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ABSTRACT

Dataset distillation methods have demonstrated remarkable performance for neu-
ral networks trained with very limited training data. However, a significant chal-
lenge arises in the form of architecture overfitting: the distilled training data syn-
thesized by a specific network architecture (i.e., training network) generates poor
performance when trained by other network architectures (i.e., test networks).
This paper addresses this issue and proposes a series of approaches in both archi-
tecture designs and training schemes which can be adopted together to boost the
generalization performance across different network architectures on the distilled
training data. We conduct extensive experiments to demonstrate the effectiveness
and generality of our methods. Particularly, across various scenarios involving
different sizes of distilled data, our approaches achieve comparable or superior
performance to existing methods when training on the distilled data using net-
works with larger capacities.

1 INTRODUCTION

Deep learning has achieved tremendous success in various applications (Rombach et al., 2022;
Jumper et al., 2021), but training a powerful deep neural network requires massive training data
(Dosovitskiy et al., 2020; Brown et al., 2020). To accelerate training, one possible way is to con-
struct a new but smaller training set that preserves most of the information of the original large set.
In this regard, we can use coreset (Coleman et al., 2019; Hwang et al., 2020) to sample a subset of
the original training set or dataset distillation (Wang et al., 2018; Zhao et al., 2020) to synthesize a
small training set. Compared to coreset, dataset distillation achieves much better performance when
the amount of data is extremely small (Hwang et al., 2020; Zhao & Bilen, 2023). Furthermore,
dataset distillation is shown to benefit various applications, such as continual learning (Zhao et al.,
2020; Rosasco et al., 2022; Zhao & Bilen, 2021; 2023), neural architecture search (Zhao et al., 2020;
Zhao & Bilen, 2021), and privacy preservation (Li et al., 2020; Goetz & Tewari, 2020). Therefore,
in this work, we focus on dataset distillation to compress the training set.

In the dataset distillation framework, the small training set, which is also called the distilled dataset,
is learned by using a neural network (i.e., training network) to extract the most important information
from the original training set. Existing data distillation methods are based on various techniques,
including meta-learning (Wang et al., 2018; Bohdal et al., 2020; Sucholutsky & Schonlau, 2021;
Nguyen et al., 2021; Zhou et al., 2022) and data matching (Zhao et al., 2020; Cazenavette et al.,
2022; Cui et al., 2022; Wang et al., 2022; Zhao & Bilen, 2023). These methods are then evaluated
by the test accuracy of another neural network (i.e., test network) trained on the distilled dataset.
Despite efficiency, dataset distillation methods generally suffer from architecture overfitting (Zhao
& Bilen, 2021; 2023; Nguyen et al., 2021; Zhou et al., 2022; Cazenavette et al., 2022). That is, the
performance of the test network trained on the distilled dataset degrades significantly when it has
a different network architecture from the training network. Moreover, the performance deteriorates
further when there is a larger difference between the training and test networks in terms of depth and
topological structure. Due to high computational complexity and optimization challenges in dataset
distillation, the training networks are usually shallow networks, such as 3-layer convolutional neural
networks (CNN) (Cazenavette et al., 2022; Zhou et al., 2022). However, such shallow networks
lack representation power in practical applications. In addition, deep networks have shown stronger
representation power in many tasks (He et al., 2016; Dosovitskiy et al., 2020). Therefore, we believe
a deeper network has the potential for better performance when trained on distilled datasets.
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Note that, our analysis indicates that the performance gap between different network architectures
is larger in the case of training on the distilled dataset than in the case of training on the subset of
the original training set. In addition,compared with methods compressing the training set by subset
selection, dataset distillation achieves better performance when using the same amount of training
instances and is thus more popular in downstream applications (Zhao & Bilen, 2021; 2023; Goetz &
Tewari, 2020). Therefore, we focus on dataset distillation, in which the effectiveness of the proposed
method can be better revealed.

In this work, we demonstrate that the architecture overfitting issue in dataset distillation can be miti-
gated by a better architecture design and training scheme of test networks on the distilled dataset. We
propose a series of approaches to mitigate architecture overfitting in dataset distillation. Specifically,
these approaches can be categorized into four types: a) architecture: DropPath with three-phase
keep rate and improved shortcut connection; b) objective function: knowledge distillation from
a smaller teacher network; c) optimization: periodical learning rates and a better optimizer; d)
data: a stronger augmentation scheme. Our proposed methods are generic: we conduct comprehen-
sive experiments on different network architectures, different numbers of instances per class (IPC),
different dataset distillation methods and different datasets to demonstrate the effectiveness of our
methods. Figure 1 below demonstrates the performance of our proposed methods in various scenar-
ios. It is clear that our methods can greatly mitigate architecture overfitting and make large networks
achieve better performance in most cases. In addition to dataset distillation, our methods can also
improve the performance of training on a small real dataset, including those constructed by corsets.
Although some tasks, like synthetic-to-real generalization (Chen et al., 2021) and few-shot learning
(Parnami & Lee, 2022), are also classical problems, customizing our method for them is out of the
scope of this work, because we focus on training large networks on small datasets from scratch. We
leave these tasks as future works. What’s more, compared with the existing methods, our proposed
methods introduce negligible overhead and are thus computationally efficient.
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(a) FRePo (Zhou et al., 2022)
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Figure 1: Effectiveness of our method on different architectures, different dataset distillation methods, and
different images per class (IPCs) on CIFAR10. We use a 3-layer CNN as the training network, so it performs
the best among various architectures under baselines (dashed lines). Our methods (solid lines) can significantly
narrow down the performance gap between the 3-layer CNN and other architectures.

We summarize the contributions of this paper as follows:

1. We propose a series of approaches to mitigate architecture overfitting in dataset distillation.
They are generic and applicable to different model architectures and training schemes.

2. We conduct extensive experiments to demonstrate that our method significantly mitigates
architecture overfitting for different network architectures, different dataset distillation ap-
proaches, different IPCs, and different datasets.

3. Moreover, our method generally improves the performance of deep networks trained on
limited real data. As a result, deep networks outperform shallow networks on different
fractions of training data, even when there are only 100 training samples.
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2 RELATED WORKS

Dataset Distillation: The goal of dataset distillation is to learn a smaller set of training samples (i.e.
distilled dataset) that preserves essential information of the original large dataset so that the model
trained on this small dataset performs similarly to that trained on the original large dataset. Existing
dataset distillation approaches are based on either meta-learning or data matching (Lei & Tao, 2023).
The former category includes backpropagation through time (BPTT) approach (Wang et al., 2018;
Bohdal et al., 2020; Sucholutsky & Schonlau, 2021) and kernel ridge regression (KRR) approach
(Nguyen et al., 2021; Zhou et al., 2022); the latter category includes gradient matching (Zhao &
Bilen, 2021; Lee et al., 2022b), trajectory matching (Cazenavette et al., 2022; Du et al., 2022; Cui
et al., 2022), and distribution matching (Wang et al., 2022; Zhao & Bilen, 2023). However, these
methods suffer from severe architecture overfitting, which means significant performance degrada-
tion when the architecture of the training network and the test network are different. Recently, some
factorization methods (Kim et al., 2022; Deng & Russakovsky, 2022; Liu et al., 2022; Lee et al.,
2022a), which learn synthetic datasets by optimizing their factorized features and corresponding de-
coders, greatly improve the cross-architecture transferability. However, the instance per class (IPC),
which indicates the number of instances in the distilled dataset, used in these methods is at least 5
times larger than that of meta-learning and data matching approaches, which greatly cancels out the
advantages of dataset distillation. To better fit the motivation of dataset distillation, we only consider
small IPCs (1, 10 and 50) in this work, so the factorization methods are not included for comparison.

Model Ensemble: Model ensemble aims to integrate multiple models to improve the generalization
performance. Popular ensemble methods for classification models include bagging (Breiman, 1996),
AdaBoost (Hastie et al., 2009), random forest (Breiman, 2001), random subspace (Ho, 1995), and
gradient boosting (Friedman, 2002). However, these methods require training several models and
thus are computationally expensive. By contrast, DropOut (Srivastava et al., 2014) trains the model
only once but stochastically masks its intermediate feature maps during training. At each training
iteration with DropOut, only part of the model parameters are updated, which forms a sub-network
of the model. In this regard, DropOut enables implicit model ensembles of different sub-networks to
improve the generalization performance. Similar to DropOut, DropPath (Larsson et al., 2016) also
implicitly ensembles sub-networks but it blocks a whole layer rather than masking some feature
maps. Therefore, it is applicable to network architectures with multiple branches, such as ResNet
(He et al., 2016), otherwise, the model output will be zero if a layer of a single branch network is
dropped. By contrast, we propose a DropPath variant in this work which is generic, applicable to
single-branch networks and effective to mitigate architecture overfitting.

Knowledge Distillation: Knowledge distillation (Hinton et al., 2015) aims to compress a well-
trained large model (i.e., teacher model) into a smaller and more efficient model (i.e., student model)
with comparable performance. The standard knowledge distillation (Hinton et al., 2015) is also
known as offline distillation since the teacher model is fixed when training the student model. Online
distillation (Zhang et al., 2018; Chen et al., 2020a) is proposed to further improve the performance of
the student model, especially when a large-capacity high-performance teacher model is not available.
In online distillation, both the teacher model and the student model are updated simultaneously. In
most cases, knowledge distillation methods use large models as the teachers and small models as the
students, which is based on the fact that larger models typically have better performance. However,
in the context of dataset distillation, a smaller test network with the same architecture as the training
network can achieve a better performance than a larger one on the distilled dataset, so we use the
small model as the teacher and the large model as the student in this work.

We show in the following sections that combining DropPath and knowledge distillation, architecture
overfitting in dataset distillation can be almost overcome.

3 METHODS

In this section, we introduce the approaches that are effective in mitigating architecture overfitting
in dataset distillation. Our methods are motivated by traditional wisdom to mitigate overfitting, in-
cluding ensemble learning (Ueda & Nakano, 1996; Srivastava et al., 2014), regularization (Krogh &
Hertz, 1991; Chen et al., 2020b) and data augmentation (Halevy et al., 2009; Shorten & Khoshgof-
taar, 2019). First, we propose a DropPath variant, which implicitly ensemble subsets of models and
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is different from vanilla DropPath (Larsson et al., 2016) in that it is also applicable to single-branch
architectures. Correspondingly, we optimize the shortcut connections of ResNet-like architecture
to better accommodate DropPath. Second, we use knowledge distillation (Hinton et al., 2015) as a
form of regularization to improve the performance to a large extent, even though the teacher model
is actually smaller than the student model in our cases. Finally, we adopt a periodical learning rate
scheduler, a gradient symbol-based optimizer (Chen et al., 2023), and a stronger data augmentation
scheme when training models on the distilled dataset, to further improve the performance.

3.1 DROPPATH
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Figure 2: (a) The DropPath used for multi-branch residual blocks during training, it does not block the shortcut
path. (b) The DropPath used for single-branch networks during training. Here, m = Bernoulli(p) ∈ {0, 1},
p ∈ [0, 1] denotes the keep rate. Only when the main path is pruned (m = 0), the virtual shortcut is activated,
and vice versa. DropPath is always deactivated, i.e., p = 1, during inference. (c) The original architecture of
a shortcut connection to downsample feature maps, which consists of a 1× 1 convolution layer with the stride
of 2 and a normalization layer. (d) The improved architecture of a shortcut connection to downsample feature
maps, which is a sequence of a 2 × 2 max pooling layer, a 1 × 1 convolution layer with the stride of 1 and a
normalization layer.

Similar to DropOut (Srivastava et al., 2014), DropPath (Larsson et al., 2016), a.k.a., stochastic depth,
was proposed to improve generalization. While DropOut masks some entries of feature maps, Drop-
Path randomly prunes the entire branch in a multi-branch architecture. To obtain a deterministic
model for evaluation, DropPath is deactivated during inference. To ensure the expectation of the
feature maps to be consistent for training and inference, we scale the output of feature maps after
DropPath during training. Mathematically, DropPath works as follows:

DropPath(x) =
m

p
· x, m = Bernoulli(p), (1)

where p ∈ [0, 1] denotes the keep rate, m = Bernoulli(p) ∈ {0, 1} outputs 1 with probability p
and 0 with probability 1− p. The scaling factor 1/p is used to ensure the expectation of the feature
maps remains unchanged after DropPath. Detailed derivation is in Appendix A.2. Figure 2 (a)
illustrates how DropPath is integrated into networks. It effectively decreases the model complexity
during training and can force the model to learn more generalizable representations using fewer
layers. Same as DropOut, any network trained with DropPath can be regarded as an ensemble of
its subnetworks (Krizhevsky et al., 2012). Ensembling has been proven to improve generalization
(Breiman, 1996; Hastie et al., 2009; Breiman, 2001; Ho, 1995; Friedman, 2002). As a result, we can
also expect DropPath to mitigate the architecture overfitting issue in dataset distillation. Note that,
DropOut masks part of the feature maps and effectively decreases the network width; by contrast,
DropPath removes a branch and thus decreases the network depth. Architecture overfitting arises
from deeper test networks, so we use DropPath instead of DropOut in this context.

Three-Phase Keep Rate: The keep rate p is the key parameter that controls the effective depth of
architecture. Since the architecture factor m = Bernoulli(p), the effective depth gets smaller as
p decreases. In the early phase of training, the model is underfitting, stochastic architecture brings
optimization challenges for training, so we turn off DropPath by setting the keep rate p = 1 in the
first few epochs to ensure that the network learns meaningful representations. We then gradually
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decrease p to decrease the effective depth and thus to narrow down the performance gap between the
deep sub-network and the shallow training network until it reaches the predefined minimum value
after several epochs. In the final phase of training, we decrease the architecture stochasticity by
increasing the value of p to a higher value to ensure training convergence. In experiments, we shrink
the keep rate every few epochs. The pseudo-code is shown in Algorithm 1 of Appendix A.1. Figure
6 of Appendix A.1 illustrates the scheduler of the keep rate.

Generalize to Single-Branch Networks: Since DropPath prunes the entire branch, it is not appli-
cable to single-branch networks, such as VGG (Simonyan & Zisserman, 2014). This is because we
need to ensure the input and the output of the network are always connected, otherwise, we will
obtain a trivial constant model. In the case of ResNet, we prune the main path of a residual block
stochastically, while the shortcut connections are always reserved.

To improve the performance of single-branch networks, we propose a variant of DropPath. As
illustrated in Figure 2(b), we add a virtual shortcut connection between two layers, such as two
consecutive convolutional layers in VGG, to form a block. This structure is similar to a residual
block, however, since we are training a single-branch architecture instead of a real ResNet, the
virtual shortcut connection is only used when the main path is pruned by DropPath during training.
That is to say when the main path is not pruned, the virtual shortcut connection is removed so that
we are still training a single-branch network. Correspondingly, the virtual shortcut connection is
discarded during inference.

Improved Shortcut Connection: In the original ResNet (He et al., 2016), if one residual block’s
input shape is the same as its output shape, the shortcut connection as in Figure 2(c) is just an identity
function, otherwise a 1×1 convolution layer of a stride larger than one, which may be followed by a
normalization layer, is adopted in the shortcut connection to transform the input’s shape to match the
output’s. In the latter case, the resolution of the feature maps is divided by the stride. For example,
if the stride is 2, the top left entry in each 2 × 2 area of the input feature map is sampled, whereas
the rest 3 entities of the same area are directly dropped.

This naive subsampling strategy will cause dramatic information loss when we use DropPath.
Specifically, if DropPath prunes the main path as in Figure 2 (a), the shortcut connection will dom-
inate the output of the residual block. In this regard, the naive subsampling strategy may corrupt or
degrade the quality of the features, since it always picks a fixed entry of a grid. To tackle this issue,
we replace the original shortcut connect with a 2× 2 max pooling followed by a 1× 1 convolutional
layer with the stride of 1. This improved structure will preserve the most important information after
pooling instead of the one from a fixed entry. Figure 2 (c) and (d) show the comparison between the
original and improved shortcut connections when the shapes of input and output are different.

3.2 KNOWLEDGE DISTILLATION

Given sufficient training data, large models usually perform better than small models due to their
larger representation capability. Knowledge distillation aims to compress a well-trained large model
(i.e., teacher model) into a smaller model (i.e., student model) without compromising too much
performance. The basic idea behind knowledge distillation is to distill the knowledge from a teacher
model into a student model by forcing the students predictions (or internal activations) to match
those of the teacher (Beyer et al., 2022). Specifically, we can use Kullback-Leibler (KL) divergence
with temperature LKL (Hinton et al., 2015) to match the predictions of student and teacher models.
Then, we can combine the KL divergence as the regularization term in addition to the classification
loss. Mathematically, the overall loss is:

L(ys,yt, y) = α · τ2 · LKL(ys,yt) + (1− α) · LCE(ys, y), (2)

where τ denotes the temperature factor, and α ∈ (0, 1) denotes the weight factor to balance the KL
divergence LKL and cross-entropy LCE . The output logits of the student model and teacher model
are denoted by ys and yt, respectively. y denotes the target.

In our context, small models can perform better than large ones, since small models are used to
construct distilled dataset. As a result, we adopt the small training network as the teacher model and
the large test network as the student model. The computational overhead in knowledge distillation
mainly arises from calculating yt. In this case, the computational overhead is negligible because
evaluating on the small teacher network is more efficient than on the larger student network.
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3.3 TRAINING AND DATA AUGMENTATION

Besides aforementioned methods, we use the following methods to further improve the performance.

Periodical Learning Rate: Because of the three-phase stepwise scheduler for the keep rate p, we
expect the network to jump out of the current local minima, and tries to search for a better one when
p changes. Inspired by (Huang et al., 2017), we use a cosine annealing curve with warmup to adjust
the learning rate, and we periodically reset it when p changes. Formally, the learning rate is adjusted
as shown in Eq. 3 of Appendix A.1.

Better Optimizer: Lion (Chen et al., 2023) is a gradient symbol-based optimizer. It has faster
convergence speed and is capable of finding better local minima for ResNets. Thus, Lion is used as
the default optimizer in our experiments.

Stronger Augmentation: The data augmentation strategy used in MTT (Cazenavette et al., 2022)
samples a single augmentation operation from a pool to augment the input image. However, we
observe that sampling more operations will better diversify the model’s inputs and thus improve
the performance, especially when IPC is small. For convenience, when sampling k operations, we
call this strategy k-fold augmentation. Empirically, we use 2-fold augmentation when IPC is 10
or 50 and 4-fold augmentation when IPC is 1. For the experiments about the impact of different
augmentations, please refer to Appendix B.4.

4 EXPERIMENTS

In this section, we evaluate our method on different dataset distillation algorithms, different numbers
of instances per class (IPCs), different datasets and different network architectures. Our methods
are shown effective in mitigating architecture overfitting and generic to improve the performance on
limited real data. In addition, we conduct extensive ablation studies for analysis. Implementation
details are referred to Appendix C.

4.1 MITIGATE ARCHITECTURE OVERFITTING IN DATESET DISTILLATION

Table 1: Experimental settings. DP denotes DropPath
with three-phase keep rate, KD denotes knowledge dis-
tillation. Besides, the miscellaneous (Misc.) includes
the methods in Section 3.3.

Method DP KD Misc.

Baseline 8 8 8
w/o DP & KD 8 8 4

w/o DP 8 4 4
w/o KD 4 8 4

Full 4 4 4

We first evaluate our method on two repre-
sentative dataset distillation (DD) algorithms,
i.e., neural Feature Regression with Pooling
(FRePo) (Zhou et al., 2022) and Matching
Training Trajectories (MTT) (Cazenavette et al.,
2022). FRePo proposes a neural feature kernel
to solve a kernel ridge regression problem, and
MTT focuses on matching the training trajecto-
ries on real data. Both of them show competitive
performance. Furthermore, we test several abla-
tions of our methods, and the settings of each
ablation are elaborated in Table 1. Comparison
with other baselines is shown in Appendix B.1.

We comprehensively evaluate the performance of these methods under various settings, including
different numbers of instances per class (IPC), different datasets and different architectures of the
test networks. Table 2 demonstrates the results on CIFAR10, and the results on CIFAR100 and
Tiny-ImageNet are reported in Appendix B.2. Note that, DropPath and knowledge distillation are
not applicable when we use the same architecture for training and test networks, i.e., 3-layer CNN,
because 1) it is too shallow for DropPath; 2) we will converge to the teacher model if we use the
same architecture for the teacher and the student models. We can observe from these results that ar-
chitecture overfitting is more severe in the case of small IPC and large architecture discrepancy, but
both DropPath and knowledge distillation is capable of mitigating it. In addition, combining them
can further improve the performance and overcome architecture overfitting in many cases. For in-
stance, when evaluating our method on distilled images of MTT (CIFAR10, IPC=10), it contributes
performance gains of 18.5% and 35.7% for ResNet18 and ResNet50, respectively. We are also inter-
ested in how much performance gap between training and test networks we can close. Surprisingly,
when IPC=10 and 50, the test accuracies of most network architectures surpass that of the architec-
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ture identical to the training network. Along with it, the gaps between different test networks, such
as ResNet18 and ResNet50, are also narrowed down in most cases. Additionally, we observe that
FRePo shows better cross-architecture generalization than MTT.

Table 2: Test accuracies of models trained on the distilled data of CIFAR10 (Krizhevsky et al., 2009) with
different IPCs. 3-layer CNN is the architecture used for data distillation and is the teacher model of knowledge
distillation. The results in the bracket indicate the gaps from the baseline performance of 3-layer CNN. The
results in bold are the best results among different settings. Note that DP and KD are not applicable for 3-layer
CNN, so we do not have the test accuracy of 3-layer CNN in these settings.

DD IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50
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Baseline 44.3 34.4 (-9.9) 41.8 (-2.5) 44.0 (-0.3) 25.9 (-18.4)
w/o DP & KD 44.8 (+0.5) 35.6 (-8.7) 47.4 (+3.1) 41.5 (-2.8) 30.3 (-14.0)

w/o DP - 47.2 (+2.9) 49.7 (+5.4) 48.7 (+4.4) 39.3 (-5.0)
w/o KD - 37.0 (-7.3) 46.0 (+1.7) 41.1 (-3.2) 32.5 (-11.8)

Full - 49.3 (+5.0) 50.7 (+6.4) 48.8 (+4.5) 41.5 (-2.8)

10

Baseline 63.0 55.6 (-7.4) 59.3 (-3.6) 61.3 (-1.7) 44.4 (-18.6)
w/o DP & KD 64.7 (+1.7) 61.0 (-2.0) 62.3 (-0.7) 62.4 (-0.6) 54.7 (-8.3)

w/o DP - 64.0 (+1.0) 63.3 (+0.3) 63.6 (+0.6) 57.7 (-5.3)
w/o KD - 63.9 (+0.9) 63.8 (+0.8) 62.2 (-0.8) 54.0 (-9.0)

Full - 66.6 (+3.6) 64.8 (+1.8) 65.4 (+2.4) 62.4 (-0.6)

50

Baseline 70.5 66.7 (-3.8) 66.8 (-3.7) 68.3 (-2.2) 60.5 (-10.0)
w/o DP & KD 72.4 (+1.9) 73.0 (+2.5) 71.0 (+0.5) 70.9 (+0.4) 71.2 (+0.7)

w/o DP - 73.9 (+3.4) 72.1 (+1.6) 72.0 (+1.5) 72.9 (+2.4)
w/o KD - 74.5 (+4.0) 71.5 (+1.0) 70.1 (-0.4) 70.6 (+0.1)

Full - 74.5 (+4.0) 73.2 (+2.7) 72.8 (+2.3) 73.2 (+2.7)
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Baseline 48.3 37.2 (-11.1) 40.5 (-7.8) 39.3 (-9.0) 22.4 (-25.9)
w/o DP & KD 46.8 (-1.5) 36.9 (-11.4) 43.2 (-5.1) 36.7 (-11.6) 24.7 (-23.6)

w/o DP - 41.6 (-6.7) 46.7 (-1.6) 38.6 (-9.7) 32.4 (-15.9)
w/o KD - 35.5 (-12.8) 41.1 (-7.2) 34.4 (-13.9) 28.5 (-19.8)

Full - 47.2 (-1.1) 47.3 (-1.0) 44.1 (-4.2) 43.0 (-5.3)

10

Baseline 63.6 48.9 (-14.7) 56.9 (-6.7) 52.6 (-11.0) 28.1 (-35.5)
w/o DP & KD 65.0 (+1.4) 51.3 (-12.3) 60.7 (-2.9) 56.0 (-7.6) 39.8 (-23.8)

w/o DP - 61.4 (-2.2) 52.7 (-10.9) 48.8 (-14.8) 49.9 (-13.7)
w/o KD - 60.7 (-2.9) 59.2 (-4.4) 57.6 (-6.0) 47.5 (-16.1)

Full - 67.4 (+3.8) 68.3 (+4.7) 67.1 (+3.5) 63.8 (+0.2)

50

Baseline 70.2 62.3 (-7.9) 67.5 (-2.7) 63.0 (-7.2) 53.1 (-17.1)
w/o DP & KD 70.5 (+0.3) 68.1 (-2.1) 69.5 (-0.7) 67.6 (-2.6) 66.5 (-3.7)

w/o DP - 66.9 (-3.3) 63.8 (-6.4) 61.2 (-9.0) 66.8 (-3.4)
w/o KD - 69.8 (-0.4) 67.2 (-3.0) 69.0 (-1.2) 65.0 (-5.2)

Full - 71.0 (+0.8) 72.0 (+1.8) 69.5 (-1.2) 70.0 (-0.2)

DropPath enables an implicit ensemble of the shallow subnetworks and thus mitigates architecture
overfitting. However, each of these sub-networks may have sub-optimal performance. Knowledge
distillation can address this issue by encouraging similar outputs between the teacher model and the
sub-networks and thus further improves the performance. By contrast, the contribution of knowledge
distillation could be marginal without DropPath due to the big difference in architecture (Mirzadeh
et al., 2020). Empirically, combining DropPath with knowledge distillation not only achieves the
best performance, but also greatly decreases the performance difference among different test net-
work architectures.

Due to space limits, we report the standard deviations of performance in Table 8 of Appendix B.3.
The results show that although the standard deviations increase when decreasing IPC, we can still
see significant improvement by our methods.

4.2 IMPROVE THE PERFORMANCE OF TRAINING ON LIMITED REAL DATA

We discuss the performance of our methods when training on a limited amount of real data and
compare it with the case of the distilled dataset. Our methods have shown effective to mitigate ar-
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chitecture overfitting on the distilled dataset, we expect them to improve the performance on limited
real training data as well. In this case, smaller models also tend to perform better than larger models
because both can fit the training set perfectly but the latter suffers more from overfitting.
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(b) ResNet50 v.s. 3-layer CNN

Figure 3: Test accuracies obtained from training on different fractions of CIFAR10, the shadow indicates the
standard deviation. We compare the test accuracies (a) between ResNet18 (RN18) and 3-layer CNN (CNN),
and (b) between ResNet50 (RN50) and CNN, respectively. The x-axis denotes the fraction of training data,
DP+KD denotes that the network is trained with DropPath and knowledge distillation. Note that we run the
experiments three times with different random seeds.

As illustrated in Figure 3, we train models on different fractions of CIFAR10 training set which
are randomly sampled. The 3-layer CNN still serves as the teacher model when we use knowledge
distillation. Since ResNet18 and ResNet50 exhibit the largest performance differences from the
3-layer CNN in the previous experiments, we only show the results of ResNet18 and ResNet50
here. ResNet18 and ResNet50 significantly outperform 3-layer CNN with enough training data, but
they show worse generalization performance than CNN when the fraction is lower than 0.02, i.e.,
1000 training instances. Under our methods, the performances of both ResNet18 and ResNet50
surpass that of 3-layer CNN even when the fraction is as small as 0.002, i.e., 100 training instances.
However, the performance gain saturates when the fraction of training data reaches 0.05, which can
be attributed to the unsatisfactory performance of the teacher model (blue line). Therefore, we do not
bother to obtain the results with larger fractions as a result. Nevertheless, Figure 7 (b) in Appendix
B.5 shows that when the current teacher does not contribute to performance gain anymore, a stronger
teacher can further improve the performance. More results are discussed there.

Furthermore, we observe that the performance gap of training on limited real data is much smaller
than that of training on distilled images. For instance, when the fraction of training data is 0.002,
which is equivalent to IPC=10, the performance gap between 3-layer CNN and ResNet50 is 4.9%
when they are trained on real images. However, when we train them on distilled images of FRePo,
the performance gap increases to 18.6%. As for the distilled images generated by MTT, the gap is
even larger, which reaches 35.5%. Meanwhile, training on a distilled dataset results in much better
performance than training on real data of the same size, which makes it popular in downstream
applications. Therefore, we focus on applying our method in the context of dataset distillation, in
which the effectiveness of our method can be better revealed.

4.3 ABLATION STUDIES

We conduct extensive ablation studies here to validate the effectiveness of each component in our
methods. In this subsection, we focus on the case of using 3-layer CNN as the training network,
ResNet18 as the test network, setting IPC to 10 and generating the distilled dataset by FRePo. Note
that the baseline performance of 3-layer CNN trained on the distilled data is 63.0%, its performance
improves to 64.7% with better optimization and data augmentation.

DropPath: We first try different minimum keep rates in the three-phase scheduler introduced in
Section 3.1. As illustrated in Figure 4 (a) and (c), a lower minimum keep rate and a longer period of
decay induce better performance, but both of them make the training longer. To balance performance
and efficiency, we set the minimum keep rate and period of decay to 0.5 and 500, respectively. Figure
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4 (b) shows that different final keep rates do not significantly affect the performance. Moreover, we
verify the effectiveness of the high keep rate in the final phase of training, and the improved shortcut
connection (SC) introduced in Section 3.1. The results shown in Table 3 indicate that both of them
contribute to the performance.

Table 3: Ablation studies about the high keep
rate in the final phase of training and improved
shortcut connection (SC). Note that if we do
not adopt the improved SC, we use the original
one instead.

Final phase Improved SC Test Acc.

8 8 65.2
4 8 65.6
8 4 65.9
4 4 66.6

Table 4: Ablation studies about optimization and data
augmentation. If periodical learning rate (LR), Lion op-
timizer and stronger augmentation (Aug.) are not adopted,
we replace them with cosine annealing learning rate,
AdamW and 1-fold augmentation, respectively.

Periodical LR Lion stronger Aug. Test Acc.

8 8 8 61.6
4 8 8 61.9
4 4 8 64.8
4 4 4 66.6
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Figure 4: Ablation studies on minimum keep rate, final keep rate and period of decay. (a) Test accuracies of
different minimum keep rates. (b) Test accuracies of different keep rates at the final phase. (c) Test accuracies of
different periods of decay. Regardless of the variation of hyperparameters, ResNet18 trained with our approach
generally outperforms 3-layer CNN trained with baseline (orange dashed line) and that trained with better
optimization and data augmentation (green dashed line).

Knowledge Distillation: We also test different hyperparameters of knowledge distillation (KD).
As illustrated in Figure 8 (a) and (b) of Appendix B.6, when weight α and temperature τ are in the
range of [0.5, 0.8] and [1, 10], respectively, the performance does not vary significantly. It indicates
that our method is quite robust to different hyperparameter choices.

Optimization and Data Augmentation: In Table 4, we replace each of the optimization and data
augmentation approaches with a baseline. The results indicate that each of these approaches im-
proves performance. Among them, Lion optimizer contributes a performance improvement of 2.9%.
Compared with adaptive optimizers, such as AdamW (Loshchilov & Hutter, 2017), Lion tends to
converge to flatter minima, which results in better generalization performance (Keskar & Socher,
2017; Zhou et al., 2020). Figure 9 of Appendix B.7 further demonstrates that Lion finds flatter
minima than AdamW from both quantitative and qualitative perspectives by numerical methods.

Note that the results of IPC=1 in Table 2 are obtained with 4-fold augmentation. For comparison,
we also get the results with 2-fold augmentation (see in Table 9 of Appendix B.4).

5 CONCLUSION

This paper studies architecture overfitting when we train models on distilled datasets. We propose
a series of approaches in both architecture designs and training schemes which can be adopted to-
gether to mitigate this issue. Our methods are efficient, generic and can improve the performance
when training on a small real dataset directly. We believe that our work can help extend dataset
distillation for applications in more real-world scenarios. Recognizing the existing disparity in per-
formance between training on distilled data and the original training set, our future work will focus
on exploring methods to further enhance performance.
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A SUPPLEMENTARY OF METHODS

A.1 DROPPATH WITH THREE-PHASE KEEP RATE

The pseudo algorithm of DropPath with three-phase keep rate is shown in Alg. 1.

Algorithm 1 DropPath with Three-Phase Keep Rate
Input: the data: x; current epoch index: i; decaying factor: 0 < γ < 1; minimum keep rate:
pmin; final keep rate: pfinal; period of decay: T ; warmup period: W ; stabilization epoch: S.

1: if i < W then
2: p← 1
3: else if i < S then . ceil function returns the smallest integer bigger than the input
4: p← max(pmin, 1− γ · ceil((i−W )/T ))
5: else
6: p← pfinal
7: end if
8: if is training then . sampled from Bernoulli distribution
9: m← Bernoulli(p)

10: y← m
p · x

11: else
12: y← x
13: end if

Output: y

Unless specified, we set γ = 0.1, pmin = 0.5, pfinal = 0.8, T = 500, W = 500, S = 3000 in the
experiments. The corresponding curve of the dynamic keep rate is shown in Figure 5.

The learning rate lr at epoch i is defined as

lri =

λi · mod(i,t)
Twarm

· lrmax, if mod(i, t) ≤ Twarm,

0.5λi(1 + cos(πmod(i,t)−Twarm

Tmax−Twarm
)) · lrmax, else,

(3)

where t = T when i < S, otherwise t = S. λi = λbmin(i,S)/Tc where λ is a base decaying factor,
and b·c denotes the floor function. lrmax denotes the maximum learning rate, mod(x, y) denotes
the remainder of x/y, T is the decay period of the keep rate p of DropPath, S is the stabilization
epoch. The maximum iterations of the cosine annealing function and the number of warmup epochs
are denoted by Tmax and Twarm, respectively. Figure 6 shows how the learning rate changes.
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Figure 5: Scheduler of three-phase keep rate.
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Figure 6: Curve of periodical learning rate.

A.2 EFFECT OF SCALING FACTOR 1/p IN DROPPATH

Eq. 1 shows that DropPath(x) = m
p · x, m = Bernoulli(p), where p ∈ [0, 1] denotes the keep

rate, m = Bernoulli(p) ∈ {0, 1} outputs 1 with probability p and 0 with probability 1 − p. We
consider the module output y = DropPath(x) in the training phase, then the expectation of y given
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x is E(y) = p · 1p · x+ (1− p) · 0p · x = x. In the test phase, DropPath is disabled, so the module
output is simply x and consistent with the expectation in the training phase. If there is no scaling
factor 1/p in Eq. 1 and p < 1, the expectation of the module outputs in the training and test phases
will be different, which leads to performance degradation.

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH OTHER BASELINES

Table 5: Comparison between our method and other baselines. Note that p in DropPath and Dropout denotes
the keep rate and alpha in MixUp and CutMix is the parameters α and β in beta distribution, where α and β
are the same.

Method Test Accuracy

Baseline 55.6
DropPath (p=0.5) 46.2
DropOut (p=0.5) 44.3
MixUp (alpha=0.5) 57.6
CutMix (alpha=0.5) 56.9
Ours 66.2

We further compare our method with some regularization methods on architectures: DropOut (Sri-
vastava et al., 2014) and DropPath (Larsson et al., 2016), and data augmentation methods: MixUp
(Zhang et al., 2017) and CutMix (Yun et al., 2019). We evaluate their performance under the setting
of using 3-layer CNN as the training network, ResNet18 as the test network, setting IPC to 10 and
generating the distilled dataset by FRePo. The result is reported in Table 5. We observe that Drop-
Path and DropOut with a constant keep rate deteriorate the performance; MixUp and CutMix only
contribute to marginal performance improvement, which further demonstrates the effectiveness of
our method.

B.2 RESULTS ON MORE DATASETS

The results on CIFAR100 and Tiny-ImageNet are reported in Table 6 and 7, respectively. The
observations on CIFAR10 are analogous to those on CIFAR100 and Tiny-ImageNet, which indicates
that our method is effective on different datasets.

B.3 STANDARD DEVIATION OF RESULTS

To better validate the effectiveness of our method, we report the standard deviations of test ac-
curacies of CIFAR10 (FRePo) in Table 8. We calculate these standard deviations by running the
experiments three times with different random seeds. It can be observed that the standard devia-
tion generally increases as IPC decreases. The reason could be that when IPC gets smaller, there
are more solutions that make the training error zero, so the performance of training becomes more
sensitive to initialization. Despite that, we can still see significant improvement by our methods.

B.4 THE IMPACT OF AUGMENTATION WHEN IPC=1

In Table 2, we use 4-fold augmentation when IPC = 1 and 2-fold augmentation otherwise. To
comprehensively analyze the effect of a stronger data augmentation, we demonstrate the results
of using 2-fold augmentation in the case of distilled data of CIFAR10 (FRePo, IPC = 1) in Table 9.
Compared with Table 2, the test accuracies of w/o DP & KD and w/o & KD in Table 9 are higher, but
those of w/o DP and Full are lower. Especially for ResNet50, the performance of Full increases by
7.7% with 4-fold augmentation. This indicates that stronger augmentation is necessary when using
knowledge distillation when there are extremely limited data, and when the architecture difference
between the training and test networks is big. Moreover, we observe that the contribution of 4-fold
augmentation is marginal under a larger IPC, so we adopt 4-fold augmentation only when IPC=1.

15



Under review as a conference paper at ICLR 2024

Table 6: Test accuracies of models trained on the distilled data of CIFAR100 (Krizhevsky et al., 2009) with
different IPCs. 3-layer CNN is the architecture used for data distillation and is the teacher model of knowledge
distillation. The results in the bracket indicate the gaps from the baseline performance of 3-layer CNN. The
results in bold are the best results among different methods.

DD IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50

FR
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ho
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.,
20

22
) 1

Baseline 26.2 18.7 (-7.5) 22.9 (-3.3) 22.6 (-3.6) 13.5 (-12.7)
w/o DP & KD 26.1 (-0.1) 16.0 (-10.2) 22.3 (-3.9) 18.4 (-7.8) 14.5 (-11.7)

w/o DP - 21.3 (-4.9) 23.9 (-2.3) 21.8 (-4.4) 18.2 (-8.0)
w/o KD - 17.1 (-9.1) 22.1 (-4.1) 17.9 (-8.3) 14.3 (-11.9)

Full - 24.4 (-1.8) 25.3 (-0.9) 24.0 (-2.2) 23.7 (-2.5)

10

Baseline 34.4 32.1 (-2.3) 33.1 (-1.3) 34.1 (-0.3) 28.1(-6.3)
w/o DP & KD 40.2 (+5.8) 35.3 (+0.9) 37.9 (+3.5) 37.2 (+2.8) 33.7 (-0.7)

w/o DP - 39.4 (+5.0) 39.2 (-4.8) 38.9 (+4.5) 38.5 (+4.1)
w/o KD - 34.8 (+0.4) 38.5 (+4.1) 36.6 (+2.2) 35.0(+0.6)

Full - 40.6 (+6.2) 39.9 (+5.5) 39.4 (+5.0) 40.1 (+5.7)

50

Baseline 42.1 46.7 (+4.6) 45.5 (+3.4) 45.5 (+3.4) 45.8 (+3.7)
w/o DP & KD 46.2 (+4.1) 46.8 (+4.7) 46.1 (+4.0) 45.5 (+3.4) 46.9 (+4.8)

w/o DP - 48.3 (+6.2) 44.6 (+2.5) 45.8 (+3.7) 48.7 (+6.6)
w/o KD - 47.2 (+5.1) 47.0 (+4.9) 45.0 (+2.9) 46.1 (+4.0)

Full - 48.5 (+6.4) 46.6 (+4.5) 46.7 (+4.6) 49.1 (+7.0)

M
T

T
(C

az
en

av
et

te
et

al
.,

20
22

)

1

Baseline 24.4 14.3 (-10.1) 17.0 (-7.4) 15.6 (-8.8) 4.6 (-19.8)
w/o DP & KD 25.0 (+0.6) 12.5 (-11.9) 20.6 (-3.8) 8.2 (-16.2) 6.0 (-18.4)

w/o DP - 13.3 (-11.1) 24.4 (+0.0) 10.2 (-14.2) 8.5(-15.9)
w/o KD - 13.6 (-10.8) 19.7 (-4.7) 12.4 (-12.0) 9.3 (-15.1)

Full - 24.9 (+0.5) 25.8 (+1.4) 22.1 (-2.3) 24.6 (+0.2)

10

Baseline 38.4 32.9 (-5.5) 33.7 (-4.7) 28.8 (-9.6) 22.5 (-15.9)
w/o DP & KD 38.5(+0.1) 32.7 (-5.7) 36.0 (-2.4) 33.9 (-4.5) 30.6 (-7.8)

w/o DP - 35.0 (-3.4) 38.2 (-0.2) 35.5 (-2.9) 34.2 (-4.2)
w/o KD - 34.6 (-3.8) 34.9 (-3.5) 33.2 (-5.2) 32.9 (-5.5)

Full - 38.4 (+0.0) 39.9 (+1.5) 36.4 (-2.0) 38.5 (+0.1)

50

Baseline 44.5 43.1 (-1.4) 41.4 (-3.1) 39.3 (-5.2) 38.7 (-5.8)
w/o DP & KD 46.0 (+1.5) 46.2 (+1.7) 46.1 (+1.6) 44.5 (+0.0) 45.5 (+1.0)

w/o DP - 47.2 (+2.7) 47.1 (+2.6) 45.1 (+0.6) 47.2 (+2.7)
w/o KD - 46.9 (+2.4) 45.7 (+1.2) 43.4 (-1.1) 46.8 (+2.3)

Full - 48.9 (+4.4) 47.6 (+3.1) 45.1 (+0.6) 49.4 (+4.9)
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Table 7: Test accuracies of models trained on the distilled data of Tiny-ImageNet (Deng et al., 2009) with
different IPCs. 3-layer CNN is the architecture used for data distillation and is the teacher model of knowledge
distillation. The results in the bracket indicate the gaps from the baseline performance of 3-layer CNN. The
results in bold are the best results among different methods. Due to computational complexity, the results of
IPC=50 are not included.

DD IPC Methods CNN ResNet18 AlexNet VGG11 ResNet50

FR
eP

o

1

Baseline 16.6 15.6 (-1.0) 16.5 (-0.1) 16.6 (+0.0) 13.4 (-3.2)
w/o DP & KD 17.7 (+1.1) 12.3 (-4.3) 13.7 (-2.9) 14.1 (-2.5) 12.8 (-3.8)

w/o DP - 15.8 (-0.8) 16.6 (+0.0) 16.4 (-0.2) 16.6 (+0.0)
w/o KD - 12.5 (-4.1) 14.9 (-1.7) 13.6 (-3.0) 11.9 (-4.7)

Full - 18.9 (+2.3) 18.5 (+1.9) 18.3 (1.7) 19.1 (+2.5)

10

Baseline 24.9 24.2 (-0.7) 24.8 (-0.1) 25.2 (+0.3) 24.9 (+0.0)
w/o DP & KD 23.0 (-1.9) 21.7 (-3.2) 23.8 (-1.1) 24.2 (-0.7) 23.1 (-1.8)

w/o DP - 25.4 (+0.5) 25.2 (+0.3) 26.4 (+1.5) 26.9 (+2.0)
w/o KD - 21.5 (-3.4) 22.4 (-2.5) 24.0 (-0.9) 21.6 (-3.3)

Full - 26.8 (+1.9) 24.9 (+0.0) 26.6 (+1.7) 27.3 (+2.4)

M
T

T

1

Baseline 8.8 6.2 (-2.6) 6.7 (-2.1) 7.3 (-1.5) 2.7 (-6.1)
w/o DP & KD 9.6 (+0.8) 6.1 (-2.7) 8.4 (-0.4) 7.2 (-1.6) 3.2 (-5.6)

w/o DP - 6.5 (-2.3) 9.1 (+0.3) 7.9 (-0.9) 3.6 (-5.2)
w/o KD - 6.7 (-2.1) 8.1 (-0.7) 6.8 (-2.0) 4.0 (-4.8)

Full - 8.1 (-0.7) 9.2 (+0.4) 8.2 (-0.6) 8.2 (-0.6)

10

Baseline 19.3 17.2 (-2.1) 14.3 (-5.0) 15.1 (-4.2) 11.2 (-8.1)
w/o DP & KD 20.1(+0.8) 16.6 (-2.7) 18.7 (-0.6) 16.2 (-3.1) 15.2 (-4.1)

w/o DP - 17.3 (-2.0) 21.2 (+1.9) 19.9 (+0.6) 18.7 (-0.6)
w/o KD - 19.0 (-0.3) 17.7 (-1.6) 15.2 (-4.1) 17.7 (-1.6)

Full - 22.6 (+3.3) 21.6 (+2.3) 20.5 (+1.2) 21.8 (+2.5)

Table 8: The average test accuracies of models trained on the distilled data of CIFAR10 (Krizhevsky et al.,
2009) with different IPCs. The number after ± denotes the standard deviation. These results are obtained
through three repetitive experiments with different random seeds. 3-layer CNN is the architecture used in
distillation and is the teacher model of knowledge distillation.

DD IPC Methods ResNet18 AlexNet VGG11 ResNet50

FR
eP

o 1

w/o DP & KD 35.6 ±2.5 47.4 ±0.9 41.5 ±1.1 30.3 ±1.9

w/o DP 47.2 ±0.5 49.7 ±0.7 48.7 ±0.6 39.3 ±1.4

w/o KD 37.0 ±1.0 46.0 ±0.6 41.1 ±1.3 32.5 ±1.4

Full 49.3 ±0.6 50.7 ±0.1 48.8 ±0.4 41.5 ±1.0

10 Full 66.2 ±0.5 64.8 ±0.9 65.4 ±0.2 62.4 ±0.9

50 Full 74.5 ±0.1 73.2 ±0.3 72.8 ±0.0 73.2 ±0.2

B.5 ADDITIONAL RESULTS FOR SEC. 4.2

Figure 7 (a) indicates that our method is also effective for VGG11. Furthermore, Figure 7 (b)
illustrates that when the fraction of training data is larger than 0.04, 3-layer CNN can no longer
provide performance gains for ResNet50. Nonetheless, if we adopt ResNet18 as the teacher model
at this point, the performance of ResNet50 can be further improved.

B.6 ABLATION STUDY ON HYPERPARAMETERS OF KNOWLEDGE DISTILLATION

From Figure 8 (a) and (b), we can observe that when weight α and temperature τ are in the range of
[0.5, 0.8] and [1, 10], respectively, the performance does not vary significantly. It indicates that our
method is quite robust to different hyperparameter choices.
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Table 9: Test accuracies of models trained on the distilled data of CIFAR10 (FRePo, IPC=1). However, 2-fold
augmentation is adopted here. Except that, the other settings are the same as Table 2.

IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50

1

Baseline 44.3 34.4 (-9.9) 41.8 (-2.5) 44.0 (-0.3) 25.9 (-18.4)
w/o DP & KD 44.8 (+0.5) 41.2 (-3.1) 45.4 (+1.1) 45.9 (+1.6) 32.8 (-11.5)

w/o DP - 41.0 (-3.3) 44.5 (+0.2) 47.0 (+2.7) 30.0 (-14.3)
w/o KD - 39.4 (-4.9) 47.1 (+2.8) 38.9 (-5.4) 31.0 (-13.3)

Full - 45.5 (+1.2) 47.8 (+3.5) 46.7 (+2.4) 33.8 (-10.5)
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Figure 7: Test accuracies obtained from training on different fractions of CIFAR10, the shadow indicates
the standard deviation. We compare the test accuracies (a) between VGG11 and 3-layer CNN (CNN), and
(b) between ResNet50 (RN50) and ResNet18, respectively. The x-axis denotes the fraction of training data,
DP+KD denotes that the model is trained with DropPath with three-phase keep rate and knowledge distillation,
where the teacher architecture used in KD is shown in the bracket.
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Figure 8: Ablation studies on weight and temperature of knowledge distillation (KD). (a) Test accuracies
of different KD weights. (b) Test accuracies of different KD temperatures. Regardless of the variation of
hyperparameters, ResNet18 trained with our approach generally outperforms 3-layer CNN trained with baseline
(orange dashed line) and that trained with better optimization and data augmentation (green dashed line).

B.7 LION FINDS FLATTER MINIMA

To validate the claim in Sec. 4.3 that Lion finds flatter minima than AdamW, we analyze the Hessian
spectrum of models trained with different optimizers. It is known that the curvature in the neighbor-
hood of model parameters is dominated by the top eigenvalues of the Hessian matrix ∇2LCE(θ),
where LCE(θ) denotes the cross-entropy loss w.r.t model parameters θ. In the implementation, we
use the power iteration method as in (Yao et al., 2018; Liu et al., 2020) to iteratively estimate the top
20 eigenvalues and the corresponding eigenvectors of the Hessian matrix.
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Figure 9: Additional results for Sec. 4.3. (a) Top 20 eigenvalues of Hessian matrix for ResNet18 trained with
different optimizers, i.e., Lion and AdamW. (b) Loss landscape LCE(θ + α1v1 + α2v2) of ResNet18 around
the minima found by Lion, where v1 and v2 are the eigenvectors corresponding to the top two eigenvalues of
Hessian matrices, respectively. (c) The same loss landscape of ResNet18 around the minima found by AdamW.
Note that the training data is 100 (IPC=10) distilled images of CIFAR10 by FRePo. ResNet18 is trained with
DropPath and knowledge distillation. 3-layer CNN serves as the teacher model of knowledge distillation.

As illustrated in Figure 9 (a), the eigenvalues of the Hessian matrix for the ResNet18 trained with
Lion are smaller than those for the ResNet18 trained with AdamW, which quantitatively indicates
that the neighborhood of the minima found by Lion has smaller curvature. Furthermore, Figure 9
(b) and (c) qualitatively shows that Lion finds flatter minima than AdamW.

C IMPLEMENTATION DETAILS

Datasets: The training sets in the experiments are the distilled datasets of CIFAR10, CIFAR100
(Krizhevsky et al., 2009) and Tiny-ImageNet (Deng et al., 2009), but the test sets are their respective
original test sets. To better validate the effectiveness of our method, we use the distilled images
synthesized by different dataset distillation algorithms, e.g., neural Feature Regression with Pooling
(FRePo) (Zhou et al., 2022) and Matching Training Trajectories (MTT) (Cazenavette et al., 2022).
In addition, we evaluate the performance of our method in different numbers of instances per class
(IPC), e.g., 1, 10 and 50. Note that MTT does not provide the final trainable learning rates in the
released checkpoints, we adopt the reported initial learning rates in our baselines.

Models: The networks used to synthesize the distilled images (training networks) in FRePo and
MTT are 3-layer CNN. Consistent with the hyperparameters reported in the paper, the output chan-
nels of hidden layers of the network used in FRePo are 128, 256 and 512, respectively. However,
in MTT, all the output channels of hidden layers are set to 128. ResNet18, ResNet50 (He et al.,
2016), AlexNet (Krizhevsky et al., 2012) and VGG11 (Simonyan & Zisserman, 2014) are adopted
in the evaluation, they are thereby called test networks. The hyperparameters of networks are the
same as those set in (Cazenavette et al., 2022). Note that when training networks on distilled images
of FRePo and MTT, batch and instance normalization layers are adopted in networks following the
settings of (Zhou et al., 2022; Cazenavette et al., 2022), respectively.

DropPath: As shown in Algorithm 1, the decaying factor of keep rate γ = 0.1, minimum keep
rate pmin = 0.5, final keep rate pfinal = 0.8, period of decay T = 500, warmup period W = 50,
stabilization epoch S = (1+ pmin/γ)×T = 3000. The total epochs N is set to S+2×T = 4000.
In the improved shortcut, the pooling area depends on the stride of 1× 1 convolutional layer in the
original one. e.g., if the stride of 1 × 1 convolutional layer in the original shortcut is 2, we use a
2× 2 max pooling.

Knowledge distillation: As shown in Eq. 2, the temperature factor τ = 1.5, and the weight factor
α = 0.5. If not specifically indicated, the default teacher model is the 3-layer CNN. Note that the
teacher model is trained on the same data set as the student model.

Periodical learning rate: In Eq. 3, the maximum learning rate lrmax = 5×10−5, the base decaying
factor for learning rate λ = 0.8. The period of the cosine function Tmax and the number of warmup
epochs Twarm are 1000 and 50, respectively.
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Optimizer: Lion (Chen et al., 2023) is adopted in our method, where weight decay λwd = 5×10−3,
coefficient β1 = 0.95, and β2 = 0.98.

Augmentation: There are color jittering, cropping, cutout, flipping, scaling, and rotating in the
augmentation pool, we sample more operations instead of just one as in (Cazenavette et al., 2022).

Training: For CIFAR10, the batch sizes for different IPCs are 10 (IPC=1), 100 (IPC=10) and 128
(IPC=50), respectively. For CIFAR100, the batch sizes are 100 (IPC=1), 256 (IPC=10) and 256
(IPC=50), respectively. Cross-entropy is adopted as the loss function in our experiments. Since
the labels of images are learnable in FRePo, we divide them with a temperature factor t = 0.3 for
CIFAR10, 0.04 for CIFAR100, and and 0.02 for Tiny-ImageNet.
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