugging Face Transformers inference
engine for XGrammar and Guidance. All values are median of
the result samples.

5. Coverage
Each constrained decoding framework has limitations when
it comes to translating JSON schemas into a set of con-
straints that can reliably guarantee the validity of LM out-
puts. To systematically evaluate the effectiveness of these
frameworks, we define three notions of coverage:

Definition 5.1 (Declared Coverage). A schema is con-
sidered declared covered if the framework processes the
schema without explicitly rejecting it or encountering run-
time errors such as exceptions or crashes.

Definition 5.2 (Empirical Coverage). A schema is consid-
ered empirically covered if our experiments show that the
constraints generated by the framework result in LM outputs
that are schema-compliant.

Definition 5.3 (True Coverage). A schema is considered
truly covered if the framework produces constraints that are
precisely equivalent to the original JSON Schema defini-
tion, i.e., permitting all schema-compliant generations while
rejecting all schema-noncompliant generations.

The most ideal coverage metric is the true coverage, de-
noted as CTrue. However, due to the infinite number of JSON
instances that could be validated against a schema, it is
difficult to measure in practice without a formal verifica-
tion method that is capable of exhaustively comparing the
schema’s semantics against the framework’s implementa-
tion. CEmpirical is an approximation of CTrue as it only checks
whether the finitely many outputs seen during our experi-
ments conform to a given schema4. While CDeclared is not
an estimate of CTrue per se, it is an upper-bound of both
CEmpirical and CTrue and is useful in deriving an additional
metric from the coverage evaluation: Compliance Rate
= CEmpirical/CDeclared. The Compliance Rate estimates the

4Additionally, we define theoretical coverage as the proportion
of schemas whose features are fully supported by the grammar
engine, with details provided in Appendix C.

reliability of the constrained decoding framework in guaran-
teeing compliance given it accepts a given schema.

5.1. Setup

To measure empirical coverage, we conduct all experiments
using the Llama-3.2-1B-Instruct model as it is small enough
to run efficiently while still producing high-quality outputs.
The prompt consists of a simple instruction with two-shot
examples (Figure 3), and validation is performed using the
jsonschema Python library (Berman, 2025) (using JSON
Schema Draft2020-12) with string-format checks enabled.
We use greedy decoding with zero-temperature, performing
a single generation run, and enforce a 40-second timeout
for grammar compilation and an additional 40 seconds for
generation. Exceeding these limits is treated as a schema
processing failure. Additional details are provided in Ap-
pendix B.

5.2. Results

Empirical Coverage Guidance shows the highest empiri-
cal coverage on six out of the eight datasets, with Llamacpp
taking the lead on the remaining two: the domain-specific
Washington Post and notably hard JSON Schema Store. On
the other hand, closed-source grammar engines consistently
have the lowest coverage; they came in last on all but one
dataset. We note that while empirical coverage is a reason-
able indicator of a framework’s real-world performance, it
is influenced by factors such as the LM being used and the
sampling methods employed.

Compliance Rate Among open-source engines, guidance
consistently demonstrates the highest compliance rate across
all datasets, making it the most reliable option for ensuring
schema compliance. Outlines has a comparatively lower
compliance rate, primarily due to timeouts during genera-
tion. Our analysis reveals that JSON Schema features like
minItems , maxItems , enum , and Array , while sup-

ported, often take 40 seconds to 10 minutes for Outlines
to process. While closed-source implementations have low
empirical coverage, they have very high compliance rates,
indicating that their providers have taken a more conserva-
tive strategy, implementing only a subset of JSON Schema
features that they can reliably support.

5.3. JSON Schema Test Suite: Complementary
Evaluation

Originally designed to test the correctness and compliance
of JSON Schema validation implementations, the official
JSON Schema Test Suite (JSON Schema Org, 2024) is a
comprehensive collection of test cases spanning the many
features of the JSON Schema specification. We believe that
the test suite is an ideal tool for assessing the correctness of
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Dataset Framework Declared Empirical Compliant
Rate

GlaiveAI Guidance 0.98 0.96 0.98
Llamacpp 0.98 0.95 0.97
Outlines 0.99 0.95 0.96
XGrammar 1.00 0.93 0.93
OpenAI 0.89 0.89 1.00
Gemini 0.86 0.86 1.00

GitHub Guidance 0.90 0.86 0.96
Easy Llamacpp 0.85 0.75 0.88

Outlines 0.86 0.59 0.83
XGrammar 0.91 0.79 0.87
OpenAI 0.30 0.29 0.97
Gemini 0.08 0.07 0.88

Snowplow∗ Guidance 0.87 0.82 0.94
Llamacpp 0.92 0.74 0.81
Outlines 0.95 0.36 0.61
XGrammar NA NA NA
OpenAI 0.21 0.21 1.00

GitHub Guidance 0.79 0.69 0.87
Medium∗ Llamacpp 0.77 0.57 0.74

Outlines 0.72 0.29 0.40
XGrammar 0.79 0.52 0.66
OpenAI 0.13 0.12 0.92

Kubernetes∗ Guidance 0.98 0.91 0.92
Llamacpp 0.98 0.76 0.78
Outlines 0.98 0.57 0.58
XGrammar 0.12 0.07 0.58
OpenAI 0.21 0.21 1.00

Washington Guidance 0.86 0.86 1.00
Post∗ Llamacpp 0.97 0.94 0.97

Outlines 0.97 0.22 0.23
XGrammar 0.85 0.64 0.75
OpenAI 0.13 0.13 1.00

GitHub Guidance 0.60 0.41 0.69
Hard∗ Llamacpp 0.61 0.39 0.63

Outlines 0.47 0.03 0.06
XGrammar 0.69 0.28 0.41
OpenAI 0.09 0.09 1.00

JsonSchema Guidance 0.35 0.30 0.88
Store∗ Llamacpp 0.54 0.38 0.69

Outlines 0.38 0.09 0.24
XGrammar 0.76 0.33 0.43
OpenAI 0.06 0.06 1.00

Table 4. Coverage of all the frameworks on JSONSchemaBench.
Empirical coverage between Open Source engines and Ope-
nAI/Gemini are not directly comparable due to differences in the
underlying model (Llama 3.2-1B vs. proprietary models).
∗ Gemini results are ommitted for dataset suites with < 1% sup-
port.

grammar engines.

The test suite organizes its test cases into 45 categories,
each of which corresponds to a feature of JSON Schema,
typically a specific keyword such as required or group
of tightly related keywords such as if-then-else. A

small number of additional categories test broader behaviors,
such as infinite-loop-detection. Each test case
contains a single schema paired with a collection of JSON
instances that are marked as either valid or invalid under
that schema. For the purpose of evaluating coverage, we
assert that an engine must successfully generate each valid
instance and block generation of each invalid instance to
“pass” a test case. In addition to compilation failures, we
define two failure modes that a grammar engine can exhibit:

Framework Compile-
Error

Over-
constrained

Under-
constrained

Outlines 42 16 8
Llamacpp 37 18 7
XGrammar 3 5 38
Guidance 25 7 1

Table 5. Number of categories for which each failure type occurred
at least once. Rows do not necessarily sum to the total number
of categories, as some categories may have more than one failure
type or no failures at all. Bold numbers indicate the framework
with the fewest number of failures of a given type.

Definition 5.4 (Over-constrained). A framework is over-
constrained if it rejects JSON instances that are vsalid ac-
cording to a given JSON Schema. This means the engine is
too strict and excludes outputs that should be allowed.

Definition 5.5 (Under-constrained). A framework is under-
constrained if it allows JSON instances that are invalid
according to a given JSON Schema. This means the en-
gine is overly permissive and allows outputs that should be
rejected.

An illustration is given in Figure 5 in Appendix D. Over-
constrained grammar engines risk limiting the expressive
power of LMs, potentially preventing the generation of valid
responses and negatively impacting downstream task per-
formance. Conversely, under-constrained engines cannot
guarantee that all responses will be valid, often necessitating
additional post-processing or retry logic.

5.3.1. RESULTS

Coverage Analysis For each grammar engine and cat-
egory in the test suite, we calculate test coverage as the
proportion of passing test cases, reported in Figure 6 in
Appendix D Additionally, Table 6 aggregates these metrics,
counting categories with minimal coverage (> 0%), partial
coverage (> 25%), moderate coverage (> 50%), high cov-
erage (> 75%), and full coverage (100%). We indicate the
number of categories for which each framework achieves
the highest test coverage (either as the single highest or
as the sole leader) as well as the number of categories for
which each framework is the sole leader.
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Coverage Outlines Llamacpp XGrammar Guidance

Minimal coverage (>0%) 20 21 28 30
Partial coverage (>25%) 11 11 16 25
Moderate coverage (>50%) 2 5 3 21
High coverage (>75%) 0 2 1 17
Full coverage (100%) 0 1 1 13
Tied for highest (>0%) 4 6 14 25
Single highest 1 0 10 19

Table 6. Number of categories with a given level of coverage. Each row represents a cumulative coverage threshold, with higher thresholds
indicating stricter levels of success. Bold numbers indicate the framework with the highest value in that row.

• Overall Performance: Guidance outperforms other
engines at all coverage levels, achieving full coverage
on 13 categories and moderate coverage on 21. In
comparison, Llamacpp and XGrammar have full cov-
erage on only one category and moderate coverage on
five and three categories, respectively, while Outlines
has no full coverage on any category and moderate
coverage on two categories.

• Single Highest: Guidance has the single highest cov-
erage in 19 categories, followed by XGrammar with
10, and Outlines with one, and Llamacpp with none.

Failure Analysis Table 5 provides a breakdown of failure
modes for each framework across the test suite, detailing
the number of categories with compilation errors, failures to
generate positive instances (over-constrained), and failures
to block negative instances (under-constrained). Overall,
Guidance demonstrates the fewest total failures, in particular
minimizing under-constrained errors. Outlines, Llamacpp,
and Guidance follow a consistent failure pattern, with most
errors occurring during compilation and over-constrained
failures being more frequent than under-constrained ones.
In contrast, XGrammar minimizes compilation errors but
shows the highest number of under-constrained failures,
indicating a trade-off favoring permissiveness.

We acknowledge that there is no straightforward correspon-
dence between test suite performance and empirical cover-
age. One reason for this is that not all features are equally
represented in real-world schemas. As a result, strong or
weak performance on specific features can have dispropor-
tionate impacts depending on their prevalence. Another
reason is under-constraining effectively delegates responsi-
bility to the LM, which may produce valid output despite a
lack of strict constraints. We emphasize that while under-
constraining can be a legitimate strategy, it requires careful
implementation and transparency to ensure reliability.

6. Quality
In principle, constrained decoding should not affect the
quality of the generated output as it only filters out the in-

valid tokens. However, things become more complicated
due to ambiguity of tokenization (Vivien, 2024; GuidanceAI,
2024a; Geng et al., 2024) and the distributional shifts caused
by the intervention (Geng et al., 2023; Tam et al., 2024). As
a hypothetical toy example, an LM might answer 89,000

instead of the correct 89000 in a GSM8K question. Con-
strained decoding can block the invalid token , , enforcing
structural compliance but potentially may cause the LM to
go out of distribution and generate 890000 instead. (Kurt,
2024b) argued that the performance decline observed in
previous studies (Tam et al., 2024) comes from inadequate
prompting, insufficient contextual information, and poorly
crafted schemas.

6.1. Setup

Kurt (2024b); Tam et al. (2024) have introduced a series of
tasks to investigate potential quality concerns in constrained
decoding, which we leverage and extend in this benchmark.
Specifically, we adopt the three reasoning tasks from these
studies to evaluate the impact of constrained decoding on
task accuracy, as detailed in Table 14. The simple output
structure of these tasks was designed to isolate the effects
of constrained decoding on reasoning, as outlined by (Tam
et al., 2024). For our experiments, we use the Llama-3.1-8B-
Instruct model to measure task performance. We follow the
original setup and prompt specifications from (Kurt, 2024b),
with full details provided in Appendix F.

We implement the following constraints for the first three
tasks: (1) Last Letter the output needs to be a concatena-
tion of letters from a-z; (2) Shuffle Objects the output needs
to be a single letter from A-E enclosed in parentheses; (3)
GSM8K the output is an valid integer or float number. The
outputs for all three tasks are structured as JSON objects
with two fields: "reasoning" and "answer", format-
ted as {"reasoning": <reasoning about the
answer>, "answer": <final answer>}.

6.2. Results

The results in Table 7 show that the constrained decoding,
regardless of the framework, achieves higher performance
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than the unconstrained setting. Among the frameworks eval-
uated, Guidance consistently delivers the best performance
across all tasks, with approximately a 3% improvement over
the LM-only approach in every task. We believe this may be
attributed to its token-healing implementation (GuidanceAI,
2024a).

Last Letters Shuffle Objects GSM8K
LM only 50.7% 52.6% 80.1%
XGrammar 51.2% 52.7% 83.7%
Llamacpp 52.0% 52.6% 82.4%
Outlines 53.3% 53.0% 81.6%
Guidance 54.0% 55.9% 83.8%

Table 7. Accuracy on the quality tasks.

7. Conclusion
We have proposed a comprehensive evaluation framework
for constrained decoding frameworks with JSON schemas,
focusing on efficiency, coverage, and output quality. We
introduced JSONSchemaBench, a benchmark comprising
10K real-world JSON schemas, to enable robust assessment
under realistic conditions. Our evaluation highlights both
the advancements and limitations of current state-of-the-art
constrained decoding frameworks. We hope our findings
and benchmark guide future research in structured gener-
ation, helping the community identify effective tools and
extend capabilities with constrained decoding.
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A. JSON Schema Collections Details
JSONSchemaBench includes a diverse collection of
schemas curated from multiple real-world applica-
tionsAttouche et al. (2022), designed to represent a wide
range of use cases:

Sources:

• GitHub (Baazizi et al., 2021): Extracted from open-
source repositories containing schema definitions, rep-
resenting practical, widely-used applications. Schemas
from GitHub are of various complexities, totaling
6,000 schemas. We split the collection into trivial
(fewer than 10 fields), easy (10–30 fields), medium
(30–100 fields), hard (100–500 fields), and ultra (more
than 500 fields), based on the total number of fields
in each JSON schema to reflect increasing complexity
and scale.

• Snowplow (Analytics, 2022): Sourced from event-
based analytics frameworks, showcasing schemas tai-
lored for event-driven data structures.

• Kubernetes (Kubernetes, 2022): Schemas defining
configurations for container orchestration systems,
highlighting schemas with intricate hierarchical struc-
tures.

• WashingtonPost (Post, 2022): Schemas for The
Washington Post’s ANS specification.

• GlaiveAI2K (GlaiveAI, 2024): 2,000 schemas ex-
tracted from a function-calling dataset. Each schema
represents a function signature.

• JSON Schema Store (Schema Store Org, 2014):
The largest collection of independent JSON schemas
in the world.

A.1. Data Processing

To ensure the quality and reliability of JSONSchemaBench,
we applied the following preprocessing steps:

1. Validation

• Verified schemas conform to the JSON Schema spec-
ification using the jsonschema library in Python,
specifically targeting the Draft2020-12 version.
Drop invalid schemas.

• Identified additional invalid schemas using validators
from Rust and JavaScript libraries.

2. Cleaning

• Deduplicate: Removed duplicate schemas to elimi-
nate redundancy and maintain a diverse dataset. Key
ordering within schemas was ignored when determin-
ing duplicates.
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Dataset Count Size (KB) Field Count Max Fan-Out Schema Depth
Med / Max Med / Max Med / Max Med / Max

GlaiveAI-2K 1707 0.5 / 1.2 21 / 44 4 / 7 5 / 8
Github-Trivial 444 0.2 / 10.8 6 / 9 4 / 9 2 / 6
Github-Easy 1943 0.5 / 20.3 18 / 29 5 / 19 4 / 10
Snowplow 403 0.9 / 15.6 37 / 450 7 / 131 3 / 13
Github-Medium 1976 1.5 / 58.3 51 / 99 8 / 42 6 / 15
Kubernetes 1064 2.7 / 818.6 41 / 11720 5 / 600 5 / 7
Washington Post 125 1.7 / 81.1 44 / 2093 7 / 84 4 / 10
Github-Hard 1240 5.1 / 136.1 175 / 498 18 / 133 8 / 25
JSONSchemaStore 492 5.9 / 2934.8 155 / 108292 14 / 6543 6 / 22
Github-Ultra 164 25.8 / 359.6 694 / 6919 37 / 412 8 / 23

Table 8. Baisc statistics of the datasets used in the experiments.

• Empty Schema: Excluded schemas that were lacking
meaningful constraints, effectively “empty.”

• Unresolved References: Removed schemas contain-
ing unresolved $ref references to external URLs.

• Schema Version Fixes: Corrected mismatched or
missing draft versions.

• Extraneous Field Removal: Eliminated unrelated
fields such as command, config, path, and
controls.

• Regex Escaping: Fixed escaping issues in regular ex-
pressions to ensure validity.

• Schema Extraction: Extracted schemas embedded
within non-root levels of JSON files.

A.2. Draft versions

A.3. Feature Distribution

We count the appearance of each feature (keyword) in the
10K schemas and show the most frequent features in Fig-
ure 2a. We separately plot usage of the format key-
word, which is used to specify format of string such as
date-time, email, uri. This is worth highlighted be-
cause each of these formats can be quite complex to imple-
ment on its own. The distribution of formats used is shown
in Figure 2b.

B. Coverage Experiment Details
The prompting template used for the coverage experiment
is shown in Figure 3.

Decoding Method We use greedy decoding with no top
P or top K sampling for all the experiments. We only get
one output from the model, which we will use to validate
the schema compliance. It’s totally plausible to sample
more outputs and validate them all, and it might detect

more schema violations. The fact that we only sample the
top 1 output may quantify our empirical coverage as Top 1
Empirical Coverage.

Validation We use the jsonschema library with the
Draft-2020-12 version of the JSON Schema standard to val-
idate the generated JSON object. We turn on the ‘format’
checks, which are not enabled by default in Python. Strictly
speaking, the jsonschema library doesn’t guarantee the
validation of all the schema constraints, even with the ‘for-
mat’ checks enabled. It is possible, though very rare, for a
schema-noncompliant output to be validated as compliant
by the jsonschema library, leading to a slight overesti-
mation of empirical coverage. However, such occurrences
are corner cases and happen infrequently.

C. Theoretical Coverage Details
Definition C.1 (Theoretical Coverage). A schema is consid-
ered theoretically covered if all of its features are supported
by the grammar engine.

The theoretical coverage, noted as CTheoretical, measures the
proportion of JSON schemas that a grammar engine sup-
ports based on its implementation. It doesn’t involve any
model inference or experiments and is solely based on the
grammar engine’s implementation. CTheoretical is an upper
bound of the true coverage, which cannot be empirically
measured due to the infinite number of possible generations
under the schema constraints.

Overall, the theoretical coverage provides a good indication
of the grammar engine’s capability to support a wide range
of schema constraints.

In our experiment, the theoretical coverage for each frame-
work was determined based on the documentation and re-
sources listed in Table 10.

The theoretical support for each feature in JSON Schema is
summarized in Figure 4
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draft-04 draft-06 draft-07 2019-09 2020-12 unknown

Github-easy 1310 54 136 0 5 438
Github-hard 841 30 87 0 23 259
Github-medium 1221 80 140 0 7 528
JsonSchemaStore 199 5 268 5 11 4
Kubernetes 0 0 0 0 0 1087
Snowplow 0 0 0 0 0 408
WashingtonPost 125 0 0 0 0 0
Glaiveai2K 0 0 0 0 0 1707
total 4097 193 706 5 50 5155

Table 9. JSON Schema Draft Version Counts

(a) Feature Count in the 10K Schemas (b) Format keyword distribution

Figure 2. Feature and Format constraint distribution.

The theoretical coverage of each grammar engine is summa-
rized in Table 11.

D. JSON Schema Test Suite Experiment
Details

We evaluated each constrained decoding framework’s perfor-
mance on the JSON Schema Test Suite using the following
criteria: a framework is considered to pass a test case if
it permits generating every valid instance in the test case
while preventing the generation of every invalid instance.
Some test cases consist exclusively of invalid instances,
such as those involving unsatisfiable schemas, i.e., schemas
for which no valid instances exist. In these cases, engines
raising compile-time errors were allowed to pass.

Cleaning We removed the ’format’ category of tests, as
the current JSON Schema standard mandates that this key-
word be ignored entirely by default. The test suite comes
bundled with an ’optional’ set of tests, including tests for
each officially recognized value of the ’format’ keyword.
We hope to extend this work to include these optional tests
in a follow-up.

Furthermore, some tests require external resources in the
form of JSON schemas available at a remote URL. We
dropped these tests from the analysis, as the constrained
decoding libraries discussed in the current work do not fetch
these resources by default. After filtering out these tests, we
are left with 43 of the original 45 test categories.

Implementation To check whether a given framework ac-
cepts or blocks the generation of a particular JSON instance,
we tokenize5 JSON-serialized form of the instance and walk
the framework’s constraints forward one token at a time,
essentially simulating the generation process of an LLM
attempting to produce the given token sequence:

• XGrammar directly expose an interface for updating
the token mask after inserting a token and checking
validity.

• Outlines does not expose a public interface for inter-
acting with the token mask, but outlines-core,
which outlines is built on top of, is easily adapted

5The particular choice of tokenizer is not particularly important,
but we use the Llama 3.1 tokenizer for consistency with our other
experiments.
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Prompt Template for JSON Generation

System Message:
You need to generate a JSON object that matches the schema below.

Demo Examples:
## Input Schema: [JSON schema]
## Expected Output: [JSON object matching the schema]
...

Figure 3. Prompt template used to generate JSON objects in the coverage experiment.

Frameworks Lib Version Release Date JSON Schema Support Documentation

Guidance 0.2.0rc 2024.11.26 LLGuidance Documentation
Llamacpp 0.3.2 2024.11.16 llama.cpp JSON Schema to gbnf Conversion
XGrammar 0.1.6 2024.12.07 XGrammar JSON Schema to gbnf Conversion
Outlines 0.1.8 2024.12.06 Outlines JSON Schema to Regex Conversion
OpenAI UNK UNK OpenAI Structured Output API
Gemini 0.8.3 2024.10.31 Gemini Structured Output Content Types

Table 10. Grammar Engine Documentation and Resources

for this purpose.

• Similarly, Guidance does not expose a public interface
for interacting with the token mask, but llguidance,
which guidance is built on top of, is easily adapted
for this purpose.

• Llamacpp does not expose this interface, but it shares a
common grammar-specification language with XGram-
mar. We use llamacpp to generate GGML BNF
and check token-sequence validity using xgrammar’s
interface.

E. Efficiency Experiment Details
For efficiency experiments, the results depend on both the
size of the model and the tokenizer’s vocabulary size. We
used Llama-3.1-8B-Instruct (quantized to Q8bit) with a
128K token vocabulary to achieve a balance between com-
putational efficiency and model capability.

Below, we outline specific considerations related to gram-
mar and prefix caching:

• Grammar Cache (Compilation): Since each schema
in the dataset is unique, caching grammar compilations
does not offer any benefits.

• Prefix Cache (LLM Inference): We implement pre-
fix caching during LLM inference for all cases to en-
hance efficiency by reusing computed results where
applicable.

F. Quality Experiment Details
Prompt and JSON Schema For the task of Shuffle Ob-
jects, and GSM8K, we use the same prompt and JSON
schema from the dottxt’s ”let me speak freely” rebuttal.

For the task of Last Letter, we make a slight modification
because the original prompt used was a bad example as
pointed out by (Kurt, 2024b). We also put it into a JSON
format to better align with the other tasks.

Figure 8 reveals non-empty exclusive regions for each en-
gine, indicating that no single engine outperforms the others
across all instances.
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Dataset LM only Guidance Llamacpp Outlines XGrammar OpenAI Gemini

GlaiveAI 0.00 0.96 0.95 0.95 0.87 0.87 0.87
GitHub Easy 0.00 0.87 0.83 0.75 0.65 0.31 0.31
Snowplow 0.00 0.80 0.74 0.58 NA 0.29 NA
GitHub Medium 0.00 0.73 0.69 0.57 0.49 0.22 NA
Kubernetes 0.00 0.58 0.58 0.58 0.58 0.40 NA
Washington Post 0.00 0.70 0.64 0.63 0.62 0.29 NA
GitHub Hard 0.00 0.54 0.49 0.38 0.33 0.00 NA
JsonSchemaStore 0.00 0.31 0.24 0.20 0.13 0.00 NA

Table 11. Theoretical coverage across datasets.

Dataset Framework GCT (s) TTFT (s) TPOT (ms) TGT (s) Output Tokens (FF)
GlaiveAI LLM only NA 0.10 15.40 1.08 64.94 (00.00)

Guidance 0.00 0.24 6.37 0.50 41.56 (15.70)
Llamacpp 0.05 0.20 29.98 1.47 43.18 (00.00)
Outlines 3.48 3.65 30.33 4.84 40.39 (00.00)

GitHub Easy LLM only NA 0.10 15.83 0.95 53.91 (00.00)
Guidance 0.00 0.34 7.44 0.60 34.92 (10.02)
Llamacpp 0.05 0.18 27.22 1.10 33.93 (00.00)
Outlines 3.71 3.97 39.78 5.29 34.19 (00.00)

Snowplow LLM only NA 0.11 16.23 1.01 55.31 (00.00)
Guidance 0.00 0.28 6.55 0.51 36.77 (14.50)
Llamacpp 0.05 0.20 28.90 1.24 37.21 (00.00)
Outlines 3.91 4.14 42.66 5.65 35.65 (00.00)

GitHub Medium LLM only NA 0.20 16.68 2.56 142.10 (00.00)
Guidance 0.01 0.54 7.57 1.29 99.66 (31.42)
Llamacpp 0.06 0.30 29.08 2.85 87.71 (00.00)
Outlines 8.05 8.38 46.57 12.23 84.64 (00.00)

Kubernetes LLM only NA 0.16 15.32 0.84 44.38 (00.00)
Guidance 0.01 0.45 9.47 0.71 28.75 (04.40)
Llamacpp 0.05 0.28 28.04 1.06 28.09 (00.00)
Outlines 5.29 5.55 46.10 6.56 22.26 (00.00)

Table 12. Efficiency metrics for different engines with LlamaCpp as the inference engine. GCT: Grammar Compilation Time, TTFT:
Time to First Token, TPOT: Time Per Output Token, TGT: Total Generation Time, FF: Fast-Forwarded output tokens. Bold values
indicate the smallest in each column for GCT, TTFT, TPOT, and TGT. All values are median of the samples.

Dataset Framework GCT (s) TTFT (s) TPOT (ms) TGT (s) Output Tokens (FF)
GlaiveAI Guidance 0.01 0.36 36.92 1.87 41.45(16.76)

XGrammar 0.12 0.30 66.78 2.87 39.47(00.00)

GitHub Easy Guidance 0.01 0.37 42.03 1.60 27.67(06.75)
XGrammar 0.11 0.33 65.57 4.07 59.45(00.00)

GitHub Medium Guidance 0.01 0.55 44.21 4.84 96.31(26.93)
XGrammar 0.20 0.48 65.51 6.53 92.93(00.00)

GitHub Hard Guidance 0.01 0.73 35.88 10.25 211.40(101.40)
XGrammar 0.30 0.65 65.20 14.99 221.40(00.00)

Table 13. Efficiency metrics for different engines with Hugging Face Transformers as the inference engine. All values are median of
the samples.
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Figure 4. Feature checklist for different structured output engines

Task Example Structure Metric
Last Letter Input: Ian Peter Bernard Stephen

Output: nrdn
CoT reasoning + answer
in a− z

Case-sensitive exact
match

Shuffle Objects Input: Sequence of exchanges among individu-
als + choices
Output: A-E

CoT reasoning + answer
in A− E

Exact match

GSM8K Input: Basic calculation problems
Output: Number, e.g., 8

CoT reasoning + answer
as integer

Number exact match

Table 14. Task Descriptions and Structures
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Figure 5. Illustration of over-constrained and under-constrained.
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Figure 6. JSON Schema test suite coverage by category. Each cell represents the proportion of passing tests for a given category-framework
pair, with darker shades indicating higher coverage. A single asterisk (*) marks frameworks tied for the highest (non-zero) coverage,
while a double asterisk (**) marks the framework with the single highest coverage in the category.
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Prompt Template for GSM8K

System Message:
You are an expert in solving grade school math tasks. You will be presented with a grade-school math word problem
and be asked to solve it. Before answering, you should reason about the problem (using the ”reasoning” field
in the JSON response format described below). Always respond with JSON in the format: {"reasoning":
<reasoning about the answer>, "answer": <final answer>}. The ”reasoning” field con-
tains your logical explanation, and the ”answer” field contains the final numeric result.

Demo Examples:

## Input: "[example question]"
## Output: "reasoning": "[example reasoning]", "answer": [example answer]

...

Figure 7. Prompt template for solving GSM8K with JSON re-
sponses.
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Figure 8. Overlap of Correct Instances Across Models on GSM8K
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