
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEACHING LLMS TO PLAN: LOGICAL CHAIN-OF-
THOUGHT INSTRUCTION TUNING FOR SYMBOLIC
PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive capabilities across
diverse tasks, yet their ability to perform structured symbolic planning remains
limited, particularly in domains requiring formal representations like the Planning
Domain Definition Language (PDDL). In this paper, we present a novel instruc-
tion tuning framework, PDDL-INSTRUCT, designed to enhance LLMs’ symbolic
planning capabilities through logical chain-of-thought reasoning. Our approach
focuses on teaching models to rigorously reason about action applicability, state
transitions, and plan validity using explicit logical inference steps. By develop-
ing instruction prompts that guide models through the precise logical reasoning
required to determine when actions can be applied in a given state, we enable
LLMs to self-correct their planning processes through structured reflection. The
framework systematically builds verification skills by decomposing the planning
process into explicit reasoning chains about precondition satisfaction, effect ap-
plication, and invariant preservation. Experimental results on multiple planning
domains show that our chain-of-thought reasoning based instruction-tuned models
are significantly better at planning, achieving planning accuracy of up to 94% on
standard benchmarks, representing a 66% absolute improvement over baseline
models. This work bridges the gap between the general reasoning capabilities
of LLMs and the logical precision required for automated planning, offering a
promising direction for developing better AI planning systems.

1 INTRODUCTION

Large Language Models (LLMs) like GPT (OpenAI et al., 2023), Gemini (Gemini Team et al.,
2023), LLaMA (Touvron et al., 2023), etc. have demonstrated remarkable success across various
domains including mathematics and coding (Imani et al., 2023; Gaur & Saunshi, 2023; Romera-
Paredes et al., 2023; Ahn et al., 2024). However, a critical gap remains in their ability to perform
structured symbolic planning – a fundamental capability required for reliable real-world sequential
decision-making systems. Recent studies have highlighted this issue that while LLMs excel at general
reasoning over unstructured text, they struggle with the logical reasoning and systematic verification
required for automated planning tasks (Stechly et al., 2023; Valmeekam et al., 2023a;c; Kambhampati
et al., 2024; Stechly et al., 2025).

This limitation becomes particularly evident when considering formal planning representations such
as the Planning Domain Definition Language (PDDL) (McDermott et al., 1998). Despite some
promising results with specific configurations (Liu et al., 2023; Wang et al., 2024), these models
generally perform poorly on multi-step reasoning tasks including classical planning (Hsiao et al.,
2025). This has significant implications for planning tasks, which are PSPACE-complete (Bylander,
1991) and inherently require scaling reasoning efforts with problem complexity.

In this paper, we challenge this limitation by introducing PDDL-INSTRUCT, a novel framework
shown in Fig. 1, that augments LLMs’ reasoning capabilities with the formal reasoning required for
automated planning. PDDL-INSTRUCT explicitly teaches LLMs to reason through the precondition-
effect structure of planning domains using logical chain-of-thought prompting. By decomposing
planning verification into atomic reasoning steps and incorporating this structure into instruction

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

⟨𝑠1, 𝑎2, 𝑠2⟩

Fine-tuned
LLM

Final
LLM

Pre-trained
LLM

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File +

Explanation

⟨𝑠𝑛 1, 𝑎𝑛, 𝑠𝑛⟩-

.

.

.

Domain File
Problem File

Verifier
[VAL]

⟨𝑠0, 𝑎1, 𝑠1⟩

.

.

.

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛 1, 𝑎𝑛, 𝑠𝑛⟩-

.

.

.

⟨𝑠0, 𝑎1, 𝑠1⟩

Domain File
Problem File

Instruction Tuning based on VAL Feedback

CoT Output

Dataset 𝔻2
Dataset 𝔻test

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩Output Plan:

Reason

Reason

Reason

Fine-

Tuning

Phase 1: Initial Fine-tuning Phase 2: Chain-of-Thought (CoT) Instruction Tuning Evaluation Phase

B
in

a
ry

 F
ee

d
b

ac
k

D
e

ta
ile

d
 F

ee
d

b
ac

k

Figure 1: The PDDL-INSTRUCT approach consists of three phases: Two training phases (Initial and
CoT Instruction Tuning) and evaluation phase. The main innovation lies in the second phase: CoT
Instruction Tuning (highlighted by the red boundary). The initially tuned LLM is further trained
using a structured instruction process that emphasizes complete logical reasoning chains.

tuning, our approach enables LLMs to not only generate syntactically correct plans but also to verify
their logical validity through step-by-step reasoning. This ability to perform structured verification
significantly enhances the reliability of LLM-generated plans and opens up possibilities for self-
correction through iterative refinement.

Main contributions of this paper are:

• A novel instruction tuning framework that enhances symbolic planning capabilities in LLMs
through logical chain-of-thought reasoning, focusing specifically on plan generation and
action applicability verification.

• A formalization of the planning verification process as decomposable reasoning chains,
enabling LLMs to systematically check preconditions, apply effects, and validate invariants.

• Empirical evidence demonstrating that instruction-tuned LLMs can develop robust planning
capabilities that generalize across domains.

Our results show that PDDL-INSTRUCT significantly outperforms both baseline models and tradi-
tionally instruction-tuned models, achieving planning validity rates of up to 94% in standard planning
domains. This work not only addresses a critical limitation in current LLM capabilities but also
provides a foundation for developing more trustworthy AI systems capable of reliable planning in
complex scenarios.

2 RELATED WORK

LLMs for planning The use of LLMs for planning has received a lot of attention (Pallagani
et al., 2024). Various approaches have been used so far, such as dictating the planned behaviors by
generating executable code (Liang et al., 2023; Singh et al., 2023; Nijkamp et al., 2023; Wang et al.,
2025) or behavior trees (Zhou et al., 2024a; Izzo et al., 2024; Ao et al., 2025), using closed loop with
environment feedback (Huang et al., 2022; Song et al., 2023; Sun et al., 2023) or for self-refinement
(Wang et al., 2023; Zhou et al., 2024b). A few recent approaches also synthesize Python programs
using LLMs for planning (Silver et al., 2024; Hao et al., 2025b; Chen et al., 2025b; Hu et al., 2025;
Chi et al., 2025). A complementary research direction explores using LLMs for parts of the search
process, like generating heuristics (Ahn et al., 2022; Liu et al., 2024; Corrêa et al., 2025), reducing
large search spaces (Zhao et al., 2023), predicting transition functions (Shlomi et al., 2025), etc.

However, as summarized in Tantakoun et al. (2025), LLMs face challenges with long-term planning
and reasoning, often producing unreliable plans (Stechly et al., 2024; Pallagani et al., 2023; Momen-
nejad et al., 2023), frequently failing to account for the effects and requirements of actions as they
scale (Stechly et al., 2024), and their performance degrades with self-iterative feedback (Stechly
et al., 2023; Valmeekam et al., 2023a; Huang et al., 2025b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Finetuning for planning improves significantly the model’s capabilities to generate symbolic
plans (Pallagani et al., 2023; Li et al., 2025; Fu et al., 2025). However, the main drawbacks of
this approach are its high economic, time, and computational costs, as well as the degradation of the
transferability of the model. Finetuning makes the model specialized on the domains and problem
types trained on, with poor transferability to new problems. An extended literature review on LLMs
and Planning is available in the appendix.

Instruction tuning Instruction tuning has emerged as a significant approach in NLP to enable
zero-shot generalization on unseen tasks (Mishra et al., 2022; Wei et al., 2022a; Ouyang et al., 2022).
This technique involves fine-tuning large language models to perform diverse tasks by following
instructions, making the task source crucial for effective tuning (Longpre et al., 2023). While
existing methods often rely on human-crowdsourced tasks from datasets like T0 (Sanh et al., 2022),
FLAN (Wei et al., 2022a; Longpre et al., 2023), and NaturalInstructions (Mishra et al., 2022; Wang
et al., 2022), these high-quality resources demand significant human effort and are typically limited in
quantity. An alternative approach involves model-generated tasks, where powerful language models
like GPT-3 and GPT-4 generate diverse instructions and task pairs (Wang et al., 2022; Peng et al.,
2023), though these can introduce noise when outputs don’t properly correspond to inputs. In this
work, we alleviate this problem by leveraging the automated planning task generators (Seipp et al.,
2022; Valmeekam et al., 2023b) to create the instruction tuning dataset.

Chain-of-Thought Reasoning A significant advancement in improving LLM reasoning ability is
the implementation of Chain of Thought (CoT) prompting (Wei et al., 2022b). By generating explicit
intermediate reasoning steps, these models can now address complex logical deduction and multistep
problem-solving. Short CoT approaches (Lambert et al., 2025; Kojima et al., 2022) demonstrated
effectiveness for straightforward problems but revealed limitations when confronting more intricate
challenges. The evolution toward longer reasoning chains has subsequently transformed the landscape
of machine reasoning. Stechly et al. (2024) argued that despite its efficacy for reasoning tasks, CoT is
not suitable for planning, but in this work we show that with proper integration of instruction tuning
using better prompts, CoT can indeed be used for planning tasks.

3 PRELIMINARIES

Automated Planning In this section, we briefly describe automated planning. Please refer to
Geffner & Bonet (2013) and Chen et al. (2025a) for more details.

An automated planning problem can be formally characterized as a tuple ⟨P,A, s0, G⟩, where P is
a set of fluents used to describe a discrete and fully-observable state S, A represents a finite set of
actions, s0 ∈ S denotes the initial state, and G specifies the goal conditions. Each action ai ∈ A
is defined as ⟨pre(ai), add(ai), del(ai)⟩, where pre(ai) is the set of fluents that must hold in the
current state for the action to be executable, add(ai) is the set of fluents that become true after
executing ai, and del(ai) is the set of fluents that become false after executing ai. Note that the state
space S in classical planning emerges from all possible truth assignments to the set of fluents.

A solution to a planning problem P , called a plan π, is a sequence of actions ⟨a1, a2, ..., an⟩ that
transforms the initial state into one satisfying the goal conditions after n steps. Note that π produces
state transitions si+1 = ai+1(si) = (si \del(ai+1))∪add(ai+1) for all 0 ≤ i < n such that sn ∈ G.
π is considered optimal if it takes the least number of actions (in this work, we consider actions
with uniform cost) to reach a goal state, whereas it is considered satisficing if it reaches the goal
successfully but with more actions than needed by an optimal plan.

The Planning Domain Definition Language (PDDL) (McDermott et al., 1998), based on
STRIPS (Fikes & Nilsson, 1971), provides a standardized specification for automated planning
problems. PDDL consists of a domain D = ⟨P,A⟩ containing the sets of fluents P and actions A
(along with their precondition, add and del sets), and a problem P = ⟨s0, G⟩ containing the initial
state s0, and a goal condition G.

Instruction Tuning Instruction tuning (Mishra et al., 2022; Wei et al., 2022a; Ouyang et al.,
2022) is an approach for fine-tuning LLMs on a labeled dataset. Consider an instruction tuning
dataset D1 = {(xi, τi)}Ωi=1 with Ω labeled samples, where xi represents an instruction and τi its

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

corresponding ideal target response. We denote our large language model asMθ with parameters
θ. The model produces outputMθ(xi) for a given instruction xi. The standard instruction tuning
objective aims to find model parameters θ∗ that minimize expected discrepancy (loss L) between
model predictions (Mθ(x)) and target responses (τ) across the instruction dataset (Dataset D1, as
described in Sec. 4):

θ∗ = argmin
θ

E(x,τ)∼D1 [L(Mθ(x), τ)] (1)

Chain-of-thought reasoning Chain-of-Thought (CoT) reasoning can be formally defined as a
structured decomposition of a complex reasoning task into an explicit sequence of intermediate
logical steps. Given a problem input x and a target output y, a chain-of-thought reasoning processR
is a sequence of K intermediate reasoning states Z(x) = (z1, z2, . . . , zK), where each zi represents
an atomic reasoning step that transforms the latent state from zi−1 to zi, with z0 implicitly defined
as the initial problem state derived from x. Each reasoning step zi can be characterized as a tuple
zi = (si, ji, ui), where si represents the symbolic state (the set of derived facts or assertions at step i),
ji represents the justification (the logical rule or inference applied), and ui represents the uncertainty
estimate (the model’s confidence in this reasoning step). For simplicity, going forward we will use
symbolic states si to represent reasoning states zi, when clear from context, as they have a one-to-one
mapping for this work. We also do not use ui estimates for this work, and the LLM is directly asked
for the resulting symbolic states in each CoT step.

Two important properties that characterize effective chain-of-thought reasoning are: (i) logical
coherence (Wei et al., 2022b), and (ii) progressive refinement (Du et al., 2025). A CoT processR(x)
exhibits logical coherence if for each step zi with i > 1, ∃ji−1 such that ji−1(si−1)⇒ si, meaning
each state follows logically from the application of a justifiable inference rule to the previous state.
A CoT process R(x) exhibits progressive refinement if I(zi; y) > I(zi−1; y) ∀i ∈ {1, 2, ...,K},
where I(zi; y) represents the mutual information between reasoning state zi and the target output y.

4 PROBLEM FORMULATION

Input In this work, we use the following inputs: (i) a pre-trained LLMM as input, (ii) a dataset
D of planning domains and problems expressed in PDDL with their solutions (satisficing plans),
and (iii) a plan validator V used to validate the correctness of plans generated byM. The dataset D
consists of:

1. A set {D1,D2, ...,Dn} of planning domains expressed in PDDL.

2. For each domain Di, we have problems Pi = {Pi,1,Pi,2, ...,Pi,mi
}.

3. For each planning problem Pi,j , we have a valid plan Πi,j = {πi,j,1, πi,j,2, ..., πi,j,ki,j
},

where each plan πi,j,l is a sequence of grounded actions.

Data Splitting As shown in Fig. 1, our approach has three phases (more details in Sec. 5). To
facilitate this, we partition the dataset D into three sets: D1, D2, and Dtest for Phase 1 training, Phase
2 training, and evaluation, respectively.

We add additional data to D1 by adding incorrect plans for each problem, similar to NaturalInstructions
framework (Mishra et al., 2022; Wang et al., 2022). We also add a plan validator’s output for each
plan (both correct and incorrect) as an explanation to the dataset. We remove the solution plans from
datasets D2 and Dtest.

Output The primary output is an instruction-tuned modelMθ∗ with enhanced symbolic planning
capabilities. The model should demonstrate improved domain representation, problem representation,
plan generation, action verification, plan verification, and reasoning transparency.

Assumptions Our framework assumes the planning domains follow the features explained in Sec. 3,
i.e., does not contain complex PDDL features such as, e.g., conditional effects or durative actions.
This simplifies the reasoning chain.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 PDDL-INSTRUCT: METHODOLOGY

Fig. 1 illustrates our comprehensive framework for enhancing symbolic planning capabilities in Large
Language Models (LLMs) through logical Chain-of-Thought (CoT) instruction tuning. The approach
consists of two training phases: Initial Instruction Tuning and CoT Instruction Tuning.

5.1 TRAINING THE MODEL

[Phase 1] Initial Instruction Tuning Phase In the initial instruction tuning phase (distinct from
simple finetuning), we take a pre-trained LLM and train it with carefully crafted prompts that pair
planning domains and problems with detailed explanations of their solutions, all derived from Dataset
D1. As shown in Fig. 1, rather than simply exposing the model to planning examples, we explicitly
instruct it to analyze why each action in a plan is valid by explaining precondition satisfaction and
effect application.

This phase incorporates both correct plans and deliberately incorrect plans to teach the model to
recognize and explain various planning errors. For incorrect plans, we include examples where:
(1) action preconditions are not satisfied, (2) effects are incorrectly applied, (3) frame axioms are
violated, or (4) the plan fails to reach the goal state. By exposing the model to both successful and
failed planning attempts with detailed explanations, we establish a foundation for logical verification.
The incorrect plans are generated by randomly replacing one of the actions in the correct plan with
another action compatible with the problem. We verify using a plan validator, VAL (Howey et al.,
2004), that this new plan is incorrect. We also add VAL’s output for each plan (both correct and
incorrect) to the dataset. For a few plans, we change the VAL’s output to add additional effects or
remove some effects to have incorrect explanations.

This phase establishes a foundation of planning knowledge while simultaneously teaching the model
to articulate logical justifications for action validity, setting the stage for more advanced reasoning in
subsequent phases. Exact prompts used in this work are available in the supplementary material.

[Phase 2] CoT Instruction Tuning Phase The main innovation of our approach lies in the CoT
Instruction Tuning phase (highlighted by the red boundary in Fig. 1). This second phase is itself a two-
stage process described thoroughly in the next section. At a high level, in this phase, the initially tuned
LLM is further trained using a structured instruction process that emphasizes complete logical reason-
ing chains. When presented with a domain and problem from Dataset D2, this initially tuned model
produces step-by-step state-action-state sequences ⟨s0, a1, s1⟩, ⟨s1, a2, s2⟩, . . . , ⟨sn−1, an, sn⟩ that
represent a candidate plan.

These reasoning chains are then passed through a verification module implemented using VAL (Howey
et al., 2004) that systematically checks the validity of each state transition based on action precon-
ditions and effects. Please note that while some approaches have tried using LLMs themselves as
verifiers, research shows that currently LLMs do not possess sufficient self-correction capabilities in
terms of reasoning (Huang et al., 2024; Stechly et al., 2025). Unlike self-reflection approaches where
models attempt to critique their own reasoning without external validation, our chain-of-thought
method explicitly decomposes the planning process into verifiable logical steps, with external verifi-
cation providing ground-truth feedback. This combination of explicit reasoning decomposition with
verified feedback creates a more reliable foundation for enhancing planning capabilities than relying
solely on the model’s internal reasoning.

We explore two distinct types of verification feedback: (1) binary feedback, which simply indicates
whether an action is valid or invalid, and (2) detailed feedback, which provides specific reasoning
about each action generated by VAL in terms of which preconditions failed or which effects were
incorrectly applied. Our hypothesis is that detailed feedback will lead to more robust planning
capabilities by providing explicit guidance on the logical errors in the reasoning process.

The verification results provide crucial feedback that guides further instruction tuning. This feedback
loop ensures that the model learns not only to generate syntactically correct plans but also to reason
about their logical validity. We limit the number of times this feedback loop is used to generate new
CoT plans, denoted by η. η is a hyperparameter which we can vary to see how it affects accuracy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Our PDDL-INSTRUCT approach prioritizes logical coherence (see Sec. 3) through its explicit
verification of preconditions and effects at each planning step. The verification feedback ensures
that each state transition follows logically from the application of a valid action, maintaining strict
adherence to the domain rules. However, our approach does not ensure progressive refinement (see
Sec. 3). This is because rather than optimizing for the shortest or most efficient plan (which would
increase mutual information with an optimal solution at each step), we focus on producing satisficing
plans that achieve the goal regardless of path length. Generating optimal solutions is a significantly
more difficult problem in practice, both for classical planners and for training LLMs to produce
them (Ray & Ginsberg, 2008; Domshlak & Nazarenko, 2013).

5.2 TRAINING METHODOLOGY FOR PHASE 2 COT INSTRUCTION TUNING: OPTIMIZATION
PROCESS

A distinctive feature of our PDDL-INSTRUCT framework is the two-stage optimization process as
part of the CoT Instruction Tuning that explicitly targets both the quality of logical reasoning for
CoT and the resulting final planning performance. This approach addresses the unique challenges
of symbolic planning by ensuring that the model not only produces correct plans but also develops
robust verification capabilities through logical chain-of-thought reasoning. An algorithm for this is
available in the supplementary material.

Stage 1: Reasoning Chain Optimization In the first stage, we optimize the model parameters θt
to improve the generation of high-quality reasoning chains. Specifically, the model weight in each
reasoning step r, θrt where t ∈ [0, η − 1], is updated as Equation 2:

θrt = θt − δ1∇θtLreasoning(θt,Dt
reasoning) (2)

whereLreasoning is a loss function that measures the quality of the generated reasoning chains compared
to ideal logical inference sequences, δ1 is the learning rate for this stage, and Dt

reasoning is the dataset
of individual ⟨si−1, ai, si⟩ triplets along with VAL feedback for them. This objective encourages the
model to produce step-by-step reasoning that correctly (i) checks all necessary preconditions before
applying actions; (ii) tracks state changes resulting from action effects; (iii) verifies that invariants are
maintained throughout the plan; and (iv) detects logical inconsistencies in proposed plans.

The reasoning loss explicitly penalizes logical errors such as applying actions with unsatisfied
preconditions, failing to properly propagate effects, or generating steps that violate domain constraints.
By focusing specifically on the reasoning process, this stage helps the model develop the logical
foundation necessary for robust planning.

Stage 2: End-Task Performance Optimization In the second stage, we optimize from the
reasoning-improved parameters θrt to enhance overall planning:

θt+1 = θrt − δ2∇θr
t
Lfinal(θ

r
t ,Dt

final) (3)

where Lfinal measures how well the final outputs match the expected answers in the training data, δ2 is
the learning rate for this stage, and Dt

final final contains the domain, problem, and plan extracted from
CoT output along with VAL feedback specifying if the plan is correct for that problem or not. This
second stage ensures that improvements in logical reasoning translate to practical planning capability
of producing accurate plans.

This two-stage approach is important as Stage 1 develops the logical foundation needed for planning,
while Stage 2 ensures these capabilities are properly applied to generate correct plans. The separation
of these objectives allows our framework to balance between teaching fundamental reasoning skills
and optimizing for task-specific performance, resulting in models that not only produce correct
plans but can also reason about their correctness through explicit logical CoT inference. The exact
formulations of the loss functions Lreasoning and Lfinal and the specific values of the hyperparameters
are discussed in detail in the supplementary material.

5.3 EVALUATION PHASE

After completing both the Initial Instruction Tuning and CoT Instruction Tuning phases, the final
model is evaluated in the Evaluation Phase (represented on the right side of Fig. 1). In this phase, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

instruction-tuned LLM is presented with new, unseen planning domains and problems from Dtest.
The model directly generates complete state-action-state sequences ⟨s0, a1, s1⟩, . . . , ⟨sn−1, an, sn⟩
that constitute its proposed solution to the planning problem. These generated plans are then evaluated
for correctness using VAL, but only for assessment purposes, i.e., no feedback is returned to the
model. The plan is considered valid if and only if all actions in the sequence are applicable in their
respective states and the final state satisfies all goal conditions.

6 EMPIRICAL EVALUATION

We conduct a comprehensive empirical evaluation of PDDL-INSTRUCT to assess its effectiveness in
enhancing symbolic planning capabilities in LLMs. Our evaluation leverages PlanBench (Valmeekam
et al., 2023b), a standardized benchmark framework for evaluating LLM planning capabilities.

We evaluate PDDL-INSTRUCT using PlanBench to assess its effectiveness in enhancing symbolic
planning capabilities in LLMs. Our experiments aim to answer the following research questions:

RQ1: Does logical CoT instruction tuning improve plan validity compared to standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning performance?

RQ3: How well does the approach generalize across different planning domains?

We implement PDDL-INSTRUCT using Llama-3-8B, GPT-41, and Gemma-3-270M (Gemma Team
et al., 2025) models. We compare against baseline (unmodified models), post phase 1 versions
(instruction tuned on planning examples with reasoning of why each plan is valid or invalid), and only
phase 2 versions (directly CoT instruction tuned without initial finetuning). For PDDL-INSTRUCT,
we test variants with binary feedback (valid/invalid) and detailed feedback (specific reasoning errors
generated by VAL), each with the number of feedback iteration loop limit to η ∈ {10, 15}. All
experiments were conducted on 2 NVIDIA RTX 3080 GPUs.

Domains and Problems PlanBench provides a systematic methodology for evaluating planning
capabilities across diverse planning domains and problem complexities. We evaluate across three
distinct planning domains from PlanBench, each presenting different reasoning challenges:

• Blocksworld: The classical planning domain with blocks that can be stacked on a table or
on other blocks. This domain primarily tests reasoning with a relatively small action set.

• Mystery Blocksworld: A more complex variant of Blocksworld with predicates identical
but semantically obfuscated names.

• Logistics: A transportation planning domain where packages must be moved between
locations using trucks and airplanes, testing the model’s ability to reason about location
connectivity and multi-step transport operations.

Evaluation Metrics Our primary evaluation metric is the Plan Accuracy, measuring the percentage
of planning tasks for which the model generates a valid plan that achieves the specified goal. A
plan is considered valid only if all actions are applicable in their respective states and the final state
satisfies all goal conditions, as verified by VAL. For each domain, we generate 100 test tasks of
varying complexity, with problems including different numbers of objects and requiring different
plan lengths to solve.

7 RESULTS AND DISCUSSION

Overall Performance (RQ1) Tab. 1 presents the plan accuracy across models, domains, and
approaches. The results clearly demonstrate that PDDL-INSTRUCT significantly outperforms baseline
models, models after Phase 1 instruction tuning, and models with just Phase 2 CoT instruction tuning.

For Llama-3, PDDL-INSTRUCT with detailed feedback and η = 15 achieves validity rates of
94%, 64%, and 79%, respectively in Blocksworld, Mystery Blocksworld, and Logistics. This

1Note that GPT-4 experiments were constrained by limited access.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Domain Baseline Only P1
Only P2 PDDL-INSTRUCT

Detailed Binary Detailed

η = 15 η = 10 η = 15 η = 10 η = 15

Llama-3
Blocksworld 28% 78% 72% 84% 89% 91% 94%
Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%

GPT-4
Blocksworld 35% 41% 76% 79% 84% 87% 91%
Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64% 69% 72% 78%

Gemma-3
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%

Table 1: Results for plan accuracy generated for 100 test tasks from each domain. Our approach
PDDL-INSTRUCT was evaluated with either binary or detailed feedback. Ablation results are for
only Phase 1 (P1), and only Phase 2 (P2) with detailed feedback (as it had the best performance).

represents an average absolute improvement of 35%(SD = 20%) over basic instruction tuning,
and of 66%(SD = 3%) over the baseline. Similarly, for GPT-4, PDDL-INSTRUCT with detailed
feedback and η = 15 achieves validity rates of 91%, 59%, and 78% across the three domains. This
represents an average absolute improvement of 48%(SD = 5%) over basic instruction tuning, and
of 61%(SD = 9%) over the baseline. For Gemma-3, PDDL-INSTRUCT with detailed feedback and
η = 15 achieves validity rates of 56%, 28%, and 43% across the three domains respectively. While
showing the lowest absolute performance among all models tested, Gemma-3 demonstrates the most
dramatic relative improvements. These results show that logical CoT instruction tuning enhances
plan accuracy significantly, not only when compared to unmodified foundation models and but more
importantly, also when compared to models with only basic instruction tuning. The explicit reasoning
about preconditions, effects, and state transitions enables the models to generate accurate plans.

Impact of Feedback Type (RQ2) Comparing the binary feedback and detailed feedback columns
in Tab. 1, we observe that detailed feedback consistently outperforms binary feedback across all
domains and models. The pattern holds consistently across all three model architectures. For Llama-3
with η = 15, detailed feedback improves plan accuracy by 5 percentage points in Blocksworld, 15
percentage points in Mystery Blocksworld, and 7 percentage points in Logistics compared to binary
feedback. For Gemma-3 with η = 15, detailed feedback provides improvements of 2 percentage
points in Blocksworld, 4 percentage points in Mystery Blocksworld, and 16 percentage points
in Logistics compared to binary feedback. Note that our training approach, though developed
independently, has resemblance with LEPA (Zhang et al., 2025a), which also show that providing
specific feedback about why each action fails helps in improving the reasoning capabilities of LLMs.

This pattern confirms our hypothesis that providing specific reasoning errors helps the model develop
more robust verification capabilities. The advantage of detailed feedback is particularly pronounced
in Mystery Blocksworld, the most complex domain with obfuscated predicates. Additionally, we
observe that increasing the iteration limit from η = 10 to η = 15 yields consistent improvements
across all configurations. This observation indicates that the model may converge on valid plans
given additional feedback iterations loops, though future experiments with varying η are needed to
confirm this. The improvement is more substantial with detailed feedback (averaging 4.3 percentage
points across all domains and models) than with binary feedback (averaging 3.3 percentage points),
indicating that detailed feedback enables more effective use of additional reasoning iterations.

Cross-Domain Generalization (RQ3) Our results demonstrate significant variations in perfor-
mance across domains, reflecting their inherent complexity and reasoning challenges. Both models
achieve the highest performance on Blocksworld, followed by Logistics, with Mystery Blocksworld
proving the most challenging. For Llama-3 with detailed feedback and η = 15, the validity rates
are 94% for Blocksworld, 79% for Logistics, and 64% for Mystery Blocksworld. This pattern is
consistent across all configurations and models, highlighting the increasing difficulty of domains
with hidden predicates and complex state interactions. Notably, while absolute performance varies

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

across domains, the relative improvement from PDDL-INSTRUCT is substantial in all three domains.
This suggests that our approach enhances planning capabilities in a domain-general manner, with the
logical reasoning framework transferring effectively across different planning scenarios.

All three models achieve the highest performance on Blocksworld, followed by Logistics, with
Mystery Blocksworld proving the most challenging. This consistent ordering across different model
architectures (Llama-3: 94%/79%/64%, GPT-4: 91%/78%/59%, Gemma-3: 56%/43%/28%) suggests
that domain complexity, rather than model-specific biases, drives the performance hierarchy.

8 CONCLUSION

We have presented PDDL-INSTRUCT, a novel framework that significantly enhances the symbolic
planning capabilities of Large Language Models through logical chain-of-thought instruction tuning.
By decomposing the planning process into verifiable logical reasoning chains and providing explicit
verification feedback, our approach enables LLMs to generate valid plans with unprecedented
reliability across diverse planning domains. While our results are promising, we note that our
approach does not achieve 100% accuracy across all domains. However, when combined with
frameworks like LLM-Modulo (Kambhampati et al., 2024), which provides efficient mechanisms for
integrating external tools with LLMs, our method could significantly reduce the number of required
feedback loops with the verifier. This integration would make the planning process more efficient by
allowing the model to leverage its enhanced reasoning capabilities while still benefiting from formal
verification when needed, ultimately resulting in faster and more reliable planning.

A notable advantage of our VAL-based verification approach is its robustness against unfaithful
chain-of-thought reasoning as described by Lyu et al. (2023). While traditional CoT methods can
generate plausible-sounding but internally inconsistent reasoning chains, our external verification
ensures that each logical step is formally validated against the planning domain’s constraints.

Limitations and Future Work While our results highlight the effectiveness of combining logical
chain-of-thought with verification-guided feedback, several promising directions remain for future:

Optimizing instruction tuning data: We can further refine our approach by applying instruction
optimization techniques as described in Lee et al. (2024) to identify the most effective subset of
instruction examples. Determining which planning scenarios and error types provide the most
informative learning signal could significantly improve training efficiency.

Expanding PDDL Coverage: To simplify the logical reasoning effort, we currently limit to use only a
subset of PDDL features. Future work could address this limitation and incorporate more advanced
PDDL features such as conditional effects, derived predicates, action costs, and temporal constraints,
gradually expanding the expressive power of the planning capabilities.

Self-Verification Capabilities: While we currently rely on an external verifier (VAL), an intriguing
direction is developing self-verification capabilities where models learn to accurately critique their
own plans. As LLMs continue to improve, reducing or eliminating dependence on external verifiers
could make planning more autonomous and efficient.

Dynamic Iteration Control: Our current approach uses fixed iteration limits (η). Developing tech-
niques to dynamically determine the optimal number of iterations based on problem complexity or
feedback patterns could improve efficiency, especially as we hypothesize that return will diminish on
increasing η beyond certain values.

Expanding Domain Coverage: Currently PlanBench supports 3 domains we used in this work. Extend-
ing the evaluation to include a wider variety of planning domains would enable more comprehensive
evaluation and potentially reveal new opportunities for improving logical reasoning in planning.

Beyond Planning: Finally, the logical reasoning framework developed in this work could extend
beyond planning to other sequential decision-making tasks that require long-horizon reasoning, such
as theorem proving, complex puzzle solving, and multi-step logical deduction. The combination of
chain-of-thought reasoning with verification-guided feedback appears to be a powerful paradigm that
could enhance LLM capabilities across diverse reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics: Student Research
Workshop (EACL), 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I can, not as I say:
Grounding language in robotic affordances. In Proceedings of the 6th Conference on Robot
Learning (CoRL), 2022.

Jicong Ao, Fan Wu, Yansong Wu, Abdalla Swiki, and Sami Haddadin. LLM-as-BT-Planner: Lever-
aging LLMs for behavior tree generation in robot task planning. In Proceedings of the 2025 IEEE
International Conference on Robotics and Automation (ICRA), 2025.

Tom Bylander. Complexity results for planning. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI), 1991.

Dillon Z. Chen, Pulkit Verma, Siddharth Srivastava, Michael Katz, and Sylvie Thiébaux. AI planning:
A primer and survey (Preliminary report). In AAAI 2025 Workshop on Bridging the Gap Between
AI Planning and Reinforcement Learning (PRL), 2025a.

Dillon Ze Chen, Johannes Zenn, Tristan Cinquin, and Sheila A. McIlraith. Language models
for PDDL planning: Generating sound and programmatic policies. In RLC 2025 Workshop on
Programmatic Reinforcement Learning, 2025b.

Haotian Chi, Zeyu Feng, Yueming Lyu, Chengqi Zheng, Linbo Luo, Yew-Soon Ong, Ivor Tsang,
Hechang Chen, Yi Chang, and Haiyan Yin. InstructFlow: Adaptive symbolic constraint-guided
code generation for long-horizon planning. In Proceedings of the 39th Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2025. (to appear).

Augusto B Corrêa, André G Pereira, and Jendrik Seipp. Classical planning with LLM-generated
heuristics: Challenging the state of the art with python code. In Proceedings of the 39th Conference
on Advances in Neural Information Processing Systems (NeurIPS), 2025. (to appear).

Carmel Domshlak and Anton Nazarenko. The complexity of optimal monotonic planning: The bad,
the good, and the causal graph. Journal of Artificial Intelligence Research, 48:783–812, 2013.

Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Haoran Guo, Sirui
Xia, Jiaqing Liang, Zulong Chen, Liangyue Li, and Yanghua Xiao. Think thrice before you act:
Progressive thought refinement in large language models. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma GongQue, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. AgentRefine: Enhancing agent generalization
through refinement tuning. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Vedant Gaur and Nikunj Saunshi. Reasoning in large language models through symbolic math word
problems. In Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated
Planning: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 1st edition, 2013. ISBN 1608459691.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Elliot Gestrin, Marco Kuhlmann, and Jendrik Seipp. Towards robust LLM-driven planning from
minimal text descriptions. In ICAPS 2024 Workshop on Human Aware and Explainable Planning
(HAXP), 2024.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve real-
world planning rigorously with formal verification tools. In Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL), 2025a.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with LLM-based formalized programming. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025b.

Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 2004.

Vincent Hsiao, Morgan Fine-Morris, Mark Roberts, Leslie N Smith, and Laura M. Hiatt. A critical
assessment of LLMs for solving multi-step problems: Preliminary results. In AAAI 2025 Workshop
on Planning in the Era of LLMs (LM4Plan), 2025.

Zichao Hu, Junyi Jessy Li, Arjun Guha, and Joydeep Biswas. Robo-Instruct: Simulator-augmented
instruction alignment for finetuning code LLMs. In Proceedings of the 2nd Conference on
Language Modeling (CoLM), 2025.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Sukai Huang, Trevor Cohn, and Nir Lipovetzky. Chasing progress, not perfection: Revisiting
strategies for end-to-end LLM plan generation. Proceedings of the 35th International Conference
on Automated Planning and Scheduling (ICAPS), 2025a.

Sukai Huang, Nir Lipovetzky, and Trevor Cohn. Planning in the dark: LLM-symbolic planning
pipeline without experts. In AAAI 2025 Workshop on Planning in the Era of LLMs (LM4Plan),
2025b.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Proceedings of the 6th Annual Conference on Robot
Learning (CoRL), 2022.

Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical reasoning using
large language models. In Proceedings of the 61st Annual Meeting ofm the Association for
Computational Linguistics (ACL), 2023.

Riccardo Andrea Izzo, Gianluca Bardaro, and Matteo Matteucci. BTGenBot: behavior tree generation
for robotic tasks with lightweight LLMs. In Proceedings of the 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-Modulo frameworks. In Proceedings of the 41th International Conference on Machine
Learning (ICML), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Proceedings of the 36th Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench: Reasoning about
action, change, and planning. In Proceedings of the 39th AAAI Conference on Artificial Intelligence
(AAAI), 2025a.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench Hard: Unrestrained
reasoning about action, change, and planning. In AAAI 2025 Workshop on Planning in the Era of
LLMs (LM4Plan), 2025b.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi.
Tulu 3: Pushing frontiers in open language model post-training. In Proceedings of the 2nd
Conference on Language Modeling (COLM), 2025.

Changho Lee, Janghoon Han, Seonghyeon Ye, Stanley Jungkyu Choi, Honglak Lee, and Kyunghoon
Bae. Instruction matters: A simple yet effective task selection for optimized instruction tuning of
specific tasks. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2024.

Wenjun Li, Changyu Chen, and Pradeep Varakantham. Unlocking the planning capabilities of
large language models with maximum diversity fine-tuning. In Findings of the Association for
Computational Linguistics: NAACL 2025, 2025.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine Learning (ICML), 2024.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: designing data and methods
for effective instruction tuning. In Proceedings of the 40th International Conference on Machine
Learning (ICML), 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Sadegh Mahdavi, Raquel Aoki, Keyi Tang, and Yanshuai Cao. Leveraging environment interaction
for automated PDDL translation and planning with large language models. In Proceedings of the
38th Conference on Neural Information Processing Systems (NeurIPS), 2024.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, A. Ram, Manuela Veloso, Daniel S.
Weld, and David Wilkins. PDDL – The Planning Domain Definition Language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL), 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. In Proceedings of the 37th Conference on Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In Proceedings of the 11th International Conference on Learning Representations
(ICLR), 2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th Conference on Advances in Neural Information Processing Systems (NeurIPS), 2022.

Vishal Pallagani, Bharath Muppasani, Biplav Srivastava, Francesca Rossi, Lior Horesh, Keerthiram
Murugesan, Andrea Loreggia, Francesco Fabiano, Rony Joseph, and Yathin Kethepalli. Plansformer
tool: Demonstrating generation of symbolic plans using transformers. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI), 2023. Demo Track.

Vishal Pallagani, Bharath Chandra Muppasani, Kaushik Roy, Francesco Fabiano, Andrea Loreggia,
Keerthiram Murugesan, Biplav Srivastava, Francesca Rossi, Lior Horesh, and Amit Sheth. On the
prospects of incorporating large language models (LLMs) in automated planning and scheduling
(APS). In Proceedings of the 34th International Conference on Automated Planning and Scheduling
(ICAPS), 2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
GPT-4. arXiv preprint arXiv:2304.03277, 2023.

Katrina Ray and Matthew L Ginsberg. The complexity of optimal planning and a more efficient
method for finding solutions. In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 2008.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J R Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar
Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
models. Nature, 625:468 – 475, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training
enables zero-shot task generalization. In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/10.
5281/zenodo.6382173, 2022.

Eliezer Shlomi, Guy Azran, Eilam Shapira, Omer Nahum, Roi Reichart, Guy Uziel, Michael Katz,
Ateret Anaby Tavor, and Sarah Keren. Transition function prediction in AI planning using LLMs.
In AAAI 2025 Workshop on Planning in the Era of LLMs (LM4Plan), 2025.

13

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in PDDL domains with pretrained large language models. In Proceedings of
the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. ProgPrompt: Generating situated robot task plans
using large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
LLM-Planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. GPT-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. In NeurIPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? An
analysis of CoT in planning. In Proceedings of the 38th Conference on Advances in Neural
Information Processing Systems (NeurIPS), 2024.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Katharina Stein, Daniel Fišer, Jörg Hoffmann, and Alexander Koller. Automating the generation of
prompts for LLM-based action choice in PDDL planning. In Proceedings of the 35th International
Conference on Automated Planning and Scheduling (ICAPS), 2025.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. AdaPlanner: adaptive
planning from feedback with language models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems (NeurIPS), 2023.

Marcus Tantakoun, Xiaodan Zhu, and Christian Muise. LLMs as planning modelers: A survey
for leveraging large language models to construct automated planning models. In AAAI 2025
Workshop on Planning in the Era of LLMs (LM4Plan), 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? In NeurIPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023a.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. PlanBench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. In Proceedings of the 37th Conference on Advances in Neural Information
Processing Systems (NeurIPS), 2023b.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In Proceedings of the 37th
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2023c.

Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen
Han, Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves
LLM search for code generation. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with LLMs enables open-world multi-task agents.
In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Proceedings
of the 10th International Conference on Learning Representations (ICLR), 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th Conference on Advances in Neural Information Processing
Systems (NeurIPS), 2022b.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Jin Zhang, Flood Sung, Zhilin Yang, Yang Gao, and Chongjie Zhang. Learning to plan before
answering: Self-teaching LLMs to learn abstract plans for problem solving. In Proceedings of the
13th International Conference on Learning Representations (ICLR), 2025a.

Xiaopan Zhang, Hao Qin, Fuquan Wang, Yue Dong, and Jiachen Li. LaMMA-P: Generalizable
multi-agent long-horizon task allocation and planning with LM-driven PDDL planner. In 2025
IEEE International Conference on Robotics and Automation (ICRA), 2025b.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Proceedings of the 37th Conference on Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Haotian Zhou, Yunhan Lin, Longwu Yan, Jihong Zhu, and Huasong Min. LLM-BT: performing
robotic adaptive tasks based on large language models and behavior trees. In Proceedings of the
2024 IEEE International Conference on Robotics and Automation (ICRA), 2024a.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. ISR-LLM: Iterative self-refined
large language model for long-horizon sequential task planning. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), 2024b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXTENDED LITERATURE REVIEW

LLMs and Planning The current limited reasoning capabilities of LLMs for planning have been
evaluated in several ways. The ACPBench benchmark (Kokel et al., 2025a), and the more recent
ACPBench-Hard one (Kokel et al., 2025b), evaluate several state-of-the-art LLMs of varying size
on reasoning tasks related to planning. These results indicate that all models, even the largest ones,
underperform and have a very long way to go before they can be reliably used for planning. In Huang
et al. (2025a), various strategies to enhance the reasoning capabilities of the models for planning are
evaluated. They find that reward-driven RL optimization is promising and that only finetuning on
datasets of problems and reference plans is insufficient. In our work, we go beyond simple finetuning
by doing logical chain-of-thought instruction tuning.

Another approach consists in using LLMs to generate automated planning models (e.g. PDDL
domain and problem) and to rely on existing symbolic solvers to produce sound solutions. This
hybrid paradigm has received a lot of interest (Huang et al., 2025b; Mahdavi et al., 2024; Zhang et al.,
2025b; Tantakoun et al., 2025). Still, generating such structured models accurately is challenging
for LLMs. To reach high accuracy, the process usually relies on human interventions for feedback
and validation (Guan et al., 2023), using external verifiers (Silver et al., 2024; Hao et al., 2025a), or
focuses on limited aspects of the problem (e.g. only generating planning goals (Xie et al., 2023).
In Huang et al. (2025b), the authors propose to generate a planning model from a natural language
description without human intervention. They tackle ambiguities inherent to natural language
by generating various model candidates and filtering them based on semantic coherence. They
further rank the multiple generated plans based on the cumulative semantic similarity scores of their
constituent model. NL2P (Gestrin et al., 2024) proposes to use explicit inference steps and Chain of
Thoughts back prompting to generate the PDDL domain and problem from natural language inputs.
Here, we propose to finetune an LLM to learn explicit inference steps to reason on action applicability,
state transitions, and plan validity to generate a plan.

On the other hand, some approaches like Stein et al. (2025) automatically translate PDDL problems
into natural language and use LLMs to plan in natural language. Eventually, the plan is translated
back into PDDL actions to be executed or simulated.

B DETAILED EXPERIMENTAL SETUP

B.1 HYPERPARAMETER CONFIGURATION

Tab. 2 provides the complete hyperparameter configuration used in our experiments.

Parameter Phase 1 Phase 2 (CoT)
Learning Rate 2e-5 δ1: 1e-5, δ2: 5e-6
Batch Size 16 8
Max Sequence Length 2048 4096
Training Epochs 5 3
Warmup Steps 500 200
Weight Decay 0.01 0.001
Gradient Clipping 1.0 0.5
Temperature (Generation) 0.7 0.3
Max Generation Length 1024 2048
Optimizer AdamW AdamW
β1, β2 0.9, 0.999 0.9, 0.999
ϵ 1e-8 1e-8
Iteration Limit (η) N/A 10, 15

Table 2: Complete hyperparameter configuration for PDDL-INSTRUCT

Learning Rates (δ1, δ2) The learning rates control how aggressively the model weights are updated
during training, with Phase 1 using a single learning rate and Phase 2 employing two distinct
learning rates for its two-stage optimization process. Phase 1 uses a learning rate of 2 × 10−5 for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

initial instruction tuning, set relatively higher because the model must learn entirely new planning
capabilities from its pre-trained foundation, applying this rate to the standard cross-entropy loss
when learning to generate plans with detailed explanations of action validity. Phase 2 employs two
separate learning rates within its chain-of-thought instruction tuning: δ1 = 1 × 10−5 for Stage
1 reasoning chain optimization (Equation 2) and δ2 = 5 × 10−6 for Stage 2 final performance
optimization (Equation 3). The first learning rate δ1 focuses on improving the quality of step-by-step
logical reasoning chains, while the second learning rate δ2 is set lower to carefully optimize overall
planning performance without disrupting the reasoning capabilities developed in Stage 1. Both Phase
2 learning rates are deliberately lower than Phase 1 to enable fine-tuning of the chain-of-thought
reasoning without disrupting the foundational planning knowledge already acquired.

Batch Size The batch size determines how many training examples are processed simultaneously
before updating model weights, with values carefully chosen to balance computational efficiency
with memory constraints and training dynamics. Phase 1 uses a batch size of 16, which provides
sufficient gradient signal for learning basic planning concepts while remaining within GPU memory
limits for the 2048-token sequences typical of initial instruction examples. Phase 2 reduces the batch
size to 8 to accommodate the significantly longer chain-of-thought sequences and the additional
memory overhead introduced by VAL feedback processing. The smaller batch size in Phase 2 also
enables more frequent weight updates during the iterative refinement process, which is crucial for the
feedback-driven learning mechanism where the model must quickly adapt to validation signals from
the external verifier.

Maximum Sequence Length The maximum sequence length defines the upper limit of tokens
the model can process in both input and output, with values scaled to accommodate the increasing
complexity of reasoning required across training phases. Phase 1 sets this limit to 2048 tokens,
which sufficiently captures domain definitions, problem statements, generated plans, and basic
explanations of action validity without excessive computational overhead. Phase 2 doubles this
limit to 4096 tokens to accommodate the detailed chain-of-thought reasoning sequences that include
comprehensive state analysis, action selection justification, explicit precondition checking, effect
application reasoning, state transition tracking, and goal progress evaluation. This increased capacity
is essential for the model to generate the verbose logical reasoning chains that characterize effective
planning verification.

Training Epochs The number of training epochs represents complete passes through the respective
training datasets, with values chosen to ensure adequate learning while preventing overfitting to
domain-specific patterns. Phase 1 employs 5 epochs to establish foundational planning knowledge,
requiring more iterations because the model must learn to understand PDDL syntax, action semantics,
state representations, and goal achievement from its general language understanding baseline. Phase
2 uses only 3 epochs because the model already possesses basic planning capabilities and needs only
to refine its chain-of-thought reasoning processes. The reduced epoch count in Phase 2 also prevents
overfitting to the specific feedback patterns generated by VAL, ensuring that the learned reasoning
generalizes beyond the particular validation scenarios encountered during training.

Warmup Steps Warmup steps implement a gradual increase in learning rate from zero to the
target value at the beginning of training, preventing training instability that can arise from large
initial weight updates on a partially trained model. Phase 1 uses 500 warmup steps to ensure stable
convergence when adapting the pre-trained language model to the structured domain of planning,
where the token distributions and semantic relationships differ significantly from general text. Phase
2 employs 200 warmup steps, fewer than Phase 1 because the model has already been adapted to
the planning domain and requires less careful initialization. The warmup mechanism is particularly
important in Phase 2 given the complex loss landscape created by the two-stage optimization process
and the feedback-driven training dynamics.

Weight Decay Weight decay implements L2 regularization by adding a penalty term proportional
to the squared magnitude of model weights, preventing overfitting by discouraging the model from
relying too heavily on specific parameter configurations. Phase 1 uses a weight decay of 0.01,
relatively high to prevent the model from memorizing specific instruction-response patterns rather
than learning generalizable planning principles. Phase 2 reduces weight decay to 0.001 to allow

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

more fine-grained parameter adjustments necessary for learning subtle logical reasoning patterns
while still providing some regularization against overfitting to the VAL feedback patterns. The lower
weight decay in Phase 2 recognizes that the chain-of-thought reasoning requires precise parameter
configurations that might be overly penalized by stronger regularization.

Gradient Clipping Gradient clipping prevents exploding gradients by setting a maximum allowed
norm for gradient vectors, ensuring training stability particularly in the complex optimization land-
scape of instruction tuning. Phase 1 employs gradient clipping at 1.0, providing stability during
the initial adaptation from general language modeling to planning-specific tasks where gradient
magnitudes can vary significantly across different types of planning problems. Phase 2 uses more
conservative clipping at 0.5 because the model is more stable after Phase 1 training, and the chain-
of-thought training process requires more careful weight updates to maintain the delicate balance
between logical reasoning accuracy and plan generation quality. The tighter clipping in Phase 2 also
helps manage gradient spikes that can occur when VAL feedback indicates dramatic plan validity
changes.

Temperature (Generation) The temperature parameter controls the randomness in text generation
during training validation and inference, with lower values producing more deterministic outputs and
higher values encouraging exploration of diverse response patterns. Phase 1 uses a temperature of
0.7, allowing moderate exploration of different planning approaches and explanation styles while
maintaining coherent output quality. This higher temperature helps the model discover various ways
to explain action validity and plan construction during the foundational learning phase. Phase 2
reduces temperature to 0.3 to focus generation on precise, logical reasoning steps where consistency
and accuracy are more important than diversity. The lower temperature ensures that chain-of-thought
reasoning follows logical patterns rather than exploring creative but potentially incorrect reasoning
paths.

Maximum Generation Length The maximum generation length sets the upper bound on tokens
the model can produce in response to prompts, scaled to accommodate the verbosity requirements of
each training phase. Phase 1 limits generation to 1024 tokens, sufficient for producing plans with
basic explanations of action applicability and goal achievement without excessive computational
cost. Phase 2 increases this limit to 2048 tokens to accommodate detailed step-by-step reasoning
chains that include comprehensive state analysis, action justification, precondition verification, effect
application reasoning, and goal progress tracking. This increased generation capacity is essential for
the model to produce the verbose logical reasoning that characterizes effective planning verification
and enables meaningful feedback from the VAL validator.

Optimizer (AdamW) AdamW serves as the optimization algorithm for both training phases,
chosen for its superior performance in transformer fine-tuning scenarios compared to standard
optimizers. AdamW combines the adaptive learning rate benefits of Adam with improved weight
decay handling, making it particularly effective for instruction tuning where the model must adapt
pre-trained knowledge to new task-specific patterns. The optimizer handles sparse gradients well,
which is crucial in planning scenarios where many potential actions are invalid in any given state,
leading to sparse activation patterns. AdamW’s momentum-based updates help navigate the complex
loss landscape created by the combination of language modeling objectives and planning-specific
constraints.

Beta Parameters (β1, β2) The beta parameters control the exponential decay rates for AdamW’s
moment estimates, with β1 = 0.9 governing the first moment (gradient moving average) and
β2 = 0.999 governing the second moment (squared gradient moving average). These standard
values have proven effective across a wide range of transformer training scenarios and provide
appropriate momentum characteristics for instruction tuning. The β1 value of 0.9 provides sufficient
momentum to smooth gradient noise while remaining responsive to genuine changes in gradient
direction, particularly important when learning from VAL feedback in Phase 2. The β2 value of
0.999 provides stable variance estimates essential for adaptive learning rate scaling across the diverse
parameter space of large language models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Epsilon (ϵ) The epsilon parameter adds a small constant of 1×10−8 to the denominator in AdamW’s
update rule to prevent numerical instability from division by zero or near-zero values. This value
represents a standard choice that provides numerical stability without meaningfully affecting the
optimization dynamics. The parameter becomes particularly important during Phase 2 training where
the complex loss landscape and feedback-driven updates can occasionally produce very small gradient
variances that might otherwise cause numerical issues. The chosen value ensures robust training
across the full range of planning problems and feedback scenarios encountered during instruction
tuning.

Iteration Limit (η) The iteration limit is unique to Phase 2 and controls how many feedback loops
the model experiences with the VAL validator during chain-of-thought instruction tuning. Values
of 10 and 15 represent the number of times the model can generate a plan with reasoning, receive
detailed feedback about logical errors, learn from this feedback, and attempt improved solutions.
This parameter directly controls the trade-off between training thoroughness and computational cost,
as each iteration requires plan generation, validation, and model updating. Higher values of η allow
more refinement of reasoning capabilities but significantly increase training time and computational
requirements. The specific values were chosen to provide sufficient learning opportunities while
maintaining practical training times.

B.2 MATHEMATICAL FORMULATION OF LOSS FUNCTIONS

We formally define the two specialized loss functions that drive our two-stage optimization process
in Phase 2. These functions are carefully designed to target both the logical reasoning capabilities
and final planning performance of the model.

B.2.1 REASONING CHAIN LOSS FUNCTION

The reasoning chain loss function Lreasoning measures the quality of the model’s step-by-step logical
reasoning over state-action-state transitions:

Lreasoning(θt,Dt
reasoning) =

1

|Dt
reasoning|

∑
(si−1,ai,si,fi)∈Dt

reasoning

Lstep(si−1, ai, si, fi) (4)

where each training example consists of a state transition (si−1, ai, si) and VAL feedback fi. The
step-wise loss Lstep is defined as:

Lstep(si−1, ai, si, fi) = dstate(si, s
expected
i) + λfeedback · Lfeedback(fi) (5)

where sexpected
i is the deterministically computed next state given action ai applied to si−1, and dstate

is the state distance function defined as:

dstate(s, s
′) = |s△s′| = |s \ s′|+ |s′ \ s| (6)

This measures the symmetric difference between the two sets of predicates, counting predicates that
are in one state but not the other.

The feedback loss Lfeedback incorporates VAL verification results to guide logical reasoning:

Lfeedback(fi) =


0 if action ai is valid
αprecond if precondition violation detected
αeffect if incorrect effect application
αgoal if goal achievement failure

(7)

where αprecond = 1.0, αeffect = 1.0, αgoal = 1.5 are penalty weights for different error types, and
λfeedback = 0.1 balances the feedback signal with the primary reasoning objective.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2.2 FINAL PERFORMANCE LOSS FUNCTION

The final performance loss function Lfinal measures how well the complete plans generated through
chain-of-thought reasoning achieve the planning objectives:

Lfinal(θ
r
t ,Dt

final) =
1

|Dt
final|

∑
(d,p,π,v)∈Dt

final

Lplan(d, p, π, v) (8)

where each training example consists of a domain d, problem p, generated plan π, and binary validity
label v from VAL. The plan-level loss is:

Lplan(d, p, π, v) = I[v = 0] · β + α · BCE(v, v̂) (9)

where I[v = 0] is an indicator function that equals 1 when the plan is invalid (providing a fixed
penalty β = 2.0 for invalid plans) and 0 when valid; and BCE(v, v̂) is the binary cross-entropy loss
between the VAL validity label v and the model’s predicted validity v̂, with α = 0.5 balancing plan
generation accuracy with validity prediction.

B.2.3 DATASET CONSTRUCTION FOR LOSS COMPUTATION

The reasoning dataset Dt
reasoning contains individual state-action-state triplets extracted from chain-of-

thought sequences:

Dt
reasoning = {(si−1, ai, si, fi) : ∀ steps in CoT plans generated at iteration t} (10)

The final dataset Dt
final contains complete planning instances with validity judgments:

Dt
final = {(dj , pj , πt

j , v
t
j) : ∀ problems j at iteration t} (11)

where πt
j is the complete plan generated for problem j at iteration t, and vtj is the corresponding VAL

validity assessment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM

Algorithm 1: PDDL-INSTRUCT: Chain-of-Thought Instruction Tuning for Symbolic Planning

Input: Pre-trained LLM Mθ0 , Phase 1 dataset D1, Phase 2 dataset D2, VAL validator,
iteration limit η, learning rates δ1, δ2

Output: Instruction-tuned model Mθ∗

1: Phase 1: Initial Instruction Tuning
2: for epoch e = 1 to E1 do
3: for batch (di, pi, πi, fi) ∈ D1 do
4: yi ←Mθ(di, pi) ▷ Generate plan with explanation
5: L1 ← − logP (πi, fi|di, pi, θ)
6: θ ← θ − δ1∇θL1

7: end for
8: end for
9: θ1 ← θ ▷ Save Phase 1 model

10: Phase 2: CoT Instruction Tuning
11: for iteration t = 1 to η do
12: Initialize datasets Dt

reasoning ← ∅, Dt
final ← ∅

13: for problem (dj , pj) ∈ D2 do
14: Generate CoT plan: πj

t = {(s0, a1, s1), (s1, a2, s2), . . . , (sn−1, an, sn)}
15: using Mθt(dj , pj)

16: Validate plan with VAL: fj ← VAL(πj
t , dj , pj)

17: if fj indicates valid plan then
18: Dt

final ← Dt
final ∪ {(dj , pj , π

j
t , 1)}

19: else
20: Extract detailed feedback for each invalid step
21: Dt

final ← Dt
final ∪ {(dj , pj , π

j
t , 0)}

22: end if
23: for each step (si−1, ai, si) ∈ πj

t do
24: Get step-level VAL feedback: fi ← VAL-step(si−1, ai, si, dj)
25: Dt

reasoning ← Dt
reasoning ∪ {(si−1, ai, si, fi)}

26: end for
27: end for
28: Stage 1: Reasoning Chain Optimization
29: for epoch e = 1 to E2a do
30: for batch B ∈ Dreasoning

t do
31: Lreasoning ← 1

|B|
∑

(si−1,ai,si,fi)∈B Lstep(si−1, ai, si, fi)

32: θrt ← θt − δ1∇θtLreasoning

33: end for
34: end for
35: Stage 2: Final Performance Optimization
36: for epoch e = 1 to E2b do
37: for batch B ∈ Dfinal

t do
38: Lfinal ← 1

|B|
∑

(d,p,π,v)∈B Lplan(d, p, π, v)

39: θt+1 ← θrt − δ2∇θr
t
Lfinal

40: end for
41: end for
42: end for
43: return Mθ∗ where θ∗ = θη

C SAMPLE PROMPTS FOR BLOCKSWORLD DOMAIN

This section presents the specific prompt templates used in our PDDL-INSTRUCT framework for the
Blocksworld domain. We provide examples for both Phase 1 (Initial Instruction Tuning) and Phase 2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(CoT Instruction Tuning) to demonstrate how our approach teaches models to reason about action
applicability and state transitions.

C.1 PHASE 1: INITIAL INSTRUCTION TUNING PROMPTS

C.1.1 CORRECT PLAN EXAMPLE

Phase 1 Prompt - Correct Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze
the provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PLAN]
1. (pick-up b)
2. (stack b c)
3. (pick-up a)
4. (stack a b)

[EXPECTED RESPONSE] This plan is VALID. Let me analyze each action:

[Action 1: (pick-up b)]
- Preconditions: (clear b), (ontable b), (handempty)
- Initial state satisfies all preconditions: b is clear, b is on

table, and hand is empty
- Effects: b is now held, hand is not empty, b is not on table, b

is not clear

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

- Resulting state: (ontable a) (ontable c) (clear a) (clear c)
(holding b)

[Action 2: (stack b c)]
- Preconditions: (holding b), (clear c)
- Current state satisfies preconditions: holding b and c is clear
- Effects: b is stacked on c, hand becomes empty, c is no longer

clear, b becomes clear
- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on

b c) (handempty)

[Action 3: (pick-up a)]
- Preconditions: (clear a), (ontable a), (handempty)
- Initial state satisfies all preconditions: a is clear, a is on

table, and hand is empty
- Effects: a is now held, hand is not empty, a is not on table, a

is not clear
- Resulting state: (on b c) (ontable c) (clear b) (holding a)

[Action 4: (stack a b)]
- Preconditions: (holding a), (clear b)
- Current state satisfies preconditions: holding a and b is clear
- Effects: a is stacked on b, hand becomes empty, b is no longer

clear, a becomes clear
- Resulting state: (ontable c) (on b c) (on a b) (clear a)

(handempty)

The plan succeeds because a is stacked on b, and b is stacked on c.

C.1.2 INCORRECT PLAN EXAMPLE

Phase 1 Prompt - Incorrect Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze
the provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PLAN]
1. (stack a b)
2. (stack b c)

[EXPECTED RESPONSE] This plan is INVALID. Let me analyze each
action:

[Action 1: (stack a b)]
- Preconditions: (holding a), (clear b)
- Current state: (ontable a) (ontable b) (ontable c) (clear a)

(clear b) (clear c) (handempty)
- VIOLATION: The precondition (holding a) is not satisfied - the

hand is empty and a is on the table
- To stack a on b, we must first pick up a

[Action 2: (stack b c)]
- Since Action 1 failed, this action cannot be evaluated in a

valid state sequence
- Even if Action 1 succeeded, we would need to be holding b to

stack it on c

The plan fails because it attempts to stack blocks without first
picking them up. The correct sequence would be: (pick-up a),
(stack a b), (pick-up b), (stack b c).

C.2 PHASE 2: CHAIN-OF-THOUGHT INSTRUCTION TUNING PROMPTS

C.2.1 COT GENERATION PROMPT

Phase 2 CoT Generation Prompt

[INSTRUCTION] Generate a plan for the given problem using
step-by-step reasoning. For each action, explicitly verify
preconditions, apply effects, and track state changes.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-tower)
(:domain blocksworld)
(:objects a b c)
(:init (on c b) (ontable b) (ontable a)

(clear c) (clear a) (handempty))
(:goal (and (on a c) (on c b))))

[EXPECTED RESPONSE]

Initial State Analysis:
Current state: (on c b), (ontable b), (ontable a), (clear c),

(clear a), (handempty)
Goal: (on a c), (on c b)

[STEP BY STEP PLANNING]

[Step 1: State s0 Action a1 State s1]
- Current state s0: (on c b), (ontable b), (ontable a), (clear c),

(clear a), (handempty)
- Proposed action a1: (pick-up a)
- Precondition check:
- (clear a): TRUE in s0
- (ontable a): TRUE in s0
- (handempty): TRUE in s0

- Action is APPLICABLE
- Effect application:
- Add: (holding a)
- Delete: (ontable a), (handempty), (clear a)

- Resulting state s1: (on c b), (ontable b), (clear c), (holding a)

[Step 2: State s1 Action a2 State s2]
- Current state s1: (on c b), (ontable b), (clear c), (holding a)
- Proposed action a2: (stack a c)
- Precondition check:
- (holding a): TRUE in s1
- (clear c): TRUE in s1

- Action is APPLICABLE
- Effect application:
- Add: (on a c), (handempty), (clear a)
- Delete: (holding a), (clear c)

- Resulting state s2: (on c b), (ontable b), (on a c),
(handempty), (clear a)

[GOAL ACHIEVEMENT CHECK]
Required: (on a c), (on c b)
Current state s2: (on c b), (ontable b), (on a c), (handempty),

(clear a)
- (on a c): TRUE in s2
- (on c b): TRUE in s2
Goal is ACHIEVED.

[FINAL PLAN] (pick-up a), (stack a c)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.2.2 COT WITH FEEDBACK INTEGRATION: INCORRECT PLAN

B.2.2.1 Binary Feedback

Phase 2 CoT Binary Feedback - Incorrect Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]
Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]
Plan Validation details

Checking next happening (time 1)
Deleting (ontable b)
Deleting (handempty)
Deleting (clear b)
Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)
Deleting (clear c)
Adding (handempty)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Adding (on b c)
Adding (clear b)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute

[GENERATE CORRECTED PLAN WITH REASONING]

B.2.2.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Incorrect Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]
Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]
Plan Validation details

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Checking next happening (time 1)
Deleting (ontable b)
Deleting (handempty)
Deleting (clear b)
Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)
Deleting (clear c)
Adding (handempty)
Adding (on b c)
Adding (clear b)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute

Plan Repair Advice:

(stack a b) has an unsatisfied precondition at time 3
(Set (holding a) to true)

[EXPLANATION] This plan is INVALID. Here is the analysis of each
action:

[Action 1: (pick-up b)]
- Preconditions: (clear b), (ontable b), (handempty)
- Initial state satisfies all preconditions: b is clear, b is on

table, and hand is empty
- Effects: b is now held, hand is not empty, b is not on table, b

is not clear
- Resulting state: (ontable a) (ontable c) (clear a) (clear c)

(holding b)

[Action 2: (stack b c)]
- Preconditions: (holding b), (clear c)
- Current state satisfies preconditions: holding b and c is clear
- Effects: b is stacked on c, hand becomes empty, c is no longer

clear, b becomes clear
- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on

b c) (handempty)

[Action 3: (stack a b)]
- Preconditions: (holding a), (clear b)
- Current state: (ontable c) (ontable a) (clear a) (clear b) (on b

c) (handempty)
- VIOLATION: The precondition (holding a) is not satisfied - the

hand is empty and a is on the table

[GENERATE CORRECTED PLAN WITH REASONING]

C.2.3 COT WITH FEEDBACK INTEGRATION: CORRECT PLAN

B.2.3.1 Binary Feedback

Phase 2 CoT Binary Feedback - Correct Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]
Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

[VAL FEEDBACK]
Plan Validation details

Checking next happening (time 1)
Deleting (ontable b)
Deleting (handempty)
Deleting (clear b)
Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)
Deleting (clear c)
Adding (handempty)
Adding (on b c)
Adding (clear b)

Checking next happening (time 3)
Deleting (ontable a)
Deleting (handempty)
Deleting (clear a)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Adding (holding a)

Checking next happening (time 4)
Deleting (holding a)
Deleting (clear b)
Adding (handempty)
Adding (on a b)
Adding (clear a)
Plan executed successfully - checking goal
Plan valid

B.2.3.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Correct Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))

(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty)

(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (not (on ?x ?y)) (not (handempty))

(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]
Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

[VAL FEEDBACK]
Plan Validation details

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Checking next happening (time 1)
Deleting (ontable b)
Deleting (handempty)
Deleting (clear b)
Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)
Deleting (clear c)
Adding (handempty)
Adding (on b c)
Adding (clear b)

Checking next happening (time 3)
Deleting (ontable a)
Deleting (handempty)
Deleting (clear a)
Adding (holding a)

Checking next happening (time 4)
Deleting (holding a)
Deleting (clear b)
Adding (handempty)
Adding (on a b)
Adding (clear a)
Plan executed successfully - checking goal
Plan valid

[EXPLANATION] This plan is VALID. Here is the analysis of each
action:

[Action 1: (pick-up b)]
- Preconditions: (clear b), (ontable b), (handempty)
- Initial state satisfies all preconditions: b is clear, b is on

table, and hand is empty
- Effects: b is now held, hand is not empty, b is not on table, b

is not clear
- Resulting state: (ontable a) (ontable c) (clear a) (clear c)

(holding b)

[Action 2: (stack b c)]
- Preconditions: (holding b), (clear c)
- Current state satisfies preconditions: holding b and c is clear
- Effects: b is stacked on c, hand becomes empty, c is no longer

clear, b becomes clear
- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on

b c) (handempty)

[Action 3: (pick-up a)]
- Preconditions: (clear a), (ontable a), (handempty)
- Initial state satisfies all preconditions: a is clear, a is on

table, and hand is empty
- Effects: a is now held, hand is not empty, a is not on table, a

is not clear
- Resulting state: (on b c) (ontable c) (clear b) (holding a)

[Action 4: (stack a b)]
- Preconditions: (holding a), (clear b)
- Current state satisfies preconditions: holding a and b is clear
- Effects: a is stacked on b, hand becomes empty, b is no longer

clear, a becomes clear

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

- Resulting state: (ontable c) (on b c) (on a b) (clear a)
(handempty)

The plan succeeds.

D EXTENDED EXPERIMENTAL RESULTS

D.1 ABLATION STUDY RESULTS

Configuration Blocksworld Mystery BW Logistics
Baseline (No Training) 28.0 ± 4.2 1.0 ± 1.0 11.0 ± 2.8
Phase 1 Only 78.0 ± 3.1 32.0 ± 4.6 23.0 ± 3.9
Phase 2 Only (Detailed Feedback, η = 15) 72.0 ± 6.5 17.0 ± 3.2 45.0 ± 4.7
Phase 1 + Binary Feedback (η = 15) 89.0 ± 2.7 49.0 ± 5.2 72.0 ± 4.1
Phase 1 + Detailed Feedback (η = 15) 94.0 ± 1.5 64.0 ± 3.8 79.0 ± 3.2

Table 3: Ablation study showing contribution of each component for Llama-3

D.2 ERROR ANALYSIS AND FAILURE MODES

Error Type Blocksworld Mystery BW Logistics
Precondition Violation 2.1 8.7 5.3
Incorrect Effect Application 1.4 12.4 6.8
Goal Not Achieved 1.8 9.2 6.1
Invalid Action Sequence 0.7 5.7 2.8

Total Failure Rate 6.0 36.0 21.0

Table 4: Breakdown of planning failures by error type (%) for Llama-3 with Phase 1 and Phase 2
with Detailed Feedback and η = 15

E LLM USAGE DISCLOSURE

We declare the use of LLMs (Grammarly, Claude) for grammar check and sentence restructuring.
We have also used Cursor with GPT-4 for debugging issues due to CUDA settings and writing some
scripts to run the experiments.

32

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	PDDL-Instruct: Methodology
	Training the Model
	Training Methodology for Phase 2 CoT Instruction Tuning: Optimization Process
	Evaluation Phase

	Empirical Evaluation
	Results and Discussion
	Conclusion
	Extended Literature Review
	Detailed Experimental Setup
	Hyperparameter Configuration
	Mathematical Formulation of Loss Functions
	Reasoning Chain Loss Function
	Final Performance Loss Function
	Dataset Construction for Loss Computation

	Algorithm

	Sample Prompts for Blocksworld Domain
	Phase 1: Initial Instruction Tuning Prompts
	Correct Plan Example
	Incorrect Plan Example

	Phase 2: Chain-of-Thought Instruction Tuning Prompts
	CoT Generation Prompt
	CoT with Feedback Integration: Incorrect Plan
	CoT with Feedback Integration: Correct Plan

	Extended Experimental Results
	Ablation Study Results
	Error Analysis and Failure Modes

	LLM Usage Disclosure

