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Abstract

Estimating the individual-level continuous treatment effect holds significant practical impor-
tance in various decision-making domains, such as personalized healthcare and customized
marketing. However, most current methods for individual treatment effect estimation are
limited to discrete treatments and struggle to precisely adjust for selection bias under con-
tinuous settings, leading to inaccurate estimation. To address these challenges, we propose
a novel Disentangled Representation Network (DTRNet) to estimate the individualized
dose-response function (IDRF), which learns disentangled representations and precisely
adjusts for selection bias. To the best of our knowledge, our work is the first attempt to
precisely adjust for selection bias in continuous settings. Extensive results on synthetic and
semi-synthetic datasets demonstrate that our DTRNet outperforms most state-of-the-art
methods. Our code is available at https://anonymous.4open.science/r/DTRNet.

1 Introduction

In various fields, from medicine to marketing, estimating the causal effects of continuous treatments at
individual level is not just an academic exercise - it is crucial for decision-making. Take precision medicine as
an example: The central question often focuses on determining the “optimal dosage of medicine to achieve the
optimal outcome for a given patient”. Therefore, understanding the causal relationship between continuous
treatments and outcomes can help develop customized medication regimens tailored to individual patients.

When estimating the effect of individual treatment (ITE), two predominant challenges arise: the inability
to observe counterfactual outcomes and the presence of selection bias. For example, when a specific
dose of treatment is assigned to a patient, only the factual outcome corresponding to that dose is observed,
leaving counterfactual outcomes unobserved for other doses. Furthermore, unlike in randomized controlled
trials where treatments are assigned at random, the dosage a patient receives in practice may depend on
certain patient-specific features (e.g., older individuals may receive higher dosages more frequently). This
dependency can introduce selection bias, thereby compromising the accuracy of counterfactual outcome
estimation. For example, it becomes challenging to accurately estimate the treatment effect of higher dosages
in younger populations. Beyond conventional causal inference techniques such as stratification methods (Pearl,
2009) and matching methods (Abadie et al., 2004), recent research has harnessed representation learning for
counterfactual prediction and selection bias mitigation (Johansson et al., 2016; Shalit et al., 2017; Schwab
et al., 2020; Curth & van der Schaar, 2021; Bellot et al., 2022; Wang et al., 2022; Acharki et al., 2023;
Huang et al., 2024). These approaches involve learning latent representations from covariates, balancing these
representations across treatment groups to eliminate selection bias, and subsequently estimating counterfactual
outcome on these balanced representations (Shalit et al., 2017).

Despite prior endeavors, several crucial challenges still remain unresolved. ❶ Most existing studies (Yao
et al., 2021; Acharki et al., 2023; Huang et al., 2024) are limited to discrete treatment settings. These
methods cannot be easily extended to continuous treatment settings due to the infinite number of unobserved
counterfactual outcomes and the difficulty of adjusting for selection bias in an infinite set of treatments.
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❷ Existing methods struggle to precisely adjust for selection bias. Many previous approaches resort to a
simplistic and brute-force method, which balances the entire representations, leading to inaccurate estimation.
However, we argue that not all the information in the latent representations should be balanced to adjust for
selection bias (Greenland, 2008; Chu et al., 2020). For example, although confounder factors in representations
bring selection bias, they also contribute to outcome predictions (Hassanpour & Greiner, 2019a). Balancing
instrumental factors in the representations is also theoretically implausible, since they are related to the
treatment assignment and should not be identical across treatments. Attempting to balance them can
lead to increased bias and variance in causal effect estimation (Myers et al., 2011). Therefore, the entire
representations of input covariates should not be indiscriminately balanced.

Although some follow-up methods have attempted to address the first challenge by dividing continuous
treatments into bins and assigning one network head to each bin (Schwab et al., 2020; Acharki et al.,
2023), using a varying coefficient structure (Nie et al., 2021), or designing a specific loss for continuous
treatments (Bellot et al., 2022; Zhu et al., 2024), these methods do not guarantee any precise adjustment
for selection bias (i.e., the second challenge). On the other hand, although Hassanpour & Greiner (2019b)
demonstrated that disentangled representations can be leveraged to precisely correct for selection bias, it is
based on the assumption of binary treatment and cannot be readily extended to continuous settings (i.e.,
the first challenge). To the best of our knowledge, there is no research that simultaneously solves these
two problems, namely generating appropriate disentangled representations that precisely adjust for selection
bias to estimate the continuous treatment effect at the individual level, which is defined as the Individualized
Dose-Response Function (IDRF).

To address these challenges, we propose a novel method named Disentangled Representation Network
(DTRNet). Specifically, we follow the convention assumption in causal inference (Wu et al., 2020; Kuang
et al., 2017; Hassanpour & Greiner, 2019a) that covariates are determined by three latent factors: (1)
Instrumental factors (2) Confounder factors (3) Adjustment factors (as shown in Fig. 1 a). DTRNet first
learns disentangled representations for each factor, providing the opportunity to precisely adjust for bias
by using only the relevant representations instead of the entire representations. Then, we precisely adjust
for selection bias by adopting a re-weighting function and predict outcomes based on the representations of
confounder and adjustment factors through a varying coefficient network, which enables continuous treatment
effect estimation. A rigorous theoretical proof supporting the debiasing of our re-weighting function is also
provided. Our contributions are summarized as follows.

• We propose a novel method, DTRNet, which learns disentangled representations for unbiased continuous
treatment effect estimation at the individual level. These disentangled representations provide a robust
foundation for precisely adjusting for selection bias by using only the relevant representations rather than
the entire set.

• The effectiveness of DTRNet’s precise bias adjustment is supported by theoretical proofs. Notably,
the method does not require prior knowledge about the treatment distribution, enhancing its practical
applicability.

• We have conducted extensive experiments to validate the effectiveness and disentangling capability of our
model. The results demonstrate that our method performs well on both synthetic and semi-synthetic
datasets, with each component contributing to its advanced performance. Additionally, the results indicate
that the learned disentangled components accurately capture the corresponding factors.

2 Related Work

2.1 Potential Outcomes Framework

The potential outcomes framework, as proposed by (Rubin, 1974), is widely used to define the individual
treatment effect (ITE). Specifically, to make the definition clear, we use binary treatments (T = 1 and T = 0)
to illustrate, which can be further extended to multiple treatments by comparing their potential outcomes.
For each individual xi, there are two potential outcomes: Yi(T = 1) and Yi(T = 0) corresponding to two
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Figure 1: Causal graph and framework of our DTRNet. Figure (a) shows the causal graph involving covariates
(X), treatment (T ), outcome (Y ), instrumental factors (Γ), confounder factors (∆), adjustment factors (Υ).
The solid line represents causal relations, and dot lines denote affiliations. Figure (b) shows the framework
of DTRNet. Three contracted neural networks are utilized to obtain the deep representations of the three
factors. Then Γ(xi) and ∆(xi) are concatenated to predict the distribution of ti. ∆(xi), and Υ(xi) are
used to predict outcomes through a varying coefficient network gθ(ti), while Υ(xi) attempts to encode little
information about treatment.

possible treatments (T = 1 and T = 0). As only one treatment can be taken for each individual in the
observational data, only one of the potential outcomes can be observed (observed outcome), and the remaining
unobserved outcome is the counterfactual outcome. Therefore, one major challenge in estimating ITE is to
infer counterfactual outcomes. After obtaining the counterfactual outcome, the ITE is calculated as follows.

ITEi = Yi(T = 1) − Yi(T = 0). (1)

Moreover, estimating the ITE is also challenged by the presence of selection bias. Some covariates may act
as common causes for both the treatment and the outcome, leading to spurious correlations between them,
which affect the accuracy of the treatment estimation.

2.2 Machine Learning for ITE Estimation

As mentioned above, selection bias and counterfactual prediction are two major challenges for ITE. To address
these issues, various methods have been proposed (Hansen, 2008; Chipman et al., 2010; Hansen, 2008; Wager
& Athey, 2018; Yao et al., 2021; Acharki et al., 2023). Moreover, several state-of-the-art methods use deep
representation learning models to estimate ITE based on treatment-invariant representations (Johansson
et al., 2016; Shalit et al., 2017; Chu et al., 2020; Yao et al., 2018; Bellot et al., 2022; Wang et al., 2022;
Acharki et al., 2023; Guo et al., 2023; Nagalapatti et al., 2024; Huang et al., 2024; Huang & Zhang, 2023;
Zhu et al., 2022; Gao et al., 2024). Specifically, the discrepancy loss between the deep representations of the
treatment group and control group is used to balance the distribution of the two groups to adjust for selection
bias. Subsequently, one network head for each treatment is built on the deep-balanced representations to
estimate ITE. However, due to the commonly used two-head design in existing work, these models cannot be
easily generalized to continuous treatment settings.

To address this limitation and estimate the average dose-response function (ADRF) under a continuous
setting, several methods have been proposed (Schwab et al., 2020; Nie et al., 2021; Shi et al., 2019; Bellot
et al., 2022; Jesson et al., 2022; Nagalapatti et al., 2024). Schwab et al. (Schwab et al., 2020) introduced
a modification of TARNET (Shalit et al., 2017), called Dose Response Networks (DRNet), which divided
continuous dosage into equally sized strata and assigned a head to each of them. To further achieve continuity
of the ADRF, Nie et al. (Nie et al., 2021) proposed a varying coefficient neural network (VCNet). Instead
of using a multi-head model, they used a varying coefficient prediction head whose weight depends on the
treatment t, which improves the expressiveness of the treatment effect. In addition, generative adversarial
net (GAN)-based models (Bica et al., 2020), transformer-based models (Zhang et al.), contrastive learning
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based models (Zhu et al., 2024) have also been proposed to estimate the ADRF. However, the methods fail
to accurately adjust for selection bias, as they do not make any adjustments to eliminate the bias, or resort
to a simple and unsophisticated approach to balance the entire representations.

Hassanpour et al. Hassanpour & Greiner (2019a) proposed that disentangled representations of covariates
enhance the capture of their underlying factors, thereby improving ITE estimation performance. Instead
of balancing the entire deep representations, they only applied discrepancy loss on the representations of
adjustment factors and used re-weighting methods to adjust for selection bias brought by confounders. As a
result, no confounding variables are discarded. However, the method can only work with binary treatments.
While subsequent research efforts (Curth & van der Schaar, 2021; Chauhan et al., 2023) have introduced
more refined disentanglement representations, it is worth noting that these advancements are predominantly
tailored to binary settings.

Unlike existing work, our DTRNet attempts to address the two limitations mentioned above by generating
appropriate disentangled representations for three underlying factors and precisely adjusting for selection
bias to estimate IDRF.

3 Methodology

In this section, we begin by defining the problem and providing an overview of DTRNet. Next, we delve into
the functions and explanations of each component of our DTRNet. Following this, we provide theoretical
substantiation that our devised re-weighting function is able to precisely adjust for selection bias. Lastly, we
discuss the advantages of our approach in comparison to other state-of-the-art models.

3.1 Problem Setting

Let D = {xi, yi, ti}N
i=1 denote a dataset of size N , where xi, yi, ti are independent realisations of random

variables X, Y, T with support (X , Y, T = [0, 1]), respectively. We refer to X ∈ Rm as covariates, which
contain information about features of an unit. Y represents the outcome, and T represents the continuous
treatment in the range from 0 to 1 (Nie et al., 2021). Our goal is to estimate the Individualized Dose-Response
Function (IDRF) with continuous treatments by eliminating selection bias.
Definition 3.1. (Individualized Dose-Response Function (IDRF)). IDRF measures the treatment effect for
an individual under continuous treatments, which can be defined as:

µ(t, x) = E[Y (T = t)|X = x, T = t] (2)

We assume that covariates are generated from three underlying factors: (1) instrumental factors (Γ(x)) that
are associated with the treatment but not with the outcome except through the treatment, (2) confounder
factors (∆(x)) that are associated with both the treatment and outcome, and (3) adjustment factors (Υ(x))
that are predictive of the outcome but not associated with the treatment. Therefore, the treatment assignment
is affected by instrumental factors and confounder factors, while the outcome is affected by confounder
factors and adjustment factors. This assumption is a commonly used in previous research to disentangle the
covariates for precise information extraction (Yao et al., 2021; Wu et al., 2020), an illustrative example can be
found in Appendix G. The underlying relationship can be illustrated using a causal graph shown in Fig. 1(a).
It is important to note that IDRF identification is made under the following convention assumptions (Wu
et al., 2020; Kuang et al., 2017; Hassanpour & Greiner, 2019a).
Assumption 3.2 (Stable Unit Treatment Value Assumption (SUTVA)). There are no interactions between
units, and there is only one version of each treatment, that is, different levels or doses of one treatment are
treated as different treatments.
Assumption 3.3 (Ignorability). The potential outcome Y (T = t) is independent of the treatment assignment
given all covariates. Formally, Y (T = t) ⊥⊥ t|X.
Assumption 3.4 (Positivity). Every unit should have non-zero probabilities to be assigned in each treatment
group. Formally, P(T = t|X = x) ̸= 0, ∀t ∈ T , ∀x ∈ X.
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Assumption 3.5 (Generation of Covariates). Given a set of covariates, denoted as X, we assume X follows
the joint distribution of instrumental factors Γ, confounder factors ∆, and adjustment factors Υ. Formally,
P(X) = P(Γ, ∆, Υ).

3.2 DTRNet Model

DTRNet is designed according to the causal graph in Fig. 1. It first learns disentangled representations
of covariates and subsequently estimates T and Y based on the corresponding representations. Finally,
it corrects for selection bias by utilizing relevant representations instead of the entire set. In particular,
three contracted feedforward neural networks are utilized to obtain disentangled representations of three
factors {Γ(xi), ∆(xi), Υ(xi)} defined in Section 3.1. Then Γ(xi) and ∆(xi) are concatenated to predict the
distribution of ti using a conditional density estimator P(ti|Γ(xi), ∆(xi)). ∆(xi) and Υ(xi) are used to predict
the final outcome through a varying coefficient network gθ(ti)(∆(xi), Υ(xi)), while Υ(xi) attempts to encode
little information about treatment. Typically, a re-weighting function is responsible for precisely adjusting for
selection bias. The framework of DTRNet is shown in Fig. 1(b). The objective function of DTRNet is as
follows:

J(X, T, Y ) = 1
N

N∑
i=1

(w(ti, Γ(xi), ∆(xi))Ly + αLT + γLind + λLreg) + βLdisc, (3)

where w(ti, Γ(xi), ∆(xi)) denotes the re-weighting function to mitigate selection bias; Ly and LT are the
prediction losses for outcome Y and treatment T , respectively. Ldisc quantifies discrepancies between latent
representations (Γ(xi), ∆(xi), Υ(xi)); Lind promotes the independence between Υ(xi) and treatment ti; while
Lreg serves as a regularization term against overfitting. α, β, γ, and λ are hyperparameters balancing the
different terms in the objective function. In the following, we present the details of each term.

Factual Loss. Factual loss is used to force ∆(xi) and Υ(xi) to extract more predictive information from
the covariates. As three arrows pointing to Y in Fig. 1(a), we aim to estimate the factual outcome yi from
three input, ∆(xi), Υ(xi), and assigned treatment ti for unit i. To simultaneously preserve the influence
of treatment and maintain the continuity of the dose-response curve, we adopt a varying coefficient neural
network gθ(ti) to estimate outcomes (Nie et al., 2021). Factual loss is computed by comparing the ground
truth yi with our estimated value:

Ly = L
(
yi, gθ(ti)(∆(xi), Υ(xi))

)
. (4)

The varying coefficient structure utilizes a function gθ(t) with varying parameters θ(t) instead of fixed
parameters to predict outcomes. By leveraging this structure, continuous treatment effect can be estimated
by incorporating continuous t in outcome estimation. Especially, a B-spline of degree p with q knots, resulting
in k = p + q + 1 basis, is used to model θ(t). Let B = [b1, b2, ..., bk] ∈ Rn×k denote the spline basis for the
treatment T ∈ Rn×1. For a single-layer feedforward network with p inputs and q outputs, the function is
given by fθ(t) =

∑k
i=1(bi · (XW)) , where W ∈ Rp×q×k is the optimizable weight.

Treatment Loss. We incorporate a treatment loss in our model to enhance the encoding of Γ(xi) and
∆(xi) with respect to ti. Prior studies have usually predicted the probability of treatment using the full
covariate representations (Shi et al., 2019; Nie et al., 2021). This approach can inadvertently leverage
irrelevant information, such as adjustment factors, from the representations. To mitigate this, we estimate
the probability of ti from the concatenation of Γ(xi) and ∆(xi) using a conditional density estimator
π(t|Γ(xi), ∆(xi)), yielding more accurate treatment predictions. In this paper we adopt a naive density
estimator (Nie et al., 2021), which approximates the conditional density by dividing t ∈ [0, 1] equally into B
intervals, and estimating the conditional density π(t|Γ(xi), ∆(xi)) on the B + 1 grid points using a simple
neural network πNN (Γ(xi), ∆(xi)) = softmax(w, Γ(xi), ∆(xi)) ∈ RB+1, and the densities for other values of
t are derived via linear interpolation. Performance is measured using a negative logarithmic likelihood loss.

LT = − log[P(ti|Γ(xi), ∆(xi))]. (5)
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Discrepancy Loss. The discrepancy loss is employed to enhance the separation of three distinct repre-
sentations, namely Γ(x), ∆(x), and Υ(x). This ensures that each representation encodes only its specific
information, thereby strengthening disentanglement in the latent space. The formula for this loss is presented
as follows:

Ldisc = 1
LD(Γ(x), ∆(x)) + LD(∆(x), Υ(x)) , (6)

where

LD(Γ(x), ∆(x)) = 1
N

N∑
i

D∑
∆(xi) log

(
∆(xi)
Γ(xi)

)
= 1

N

N∑
i

D∑
∆(xi)(log(∆(xi)) − log(Γ(xi))), (7)

where D is the dimension of the latent embedding, LD(Γ(x), ∆(x)) denotes the average divergence loss
between Γ(x) and ∆(x) across the units inspired by the KL divergence. If Γ(xi) and ∆(xi) are identical for
all unites, the result will be 0. On the contrary, if Γ(xi) and ∆(xi) are distinctly different for all units, the
value will be higher. Therefore, through the collaboration of other modules, Ldisc encourages all disentangled
representations to encode only the relevant information. The definition of LD and additional details can be
found in Appendix D.

Independent Loss. Independent loss is specifically applied to balance the Υ(xi) instead of the entire
representations, ensuring that the learned factors Υ(xi) do not contain any information about ti and that
all information related to ti is encoded in Γ(xi) and ∆(xi). Previous studies (Shalit et al., 2017; Johansson
et al., 2016; Hassanpour & Greiner, 2019a;b; Acharki et al., 2023; Guo et al., 2023) have emphasized the
need to balance adjustment representations for the treatment group and control group (binary treatment
setting), most of them done by inducing the desired independence using a discrepancy loss. However, within
the framework of continuous treatments, the endeavor to achieve balance adjustment representations for
every value ti becomes infeasible. Hence, we intend to push Υ(xi) to embed little information about the
treatment by forcing the performance of the treatment probability estimation from adjustment representation
to be poor, which motivates us to minimize the following "positive" log-likelihood loss:

Lind = log(P(ti|Υ(xi)). (8)

In particular, this independent loss allows us to encode all information of ti in Γ(xi) and ∆(xi) instead of
Υ(xi), which facilitates the precisely adjustment for selection bias through the re-weighting function (discussed
in next paragraph). This is one of the key contributions of our paper. Furthermore, compared to previous
studies that balance the entire representations of covariates, our approach does not balance confounder factors
since they contain valuable information about outcome prediction (Hassanpour & Greiner, 2019b). Moreover,
we also exclude instrumental factors since they should not be balanced according to the causal theory.

Re-weighting Function. Recall one of our objectives is to precisely eliminate selection bias. Inspired
by (Imbens, 2000; Kloek & Van Dijk, 1978), we derive “propensity score” P(ti|Γ(xi), ∆(xi)) from Γ(xi) and
∆(xi) and use the inverse of it to re-weight the prediction loss of outcomes as follows:

w(ti, Γ(xi), ∆(xi)) = 1
P(ti|Γ(xi), ∆(xi))

, (9)

where P(ti|Γ(xi), ∆(xi)) is the direct output of the conditional density estimator for treatment. Hence, it does
not require additional computation or prior knowledge about the treatment distribution as in (Hassanpour &
Greiner, 2019b). Furthermore, we can precisely remove bias attributable to the confounder and instrumental
factors instead of the unrelated part (Υ(xi)). A detailed proof follows.

3.3 Theoretical Proof of Bias Elimination

In this section, we outline the theoretical derivation of our re-weighting function, inspired by the importance
sampling theory (Hassanpour & Greiner, 2019a; Kloek & Van Dijk, 1978). We then provide proofs for its
debiasing ability.
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Method
Synthetic Data News IHDP

MISE AMSE MISE AMSE MISE AMSE
Dragonet 0.1854 ± 0.0232 0.0415 ± 0.0081 1.3241 ± 0.1617 0.0535± 0.0053 4.7034 ± 0.5860 0.9549 ± 0.3005

Dragonet_TR 0.1720 ± 0.0219 0.0281 ± 0.0095 1.3147 ± 0.1594 0.0401 ± 0.0062 4.2877 ± 0.4226 0.6490 ± 0.1660
DRNet 0.1849 ± 0.0232 0.0409 ± 0.0081 1.3248 ± 0.1616 0.0542 ± 0.0054 4.7394 ± 0.6036 0.9581 ± 0.3324

DRNet_TR 0.1752 ± 0.0334 0.0315 ± 0.0235 1.3148 ± 0.1601 0.0403 ± 0.0060 4.1313 ± 0.6320 0.6140 ± 0.1954
VCNet 0.1545 ± 0.0248 0.0173 ± 0.0093 2.3372 ± 0.1808 0.0384 ± 0.0367 3.6651 ± 0.6409 0.6755± 0.4875

VCNet_TR 0.1418 ± 0.0299 0.0142 ± 0.0072 2.3289 ± 0.2009 0.0378 ± 0.0401 3.7935 ± 1.3625 1.2302± 1.2198
TransTEE 0.2033 ± 0.0978 0.0552 ± 0.0884 1.2849 ± 0.1587 0.0153 ± 0.0066 4.1562 ± 0.8053 1.8529 ± 1.1155

DTRNet (Ours) 0.1414 ± 0.0256 0.0131 ± 0.0072 1.7846 ± 0.2202 0.0104 ± 0.0044 3.5376 ± 0.5285 0.4254 ± 0.3710

Table 1: Performance comparison between DTRNet and baselines. Numbers reported are MISE/AMSE±
standard deviation) on Synthetic, IHDP, and News with 50 runs.

Definition 3.6. Let ∆, Υ : X → R be the representation functions for confounder factors and adjustment
factors respectively. Let gθ(t) : R × R × T → Y be the prediction function defined over the representation
space R × R. The expected loss for the unit and treatment pair (x, t) is:

l∆,Υ,gθ(t)(x, t) =
∫

Y
L(Y (t), gθ(t)(∆(x), Υ(x)))P(Y (t)|x)dY (t). (10)

Definition 3.7. The expected unbiased IDRF loss across all treatment t ∈ T is:

ϵ = Ex[
∫

T
l∆,Υ,gθ(t)(x, t)dt] =

∫
X

∫
T

l∆,Υ,gθ(t)(x, t)P(x)dtdx. (11)

Lemma 3.8. (Importance Sampling (Kloek & Van Dijk, 1978)) Let p(x) be a probability density for a random
variable X defined on Rd, then for any probability density q(x) ∈ Rd that satisfies q(x) > 0 whenever f(x)p(x)
̸= 0, we have:

Ex∼p(x)[f(x)] = Ex∼q(x)[f(x)p(x)
q(x) ].

The Lemma suggests that importance sampling facilitates the computation of the expectation of a target
function f(x) under an unknown distribution p(x) by weighting the function with p(x)

q(x) under a known
distribution q(x).
Theorem 3.9. Let p(x, t′), p(x, t) denote the counterfactual and factual probability density for unit x,
respectively. Under the conditions of the lemma 3.8, the expected loss functions for factual and counterfactual
outcomes are:

ϵF = Ex,t∼p(x,′)[l∆,Υ,gθ(t)(x, t)], (12)

ϵCF = Ex,t∼p(x,t′)[l∆,Υ,gθ(t)(x, t)] = Ex,t∼p(x,t)[l∆,Υ,gθ(t)(x, t)p(x, t′)
p(x, t) ], (13)

where t′ represents all counterfactual treatments of x, especially t′ = {t′|t′ ∈ T , t′ ̸= t}.

The theorem implies that the expected loss function for counterfactual outcomes can be derived by re-weighting
the factual loss. Hence, we can cooperate the counterfactual loss with the factual loss and optimise them
together through a designed weight; w = 1 + P(x,t′)

P(x,t) = 1
P(t|Γ(x),∆(x)) . For further details, please refer to

Appendix A.
Theorem 3.10. (Bias Removal with Weighted Loss) Under the theorem 3.9 and all assumptions, we have:

Ex,t∼p(x,t)[w · l∆,Υ,gθ(t)(x, t)] = ϵ.

This theorem states that the weighted loss is an unbiased estimation of IDRF loss, indicating our re-weighting
function is advanced in eliminating selection bias. See Appendix A for a detailed proof.
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Method
Synthetic Data News IHDP

MISE AMSE MISE AMSE MISE AMSE
original 0.1414 0.0131 1.7846 0.0104 3.5376 0.4254
alpha 0.1413(∆ 0.0% ↑) 0.0132(∆ 0.8% ↑) 2.6400(∆ 47.9% ↑) 0.0291(∆ 179.8% ↑) 3.606(∆ 1.9% ↑) 0.5115(∆ 39.2% ↑)
beta 0.1414(∆ 0.0% ↑) 0.0137(∆ 4.6% ↑) 2.6547(∆ 48.8% ↑) 0.0319(∆ 206.7% ↑) 3.7856(∆ 7.0% ↑) 0.6310(∆ 48.3% ↑)
gamma 0.1411 (∆ 0.2% ↓) 0.0131(∆ 0.0% ↑) 2.6871(∆ 50.5% ↑) 0.0297(∆ 185.5% ↑) 3.5951(∆ 2.0% ↑) 0.4955(∆ 16.5% ↑)
re-weighting 0.1640(∆ 16.0% ↑) 0.0212(∆ 61.8% ↑) 2.2790(∆ 27.7% ↑) 0.0136(∆ 30.7% ↑) 3.6804(∆ 4.0% ↑) 0.9521(∆ 123.8% ↑)

Table 2: Results of ablation study. The top row shows the average MISE and AMSE of DTRNet across 50
runs for the three datasets. Subsequent rows present performance when the respective component is disabled.
∆ values in parentheses represent the percentage change in AMSE and MISE relative to the top row results.
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Figure 2: MISE sensitivity analysis with different values of α, β,γ, λ and different proportions of re-weighting
value on 50 repeats of IHDP datasets. The standard deviation band is also plotted.

3.4 Discussions

Our proposed DTRNet is built upon existing works such as (Hassanpour & Greiner, 2019b) and (Nie et al.,
2021). However, our approach extends the existing works in several significant ways. (1) The disentangled
method in (Hassanpour & Greiner, 2019b) can only provide a causal effect under binary treatments, while
our method facilitates a mixed type of treatments, including continuous treatments. (2) We introduce a novel
design for the independent loss. Instead of simply and brutally minimizing the discrepancy between the entire
treatment representations and the control representations, we minimize the amount of treatment information
that can be extracted from adjustment factors, which facilitates the precise adjustment for selection bias in
re-weighting function. (3) We use the direct output of the conditional density estimator for re-weighting,
which helps precisely eliminate bias and does not require additional computation or prior knowledge about the
treatment distribution. Furthermore, in the ablation study, we demonstrate the importance of this component
for model performance. (4) We provide rigorous theoretical proofs substantiating the debiasing ability of the
re-weighting function. Finally, our DTRNet employs a discrepancy loss between different deep representations,
which ensures that each representation only encodes the relevant information. Overall, DTRNet offers an
extensive ability to generate disentangled representations on which selection bias can be precisely adjusted.

4 Experiments

In this section, we present extensive experimental results on three datasets to demonstrate the effectiveness
of DTRNet and address the following three research questions: Q1: How effective is DTRNet in estimating
IDRF and adjusting for selection bias compared to the state-of-the-art methods? Q2: What is the individual
contribution of each component in our model, including the treatment loss, discrepancy loss, independent
loss, and re-weighting function? Q3: Can deep disentangled representations be effective in identifying the
three underlying factors?

4.1 Datasets and Baselines

As the ground truth of treatment effects is often unknown in practice, especially for continuous treatments,
existing studies mainly rely on synthetic datasets and semi-synthetic datasets that manually construct
treatments and outcomes given real-world features (Curth et al., 2021; Wang et al., 2022; Bellot et al., 2022;
Nie et al., 2021). We follow this convention to build one synthetic dataset and two semi-synthetic datasets:
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Figure 3: AMSE sensitivity analysis with different values of α, β,γ, λ and different proportions of re-weighting
value on 50 repeats of IHDP datasets. The standard deviation band is also plotted.

News1 and IHDP (Hill, 2011) for evaluation. To evaluate the effectiveness of selection bias adjustment, we
intentionally design all training sets to contain selection bias, while test sets are unbiased.
Hence, if a model is trained on a biased training set and performs well on the corresponding test set, it
provides evidence of the model’s ability to eliminate bias. We generate the three datasets following (Nie
et al., 2021). We evaluate the performance of our proposed DTRNet against several state-of-the-art methods
for IDRF estimation, including Dragonet, Dragonet_TR (Shi et al., 2019), DRNet, DRNet_TR (Schwab
et al., 2020), VCNet, VCNet_TR (Nie et al., 2021), and TransEE (Zhang et al.), where TR refers to targeted
regularization. The details of baselines are as follows.

• Dragonet: (Shi et al., 2019) used a three-headed architecture to predict the propensity score and
conditional outcome from covariates and treatment information. The model was later improved
by(Nie et al., 2021) by using separate heads for treatment in different intervals to adjust for continuous
treatments.

• DRNet: (Schwab et al., 2020) proposed to divide continuous treatments into several intervals and
assign one head to each interval to generate the dose-respond curve. Following (Nie et al., 2021),
DRNet was improved by adding a conditional density estimation head for treatment estimation.

• Vcnet: Nie et al. (2021) introduced a varying coefficient structure to allow the prediction head
parameters to be functions of continuous treatments.

• TransTEE: (Zhang et al.) adopted the transformer backbones to estimate treatment effect.

We also include non-neural network based models: Causal Forest (Wager & Athey, 2018), Bart (Chipman
et al., 2010) and GPS (Imbens, 2000), due to the space limitation, we show the performance in the Appendix C.

4.2 Implementation Details

All the neural network-based methods are trained for 800 epochs with the SGD optimizer (momentum =
0.9). To mitigate the risk of overfitting or underfitting, we apply an early stop technique. For the three
deep representation networks in our model, we implement them as fully connected networks with two hidden
layers, and each layer has 50 hidden units using ReLU activation. We also use two-hidden-layer settings
(each with 50 hidden units) for the Y prediction network. We used grid search tuning to tune the following
hyperparameters: α, β, γ ∈ {0.1, 0.2, 0.4, 0.6} and the learning rate lr∈ {0.0001, 0.00005, 0.00001}. For other
hyperparameters, e.g., the number of knots and the degree of B-spline, we follow the setting of (Nie et al.,
2021) which is also tuned on the same configurations of datasets. For each dataset, we generate 50 runs for
training and 20 runs for tuning the aforementioned hyperparameters. The best hyperparameter settings can
be found in Appendix E.

4.3 Results and Analysis

To answer Q1, we report the mean integrated squared error (MISE)

MISE =
∫

X
[
∫

T
(ŷi(t) − yi(t))2dt]P(x)dx, (14)

1https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Instrumental Variable Confounder Variable Adjustment Variable

Figure 4: t-SNE plots of the three deep representations with respect to the instrumental variable, confounder
variable, and adjustment variable. Point shapes represents the three types of deep representation. Point
colors represents the value of the corresponding variable.

and the mean squared error (AMSE)

AMSE =
∫

T
[ 1
n

n∑
i=1

(ŷi(t) − yi(t))]2P(t)dt, (15)

to evaluate the performance of the models in estimating the individual level and the population level dose
response curve, respectively. Since the integral of t is intractable, we apply all t values existing in the current
datasets on each unit to approximate the MISE and AMSE, that is,

ˆMISE = 1
n

1
|T |

n∑
i=1

∑
t∈T

(ŷi(t) − yi(t))2, (16)

ˆAMSE = 1
|T |

∑
t∈T

[ 1
n

n∑
i=1

(ŷi(t) − yi(t))]2, (17)

where |T | is the number of different treatment values. To ensure fair and reliable comparisons, we evaluate
the performance of all models on 50 repetitions of three different datasets and report the mean and standard
deviation of the MISE and AMSE. As presented in Table 1, DTRNet consistently outperforms the majority
of baselines across all datasets, achieving satisfactory MISE and the lowest AMSE while demonstrating
commendable stable performance. Specifically, the less satisfactory MISE performance on the News dataset
is attributable to the distinct data generation process, where all features act as confounders. This does not
align with real-world scenarios or our study assumptions, which is why the performance is slightly lower
compared to some of the baselines. These results demonstrate not only the effectiveness of DTRNet in IDRF
estimation but also its ability to adjust for selection bias.

4.4 Ablation Study

To answer Q2, we conduct several ablation studies to evaluate the three major components of our model,
including the treatment loss LT , discrepancy loss Ldisc, independent loss Lind, and the re-weighting function
w(ti, Γ(xi), ∆(xi)). We demonstrate their roles by setting the corresponding hyperparameter to 0 while
keeping the other hyperparameters fixed at the best-tuned values. Especially, to evaluate the re-weighting
function, we set the value of re-weighting to 1. As shown in Table 2, all components contribute to the
model performance, as evidenced by the varying extent of performance drop in most scenarios when any
part is removed. Moreover, we find that the re-weighting function and the discrepancy loss are two critical
components of our model due to the significant increase of test error when they are disabled. In other
words, adjusting for selection bias and forcing all representations to encode the corresponding information
independently are predominant for the model performance. Additionally, to give a visual demonstration of
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Experiments

With  𝐿𝑑𝑖𝑠𝑐Without  𝐿𝑑𝑖𝑠𝑐

KL-D: 3.48 KL-D: 8.08

Figure 5: t-SNE plots of the deep representations with/without Ldisc. KL-D represents KL-Divergence
between three representations.

the contribution of the discrepancy loss, we show the t-SNE plots of the model trained with and without
Ldisc on a synthetic dataset in Fig. 5. After incorporating the discrepancy loss, the distinct representations
become more separate, leading to a larger KL-divergence (e.g. 8.08 vs 3.48). However, the re-weighting
function contributes less to the News dataset than the other dataset due to the distinct data generation
process of News as discussed above. In particular, all features are associated with treatment assignment and
outcome generation, which means that all features act as confounders. Consequently, it presents challenges
for Γ(xi) and Υ(xi) in accurately learning instrumental and adjustment factors. Inaccuracies in Γ(xi) and
Υ(xi) can also affect re-weighting function estimation, leading to a limited contribution.

Sensitivity Analysis. We have also investigated the effects of different values of α, β, γ, λ, and different
proportions of the re-weighting values on the model performance. The results shown in Fig. 2 suggest that the
re-weighting function and the discrepancy loss (β) have more substantial influence on the model’s performance,
which consists with the findings from the previous ablation study. Typically, the figure shows that a relatively
large beta value results in better performance. Moreover, the results indicate that DTRNet can learn an
accurate re-weighting value to improve performance, as evidenced by the fact that the current proportion
(1.0) of re-weighting values yields the lowest error in IDRF estimation. Similarly, the results in terms of
AMSE are shown in Fig. 3, and the trend mirrors that of the MISE.

4.5 Disentanglement Performance

To answer Q3, we attempt to explore whether the representations capture the corresponding factors by
utilizing t-SNE to visualize the three deep representations in a synthetic dataset with respect to different
types of variables, as shown in Fig. 4. Since we have knowledge of the data generation process of the synthetic
dataset, we know the ground truth of which features are instrumental, confounder, and adjustment variables
in the dataset. Hence, for each type of variable, we choose one feature to show the relationship between
it and the three deep representations. In Fig. 4, the color shade indicates the value of the corresponding
variable, while the shape of the points denotes the type of representations. For example, in the first plot, we
aim to verify if the representations of instrumental factors embed the information of instrumental variables in
the covariates. In the representations for instrumental factors (gamma with dot points), the shade of the
color varies with the direction of the corresponding arrow, indicating that the instrumental representation
encodes some information about this instrumental variable. However, in other representations, such as ∆
and Υ (cross points and squared points, respectively), the color shade does not change regularly, indicating
that the confounder and adjustment representations do not encode information about instrumental variables.
Therefore, our DTRNet can decently disentangle the three factors.
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5 Conclusion

In this paper, we introduce the Disentangled Representation Network (DTRNet), a novel model designed
to estimate the individualized dose-response function (IDRF) with high precision while accounting for
selection bias through disentangled representations of instrumental, confounder, and adjustment factors. Our
experiments on synthetic and semi-synthetic datasets showcase the exceptional disentanglement capabilities
of DTRNet and highlight its impressive performance on estimating IDRF, surpassing current state-of-the-art
methods.

5.1 Limitations and Future Work

Although we propose an advanced model for estimating the unbiased IDRF, there are still areas for improve-
ment. First, our method currently employs a basic density estimator to estimate the treatment effect. This
choice was made for proof of concept. Hence, exploring more sophisticated methods could further enhance
performance. Similarly, our use of independent loss may not be optimal. Alternative approaches, such as the
Hilbert-Schmidt Independence Criterion (HSIC), could potentially improve results. Hence, future work could
focus on exploring these alternatives to improve model performance.

Moreover, our study utilizes only synthetic or semi-synthetic datasets, which allows us to generate the ground-
truth IDRF using predefined equations. However, in real-world scenarios, it is challenging to obtain the true
IDRF and to differentiate between instrumental, confounder, and adjustment features. This complicates the
evaluation of the model and its ability to correctly disentangle these features in practical settings. An expert
in the relevant domain may be necessary to properly assess the model performance on real-world datasets.
Therefore, a key direction for future research is to investigate the deployment of our model in real-world
situations.
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A Proofs

Lemma A.1. (Importance Sampling) Let p(x) be a probability density for a random variable X defined on
Rd, then for any probability density q(x) ∈ Rd that satisfies q(x) > 0 whenever f(x)p(x) ̸= 0, we have:

Ex∼p(x)[f(x)] = Ex∼q(x)[f(x)p(x)
q(x) ].

Proof.

Ex∼p(x)[f(x)] =
∫

P
f(x)p(x)dx

=
∫

P

f(x)p(x)
q(x) q(x)dx

=Ex∼q(x)[f(x)p(x)
q(x) ].

(18)

Theorem A.2. Let p(x, t′), p(x, t) denote the counterfactual and factual probability density for unit x,
respectively. Under the conditions of the lemma A.1, the expected loss functions for factual and counterfactual
outcomes are:

ϵCF =Ex,t∼p(x,t′)[l∆,Υ,gθ(t)(x, t)]

=Ex,t∼p(x,t)[l∆,Υ,gθ(t)(x, t)p(x, t′)
p(x, t) ],

(19)

ϵF =Ex,t∼p(x,t)[l∆,Υ,gθ(t)(x, t)p(x, t)
p(x, t) ]

=Ex,t∼p(x,t)[l∆,Υ,gθ(t)(x, t) · 1],
(20)

where t′ represents all counterfactual treatments of x, defined as t′ = {t′|t′ ∈ T , t′ ≠ t}. The union of t and t′

constitutes the universal set of treatments. Therefore, given the probability density function f(x, t) we have,

P(x, t) + P(x, t′) =
∫

t

f(x, t)dt +
∫

T /{t}
f(x, t)dt =

∫
T

f(x, t)dt = P(x), (21)

The theorem implies that the expected loss function for counterfactual outcomes can be derived by reweighting
the factual loss. Hence, we can cooperate the counterfactual loss with factual loss and optimise them together
through a designed weight (Hassanpour & Greiner, 2019a);

w =1 + P(x, t′)
P(x, t) = P(x)

P(x, t) = 1
P(t|x) = 1

P(t|Γ(x), ∆(x)) . (22)

The second equality is by Equation 21, the third equality is by the law of conditional probability, the forth
equality is by the Assumption 4 and the independency between adjustment factors and treatment.
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Theorem A.3. (Bias Removal with Weighted Loss) Under the theorem 1 and all assumptions, we have:

E[wl∆,Υ(x, t)] = ϵProof.

Ex,t∼p(x,t)[wl∆,Υ(x, t)] = E[(1 + p(x, t′)
p(x, t) )l∆,Υ(x, t)]

=Ex,t∼p(x,t)[l∆,Υ(x, t) + l∆,Υ(x, t)p(x, t′)
p(x, t) )]

=Ex,t∼p(x,t)[l∆,Υ(x, t)] + Ex,t∼p(x,t′)[l∆,Υ(x, t)]

=
∫

X ×T
l∆,Υ(x, t)P(x, t)dxdt

+
∫

X ×T
l∆,Υ(x, t)P(x, t′)dxdt

=
∫

X ×T
l∆,Υ(x, t)(P(x))dxdt

=ϵ

(23)

This theorem states that the weighted loss is an unbiased estimation of the IDRF loss, which indicates the
re-weighting function in our can precisely eliminate selection bias. Notably, each term in our loss function
contributes meaningfully to the theoretical proof. Specifically, some components of the loss function serve
to support the assumptions underpinning our proof, as outlined in Assumptions 1-4 in our paper. Their
functions are introduced as follows. In Assumption 4, we posit that X should be decomposed into three
different factors, where discrepency loss Ldis is used to ensure this. Lind enforces us to encode all information
of ti in Γ(xi) and ∆(xi) instead of Υ(xi), thereby facilitating a more precise and accurate estimation of the
weight w. Moreover, the weight w before factual loss is the key of the proof, hence we use the LT loss to get
the accurate weight.

B Baseline Methods

We compare our model DTRNet with several state-of-the-art methods on continuous treatment effect
estimation, including Dragonet, Dragonet_TR (Shi et al., 2019), DRNet, DRNet_TR (Schwab et al., 2020),
VCNet, VCNet_TR (Nie et al., 2021), and TransEE (Zhang et al.). TR refers to targeted regularization, a
technique used to improve accuracy. The details of baselines are as follows.

• Dragonet: (Shi et al., 2019) used a three-headed architecture to predict the propensity score and
conditional outcome from covariates and treatment information. The model was later improved
by(Nie et al., 2021) by using separate heads for treatment in different intervals to adjust for continuous
treatments.

• DRNet: (Schwab et al., 2020) proposed to divide continuous treatments into several intervals and
assign one head to each interval to generate the dose-respond curve. Following (Nie et al., 2021),
DRNet was improved by adding a conditional density estimation head for treatment estimation.

• Vcnet: Nie et al. (2021) introduced a varying coefficient structure to allow the prediction head
parameters to be functions of continuous treatments.

• TransTEE: (Zhang et al.) adopted the transformer backbones to estimate treatment effect.

C Performance comparison between DTRNet and non-deep neural network model

We conducted our experiments under identical settings with (Nie et al., 2021), including the same data
generation process, dataset, and problem setting. Therefore, we compared our methods against non-deep
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Method Synthetic Data IHDP News
Causal Forest∗ 2 0.043 ± 0.0021 0.97 ± 0.034 0.211 ± 0.003

BART∗ 0.040 ± 0.0013 0.33 ± 0.005 0.066 ± 0.003
GPS∗ 0.028 ± 0.0016 0.67 ± 0.025 0.022 ± 0.001
Ours 0.013 ± 0.0070 0.37 ± 0.330 0.010 ± 0.007

Table 3: Performance comparision between DTRNet and non-neural network baselines

learning approaches such as causal forest, BART, and GPS (reported by (Nie et al., 2021)) on these three
datasets. The results from our experiments consistently indicate that our methods exhibit superior, or at the
very least, comparable performance in comparison to these alternative approaches.

D Details about the divergence loss

Typically, we do not include the divergence loss between the instrumental representations Γ(xi) and the
adjustment representations Υ(xi). In our model, instrumental Γ(xi) and confounder representations ∆(xi) are
used to estimate the probability of treatment, while confounder ∆(xi) and adjustment representations Υ(xi)
are used to predict the outcome. Hence, instrumental and confounder representations are more similar, as
are confounder and adjustment representations, since they are optimized for similar goals. Therefore, we only
penalize these. To avoid making our model cumbersome, we choose not to include the divergence loss between
instrumental Γ(xi) and adjustment representations Υ(xi). In our work, we specifically use the implementation
in PyTorch to compute LD: https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html.

E Implementation Details and Hyperparameter Tuning

All the neural network-based methods are trained for 800 epochs with the SGD optimizer (momentum =
0.9). To mitigate the risk of overfitting or underfitting, we apply an early stop technique. For the three
deep representation networks in our model, we implement them as fully connected networks with two hidden
layers, and each layer has 50 hidden units using ReLU activation. We also use two-hidden-layer settings
(each with 50 hidden units) for the Y prediction network. We used grid search tuning to tune the following
hyperparameters: α, β, γ ∈ {0.1, 0.2, 0.4, 0.6} and the learning rate (lr)∈ {0.0001, 0.00005, 0.00001}. For other
hyperparameters, e.g., the number of knots and the degree of B-spline, we follow the setting of (Nie et al.,
2021) that is also tuned on the same configurations of datasets. For each dataset, we generate 50 runs for
training and 20 runs for tuning the aforementioned hyperparameters. The best hyperparameter settings are
as follows:

Synthetic News IHDP
alpha 0.6 0.6 0.6
beta 0.2 0.2 0.6
gamma 0.6 0.6 0.1
lr 0.00001 0.0001 0.00005

F Discrepancy loss on other dataset

In addition, to give a visual demonstration of the contribution of the discrepancy loss, we show the t-SNE
plots of models trained with and without Ldisc on each dataset in Fig. 6. Points belonging to different
factors (i.e., {Γ(xi), ∆(xi), andΥ(xi)}) are further away under the model trained with the discrepancy loss,
indicating that the discrepancy loss indeed helps learn separable representations. Moreover, except for the
News dataset, points belonging to the same factor are closer together with Ldisc, suggesting that they extract
similar information. However, Γ(xi) in the News dataset becomes more separate, and Υ(xi) gathers less close
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Figure 6: t-SNE plots of the deep represetations with/without Ldisc across three datasets. For each dataset,
we choose one repeat for visualisation due to the space limit.

compared to other datasets, indicating that it cannot well extract the corresponding information, which is
consistent with the explanation of re-weighting above.

G An instantiation of causal graph

In this section, we provide an example of the instantiation of our causal graph. Similar to (Wu et al., 2020):
In the context of medical health record, we might collect extensive historical data from each patient, including
the patients’ features X (e.g., age, gender, living environment, doctor-in-charge), treatment of patients T
(taking a particular mediciine or not), and the final outcome Y (cured or not). Among these features, age
and gender simultaneously affect the treatment (as a physician would consider these factors when choosing
a treatment) and the outcome (since they can also affect the patient’s recovery rate); therefore, they are
confounding factors ∆. In contrast, the doctor-in-charge would influence only the treatment decision, without
affecting the outcome, thus being an instrumental factor Γ. The environment (e.g. hygiene situation), which
only affects the outcome but not the treatment, falls into the category of adjustment factors Υ.

H Sensitivity Analysis based on AMSE

In this section, we present a sensitivity analysis based on AMSE, as shown in Figure 3. The trend observed
is similar to that of the MISE, which is presented in the main text. This analysis demonstrates that the
re-weighting function and the discrepancy loss β have a more substantial influence on the model’s performance.
These findings are consistent with those from our previous ablation study.
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