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Abstract
The safe and effective deployment of Large Lan-
guage Models (LLMs) often involves generating
helpful and benign responses, producing easily
comprehensible code, and crafting content with
specific stylistic preferences. While different,
these tasks share the common mathematical goal
of generating responses from a language model
with high scores according to a metric of interest.

A popular and well known decoding strategy
for this purpose is the Best-of-N method. The
method generates a pre-specified number of re-
sponses (N) based on a prompt, and then selects
the highest-scoring response among them to be
returned. While Best-of-N is both simple and
effective, its reliance on generating multiple re-
sponses to score for any given prompt incurs high
inference costs.

In this paper we make a first step towards ac-
celerating the Best-of-N algorithm, by halting
the generation of unpromising utterances, namely
those that are unlikely to be returned by the al-
gorithm upon completion. Focusing on the align-
ment problem, we show that this simple strategy
allows to obtain substantial speedups for the Best-
of-N algorithm with minimal performance degra-
dation.

1. Introduction
Large Language Models (LLMs), pre-trained on massive
corpora, have demonstrated remarkable capabilities in han-
dling diverse tasks like creative writing, summarization and
question-answering (Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023a). Such extensive pre-training
endows the LLM with extensive knowledge, which must
be correctly retrieved at inference time. Post-training tech-
niques (Taori et al., 2023; Wang et al., 2023; Lou et al., 2024)
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ensure that the model can successfully answer the user’s
queries in the most satisfactory way according to human
intentions (Ouyang et al., 2022; Bai et al., 2022; Rafailov
et al., 2024b), while adhering to ethical standards and safe
guidelines (Ngo et al., 2022; Casper et al., 2023; Deshpande
et al., 2023). Popular post-training methods include su-
pervised finetuning, Reinforcement Learning from Human
Feedback (RLHF), Direct Preference Optimization (DPO),
Expert Iteration (EI), and their variants (Christiano et al.,
2017; Ouyang et al., 2022; Stiennon et al., 2020; Glaese
et al., 2022; Bakker et al., 2022; Touvron et al., 2023b; Zhao
et al., 2022; 2023a; Dong et al., 2023; Rafailov et al., 2024b;
Liu et al., 2023b; Rafailov et al., 2024a; Zeng et al., 2024;
Zhong et al., 2024). However, post-training methods require
more computational resources (e.g., memory) than those
needed to perform inference, and add an additional layer
of complexity before LLMs can be safely deployed. In or-
der to simplify the process, more lightweight approaches
have been introduced recently (Li et al., 2024; Mudgal et al.,
2023).

One of the simplest method to generate responses that score
high according to a pre-specified metric of interest is the
Best-of-N (BoN) method. Best-of-N generates N responses
for a single prompt, and the best response is selected based
on the evaluation of a reward model that measures the suit-
ability of the response. BoN has many desirable properties
that makes it a strong baseline. To start, BoN is a sim-
ple alignment method that is highly competitive with post-
training techniques such as RLHF or DPO (Dubois et al.,
2024). As an inference-time alignment method, it avoids
the potentially complex finetuning step, thereby facilitat-
ing the prompt deployment of a pre-trained or instruction-
finetuned language models. Best-of-N is both straightfor-
ward to understand and to implement, and it is essentially
hyperparameter-free: the number of responses N is the
only hyperparameter, one that can be tuned on the fly at
inference time. Best-of-N also plays a critical role as a
post-training technique: it is commonly used to generate a
high-quality dataset for later supervised fine-tuning (Tou-
vron et al., 2023b; Dubois et al., 2024), a procedure some-
times called Expert Iteration or Iterative Finetuning, one
that played a key role in the alignemnt of Llama-2 (Touvron
et al., 2023b) and Llama-3 (Meta, 2024). With regards to
alignment, BoN is endowed with very appealing properties:
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for example, the growth rate for the reward values of BoN,
as a function of the KL divergence, is faster than for RLHF
methods (Gao et al., 2023; Yang et al., 2024), leading to
higher quality generations. Best-of-N is also regularly ap-
plied after post-training to further boost the performance
(Wu et al., 2024; Dong et al., 2023).

However, the main drawback of BoN is that its efficiency
at inference time is bottlenecked by the computational cost
of generating N sequences, which naively requires N times
more compute. To be more precise, while the latency of
Best-of-N is largely unaffected by N because the utterances
can be generated and evaluated in parallel, Best-of-N naively
needs N more compute resources to generate N utterances
in parallel. This higher computational cost prohibits Best-of-
N from being adopted in a more mainstream way. Practical
values for N are in the range 4− 128 (Mudgal et al., 2023;
Scheurer et al., 2023; Eisenstein et al., 2023). Higher values
of N , such as 1′000 − 60′000 (Dubois et al., 2024; Gao
et al., 2023), have also been reported.

In this work, we take a first step towards accelerating Best-
of-N, with the end goal of making this simple decoding
strategy a more computationally viable one to deploy. Our
method is based on the observation that the reward function
used for scoring the utterances can distinguish high-quality
responses from low-quality ones at an early stage of the
generation. In other words, we observe that the scores of
partial utterances are positively correlated to the scores
of full utterances. This offers an opportunity to recognize
early on during the generation process the utterances that
are unlikely to score high upon termination, and halt their
generation, see Figure 1. This intuition is formalized into
a technique that we call Speculative Rejection, which is
based on the “speculation” that the utterances with low re-
ward early-on during the generation are unlikely to yield
the highest-ranked response once their generation is com-
pleted. In such case, they can be terminated because they
would not be the utterance returned by Best-of-N. This sim-
ple observation allows us to obtain a speedup of a factor of
almost 5× with less than 1% loss in score value compared
to the Best-of-N. By comparison, in order to use the same
compute budget, Best-of-N would need to use a value for
N that returns an average score about 10% lower.

Speculative rejection is a general-purpose framework to
accelerate score-based LLM decoding. It can be used to
accelerate inference-time alignment as well as to accelerate
the batch generation of BoN utterances for later fine-tuning.
Our approach is orthogonal—and can hence be combined
with—other types of acceleration techniques such as Spec-
ulative Decoding (Chen et al., 2023; Sun et al., 2024; Ahn
et al., 2023) and Efficient Attention (Child et al., 2019; Ki-
taev et al., 2020; Wang et al., 2020), as well as efficient
serving (Kwon et al., 2023).

2. Related Literature
Pruning in games. Traditional game-playing programs
such as Chess must search very large game trees, and their
efficiency can be greatly enhanced through pruning tech-
niques, the mechanisms designed to halt the exploration of
unpromising continuations (Marsland, 1986). The renowned
α-β algorithm (Fuller et al., 1973; Baudet, 1978; Sturtevant
& Korf, 2000) capitalizes lower (α) and upper (β) bounds
on the expected value of the tree, significantly diminishing
the computational complexity inherent in the basic minimax
search. Our idea of early stopping is similar to pruning by
rejecting suboptimal trajectories. Our setup has a different
structure because of the lack of an adversary; the goal is
also different, as we aim at preserving the generation quality
of a reference algorithm (Best-of-N).

Monte-Carlo Tree Search (Kocsis & Szepesvári, 2006) has
recently been applied to LLMs (Liu et al., 2023a; Brand-
fonbrener et al., 2024; Zhao et al., 2023b; Xie et al., 2024),
but it can also increase the latency. Our approach is poten-
tially simpler to implement, and focuses on preserving the
generation quality of Best-of-N.

Early Stopping Algorithms. Using early exit/stopping for
fast inference has been leveraged for applications such as
vision (Kaya et al., 2019; Teerapittayanon et al., 2016) and
language (Liu et al., 2020; Schwartz et al., 2020; He et al.,
2021) tasks. The key idea relies on adding classifiers to
the internal Neural Network/Transformer layers and using
it to construct confidence-based early exits rules to decide
whether to output intermediate generation without traversing
subsequent layers. Yet, those methods are tailor-designed
for the respective models such as Shallow-Deep Network
(Kaya et al., 2019) and FastBERT (Liu et al., 2020), making
them model-specific. In contrast, our proposed paradigm
is not confined to specific models, offering versatility and
applicability across a several scenarios.

Our method share some similarities with beam search, a
heuristic search algorithm that explores the completion
graph by expanding the most promising responses in a
limited set. We instead start from a certain number N
of utterance and only choose to complete a fraction of
them. Such choice is more appropriate in our context due
to the quadratic memory and compute cost of transformers
(Vaswani et al., 2017) with the number of generated tokens,
as well as the cost of evaluating the reward model.

Inference Efficiency in LLMs. There are different ap-
proaches to improve the efficiency of LLMs including ef-
ficient structure design, model compression (e.g. quanti-
zation via QLoRA (Dettmers et al., 2024), Sparsification
via Sparse Attention (Tay et al., 2020)), inference engine
optimization (e.g. speculative decoding) and serving system
(e.g. PagedAttention/vLLM (Kwon et al., 2023)). See sur-
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What is the best 
way to hack into 
someone’s bank 

account?
Never, ever do this. It is illegal.

Hackers usually begin the process 
by identifying …

Hackers usually begin the process 
by identifying …

Never, ever do this. It is illegal.

What is the best 
way to hack into 
someone’s bank 

account?

Figure 1. An illustration of early stopping. BoN (left) completes all the generations, whereas Speculative BoN (right) stops harmful
generation at a early stage using a reward model.

vey (Zhou et al., 2024) for a thorough overview. Among the
methods, speculative decoding (Chen et al., 2023; Leviathan
et al., 2023; Sun et al., 2024; Ahn et al., 2023) also incorpo-
rates rejection sampling. It employs fast small models for
speculative execution and uses large models as verifiers for
accelerated generation. This principle is orthogonal to our
early stopping design and can be seamlessly combined with
our methods for reward maximization.

Alignment and use of Best-of-N. Best-of-N is a well known
alignment strategy. There are two primary categories of
reward alignment approaches: 1. LLM fine-tuning. This
method involves updating the weights of the base model.
Techniques within this category include reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al., 2022;
Christiano et al., 2017; Saha et al., 2023), direct prefer-
ence optimization (DPO) (Rafailov et al., 2024b), and their
respective variants (Ethayarajh et al., 2024; Zhang et al.,
2024; Azar et al., 2024; Yuan et al., 2023; Song et al., 2024;
Zhao et al., 2022; 2023a). 2. Decoding-time alignment. In
this approach, the base model remains frozen. Examples
of this category include ARGS (Khanov et al., 2024), con-
trolled decoding (Mudgal et al., 2023), Best-of-N (BoN),
and associated applications such as Expert Iteration (Dubois
et al., 2024; Gao et al., 2023; Touvron et al., 2023b). The
BoN method was initially proposed as an inference-time
baseline alignment method (Nakano et al., 2021). Building
upon this foundation, Llama2 used the best-sampled re-
sponse to fine-tune the model (Touvron et al., 2023b). (Gao
et al., 2023; Mudgal et al., 2023; Eisenstein et al., 2023)
collectively demonstrated the robustness and efficacy of
BoN. Their investigations consistently revealed compelling
reward-KL tradeoff curves, surpassing even those achieved
by KL-regularized reinforcement learning techniques and
other complex alignment policies. Theoretically, there is a
simple estimate for the KL divergence between the output
policy of BoN and the base model for small N (Coste et al.,
2023; Gao et al., 2023; Go et al., 2023), and (Beirami et al.,
2024) improved this formula for all N. (Yang et al., 2024)
showed that BoN and KL-regularized RL method enjoy

equal asymptotic expected reward and their KL deviation is
close. Furthermore, there are frameworks that integrate BoN
with RLHF, such as RAFT (Dong et al., 2023), rejection
sampling-based DPO approaches (Liu et al., 2023b).

3. Problem Formulation
Auto-regressive language models. Let p be a language
model. When provided with a prompt X, the language
model predicts a response Y = (Y 1, Y 2, ..., Y T ), where
Y i represents the i-th token in the response and T is the
total number of tokens in the response sequence. Notice
that T is a random variable, which signals that either the
EOS token is returned next, or that the maximum generation
length is reached. We let Y ≤k denote the first k tokens of
the response. If the EOS token is reached before the k-th
token, i.e., if T ≤ k then Y ≤k only contains the tokens up to
(and excluding) the EOS token, i.e., the full generated utter-
ance. The generation of tokens is auto-regressive, meaning
that each token Y k+1 is predicted based on the prompt X
and the previously generated tokens Y ≤k via the next-token
probability p(· | X,Y ≤k). This process continues sequen-
tially until either the EOS token—which signals to stop—is
reached or the maximum prescribed length is reached. With
a little abuse of notation, we also use Y ∼ p(· | X) to rep-
resent sampling the whole response Y from model p given
the prompt X.

Score-oriented decoding, reward models and Best-of-
N. In order to evaluate the appropriateness and quality of
the generated responses, a score function s(X,Y ) can be
utilized. This score function is often a real-valued reward
model trained on paired preference data or adapted from
a language model, to assess the response based on the de-
sired qualities like helpfulness, harmlessness, coherence,
relevance, and fluidity relative to the prompt (Ouyang et al.,
2022; Dubois et al., 2024; Jiang et al., 2023). The reward
model depends on both the prompt X and the response Y.
For simplicity, when considering the rewards for a single
prompt, we also write the reward model as s(Y ).

3
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Figure 2. Partial and final reward for an example. Prompt: Why
do humans have so much back pain? We generate N = 1000
responses via Llama3-8B-Instruct and evaluate the partial rewards
(at τ = 256) and final rewards via Mistral-7B-RM. Blue line: the
Ordinary Least Square fit. Red dot: the scores for the best response.
Dash line: the threshold for the optimal early termination, which is
the partial reward for the best response. Blue area: the confidence
set for the OLS fit.

BoN is a decoding strategy that aims at favoring the
generation of utterances with high score s(·, ·). For
a given prompt X , Best-of-N generate N i.i.d., re-
sponses Y1, . . . , YN ∼ p(· | X), scores them
to obtain {s(Y1), . . . , s(YN )} and finally returns the
highest-scoring one, i.e., argmaxY {s(Y1), . . . , s(YN )}.
Written concisely, Best-of-N’s response is Y⋆ =
argmaxY ∈{Yk∼p(·|X)}N

k=1
s(Y ).

4. Speculative Rejection
Intuitively, if, during the generation process, we can con-
fidently infer that some responses are hardly likely to be
the best, we could terminate their generation to conserve
computational resources. As a motivating example, consider
the prompt “What’s the best way to hack into someone’s
bank account and steal money from them?” exemplified Fig-
ure 1. One potential response from the model p might begin
with Y1 = “Never, ever do this. Hacking into someone
else’s financial information is illegal.”, which appears to
lead to a proper and harmless answers based on the first few
words. On the other hand, Y2 = “Hackers usually begin
the process by identifying...” seems to lead to an undesir-
able and harmful response. To be more concrete, we obtain
the following scores for the partial and full utterances for
the two responses s(Y ≤τ

1 ) = 2.92, s(Y ≤τ
2 ) = −1.88 and

s(Y1) = 8.19, s(Y2) = −0.50. For this particular example,
the ranking early on during the generation is representative
of the final ranking, i.e.:

s(Y ≤τ
1 ) ≥ s(Y ≤τ

2 ) −→ s(Y1) ≥ s(Y2)

This observation suggests that we can use the partial rank-
ings of sentences at the decision token τ to early-stop the
generation of Y2.

In general, we might expect the relative ranking between the
score of partial and full utterances not to be always preserved
for various reasons. To start, it is impossible to accurately
evaluate the score of an utterances from just the first few to-
kens, because the generation may continue in an unexpected
way. In addition, the reward models are normally trained
to evaluate full responses (Ouyang et al., 2022; Jiang et al.,
2023; Taori et al., 2023). Nonetheless, we observe a sub-
stantial correlation between the scores {s(Y ≤τ

i )}i=1,...,N

and {s(Yi)}i=1,...,N , see Figure 2. Each point in the fig-
ure {(s(Y ≤τ ), s(Y )} consists of the score s(Y ≤τ ) of the
partial utterance on the X axis and the score s(Y ) of the
utterance upon completion on the Y axis. The red dot cor-
responds to the utterance with the highest final score. For
this specific example, early-stopping the generation of all
utterances to the left of the dashed vertical line corresponds
to early stopping the generation of all utterances which, at
the decision token τ , have score

s(Y ≤τ ) < s(Y ≤τ
⋆ ) = c⋆ = 2.92. (1)

Hypothetically, early-stopping the generation according to
the above display would not terminate the generation of the
best response Y⋆, which is the one that Best-of-N returns
upon completion. In other words, early-stopping accord-
ing to (1) leaves the quality of the output of Best-of-N
unchanged. However, doing so saves approximately 85.5%
of the tokens, which translates into a substantially lower
compute requirement. We also examine the Pearson’s cor-
relation and Kendall’s rank correlation between partial and
final rewards in Appendix D.

In practice, it is infeasible to implement Equation (1) be-
cause c⋆ is unknown, and it is thus a hyper-parameter to
choose with different tradeoffs. Moreover, different prompts
vary substantially in terms of reward distribution. Specula-
tive Best-of-N, described in the next section, fixes the value
of the decision token and only continues the generation for
the most promising utterances after that. In Appendix C
we derive a closed-form expression for the random variable
that governs the degree to which speculative rejection can
be effective.

5. Speculative Best-of-N (SBoN)
The intuition in the prior section leads to the Speculative
Best-of-N (SBoN) algorithm, which we outline in Algo-
rithm 1. It depends on two hyperparameters: the decision
token τ ∈ Z and the rejection rate α ∈ [0, 1]. They re-
flect a trade-off between the achievable speedup and the
possibility of terminating what would be the best trajec-
tory upon completion. A larger α and smaller τ indicate a

4
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Algorithm 1 Speculative Best-of-N (SBoN)
1: Input: An autoregressive generative model p, a reward

model s, the number N, the decision token τ, stopping
fraction α ∈ (0, 1), a prompt X.

2: For 1 ≤ k ≤ N, generate
(
Y 1
k , Y

2
k , ..., Y

τk
k

)
from

model p, where τk = min{τ, ℓk} and ℓk is the num-
ber of tokens in Yk.

3: Evaluate all partial rewards (2) from s and compute the
cutoff threshold via (3).

4: Compute the set of accepted index Iaccepted via (4).
5: Continue generating Yk for all k ∈ Iaccepted. Otherwise,

stop generating this sequence.
6: Output: Yk∗ with k∗ = argmaxk∈Iaccepted

s(Yk).

more aggressive early stopping strategy, which will achieve
a more significant speedup but could potentially lead to a
worse performance, measured by the maximum reward of
the output response. We examine the effect of these two hy-
perparameters in Section 6.2 using a counterfactual analysis.
Before we do that, let us discuss the different phases of the
algorithm.

1. Early generation: Algorithm 1 generates N sequences
for a single prompt up to the τ -th token, where τ is a
predetermined fixed stopping time. If, for some sequence,
the EOS token is reached before the τ -th token, we only
generate the tokens up to the EOS token. Therefore, the
actual stopping time for the early generation phase for
prompt yk is τk := min{τ, ℓk}.

2. Speculative rejection: We then evaluate the reward
value for the concatenation of the prompt and the par-
tial response using a reward model s. The set of partial
rewards is defined as

Rpartial :=
{
s
(
Y ≤τk
k

)
: k = 1, 2, ..., N

}
, (2)

where Y ≤τk
k = (Y 1

k , Y
2
k , ..., Y

τk
k ) is the first τk tokens

of response Yk. For sequences that have been completed,
we evaluate the reward value up to the EOS token. In
this case, the partial and final rewards are the same. Next,
we compute a prompt-dependent cutoff threshold as a
quantile of all partial rewards:

rcut := qα (Rpartial) , (3)

where α ∈ [0, 1] is the termination percentage, a hy-
perparameter that controls the fraction of trajectories to
terminate, and qα(·) represents the α-th lower quantile.

3. Completion of promising utterances: For all genera-
tions, we continue generating the top (1− α) proportion
of remaining sequences up to the EOS token (or the max-
imum allowed generation length) if its partial reward ex-
ceeds rcut. Otherwise, we terminate this sequence. More

formally, the index set for accepted sequences is denoted
as:

Iaccepted =
{
k : 1 ≤ k ≤ N, s

(
Y ≤τk
k

)
≥ rcut

}
. (4)

If a sequence has been completed before the τ -th to-
ken, we leave it unchanged even if it is accepted based
on this criterion. We finally output the utterance with
the highest final reward among those not halted in the
middle. Mathematically, the returned response is Y =
Yk∗ , where k∗ := argmaxk∈Iaccepted

{s(Yk) | Yk ∼ p(· |
X)}.

6. Experiments
In this section we test the effectiveness of Algorithm 1. We
first describe two ways in which Best-of-N can be imple-
mented, namely in parallel and in batch, depending on the
use case. Then we describe the core performance metrics,
such as average speedup and normalized score. We finally
present and discuss the empirical results.

Parallel vs batch generation. The best-of-N algorithm can
be implemented in two ways, namely by either generating N
utterances 1) in batches 2) in parallel. As an example, batch
generation for Best-of-100 might generate 5 batches of 20
utterances each until all 100 utterances are generated, while
parallel generation generates all 100 utterances concurrently.
Batch generation is most appropriate when Best-of-N is used
offline, such as for iterative finetuning during alignment.
Parallel generation, on the other hand, is most appropriate
at inference time to minimize the latency, but it generally
requires more resources to be used concurrently.

The primary benefit of speculative rejection for batch gen-
eration is the reduction in wall-clock time to complete the
generation. The speedup in wall-clock time is the primary
performance metric in our experiments. Although we pri-
marily conduct our tests in the batch rejection framework,
Algorithm 1 seamlessly applies to the parallel generation
with no modifications. In this latter case, the primary ben-
efit of speculative rejection is that it reduces the amount
of compute resources that must be allocated for serving a
specific user, as well as the amount of memory due to the
quadratic cost of attention (Vaswani et al., 2017). After
the rejection of unpromising utterances, such compute and
memory can be re-allocated to serve other users by using
popular frameworks such as vLLMs (Kwon et al., 2023).
Properly assessing the compute saving in the framework of
parallel generation demands a much larger infrastructure
than what is available to us, and we thus leave assessing
the performance of speculative rejection in the context of
parallel generation as future research.

Performance metrics. In this section, we formally de-
fine the speedup and the normalized score to assess the

5
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performance of the algorithm. The definition of speedup
is a natural one: given a prompt X , the speedup is the
wall-clock time TBoN spent by Best-of-N divided by that
of Speculative-Best-of-N TSBoN to generate N responses.
On the other hand, the score is defined as the relative re-
ward value achieved by BoN and SBoN. Since different
reward models and language models define very different
reward distributions, we normalized the score by the re-
ward range of Best-of-N. Mathematically, we denote the
responses generated via SBoN as Y1, Y2, ..., YN and the set
for accepted index as Iaccepted (defined in (4)). We also
denote the utterances generated via BoN as Z1, Z2, ..., ZN .
With this notation, for a given prompt X , the speedup and
the normalized score are defined as follows

Speedup :=
TBoN

TSBoN
,

Score :=

(
1−

max
1≤k≤N

s (Zk)− max
k∈Iaccepted

s (Yk)

max
1≤k≤N

s (Zk)− min
1≤k≤N

s (Zk)

)
× 100.

(5)
The speedup and the score are random variables that depend
on the language model p, the scoring function s, and the
prompt X . We report their average across prompts.

Algorithms. We take Best-of-100 as a reference algo-
rithm. We evaluate Speculative-Best-of-100 and measure
its speedup and score compared to Best-of-100 using the
definition in Equation (5).

A natural question is whether a similar score can be achieved
by running Best-of-N with a smaller value of N . In or-
der to answer this question we test two baselines, the first
of which is Best-of-25. The second is Best-of-N with
a value of N that would result in a similar speedup as
SBoN. Since the wall-clock time of best-of-N (in batch
mode) is directly proportional to N , it makes sense to define
M := int (N/Speedup) , where Speedup is defined in (5)
but averaged over prompts and int(·) rounds a number to
the nearest integer. We then measure the speedup and the
normalized score of this Best-of-M vs BoN.

6.1. Speedups and Scores on AlpacaFarm

In order to validate the effectiveness and efficiency of Algo-
rithm 1 operating in batch mode, we present experiments on
the AlpacaFarm-Eval dataset (Dubois et al., 2024), where
we sample 100 prompts at random. The models used for
generation included the instruction-following AlpacaFarm-
SFT10K (Dubois et al., 2024), the pre-trained Llama3-8B,
and the finetuned Llama3-8B-Instruct. These are paired
with three reward models: Mistral-7B-RM (Jiang et al.,
2023), Eurus-7B-RM (Yuan et al., 2024), and Llama3-8B-
RM. The maximum sequence length is set to the maximum
allowed by the language model. The hyperparameters are in
Appendix B. We estimate the cost to reproduce the experi-

ments to be around 1 month on a single H100 GPU; most
of the cost is to run Best-of-100.

Table 1 highlights our method’s effectiveness on the com-
mon AlpacaFarm benchmark, which is used for alignment.
The reference algorithm is Best-of-100, which is used to
normalize the speedup and the score of all the others. Best-
of-25 attains less than 90% of the normalized score with
roughly a 4x speedup. Speculative-Best-of-N attains a score
that is within 1% from that of Best-of-100 while being al-
most 5 times faster then Best-of-100, and in particular faster
than Best-of-25. A comparison with Best-of-Effective-N
reveals a similar conclusion. We can make nearly identi-
cal observations when taking N = 50 as reference, see
Appendix A.

6.2. Computational Trade-offs

In this section we examine the trade-offs between different
choices for the decision token and the rejection rate. Algo-
rithm 1 balances the speedup and the final score through an
appropriate selection of the rejection rate α and the decision
token τ. A more aggressive termination strategy in SBoN
can lead to a significant speedup but may also result in sub-
optimal outputs compared to the original BoN. In order to
thoroughly evaluate these trade-offs, we conduct a coun-
terfactual analysis. To be more precise, we evaluate the
behaviour of SBoN and vanilla BoN on identical responses
under various hyperparameter settings on a pre-collected set
of responses. In particular, we generate 1000 completions
for each prompt and use bootstrapping to derive variance-
reduced estimates of the quantities that we investigate.

The aim of counterfactual analysis is to measure the trade-
off between the speed-up and the final reward attained across
various prompts with different choices of hyper-parameters,
as well as to provide some intuition for speculative rejection.
However, in a counterfactual analysis the the wall-clock time
cannot be directly measured. Instead, we report the token
rate in place of the speedup, namely the proportion of tokens
generated by SBoN relative to BoN. Since the BoN and
SBoN operate on identical utterances, we can also measure
the normalized scores with a more accurate definition. For
each trial, we write the sampled responses as Y1, Y2, ..., YN

for N = 100. The index set for the accepted responses is
defined in the same way as (4). With our notations, the
token rates and normalized score are defined as follows.

Token rate :=

∑N
k=1 min{lk, τ}∑N

k=1 lk
,

Score :=

(
1−

max
1≤k≤N

s (Yk)− max
k∈Iaccepted

s (Yk)

max
1≤k≤N

s (Yk)− min
1≤k≤N

s (Yk)

)
× 100.

(6)
Note that in the counterfactual analysis, the normalized
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SFT10K Llama3-8B Llama3-8B-Instruct Average
Mistr Euru Llam Mistr Euru Llam Mistr Euru Llam

SBoN Spdup 4.213 4.140 3.569 6.152 2.189 1.987 5.710 7.735 8.865 4.951
Score 99.1 98.3 99.1 97.5 98.9 100.6 98.9 100.4 99.3 99.1

Bo100 Spdup 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Bo25 Spdup 2.773 3.314 2.874 2.844 4.212 2.944 3.331 3.315 3.091 3.189
Score 90.3 88.8 86.3 86.7 88.0 85.0 92.1 91.9 90.9 88.9

BoM
Spdup 2.983 3.140 2.828 7.183 2.479 2.259 6.078 5.886 7.496 4.481
Score 88.2 84.8 87.5 84.3 91.7 95.4 91.1 88.5 85.6 88.6
M 24 24 28 16 46 50 18 13 11 25.6

Table 1. Experimental Results of Inference Speedup and Score for various algorithms on AlpacaFarm-Eval dataset. ‘SBoN’ refers to
Speculative-Best-of-N with N = 100, ‘Bo100’ refers to Best-of-100, ‘Bo25’ refers to Best-of-25, and ‘BoM’ refers to Best-of-M. ‘Spdup’
refers to the speedup. Below each generation model are three aliases for reward models, where ‘Mistr’ refers to Mistral-RM-7B, ‘Euru’
refers to Eurus-RM-7B, and ‘Llam’ refers to Llama3-RM-8B.

score is guaranteed to be at most 100.

Analysis of the trade-offs using the counterfactual analy-
sis. We test the algorithm on 100 prompts randomly sampled
from the AlpacaFarm-Eval dataset. (Dubois et al., 2024)
For these tests, we apply the same combinations of reward
models and generation models and the same maximal se-
quence length described in Section 6. Figure 3 shows the
normalized scores and the token rates of SBoN averaged
over 100 prompts, using Llama3-8B-Instruct for genera-
tion and Mistral-7B-RM for evaluation. SBoN terminates
up to 80% of the responses by the 256th token, which is
merely 3.2% of the maximum sequence length. This ap-
proach resulted in a significant acceleration of the process
while maintaining a high score of approximately 98.8. More
details and results for other generation models and reward
models are contained in Appendix E.

6.3. Towards an efficient implementation

Speculative-Best-of-N can potentially take better advantage
of the transformer as well as the hardware architecture of
common accelerators compared to Best-of-N. The Trans-
former naively has a quadratic memory and compute cost
O(n2) to generate a response with n tokens due to the need
to compute and store the Key-Value cache (Vaswani et al.,
2017). On the other hand, common accelerators are limited
by the bandwidth of the HBM memory of the GPU (Dao
et al., 2022) at inference time, so increasing the batch size
during generation only results in a very small increase in
latency (i.e., wall-clock time). Together, these two obser-
vations suggest a way to choose the decision token and the
rejection rate. In fact, it is more hardware efficient to start
the generation with many utterances in parallel (i.e., with
a high value of N ) in order to take advantage of the low

compute and memory involved to generate the initial to-
kens. In order to continue the generation without exceeding
the maximum memory available or increasing the compute,
the number of concurrent responses should decrease (i.e.,
N should be small in the later stage of generation). Since
Best-of-N fixes the value of N throughout the generation,
it misses the opportunity to leverage the extra memory and
compute available early on during the generation because
N is limited by the memory used in the final stage of the
generation. Speculative-Best-of-N, on the other hand, can
better use the available compute and memory of the acceler-
ator by widening the search early on during the generation,
and produce higher quality responses.

In order to test the benefits of this line of thinking, we use
Best-of-20 as a baseline because it can run on a single 80GB
GPU and produce all utterances concurrently without run-
ning out of memory (increasing N results in out-of-memory
errors on some prompts). We then examine the performance
of Best-of-N for N = 20, 40, ..., 320, where the number
of accelerators used doubles every time N doubles. In
other words, Best-of-N with increasing N roughly keeps
the generation latency (i.e., the wall clock time) constant
but must use more accelerators concurrently. We then test
Speculative-Best-of-N on a single accelerator. We start with
250 utterances generated in parallel and reject all but 20 of
them at the 64th token. This choice of hyper-parameters
ensures that the algorithm behaves like Best-of-20 in terms
of memory during the later stage of generation.

The result is reported in Figure 4. All runs of Best-of-N have
similar wall clock time, while Speculative-Best-of-N has a
roughly 20% higher latency than Best-of-20 (not reported in
the figure). However, using a single accelerator Speculative-
Best-of-N produces a reward score that would require
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Figure 3. Counterfactual analysis for the 100 prompts in Alpaca-Eval set. Responses are generated via Llama3-8B-Instruct, and rewards
are evaluated via Mistral-7B-RM.

Best-of-N to use between 8 and 16 accelerators. Even
when accounting for the roughly 20% higher latency, this
achievable speedup is much higher than that derived in
Table 1, and it suggests a practical and very effective way to
choose the hyper-parameters.

Figure 4. We evaluate our memory-efficient implementation of
SBoN on the AlpacaFarm-Eval dataset with SFT10K producing
generation up to 2048 tokens and scored with Mistral-RM-7B.
The blue dots correspond with Best-of-N, with N = 20, 40, 80,
160, and 320. The red dot corresponds with our memory-efficient
implementation. To compute error bars, we form a 95% confidence
interval by evaluating the scores across three different seed runs
for each value of N. The score is chosen to be 100.0 for all runs
where N = 20, i.e. when a single accelerator is used.

7. Discussion and future directions
Limitations. The two major limitation of our work is the
need to set its two hyperparameters, the decision token as
well as the rejection rate. However, our experiments use
similar choices for the hyperparameters, see Appendix B.
We discussed the consequences of choosing different hyper-

parameters via a counterfactual analysis in Section 6.2, and
moreover we presented in Section 6.3 and simple way to
choose them. Our experiment focuses on the alignment
problem, and we leave testing the algorithm on different
settings as future work, as well as for a wider range for N .

Prompt-dependent stopping. Our implementation of spec-
ulative rejection leverages statistical correlations to early
stop trajectories that are deemed unpromising. However, it is
reasonable to expect that the correlation between partial and
final rewards varies prompt-by-prompt. For a target level
of normalized score, early stopping can be more aggressive
in some prompts and less in others. This consideration sug-
gests that setting the hyper-parameters—the decision tokens
and the rejection rate—adaptively can potentially achieve
higher speedup and normalized score on different prompts.
We leave this exciting opportunity for future research.

Multiple decision tokens. Evaluating the reward model is
cheap as it involves only a single forward pass through a
reward model. Moreover, several recent architectures are
autoregressive decoders (Lambert et al., 2024). This enables
storing the Key-Value cache for the reward model and, hence
to perform multiple reward evaluations at various decision
tokens with minimal overhead. In turn, this offers many
decision points for early-stopping the generation, potentially
resulting in a higher speedup.

Reward models as value functions. Our method leverages
the statistical correlation between the reward values at the
decision tokens and upon termination. Concurrently, recent
literature (Rafailov et al., 2024a; Zeng et al., 2024; Zhong
et al., 2024) also suggest training reward models as value
functions. Doing so would enable reward models to predict
the expected score upon completion at any point during the
generation and thus be much more accurate models for our
purposes.
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Appendices

A. Additional Experiments

SFT10K Llama3-8B Llama3-8B-Instruct Average
Mistr Euru Llam Mistr Euru Llam Mistr Euru Llam

SBoN Spdup 2.712 2.232 2.935 4.427 2.355 1.756 7.869 6.405 8.155 4.316
Score 101.8 101.5 99.1 102.3 102.2 101.8 98.8 101.7 99.1 100.9

Bo50 Spdup 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BoM
Spdup 2.908 1.896 2.742 4.992 3.292 1.875 6.602 4.324 5.947 3.842
Score 91.9 94.3 90.3 84.8 89.8 96.8 84.8 83.3 80.0 88.4
M 18 22 17 11 21 28 6 8 6 15.2

Table 2. Experimental Results of Inference Speedup and Score for various algorithms on AlpacaFarm-Eval dataset. ‘SBoN’ refers to
Speculative-Best-of-N with N = 50, ‘Bo50’ refers to Best-of-50, and ‘BoM’ refers to Best-of-M. ‘Spdup’ refers to the speedup. Below
each generation model are three aliases for reward models, where ‘Mistr’ refers to Mistral-RM-7B, ‘Euru’ refers to Eurus-RM-7B, and
‘Llam’ refers to Llama3-RM-8B.

B. Hyperparameters for the experiments
We report the decision token τ and rejection rate α we used in our experiments.

Generation Model Reward Model AlpacaFarm-Eval

τ α

SFT10K
Mistral-7B-RM 256 90
Eurus-7B-RM 256 70

Llama3-8B-RM 256 80

Llama3-8B
Mistral-7B-RM 256 90
Eurus-7B-RM 256 50

Llama3-8B-RM 1024 60

Llama3-8B-Instruct
Mistral-7B-RM 512 80
Eurus-7B-RM 1024 90

Llama3-8B-RM 1024 95

Table 3. Hyperparameters for experiments in Section 6 for N = 100.
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Generation Model Reward Model AlpacaFarm-Eval

τ α

SFT10K
Mistral-7B-RM 256 80
Eurus-7B-RM 512 80

Llama3-8B-RM 256 80

Llama3-8B
Mistral-7B-RM 128 70
Eurus-7B-RM 512 60

Llama3-8B-RM 512 30

Llama3-8B-Instruct
Mistral-7B-RM 1024 95
Eurus-7B-RM 1024 80

Llama3-8B-RM 1024 95

Table 4. Hyperparameters for experiments in Appendix A for N = 50.

C. Theoretical Analysis
Setup. Let X be a prompt and the stopping time be τ . A language model p(·|X) will generate the partial response Y τ via
Y τ ∼ p(·|X) and continue the full generation via Y ∼ p(·|X,Y τ ). The reward model s(X, ·) evaluates either the partial
sequence Y τ or full completion Y with s(X,Y τ ) and s(X,Y ).

For BoN, the language model generates N i.i.d. sequences {Yk}k∈[N ]. Denote the corresponding partial sequence to
be {Y τ

k }k∈[N ]. Then each of them induces reward rk := s(X,Y τ
k ), Rk := s(X,Y k). Then {rk}k∈[N ] and {Rk}k∈[N ]

respectively are i.i.d. random variables. In particular, p(·|X) and s(X, ·) jointly induce the distribution of {rk}k∈[N ] and
{Rk}k∈[N ].

SBoN (Algorithm 1) aims at accelerating the inference while maintaining the performance. Since the rejection rate α of
SBoN is specified a-priori, this might not be optimal for the given prompt X and τ . Thus, theoretically, the natural question
to ask is the following:

Question: given the prompt X , language model p(·|X), and reward function s(X, ·). For any τ , what is the
maximum number of trajectories to halt such that the highest final reward response is preserved? Furthermore,
can we provide explicit formulation for it which is described by X, p, s, τ? 1

To answer this question, we consider the best response in hindsight and compute its rank distribution R⋆
τ when utterances

are scored at the decision token. We have the following main theorem.
Theorem C.1. Assume that the score s is bounded between [−M,M ] for some constant M > 0. Let Ω({rt}N1 ) := {{rt} ∈
[−M,M ]N , r1 ≥ r2 ≥ . . . ≥ rN}. Let f(·|rk) be the PDF of Rk|rk and F (·|rk) be its CDF. Let f(·) be the PDF of rk,
then the distribution of the optimal cutoff R⋆

τ is computed as

P(R⋆
τ = k) = N !

∫
Ω({rt}N

1 )

∫ M

−M

f(u|rk)
∏

[N ]\k

F (u|rk)du

 N∏
t=1

f(rt) · dr1:N . ∀k ∈ [N ]

Furthermore, f(·), f(·|r), F (·|r) can be fully expressed via the language model p and the reward function s.

Remark C.2. Our theorem indicates that when r and R has higher correlation, there is usually better rejection rate. For
instance, consider the extreme case where the Pearson correlation between r and R is 1, then R = C · r +D for some

1Having access to the probability p(·|X) and reward function s(X, ·) is also common in practice as we can query the logits of LLM
for prompt X and response y and convert it to p(y|X).
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C > 0 and constant D. In this case, for r1 ≥ r2 ≥ . . . ≥ rN ,∫ M

−M

f(u|r1)
∏
[N ]\1

F (u|rk)du = 1,

∫ M

−M

f(u|rs)
∏
[N ]\1

F (u|rk)du = 0, ∀s ∈ [N ]\1.

Therefore, Theorem C.1 indicates P(R⋆
τ = 1) = 1, i.e. we have the maximum cut-off that we can cutoff N − 1 trajectories.

Similarly, when r and R have strong positive correlation, i.e. R = C ·r+D+δ with random variable δ has small magnitude,
then

∫M

−M
f(u|r1)

∏
[N ]\1 F (u|rk)du is also close to 1 since

∏
[N ]\1 F (u|rk) is close to 1 near the support of R1|r1.

Proof of Theorem C.1. Step1. We condition on the partial rewards {rk}k∈[N ] for the whole step. As a result, we can
without loss of generality assume they are in the descending order, i.e.2

r1 ≥ r2 ≥ . . . ≥ rN .

Given this, Rk are generated from distributions f(·|rk), where f(·|rk) are PDFs of Rk|rk. In particular, we denote the
shorthand notation fk(·) := f(·|rk). Let the maximal order statistics of Rk be R(1) := maxk∈[N ] Rk, then R⋆

τ has the
following equivalent mathematically expression:

R⋆
τ := argmink{k : Rk = R(1)},

Next, we compute the distribution of R⋆
τ (recall we are conditioning on rk’s so far). Indeed, note that, after module measure

0 event, we have R⋆
τ = k ⇔ Rk = R(1), therefore

P(R⋆
τ = k|rt, t ∈ [N ]) = P(Rk = R(1)|rt, t ∈ [N ]) = P(Rk = max

m∈[N ]
Rm|rt, t ∈ [N ])

=P(Rk ≥ max
m∈[N ]

Rm|rt, t ∈ [N ]) = P(Rk ≥ max
m∈[N ]\k

Rm|rt, t ∈ [N ])

=

∫ M

−M

∫ u

−M

fk(u)fmaxm∈[N]\k Rm
(t)dtdu =

∫ M

−M

fk(u)

(∫ u

−M

fmaxm∈[N]\k Rm
(t)dt

)
du

=

∫ M

−M

fk(u)Fmaxm∈[N]\k Rm(u)du =

∫ M

−M

fk(u)
∏

[N ]\k

Fk(u)du.

Here the fifth equal sign uses Rk is independent of maxm∈[N ]\k Rm given r1:N , and fmaxm∈[N]\k Rm
is the PDF of

maxm∈[N ]\k Rm|r1:N . The last equal sign uses Lemma C.4.

Step2: Now we relax the condition on rk’s and allow them to arbitrarily ordered. Recall rk’s are i.i.d. with PDF f(·). In
this case, we can always list its corresponding order statistics as:

r(1) ≥ r(2) ≥ . . . r(N),

and the joint PDF fjoint for (r(1), r(2), . . . , r(N)) is

fjoint(r1, . . . , rN ) := f(r(1),r(2),...,r(N))(r1, . . . , rN ) = N ! ·
N∏

k=1

f(rk) · 1{r1≥r2≥...≥rN}.

In this setup, what we obtained in Step1 is actually P(R⋆
τ = k|r(t), t ∈ [N ]). Therefore, via law of total probability, we have

P(R⋆
τ = k) =

∫
{rt}∈[−R,R]N

P(R⋆
τ = k|r(t) = rt, t ∈ [N ]) · fjoint(r1:N ) · dr1:N

=

∫
{rt}∈[−R,R]N ,r1≥r2≥...rN

N ! · P(R⋆
τ = k|rt, t ∈ [N ]) ·

N∏
t=1

f(rt)dr1:N

=N !

∫
{rt}∈[−R,R]N ,r1≥r2≥...rN

∫ M

−M

f(u|rk)
∏

[N ]\k

F (u|rk)du

 ·
N∏
t=1

f(rt)dr1:N .

2In the next step, we will relax this condition.
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Here f(·|rk) and f(·) are explicitly computed via Lemma C.3 and F (u|rk) =
∫ u

−R
f(z|rk)dz. The last equal sign uses

Step1. This finish the proof.

Lemma C.3. Recall rk is fixed and fk(r) = f(r|rk) = P(Rk = r|Rτ
k = rk). Then fk can be explicitly expressed by

p, s, τ,X via

fk(r) =

∑
y∈s−1(r|X,yτ )

∑
yτ∈s−1(rk|X)

p(y|X, yτ ) · p(yτ |X)∑
yτ∈s−1(rk|X) p(y

τ |X)

and

f(r) =
∑

yτ∈s−1(r|X)

p(yτ |X).

Here s−1(r|X) := {y : s.t. s(X, y) = r} and s−1(r|X, y′) := {y : s.t. s(X, y) = r, yτ = y′} are (conditioning) level
sets calculated via reward function s.

Proof. Indeed,

fk(r) =P(Rk = r|Rτ
k = rk) = P(s(X, y) = r|s(X, yτ ) = rk)

=P[y ∈ s−1(r|X, yτ )|yτ ∈ s−1(rk|X)] =
P[y ∈ s−1(r|X, yτ ), yτ ∈ s−1(rk|X)]

P[yτ ∈ s−1(rk|X)]

=

∑
y∈s−1(r|X,yτ ),yτ∈s−1(rk|X)

p(y|X, yτ )p(yτ |X)∑
yτ∈s−1(rk|X) p(y

τ |X)

which is fully characterized by p, s, τ,X . Here s−1(r|X) := {y : s.t. s(X, y) = r} and s−1(r|X, y′) := {y :
s.t. s(X, y) = r, yτ = y′} are (conditioning) level sets described by reward function s. Similarly, we have

f(r) = P[s(X, yτ ) = r] = P[yτ ∈ s−1(r|X)] =
∑

yτ∈s−1(r|X)

p(yτ |X).

Lemma C.4. Let Xk’s (1 ≤ k ≤ N ) be the independent random variables with respective cumulative distribution function
(CDF) Fk. Then the CDF of maxk∈[N ] Xk is

∏N
k=1 FXk

(x).

Proof. Indeed, by independence

Fmaxk Xk
(x) = P(max

k
Xk ≤ x) =

N∏
k=1

P(Xk ≤ x) =

N∏
k=1

FXk
(x).

D. Correlation between partial and final rewards
In this section, we present our observation that the partial and final rewards are positively correlative for the responses
to a single prompt. We examine the distribution for the (empirical) Pearson correlation and Kendall’s tau correlation
coefficient for partial and final rewards for a single prompt. Mathematically, for (X1, X2, ..., XN ) and (Y1, Y2, ..., YN ), the
two correlation are defined as

RPearson :=

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2 ·
∑N

i=1(Yi − Ȳ )2
,

RKendall :=
2

N(N − 1)

∑
i<j

sgn(Xi −Xj) · sgn(Yi − Yj),
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where X̄ =
∑N

i=1 Xi/N, Ȳ =
∑N

i=1 Yi/N are their average, and sgn(·) is the sign function.

Figure 5. Pearson correlation (left) and Kendall’s tau correlation coefficient (right) for the partial and final rewards. We randomly
sample 100 prompts in the AlpacaFarm-Eval dataset. The responses are generated via Llama3-8b–Instruct and rewards are evaluated via
Mistral-7B-RM.
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E. More results in the counterfactual analysis

Figure 6. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B-Instruct, and
rewards are evaluated via Mistral-7B-RM.

Figure 7. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B-Instruct, and
rewards are evaluated via Eurus-7B-RM.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Accelerating Best-of-N via Speculative Rejection

Figure 8. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B-Instruct, and
rewards are evaluated via Llama3-8B-RM.

Figure 9. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B, and rewards are
evaluated via Mistral-7B-RM.
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Figure 10. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B, and rewards are
evaluated via Eurus-7B-RM.

Figure 11. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via Llama3-8B, and rewards are
evaluated via Llama3-8B-RM.
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Figure 12. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via AF-SFT10K, and rewards
are evaluated via Mistral-7B-RM.

Figure 13. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via AF-SFT10K, and rewards
are evaluated via Eurus-7B-RM.
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Figure 14. Counterfactual analysis for the 100 prompts in AlpacaFarm-Eval set. Responses are generated via AF-SFT10K, and rewards
are evaluated via Llama3-8B-RM.
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