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Figure 1. SkipInject: our method uses the l=4 and l=5 skip connections of Stable Diffusion to obtain flexible content and style transforma-
tions. From a painted “content image” of a bird, the model smoothly modifies the subject to resemble various species (e.g., sparrow, eagle)
while retaining the overall scene. A generated image of foxes is transformed into “three white robots” and “three wolves in the snow,”,
with coherent and realistic alterations. Furthermore, the styles of the two content images are altered holistically, in aesthetics, subjects, and
settings.

Abstract

Recent advances in diffusion models for image genera-001
tion have led to detailed examinations of several compo-002
nents within the U-Net architecture for image editing. While003
previous studies have focused on the bottleneck layer (h-004
space), cross-attention, self-attention, and decoding layers,005
the overall role of the skip connections of the U-Net it-006
self has not been specifically addressed. We conduct thor-007
ough analyses on the role of the skip connections and find008
that the residual connections passed by the third encoder009
block carry most of the spatial information of the recon-010
structed image, splitting the content from the style, passed011
by the remaining stream in the opposed decoding layer.012
We show that injecting the representations from this block013
can be used for text-based editing, precise modifications,014
and style transfer. We compare our method, SkipInject, to015
state-of-the-art style transfer and image editing methods016
and demonstrate that our method obtains the best content017

alignment and optimal structural preservation tradeoff. 018

1. Introduction 019

Breakthroughs in diffusion models have unlocked unprece- 020
dented avenues for generating images and videos. Mod- 021
els such as Stable Diffusion [33], Midjourney, and Dall- 022
E [31] have driven this evolution, with their outputs cre- 023
ating a transformative shift across diverse creative domains. 024
Their influence reaches digital hobbyist circles, established 025
professional practices like illustration, graphic design, and 026
multimedia arts, and fosters innovative artistic exploration 027
and community collaboration. 028

Despite the enormous generative affordances of these 029
methods, broader output controllability is necessary for bet- 030
ter adoption in creative communities, often reliant on a 031
trial-and-error process of iterative refinement and on mood 032
boarding and inspiration. 033

While previous generations of image generation mod- 034
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Figure 2. Examples of image editing results on Wild-TI2I and
ImageNet-R-TI2I real and generated images.

els, including Variational Autoencoders [22] and Generative035
Adversarial Networks [20], leverage the latent space for im-036
age editing [14, 20, 37], diffusion models [16, 38] are based037
on a Markov chain denoising process and inherently lack a038
single latent space. In the context of U-Net-based diffusion039
models, training-free approaches to image editing focus on040
swapping different modules of the denoising architecture,041
including the self- and cross-attention modules and the h-042
space - the bottleneck of the U-Net. However, the skip con-043
nection - an essential element within the U-Net, aiding the044
transmission of long-range dependencies and the gradient045
propagation - has not been explored. In contrast to existing046
work, we focus on the former and its role in U-Net-based047
diffusion models.048

To better understand the role of this module, we address049
the following questions: (i) How and where is information050
represented in the skip connections of the U-Net? (ii) How051
does it influence image generation? (iii) When does this052
information arise during the denoising process?053

Interestingly, we observe that Stable Diffusion inter-054
nally disentangles content from style within the third en-055
coder/decoder block, with the content passing through the056
skip connection and the style through the main flow.057

We find that injecting the third group of connections pro-058
duced by the encoder from image A to image B transfers the059
spatial configuration of image A onto image B. Conversely,060
we find that image B transfers the style to image A using061
the same injection, indicating that the corresponding third062
decoder block carries the style information. Additionally,063
leveraging the injection timestep controls the appearance of064
the background of image B over image A, and modulating065
the mixing on the embedding offers control of the strength066
of the injection.067

We demonstrate that an informed use of the properties068
of Stable Diffusion can achieve state-of-the-art performance069
on a wide variety of tasks, offering ample control over the070

Figure 3. Image editing results on generated faces. We show pre-
cise transformations ranging from subtle changes, like makeup and
hairstyle adjustments, to more global effects, including zombie-
like effects. Our model preserves the core identity of each subject,
maintaining facial structure.

intensity and nature of the output. In Sec. 5, we highlight 071
the superiority of our method in achieving text-based image 072
editing and style transfer and show preliminary results on 073
fine-grained feature editing in Fig. 3. 074

To summarize, we contribute as follows: 075
• We investigate the role of the skip connections in the U- 076

Net of Stable Diffusion, assessing their properties, their 077
influence on the image, and variation across time steps. 078

• We propose an efficient and controllable image editing 079
method and prove superiority or on-par SOTA perfor- 080
mance on transferring content and style. 081

• Lastly, we propose three alternatives to modulate the edit- 082
ing effect. 083

2. Related work 084

In this section, we shortly explain the importance of latent 085
space studies in the contexts of media studies and digital 086
arts to further motivate the focus of this paper. Successively, 087
we cover image editing methods on Stable Diffusion. 088

2.1. Latent space in the arts and humanities 089

The latent space, understood strictly as the space where 090
the data lies in the bottleneck layer of a model, is a top- 091
ical entity for studying and understanding models beyond 092
technical fields. These spaces are studied as n-dimensional 093
cultural objects [32]. The latent spaces make continuous 094
and spatialized the cultural knowledge fed into or generated 095
by the model, creating an implicit meaningful organization 096
[36]. These representations can be then studied as a map of 097
culture [43], and can, in turn, be used to study models as 098
cultural snapshots of reality [7, 17, 44, 45]. 099

Digital artists and creative industries extensively used la- 100
tent space-rooted methodologies, such as latent space walks 101
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Figure 4. Examples of style transfer results on the Artist dataset [19].

and interpolation, to take advantage of the semantic con-102
tinuity of this space. Initiating with DeepDream [2], the103
latent space continuity, opposed to reality’s fragmentation,104
creates an attractive space of artistic hallucination [1].105

2.2. Image manipulation106

In this section, we present some of the pivotal works in this107
direction, organized by what element is used for editing.108

Latent code-based editing. Asyrp [23] uses the h-space109
and CLIP supervision to find a direction of modification110
in the space at each timestep, to add to the original latent111
in the denoising process through a modified Diffusion De-112
terministic Implicit Model (DDIM) [39]. Boundary diffu-113
sion [48], on the other side, computes a modification direc-114
tion that is injected only at the mixing step, testing both ϵ-115
space and h-space. Haas et al. [11], among other findings,116
show that injecting the h-space of an image into another117
image changes the high-level semantics while retaining the118
structure and background. InjectFusion [18] observe the119
same phenomenon, implementing a calibrated procedure to120
inject the new h-space, maintaining the same correlation121
to the skip connections. These methods are mostly based122
on unconditional DDPM-based models trained on specific123
datasets for e.g. CelebA.124

Module-based editing. Prompt2Prompt (P2P) [13] sub-125
stitute the cross-attentions of the U-Net layers to obtain126
text-based image editing. Plug and Play (PnP) [42] find127
that accurate editing can be achieved by injecting the spa-128
tial features of the middle decoding and self-attention lay-129
ers. Closely related to the two previous works, Liu et130
al. [24] investigate the role of the cross-attention and the131
self-attention in the different feature layers, observing again132
that intermediate features are the most salient. Finally,133
Artist [19] shows that using the middle residual blocks as134
PnP to control the content and the cross-attentions to inform135
the style obtains successful text-driven stylization.136

Text-based editing. A common alternative for diffusion 137
models leverages the manipulation of text conditioning. 138
Methods like DiffusionCLIP [21] and InstructPix2Pix [4] 139
fine-tune the model or the text conditioning to obtain de- 140
sired edits. Various successful methods tackle personaliz- 141
ing the outputs to specific entities such as Dreambooth [35]. 142
Lastly, methods like SDEdit [8] leverage partial inversion 143
and text-guided generation to achieve fast, training-free 144
editing. 145

Adapters. Other popular methods leverage adapters, in- 146
cluding ControlNet [46] and T2IAdapter [27] to increase 147
the modalities that can be used to control the diffusion pro- 148
cess. In fact, they train an ad-hoc adapter for each ad- 149
ditional modality, obtaining perceptually interesting out- 150
comes. To increase the manipulability, other methods make 151
use of specifically trained LoRA adapters, like PreciseCon- 152
trol [28] CTRLorALTer [40], LoRAdapter [10], which can 153
achieve controlled modifications for the trained semantic. 154

2.3. Novelty 155

Compared to existing methods, our approach is the simplest 156
but allows the greatest control, using numerous plug-ins to 157
modulate the effect and allowing, in the same pipeline, edit- 158
ing the content and the style of the image. Lastly, we show 159
that our method performs well on Turbo alternatives, ob- 160
taining the fastest results. 161

3. Preliminaries 162

In this section, we introduce Latent Diffusion Models 163
(LDMs) as introduced by Rombachet al. [33], with a par- 164
ticular emphasis on its U-Net [34]. 165

3.1. Latent Diffusion 166

Latent Diffusion Models (LDMs) overcome pixel-based 167
diffusion models’ high computational and memory costs by 168
conducting the diffusion process in a reduced latent space. 169
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To achieve this, a pre-trained autoencoder converts an im-170
age into a compact latent representation z0 of 1/8 the orig-171
inal per side size. The diffusion process is then applied to172
z0, which substantially lowers the resource demands during173
training and sampling. During training, the model is opti-174
mized to predict the noise via a neural network, the U-Net.175

3.2. Components of the U-Net176

In our work, we leverage a pre-trained text-conditioned La-177
tent Diffusion Model, which employs a U-Net backbone,178
popularly recognized as Stable Diffusion (versions 1.4, 1.5,179
2, and 2.1). In Stable Diffusion, the conventional U-Net ar-180
chitecture [34] is enhanced with attention mechanisms, in-181
cluding self- and cross-attention blocks.182

The residual block is inputted the latent features ϕl−1
t183

from the previous layer l−1 and outputs both the latent fea-184
tures to be inputted to the following block ϕl

t, and the skip185
connections f l

t concatenated directly to the corresponding186
decoding layer, as:187

f l
t , ϕ

l
t = ResBlock(ϕl−1

t ), (1)188

where ResBlock includes convolutional layers.189
Stable Diffusion 1-2 models feature four encoding190

blocks, a bottleneck, and four mirroring decoding blocks.191
Each of the blocks contains three subblocks, each passing192
one skip connection. In the remainder of the paper, we re-193
fer to the skip connections by number, where l = 0 is the194
first skip connection and l = 12 is the one preceding the195
blottleneck.196

4. Analysis197

As explained in the previous section, skip connections are a198
critical component of the U-Net backbone, allowing long-199
range information flow and avoiding the vanishing gradient200
problem. However, their role within the Stable Diffusion201
models remains unknown. In this section, we present our202
investigation of the role of each skip connection, the time203
steps, and the properties of these embeddings to shed some204
light on these behaviors.205

4.1. The role of skip connections206

To analyze the effect of each skip connection, we store the207
skip connections of an injection image A and test the injec-208
tion of each skip connection and combinations of them into209
the original image B. We start from a common initial noise210
zt. We follow two different noise selection strategies: (i)211
we randomly sample a zt from a Gaussian distribution, or212
(ii) we use the result of the DDIM inversion of either A, i.e.,213
zAt , or B, i.e., zBt . We first fully denoise zt with the prompt214
of image A, pA, and store the skip connection f l

t at each215
time-step t. Successively, we denoise zt using the prompt216
of image B, pB . At each time-step from tstart to tend, we217

Figure 5. Visualization of the effect of switching each group of
skip connections. We show the result of each skip connection
switched on the respective swapped group. We observe that the h-
space has an almost imperceptible effect on the final image, con-
trary to research into the disentanglement of DDPMs. The first
group of skip connections closest to the h-space similarly has a
limited effect, whereas the most coherent blending occurs in the
second group of skip connections. The third group has no coher-
ent effect on the image, generating random distortions, while the
fourth performs akin to raw pixel blending.

substitute the skip connection f l
t of image A. We show an 218

example of the effect we obtain by substituting each group 219
of three skip connections (group 1: l = 1, 2, 3; group 2: 220
l = 4, 5, 6; group 3: l = 7, 8, 9; group 4: l = 10, 11, 12) 221
and the h-space in Fig. 5. 222

Previous studies [19, 24, 42] indicate that the middle de- 223
coding layers or the middle cross- and self-attention blocks 224
are the most determinant of the content, suggesting that 225
the structural information is formed roughly halfway in the 226
decoding blocks. While our method aligns with previous 227
findings, being the third group of skip connections roughly 228
halfway in the depth of the model, it suggests that this in- 229
formation is already encoded in the encoder and passed 230
through the decoder via the residual block. 231

Accepting standard distinctions of foreground- 232
background and content-style1, we observe that the 233
injection of the second group of skip connections of image 234
A into image B preserves the background style of image 235
B, in this case, the color scheme, the foreground style of 236
image B, the stripes of the zebra, the background content 237
of image A, the Savannah, and the foreground content of 238
image A, the silhouette of the elephant. 239

4.2. The effect of the timesteps 240

In this section, we investigate the role of timesteps in the 241
diffusion process (see Fig. 7) by injecting the skip connec- 242

1While these terms do not have a precise definition, by content, we
generally mean the structure of the object, and by style, the colors, textures,
and patterns.
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Figure 6. Close up into the second group of skip connections. The
image shows the effect of this group’s different combinations of
connections. From the bottom to the top, we injected only one of
the skip connections, groups of two, and finally, all three. Specifi-
cally, we observe that the combination of l = 4 and l = 5 carry the
most information: l = 5 injected alone creates a minimal change
in the image but, when combined with l = 4, determines the spa-
tial structure of the output. l = 4 alone conveys structure only of
the foreground.

tion of image A into image B at tstart ̸= 1000 and tend ̸= 0.243
We observe that the first 150 steps (tstart = 850) have244
little impact on the final image, while the last 150 steps245
(tend = 150) only serve as refinement, as found also in246
Asyrp [23]. We find that the skip connection of image A247
or image B for the first 500 denoising steps determines the248
content of the foreground, while the last 500 steps deter-249
mine the background.250

Figure 7. Visualization of the effect of the injection timesteps. We
observe that starting the injection later at tstart < 850 leads to
distortions in the foreground content while ending the denoising
earlier at tend > 150 reveals the background content of the orig-
inal image. This phenomenon is consistent for every image we
generate.

4.3. Modulating the effect251

To achieve more controllable results, we investigate meth-252
ods to modulate the intensity of the change.253

Injection classifier-free guidance. Inspired by254
classifier-free guidance [15], we test the use of a linear com-255
bination of the injected embedding and original embedding256
of the changed skip connections, parametrized by γ to bal-257
ance the intensity of the mix. At each denoising step, the258

injected embedding becomes: 259

fA(t, l) = fB(t, l) + γ(fA(t, l)− fB(t, l)) (2) 260

where t is the denoising timestep and l the skip connection 261
layer. 262

Depth-wise alternation of the spatial embedding of 263
the skip connections. The h-space and each skip con- 264
nection are high-dimensional matrices with depth, width, 265
and height channels. For instance, the layer l = 4 for a 266
512× 512 output size is 1280× 16× 16, so depth = 1280 267
and width = height = 16, as opposed to traditional latent 268
spaces of GANs and VAEs of size 512. We hypothesize 269
that the information stored in these embeddings is, there- 270
fore, highly redundant and attempt to investigate the nature 271
of these spaces’ spatial features (width and height). We plot 272
these embeddings as 1280 images of 16 × 16 pixels and 273
we find that over 90% of the kernels show the same shape 274
with varying average or inverse intensities. Therefore, we 275
suspect redundancy in the depth channel. 276

Figure 8. Visualization of modulation methods. We show the ef-
fects of the two modulation methods at γ = r ∈ [0, 1]. We observe
that both methods achieve a successful modulation of the intensity
of the effect and empirically observe that the use of both methods
together obtains the best results. The advantage of the guidance
is that it can surpass the effect above 1, but, differently from the
second modulation method, it struggles in areas around 1, where
the image should be similar to the non-modulated effect.

We leverage this observation to introduce an additional 277
modulation method: we alternate at a ratio r the kernels 278
of fA(t, l) with those of fB(t, l). That is to say, for every 279
1280× r 16× 16 kernels, we inject the injection kernel and 280
maintain the original one in the other cases. 281

In sum, the injection timing can control whether the 282
background is retained or replaced with that of the origi- 283
nal image, and the injection strength can be further modu- 284
lated using classifier-free guidance and depth-channel alter- 285
nation. 286

5. Experiments 287

We evaluate our method on image editing and style trans- 288
fer, providing both quantitative metrics and qualitative 289
results. To evaluate our method on text-guided image- 290
to-image and text-to-image translation, we follow estab- 291
lished benchmarks, utilizing the Wild-TI2I dataset [42] and 292
ImageNet-R-TI2I [42]. We adopt the protocol outlined in 293
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Figure 9. Qualitative comparison of different prompt-guided editing methods. We use as reference results proposed by [24] thus, we do
not cherry-pick the results. From left to right: source image, target prompt, our result, Free Prompt Editing, P2P [12], PnP [41], SDEdit
[26] with two noise levels, DiffEdit [9], Pix2pixzero [25], Shape-guided [29], MasaCtrl [5], and InstructPix2Pix [3] (a fine-tuning-based
method).

[19] for style transfer evaluation to text-guided style trans-294
fer.295

Our evaluation employs two complementary metrics.296
First, text-image CLIP similarity quantifies how closely the297
generated images align with the style or edit prompts [30].298
Second, the distance between DINO ViT self-similarity [6]299
assesses the degree of structure preservation. Additionally,300
we use LPIPS [47] to measure perceptual similarity, where301
lower values indicate better content retention.302

We implement our method with the Diffusers303
library, using a custom 2DUNetConditional304
model based on pre-trained weights from305
stabilityai/stable-diffusion-2-base.306
For image-to-image translation, we apply the307
DDIMInverseScheduler with 50 steps, generat-308
ing images with the UniPCMultistepScheduler309
using 50 inference steps and a guidance scale of 7.5.310

cd311

5.1. Image editing312

Qualitative Analysis provides a comparative analysis with313
previous methods. Competing methods frequently exhibit314
issues: Free Prompt Editing lacks style specificity (e.g.,315
”penguin embroidery” fails to capture the embroidery tex-316
ture), Prompt2Prompt does not follow the prompt effec-317
tively (the horse is not in the museum), and Plug-and-Play318
leads to feature distortions (e.g., “silver robot”). SDEdit319
struggles with structural integrity at high noise levels, while320
DiffEdit and MaCaCntrl lose context (e.g., the ”teddy bear”321
is distorted). In contrast, our model consistently deliv-322
ers prompt-specific transformations with high structural fi-323

delity, demonstrating robustness across various styles and 324
editing demands. 325

Quantitative analysis Quantitatively, we present the per- 326
formance of our methods on the ImageNet-R-TI2I and 327
Wild benchmarks. In Fig 10 we evaluate our model with 328
CLIP cosine similarity (indicating prompt fidelity) and 329
DINO-ViT self-similarity (indicating structural preserva- 330
tion). Across all benchmarks (Wild-TI2I, ImageNet-R- 331
TI2I, and Generated ImageNet-R-TI2I), our model con- 332
sistently balances high CLIP similarity with low DINO 333
self-similarity, outperforming other methods like SDEdit, 334
VQGAN-CLIP, and DiffuseIT in both text alignment and 335
structural accuracy. Notably, our approach consistently 336
places in the “Better” region, reflecting superior text fidelity 337
and structural integrity. 338

5.2. Style Transfer 339

Qualitative evaluation Figure 11 offers a comparative 340
analysis, highlighting distinctive performance variations 341
among competing models. Models like DiffStyler, CLIP- 342
Styler, and Plug-and-Play often compromise the fidelity of 343
the original content structure, leading to blurred or distorted 344
shapes, particularly in intricate or highly abstract styles. 345
NTI+P2P exhibits minimal style alteration, evident in the 346
“8-bit pixel art” transformation, where the ship closely re- 347
sembles the original. However, it is relevant to note that 348
while these models demonstrate varying degrees of style 349
application, evaluating artistic styles can be inherently arbi- 350
trary. Styles intended as artistic movements are sometimes 351
conflated with specific methods, making objective assess- 352
ment challenging. For instance, applying a ”Dadaism style” 353
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(b) ImageNet-R-TI2I
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(c) Generated ImageNet-R-TI2I

Figure 10. Quantitative evaluation. We measure CLIP cosine similarity (higher is better) and DINO-ViT self-similarity distance (lower
is better) to quantify the fidelity to text and preservation of structure, respectively. We report these metrics on three benchmarks: (a)
Wild-TI2I, (b) ImageNet-R-TI2I, and (c) Generated ImageNet-R-TI2I. [42]

Figure 11. Qualitative evaluation against current style transfer methods. We use the reference results by [19]
, and we do not do any cherry-picking.

prompt may focus on collage techniques rather than captur-354
ing the movement’s conceptual essence.355

In contrast, our model achieves a balanced and coher-356
ent output across styles, effectively preserving not only the357
content structure and the stylistic features but also adjusting358
the people, clothing, and objects in a historically coherent359
manner (as in Fig. 11). For example, in the “Impressionist360
painting” transformation, our model accurately replicates361
the brushstroke aesthetic and introduces a poppy field, typi-362
cal of Impressionist painters, while maintaining the original363
shape and posture of the horse. Nonetheless, our method in-364
herits certain biases from Stable Diffusion, resulting in in-365
accurate visual aesthetics for movements like Cubism, Fu-366
turism, and Dadaism despite successfully achieving stereo-367
typical modifications.368

In Fig. 12, we show a practical application of the style369
transfer features of our model, demonstrating interesting ap-370
plicability to styles presented by the creative communities371
adopting Midjourney and StabilityAI using both a prompt372
and an image for style transfer. Note that the latter has not373
been shown to work for competing works.374

Quantitative evaluation Our method, represented by l=4,5375

and l=4 in Table 1, demonstrates strong alignment with text 376
prompts while preserving content structure. On the CLIP 377
Alignment metric, the l=4 model achieves the highest score 378
of 28.55, with l=4,5 close behind at 26.27. These scores 379
indicate that our model adheres effectively to prompt guid- 380
ance, achieving transformations that accurately reflect the 381
target style. Regarding structural similarity, our l=4,5 model 382
attains an LPIPS score of 0.57, with l=4 following at 0.67, 383
demonstrating good content retention compared to most 384
baseline models. These lower LPIPS values suggest that 385
our approach maintains structural and perceptual fidelity to 386
the original content, even under significant stylistic transfor- 387
mations. Competing methods, such as DDIM (0.74), Diff- 388
Styler (0.72), and ControlNet-Depth (0.78), display higher 389
LPIPS scores, reflecting a greater degree of content distor- 390
tion. Artist shows competing performance while obtaining 391
inferior qualitative results. 392

Finally, in Fig. 13, we show the impressive editing re- 393
sults achieved on the turbo-distilled version of the model. 394
Previous works have not shown this applicability. 395
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Table 1. Evaluation of Different Style Transfer Models on the Artist Dataset [19], measuring Content Preservation (LPIPS) and Stylization
Prompt Alignment (CLIP Alignment).

Metric Ours (l=4,5) Ours (l=4) Artist DDIM NTI-P2P PnP DiffStyler InstructP2P ControlNet-Canny ControlNet-Depth CLIPStyler
LPIPS ↓ 0.57 0.67 0.62 0.74 0.67 0.67 0.72 0.47 0.72 0.78 0.51
CLIP Alignment ↑ 26.27 28.55 28.33 28.38 25.87 26.4 26.82 23.59 26.4 27.05 26.14

Figure 12. The AI Art online communities offer an incredible
wealth of information on style transfer in blogs such as Stable Dif-
fusion Art that could be leveraged to build applied benchmarks for
style transfer. In this figure, we show two interesting applications
of our method: the first consists of the transfer of closed-source
styles (e.g., styles used in Midjourney) to Stable Diffusion outputs
using single-image style transfer (on the left). The second lever-
ages the style prompts (with respective negative prompts) released
by StabilityAI to transfer the described styles to real images or se-
lected generated images (on the right).

6. Conclusion396

In conclusion, this paper explores the impact of U-Net397
skip connections in Stable Diffusion models, presenting a398
training-free, efficient approach - SkipInject - that enables399
high-quality text-guided image editing and style transfer.400
By systematically examining these skip connections, we ad-401
dress key questions about how spatial and stylistic informa-402
tion is encoded in the latent spaces of Stable Diffusion, the403
stages within the denoising process where they arise, and404
the structure of these spaces. Our findings reveal that spe-405
cific skip connections are fundamental in controlling con-406
tent and style, providing insight into how these components407
influence image generation.408

The proposed method leverages the l=4 and l=5 skip409
connections to achieve precise style and content transfer,410
demonstrating state-of-the-art or on-par performance across411
established benchmarks. In addition, we introduce three412
modulation techniques for controlled editing intensity, of-413

Figure 13. Example results of text-based image editing using Sta-
ble Diffusion Turbo with 1 step inference on wild-ti2i-fake.
The modifications obtained are coherent and cohesive, obtaining
radical changes and maintaining the original structure. Compared
to multi-step inference, the control over the background is more
limited.

fering flexible adjustments to meet diverse requirements. 414
Our approach currently relies on a single latent, limiting 415

its application from scenarios that require dual-image style 416
transfer. Future work will focus on extending SkipInject to 417
support two-image inputs for broader applications. 418
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