Under review as a conference paper at ICLR 2026

TEACHING LLMS TO PLAN: LOGICAL CHAIN-OF-
THOUGHT INSTRUCTION TUNING FOR SYMBOLIC
PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive capabilities across
diverse tasks, yet their ability to perform structured symbolic planning remains
limited, particularly in domains requiring formal representations like the Planning
Domain Definition Language (PDDL). In this paper, we present a novel instruc-
tion tuning framework, PDDL-INSTRUCT, designed to enhance LLMs’ symbolic
planning capabilities through logical chain-of-thought reasoning. Our approach
focuses on teaching models to rigorously reason about action applicability, state
transitions, and plan validity using explicit logical inference steps. By develop-
ing instruction prompts that guide models through the precise logical reasoning
required to determine when actions can be applied in a given state, we enable
LLMs to self-correct their planning processes through structured reflection. The
framework systematically builds verification skills by decomposing the planning
process into explicit reasoning chains about precondition satisfaction, effect ap-
plication, and invariant preservation. Experimental results on multiple planning
domains show that our chain-of-thought reasoning based instruction-tuned models
are significantly better at planning, achieving planning accuracy of up to 94% on
standard benchmarks, representing a 66% absolute improvement over baseline
models. This work bridges the gap between the general reasoning capabilities
of LLMs and the logical precision required for automated planning, offering a
promising direction for developing better Al planning systems.

1 INTRODUCTION

Large Language Models (LLMs) like GPT (OpenAl et al., 2023), Gemini (Gemini Team et al.,
2023), LLaMA (Touvron et al., 2023), etc. have demonstrated remarkable success across various
domains including mathematics and coding (Imani et al., 2023; Gaur & Saunshi, 2023; Romera-
Paredes et al., 2023; Ahn et al., 2024). However, a critical gap remains in their ability to perform
structured symbolic planning — a fundamental capability required for reliable real-world sequential
decision-making systems. Recent studies have highlighted this issue that while LLMs excel at general
reasoning over unstructured text, they struggle with the logical reasoning and systematic verification
required for automated planning tasks (Stechly et al., 2023; Valmeekam et al., 2023a;c; Kambhampati
et al., 2024; Stechly et al., 2025).

This limitation becomes particularly evident when considering formal planning representations such
as the Planning Domain Definition Language (PDDL) (McDermott et al., 1998). Despite some
promising results with specific configurations (Liu et al., 2023; Wang et al., 2024), these models
generally perform poorly on multi-step reasoning tasks including classical planning (Hsiao et al.,
2025). This has significant implications for planning tasks, which are PSPACE-complete (Bylander,
1991) and inherently require scaling reasoning efforts with problem complexity.

In this paper, we challenge this limitation by introducing PDDL-INSTRUCT, a novel framework
shown in Fig. 1, that augments LLMs’ reasoning capabilities with the formal reasoning required for
automated planning. PDDL-INSTRUCT explicitly teaches LLMs to reason through the precondition-
effect structure of planning domains using logical chain-of-thought prompting. By decomposing
planning verification into atomic reasoning steps and incorporating this structure into instruction

Under review as a conference paper at ICLR 2026

Dataset D,
Dataset D, test

=3p in Fil Verifi Domain File
= /> | Domain File erifier ==|problem Fil
| Problem File @,‘ [VAL] —l roblem File

Dataset ID; : Set of

Domain File = -
. Problelm I!ile K (S0, a1,51) ‘/ Reason [(S0, a1,51)
+ PlanFile+
i FH H o)
Explanation Fine- > (S1,az,52) I x Reason i Y (s1,az,52)
- —_— H H :
gisi - :

Tuning) CoT Output . &1 . q .
Ve Fine-tuned . B Final :
LLM (Sn,an,Sp) | EiZ: X Reason | LLM (Sn1, Qn Sn)
S H H
Pre-trained
LLM Instruction Tuning based on VAL Feedback Output Plan: (@y, Az, ..., an)
Phase 1: Initial Fine-tuning Phase 2: Chain-of-Thought (CoT) Instruction Tuning Evaluation Phase

Figure 1: The PDDL-INSTRUCT approach consists of three phases: Two training phases (Initial and
CoT Instruction Tuning) and evaluation phase. The main innovation lies in the second phase: CoT
Instruction Tuning (highlighted by the red boundary). The initially tuned LLM is further trained
using a structured instruction process that emphasizes complete logical reasoning chains.

tuning, our approach enables LLMs to not only generate syntactically correct plans but also to verify
their logical validity through step-by-step reasoning. This ability to perform structured verification
significantly enhances the reliability of LLM-generated plans and opens up possibilities for self-
correction through iterative refinement.

Main contributions of this paper are:

* A novel instruction tuning framework that enhances symbolic planning capabilities in LLMs
through logical chain-of-thought reasoning, focusing specifically on plan generation and
action applicability verification.

* A formalization of the planning verification process as decomposable reasoning chains,
enabling LLMs to systematically check preconditions, apply effects, and validate invariants.

» Empirical evidence demonstrating that instruction-tuned LLMs can develop robust planning
capabilities that generalize across domains.

Our results show that PDDL-INSTRUCT significantly outperforms both baseline models and tradi-
tionally instruction-tuned models, achieving planning validity rates of up to 94% in standard planning
domains. This work not only addresses a critical limitation in current LLM capabilities but also
provides a foundation for developing more trustworthy Al systems capable of reliable planning in
complex scenarios.

2 RELATED WORK

LLMs for planning The use of LLMs for planning has received a lot of attention (Pallagani
et al., 2024). Various approaches have been used so far, such as dictating the planned behaviors by
generating executable code (Liang et al., 2023; Singh et al., 2023; Nijkamp et al., 2023; Wang et al.,
2025) or behavior trees (Zhou et al., 2024a; 1zzo et al., 2024; Ao et al., 2025), using closed loop with
environment feedback (Huang et al., 2022; Song et al., 2023; Sun et al., 2023) or for self-refinement
(Wang et al., 2023; Zhou et al., 2024b). A few recent approaches also synthesize Python programs
using LL.Ms for planning (Silver et al., 2024; Hao et al., 2025b; Chen et al., 2025b; Hu et al., 2025;
Chi et al., 2025). A complementary research direction explores using LLMs for parts of the search
process, like generating heuristics (Ahn et al., 2022; Liu et al., 2024; Corréa et al., 2025), reducing
large search spaces (Zhao et al., 2023), predicting transition functions (Shlomi et al., 2025), etc.

However, as summarized in Tantakoun et al. (2025), LLMs face challenges with long-term planning
and reasoning, often producing unreliable plans (Stechly et al., 2024; Pallagani et al., 2023; Momen-
nejad et al., 2023), frequently failing to account for the effects and requirements of actions as they
scale (Stechly et al., 2024), and their performance degrades with self-iterative feedback (Stechly
et al., 2023; Valmeekam et al., 2023a; Huang et al., 2025b).

Under review as a conference paper at ICLR 2026

Finetuning for planning improves significantly the model’s capabilities to generate symbolic
plans (Pallagani et al., 2023; Li et al., 2025; Fu et al., 2025). However, the main drawbacks of
this approach are its high economic, time, and computational costs, as well as the degradation of the
transferability of the model. Finetuning makes the model specialized on the domains and problem
types trained on, with poor transferability to new problems. An extended literature review on LLMs
and Planning is available in the appendix.

Instruction tuning Instruction tuning has emerged as a significant approach in NLP to enable
zero-shot generalization on unseen tasks (Mishra et al., 2022; Wei et al., 2022a; Ouyang et al., 2022).
This technique involves fine-tuning large language models to perform diverse tasks by following
instructions, making the task source crucial for effective tuning (Longpre et al., 2023). While
existing methods often rely on human-crowdsourced tasks from datasets like TO (Sanh et al., 2022),
FLAN (Wei et al., 2022a; Longpre et al., 2023), and Naturallnstructions (Mishra et al., 2022; Wang
et al., 2022), these high-quality resources demand significant human effort and are typically limited in
quantity. An alternative approach involves model-generated tasks, where powerful language models
like GPT-3 and GPT-4 generate diverse instructions and task pairs (Wang et al., 2022; Peng et al.,
2023), though these can introduce noise when outputs don’t properly correspond to inputs. In this
work, we alleviate this problem by leveraging the automated planning task generators (Seipp et al.,
2022; Valmeekam et al., 2023b) to create the instruction tuning dataset.

Chain-of-Thought Reasoning A significant advancement in improving LLM reasoning ability is
the implementation of Chain of Thought (CoT) prompting (Wei et al., 2022b). By generating explicit
intermediate reasoning steps, these models can now address complex logical deduction and multistep
problem-solving. Short CoT approaches (Lambert et al., 2025; Kojima et al., 2022) demonstrated
effectiveness for straightforward problems but revealed limitations when confronting more intricate
challenges. The evolution toward longer reasoning chains has subsequently transformed the landscape
of machine reasoning. Stechly et al. (2024) argued that despite its efficacy for reasoning tasks, CoT is
not suitable for planning, but in this work we show that with proper integration of instruction tuning
using better prompts, CoT can indeed be used for planning tasks.

3 PRELIMINARIES

Automated Planning In this section, we briefly describe automated planning. Please refer to
Geffner & Bonet (2013) and Chen et al. (2025a) for more details.

An automated planning problem can be formally characterized as a tuple (P, A, so, G), where P is
a set of fluents used to describe a discrete and fully-observable state .S, A represents a finite set of
actions, sy € S denotes the initial state, and G specifies the goal conditions. Each action a; € A
is defined as (pre(a;), add(a;), del(a;)), where pre(a;) is the set of fluents that must hold in the
current state for the action to be executable, add(a;) is the set of fluents that become true after
executing a;, and del(a;) is the set of fluents that become false after executing a;. Note that the state
space S in classical planning emerges from all possible truth assignments to the set of fluents.

A solution to a planning problem P, called a plan m, is a sequence of actions (a1, as, ..., a,) that
transforms the initial state into one satisfying the goal conditions after n steps. Note that 7 produces
state transitions s;+1 = a;4+1(8;) = (s; \ del(a;+1))Uadd(a;+1) forall 0 < i < n such that s,, € G.
7 is considered optimal if it takes the least number of actions (in this work, we consider actions
with uniform cost) to reach a goal state, whereas it is considered satisficing if it reaches the goal
successfully but with more actions than needed by an optimal plan.

The Planning Domain Definition Language (PDDL) (McDermott et al.,, 1998), based on
STRIPS (Fikes & Nilsson, 1971), provides a standardized specification for automated planning
problems. PDDL consists of a domain D = (P, A) containing the sets of fluents P and actions A
(along with their precondition, add and del sets), and a problem P = (s, G) containing the initial
state sq, and a goal condition G.

Instruction Tuning Instruction tuning (Mishra et al., 2022; Wei et al., 2022a; Ouyang et al.,
2022) is an approach for fine-tuning LLMs on a labeled dataset. Consider an instruction tuning
dataset D; = {(z;,7;)}$L, with) labeled samples, where z; represents an instruction and 7; its

Under review as a conference paper at ICLR 2026

corresponding ideal target response. We denote our large language model as My with parameters
6. The model produces output My(z;) for a given instruction z;. The standard instruction tuning
objective aims to find model parameters * that minimize expected discrepancy (loss £) between
model predictions (Mpy(z)) and target responses (7) across the instruction dataset (Dataset D1, as
described in Sec. 4):

0 = argr%inE(LT)NDl [L(Mo(z),7)] @)

Chain-of-thought reasoning Chain-of-Thought (CoT) reasoning can be formally defined as a
structured decomposition of a complex reasoning task into an explicit sequence of intermediate
logical steps. Given a problem input x and a target output ¥, a chain-of-thought reasoning process R
is a sequence of K intermediate reasoning states Z(x) = (21, 22, . . ., 2K), Where each z; represents
an atomic reasoning step that transforms the latent state from z;_; to z;, with z implicitly defined
as the initial problem state derived from x. Each reasoning step z; can be characterized as a tuple
z; = (i, Ji, ui), where s; represents the symbolic state (the set of derived facts or assertions at step),
7 represents the justification (the logical rule or inference applied), and u; represents the uncertainty
estimate (the model’s confidence in this reasoning step). For simplicity, going forward we will use
symbolic states s; to represent reasoning states z;, when clear from context, as they have a one-to-one
mapping for this work. We also do not use u; estimates for this work, and the LLM is directly asked
for the resulting symbolic states in each CoT step.

Two important properties that characterize effective chain-of-thought reasoning are: (i) logical
coherence (Wei et al., 2022b), and (ii) progressive refinement (Du et al., 2025). A CoT process R (z)
exhibits logical coherence if for each step z; with ¢ > 1, 3j; 1 such that j;,_1(s;,—1) = s;, meaning
each state follows logically from the application of a justifiable inference rule to the previous state.
A CoT process R(z) exhibits progressive refinement if I(z;;y) > I(z;—1;y) Vi€ {1,2,...,K},
where I(z;; y) represents the mutual information between reasoning state z; and the target output y.

4 PROBLEM FORMULATION

Input In this work, we use the following inputs: (i) a pre-trained LLM M as input, (ii) a dataset
D of planning domains and problems expressed in PDDL with their solutions (satisficing plans),
and (iii) a plan validator V' used to validate the correctness of plans generated by M. The dataset D
consists of:

1. Aset{Dy,Ds,..., D, } of planning domains expressed in PDDL.
2. For each domain D;, we have problems P; = {P; 1, Pi 2, ..., Pim, }-

3. For each planning problem P; ;, we have a valid plan IT; ; = {7 1, j 2, Tij ki ; }s
where each plan 7; ;; is a sequence of grounded actions.

Data Splitting As shown in Fig. 1, our approach has three phases (more details in Sec. 5). To
facilitate this, we partition the dataset D into three sets: Dy, D,, and Dy for Phase 1 training, Phase
2 training, and evaluation, respectively.

We add additional data to D; by adding incorrect plans for each problem, similar to Naturallnstructions
framework (Mishra et al., 2022; Wang et al., 2022). We also add a plan validator’s output for each
plan (both correct and incorrect) as an explanation to the dataset. We remove the solution plans from
datasets D5 and Dy,;.

QOutput The primary output is an instruction-tuned model My« with enhanced symbolic planning
capabilities. The model should demonstrate improved domain representation, problem representation,
plan generation, action verification, plan verification, and reasoning transparency.

Assumptions Our framework assumes the planning domains follow the features explained in Sec. 3,
i.e., does not contain complex PDDL features such as, e.g., conditional effects or durative actions.
This simplifies the reasoning chain.

Under review as a conference paper at ICLR 2026

5 PDDL-INSTRUCT: METHODOLOGY

Fig. 1 illustrates our comprehensive framework for enhancing symbolic planning capabilities in Large
Language Models (LLMs) through logical Chain-of-Thought (CoT) instruction tuning. The approach
consists of two training phases: Initial Instruction Tuning and CoT Instruction Tuning.

5.1 TRAINING THE MODEL

[Phase 1] Initial Instruction Tuning Phase In the initial instruction tuning phase (distinct from
simple finetuning), we take a pre-trained LLM and train it with carefully crafted prompts that pair
planning domains and problems with detailed explanations of their solutions, all derived from Dataset
D;. As shown in Fig. 1, rather than simply exposing the model to planning examples, we explicitly
instruct it to analyze why each action in a plan is valid by explaining precondition satisfaction and
effect application.

This phase incorporates both correct plans and deliberately incorrect plans to teach the model to
recognize and explain various planning errors. For incorrect plans, we include examples where:
(1) action preconditions are not satisfied, (2) effects are incorrectly applied, (3) frame axioms are
violated, or (4) the plan fails to reach the goal state. By exposing the model to both successful and
failed planning attempts with detailed explanations, we establish a foundation for logical verification.
The incorrect plans are generated by randomly replacing one of the actions in the correct plan with
another action compatible with the problem. We verify using a plan validator, VAL (Howey et al.,
2004), that this new plan is incorrect. We also add VAL’s output for each plan (both correct and
incorrect) to the dataset. For a few plans, we change the VAL’s output to add additional effects or
remove some effects to have incorrect explanations.

This phase establishes a foundation of planning knowledge while simultaneously teaching the model
to articulate logical justifications for action validity, setting the stage for more advanced reasoning in
subsequent phases. Exact prompts used in this work are available in the supplementary material.

[Phase 2] CoT Instruction Tuning Phase The main innovation of our approach lies in the CoT
Instruction Tuning phase (highlighted by the red boundary in Fig. 1). This second phase is itself a two-
stage process described thoroughly in the next section. At a high level, in this phase, the initially tuned
LLM is further trained using a structured instruction process that emphasizes complete logical reason-
ing chains. When presented with a domain and problem from Dataset D5, this initially tuned model
produces step-by-step state-action-state sequences (Sg, a1, 817, (S1, a2, 82), - - -, (Sn—1, an, Sp) that
represent a candidate plan.

These reasoning chains are then passed through a verification module implemented using VAL (Howey
et al., 2004) that systematically checks the validity of each state transition based on action precon-
ditions and effects. Please note that while some approaches have tried using LL.Ms themselves as
verifiers, research shows that currently LLMs do not possess sufficient self-correction capabilities in
terms of reasoning (Huang et al., 2024; Stechly et al., 2025). Unlike self-reflection approaches where
models attempt to critique their own reasoning without external validation, our chain-of-thought
method explicitly decomposes the planning process into verifiable logical steps, with external verifi-
cation providing ground-truth feedback. This combination of explicit reasoning decomposition with
verified feedback creates a more reliable foundation for enhancing planning capabilities than relying
solely on the model’s internal reasoning.

We explore two distinct types of verification feedback: (1) binary feedback, which simply indicates
whether an action is valid or invalid, and (2) detailed feedback, which provides specific reasoning
about each action generated by VAL in terms of which preconditions failed or which effects were
incorrectly applied. Our hypothesis is that detailed feedback will lead to more robust planning
capabilities by providing explicit guidance on the logical errors in the reasoning process.

The verification results provide crucial feedback that guides further instruction tuning. This feedback
loop ensures that the model learns not only to generate syntactically correct plans but also to reason
about their logical validity. We limit the number of times this feedback loop is used to generate new
CoT plans, denoted by 7. 7 is a hyperparameter which we can vary to see how it affects accuracy.

Under review as a conference paper at ICLR 2026

Our PDDL-INSTRUCT approach prioritizes logical coherence (see Sec. 3) through its explicit
verification of preconditions and effects at each planning step. The verification feedback ensures
that each state transition follows logically from the application of a valid action, maintaining strict
adherence to the domain rules. However, our approach does not ensure progressive refinement (see
Sec. 3). This is because rather than optimizing for the shortest or most efficient plan (which would
increase mutual information with an optimal solution at each step), we focus on producing satisficing
plans that achieve the goal regardless of path length. Generating optimal solutions is a significantly
more difficult problem in practice, both for classical planners and for training LLLMs to produce
them (Ray & Ginsberg, 2008; Domshlak & Nazarenko, 2013).

5.2 TRAINING METHODOLOGY FOR PHASE 2 COT INSTRUCTION TUNING: OPTIMIZATION
PROCESS

A distinctive feature of our PDDL-INSTRUCT framework is the two-stage optimization process as
part of the CoT Instruction Tuning that explicitly targets both the quality of logical reasoning for
CoT and the resulting final planning performance. This approach addresses the unique challenges
of symbolic planning by ensuring that the model not only produces correct plans but also develops
robust verification capabilities through logical chain-of-thought reasoning. An algorithm for this is
available in the supplementary material.

Stage 1: Reasoning Chain Optimization In the first stage, we optimize the model parameters 6;
to improve the generation of high-quality reasoning chains. Specifically, the model weight in each
reasoning step r, 0] where ¢ € [0, — 1], is updated as Equation 2:

etr = 9t - (51 Vet Ereasoning(ah Dlt—easoning) (2)

where Licasoning 18 @ loss function that measures the quality of the generated reasoning chains compared
to ideal logical inference sequences, d; is the learning rate for this stage, and Déeasoning is the dataset
of individual (s;_1, a;, s;) triplets along with VAL feedback for them. This objective encourages the
model to produce step-by-step reasoning that correctly (i) checks all necessary preconditions before
applying actions; (ii) tracks state changes resulting from action effects; (iii) verifies that invariants are

maintained throughout the plan; and (iv) detects logical inconsistencies in proposed plans.

The reasoning loss explicitly penalizes logical errors such as applying actions with unsatisfied
preconditions, failing to properly propagate effects, or generating steps that violate domain constraints.
By focusing specifically on the reasoning process, this stage helps the model develop the logical
foundation necessary for robust planning.

Stage 2: End-Task Performance Optimization In the second stage, we optimize from the
reasoning-improved parameters 6] to enhance overall planning:

et-‘rl = 9: - 62V9{£ﬁnal(9€,]D)?inal) 3

where Lg,, measures how well the final outputs match the expected answers in the training data, s is
the learning rate for this stage, and D} ., final contains the domain, problem, and plan extracted from
CoT output along with VAL feedback specifying if the plan is correct for that problem or not. This
second stage ensures that improvements in logical reasoning translate to practical planning capability
of producing accurate plans.

This two-stage approach is important as Stage 1 develops the logical foundation needed for planning,
while Stage 2 ensures these capabilities are properly applied to generate correct plans. The separation
of these objectives allows our framework to balance between teaching fundamental reasoning skills
and optimizing for task-specific performance, resulting in models that not only produce correct
plans but can also reason about their correctness through explicit logical CoT inference. The exact
formulations of the loss functions Lrcasoning and Lena and the specific values of the hyperparameters
are discussed in detail in the supplementary material.

5.3 EVALUATION PHASE

After completing both the Initial Instruction Tuning and CoT Instruction Tuning phases, the final
model is evaluated in the Evaluation Phase (represented on the right side of Fig. 1). In this phase, the

Under review as a conference paper at ICLR 2026

instruction-tuned LLM is presented with new, unseen planning domains and problems from D).
The model directly generates complete state-action-state sequences (So, @1,51), - -, {(Sn—1, An, Sn)
that constitute its proposed solution to the planning problem. These generated plans are then evaluated
for correctness using VAL, but only for assessment purposes, i.e., no feedback is returned to the
model. The plan is considered valid if and only if all actions in the sequence are applicable in their
respective states and the final state satisfies all goal conditions.

6 EMPIRICAL EVALUATION

We conduct a comprehensive empirical evaluation of PDDL-INSTRUCT to assess its effectiveness in
enhancing symbolic planning capabilities in LLMs. Our evaluation leverages PlanBench (Valmeekam
et al., 2023b), a standardized benchmark framework for evaluating LLM planning capabilities.

We evaluate PDDL-INSTRUCT using PlanBench to assess its effectiveness in enhancing symbolic
planning capabilities in LLMs. Our experiments aim to answer the following research questions:

RQ1: Does logical CoT instruction tuning improve plan validity compared to standard approaches?
RQ2: How does the quality of feedback (binary vs. detailed) affect planning performance?
RQ3: How well does the approach generalize across different planning domains?

We implement PDDL-INSTRUCT using Llama-3-8B, GPT-4!, and Gemma-3-270M (Gemma Team
et al., 2025) models. We compare against baseline (unmodified models), post phase 1 versions
(instruction tuned on planning examples with reasoning of why each plan is valid or invalid), and only
phase 2 versions (directly CoT instruction tuned without initial finetuning). For PDDL-INSTRUCT,
we test variants with binary feedback (valid/invalid) and detailed feedback (specific reasoning errors
generated by VAL), each with the number of feedback iteration loop limit to n € {10,15}. All
experiments were conducted on 2 NVIDIA RTX 3080 GPUs.

Domains and Problems PlanBench provides a systematic methodology for evaluating planning
capabilities across diverse planning domains and problem complexities. We evaluate across three
distinct planning domains from PlanBench, each presenting different reasoning challenges:

* Blocksworld: The classical planning domain with blocks that can be stacked on a table or
on other blocks. This domain primarily tests reasoning with a relatively small action set.

* Mystery Blocksworld: A more complex variant of Blocksworld with predicates identical
but semantically obfuscated names.

» Logistics: A transportation planning domain where packages must be moved between
locations using trucks and airplanes, testing the model’s ability to reason about location
connectivity and multi-step transport operations.

Evaluation Metrics Our primary evaluation metric is the Plan Accuracy, measuring the percentage
of planning tasks for which the model generates a valid plan that achieves the specified goal. A
plan is considered valid only if all actions are applicable in their respective states and the final state
satisfies all goal conditions, as verified by VAL. For each domain, we generate 100 test tasks of
varying complexity, with problems including different numbers of objects and requiring different
plan lengths to solve.

7 RESULTS AND DISCUSSION

Overall Performance (RQ1) Tab. | presents the plan accuracy across models, domains, and
approaches. The results clearly demonstrate that PDDL-INSTRUCT significantly outperforms baseline
models, models after Phase 1 instruction tuning, and models with just Phase 2 CoT instruction tuning.

For Llama-3, PDDL-INSTRUCT with detailed feedback and 7 = 15 achieves validity rates of
94%, 64%, and 79%, respectively in Blocksworld, Mystery Blocksworld, and Logistics. This

"Note that GPT-4 experiments were constrained by limited access.

Under review as a conference paper at ICLR 2026

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
Blocksworld 28% 78% 2% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64% 69% 72% 78%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%

Table 1: Results for plan accuracy generated for 100 test tasks from each domain. Our approach
PDDL-INSTRUCT was evaluated with either binary or detailed feedback. Ablation results are for
only Phase 1 (P1), and only Phase 2 (P2) with detailed feedback (as it had the best performance).

represents an average absolute improvement of 35%(SD = 20%) over basic instruction tuning,
and of 66%(SD = 3%) over the baseline. Similarly, for GPT-4, PDDL-INSTRUCT with detailed
feedback and 1 = 15 achieves validity rates of 91%, 59%, and 78% across the three domains. This
represents an average absolute improvement of 48%(SD = 5%) over basic instruction tuning, and
of 61%(SD = 9%) over the baseline. For Gemma-3, PDDL-INSTRUCT with detailed feedback and
1 = 15 achieves validity rates of 56%, 28%, and 43% across the three domains respectively. While
showing the lowest absolute performance among all models tested, Gemma-3 demonstrates the most
dramatic relative improvements. These results show that logical CoT instruction tuning enhances
plan accuracy significantly, not only when compared to unmodified foundation models and but more
importantly, also when compared to models with only basic instruction tuning. The explicit reasoning
about preconditions, effects, and state transitions enables the models to generate accurate plans.

Impact of Feedback Type (RQ2) Comparing the binary feedback and detailed feedback columns
in Tab. 1, we observe that detailed feedback consistently outperforms binary feedback across all
domains and models. The pattern holds consistently across all three model architectures. For Llama-3
with 17 = 15, detailed feedback improves plan accuracy by 5 percentage points in Blocksworld, 15
percentage points in Mystery Blocksworld, and 7 percentage points in Logistics compared to binary
feedback. For Gemma-3 with n = 15, detailed feedback provides improvements of 2 percentage
points in Blocksworld, 4 percentage points in Mystery Blocksworld, and 16 percentage points
in Logistics compared to binary feedback. Note that our training approach, though developed
independently, has resemblance with LEPA (Zhang et al., 2025a), which also show that providing
specific feedback about why each action fails helps in improving the reasoning capabilities of LLMs.

This pattern confirms our hypothesis that providing specific reasoning errors helps the model develop
more robust verification capabilities. The advantage of detailed feedback is particularly pronounced
in Mystery Blocksworld, the most complex domain with obfuscated predicates. Additionally, we
observe that increasing the iteration limit from 7 = 10 to n = 15 yields consistent improvements
across all configurations. This observation indicates that the model may converge on valid plans
given additional feedback iterations loops, though future experiments with varying 7 are needed to
confirm this. The improvement is more substantial with detailed feedback (averaging 4.3 percentage
points across all domains and models) than with binary feedback (averaging 3.3 percentage points),
indicating that detailed feedback enables more effective use of additional reasoning iterations.

Cross-Domain Generalization (RQ3) Our results demonstrate significant variations in perfor-
mance across domains, reflecting their inherent complexity and reasoning challenges. Both models
achieve the highest performance on Blocksworld, followed by Logistics, with Mystery Blocksworld
proving the most challenging. For Llama-3 with detailed feedback and 7 = 15, the validity rates
are 94% for Blocksworld, 79% for Logistics, and 64% for Mystery Blocksworld. This pattern is
consistent across all configurations and models, highlighting the increasing difficulty of domains
with hidden predicates and complex state interactions. Notably, while absolute performance varies

Under review as a conference paper at ICLR 2026

across domains, the relative improvement from PDDL-INSTRUCT is substantial in all three domains.
This suggests that our approach enhances planning capabilities in a domain-general manner, with the
logical reasoning framework transferring effectively across different planning scenarios.

All three models achieve the highest performance on Blocksworld, followed by Logistics, with
Mystery Blocksworld proving the most challenging. This consistent ordering across different model
architectures (Llama-3: 94%/79%/64%, GPT-4: 91%/78%/59%, Gemma-3: 56%/43%/28%) suggests
that domain complexity, rather than model-specific biases, drives the performance hierarchy.

8 CONCLUSION

We have presented PDDL-INSTRUCT, a novel framework that significantly enhances the symbolic
planning capabilities of Large Language Models through logical chain-of-thought instruction tuning.
By decomposing the planning process into verifiable logical reasoning chains and providing explicit
verification feedback, our approach enables LLMs to generate valid plans with unprecedented
reliability across diverse planning domains. While our results are promising, we note that our
approach does not achieve 100% accuracy across all domains. However, when combined with
frameworks like LLM-Modulo (Kambhampati et al., 2024), which provides efficient mechanisms for
integrating external tools with LLMs, our method could significantly reduce the number of required
feedback loops with the verifier. This integration would make the planning process more efficient by
allowing the model to leverage its enhanced reasoning capabilities while still benefiting from formal
verification when needed, ultimately resulting in faster and more reliable planning.

A notable advantage of our VAL-based verification approach is its robustness against unfaithful
chain-of-thought reasoning as described by Lyu et al. (2023). While traditional CoT methods can
generate plausible-sounding but internally inconsistent reasoning chains, our external verification
ensures that each logical step is formally validated against the planning domain’s constraints.

Limitations and Future Work While our results highlight the effectiveness of combining logical
chain-of-thought with verification-guided feedback, several promising directions remain for future:

Optimizing instruction tuning data: We can further refine our approach by applying instruction
optimization techniques as described in Lee et al. (2024) to identify the most effective subset of
instruction examples. Determining which planning scenarios and error types provide the most
informative learning signal could significantly improve training efficiency.

Expanding PDDL Coverage: To simplify the logical reasoning effort, we currently limit to use only a
subset of PDDL features. Future work could address this limitation and incorporate more advanced
PDDL features such as conditional effects, derived predicates, action costs, and temporal constraints,
gradually expanding the expressive power of the planning capabilities.

Self-Verification Capabilities: While we currently rely on an external verifier (VAL), an intriguing
direction is developing self-verification capabilities where models learn to accurately critique their
own plans. As LLMs continue to improve, reducing or eliminating dependence on external verifiers
could make planning more autonomous and efficient.

Dynamic Iteration Control: Our current approach uses fixed iteration limits (). Developing tech-
niques to dynamically determine the optimal number of iterations based on problem complexity or
feedback patterns could improve efficiency, especially as we hypothesize that return will diminish on
increasing 1 beyond certain values.

Expanding Domain Coverage: Currently PlanBench supports 3 domains we used in this work. Extend-
ing the evaluation to include a wider variety of planning domains would enable more comprehensive
evaluation and potentially reveal new opportunities for improving logical reasoning in planning.

Beyond Planning: Finally, the logical reasoning framework developed in this work could extend
beyond planning to other sequential decision-making tasks that require long-horizon reasoning, such
as theorem proving, complex puzzle solving, and multi-step logical deduction. The combination of
chain-of-thought reasoning with verification-guided feedback appears to be a powerful paradigm that
could enhance LLM capabilities across diverse reasoning tasks.

Under review as a conference paper at ICLR 2026

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics: Student Research
Workshop (EACL), 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I can, not as I say:
Grounding language in robotic affordances. In Proceedings of the 6th Conference on Robot
Learning (CoRL), 2022.

Jicong Ao, Fan Wu, Yansong Wu, Abdalla Swiki, and Sami Haddadin. LLM-as-BT-Planner: Lever-
aging LL.Ms for behavior tree generation in robot task planning. In Proceedings of the 2025 IEEE
International Conference on Robotics and Automation (ICRA), 2025.

Tom Bylander. Complexity results for planning. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI), 1991.

Dillon Z. Chen, Pulkit Verma, Siddharth Srivastava, Michael Katz, and Sylvie Thiébaux. Al planning:
A primer and survey (Preliminary report). In AAAI 2025 Workshop on Bridging the Gap Between
Al Planning and Reinforcement Learning (PRL), 2025a.

Dillon Ze Chen, Johannes Zenn, Tristan Cinquin, and Sheila A. Mcllraith. Language models
for PDDL planning: Generating sound and programmatic policies. In RLC 2025 Workshop on
Programmatic Reinforcement Learning, 2025b.

Haotian Chi, Zeyu Feng, Yueming Lyu, Chengqi Zheng, Linbo Luo, Yew-Soon Ong, Ivor Tsang,
Hechang Chen, Yi Chang, and Haiyan Yin. InstructFlow: Adaptive symbolic constraint-guided
code generation for long-horizon planning. In Proceedings of the 39th Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2025. (to appear).

Augusto B Corréa, André G Pereira, and Jendrik Seipp. Classical planning with LLM-generated
heuristics: Challenging the state of the art with python code. In Proceedings of the 39th Conference
on Advances in Neural Information Processing Systems (NeurIPS), 2025. (to appear).

Carmel Domshlak and Anton Nazarenko. The complexity of optimal monotonic planning: The bad,
the good, and the causal graph. Journal of Artificial Intelligence Research, 48:783-812, 2013.

Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Haoran Guo, Sirui
Xia, Jiaqing Liang, Zulong Chen, Liangyue Li, and Yanghua Xiao. Think thrice before you act:
Progressive thought refinement in large language models. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3-4):189-208, 1971.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma GongQue, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. AgentRefine: Enhancing agent generalization
through refinement tuning. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Vedant Gaur and Nikunj Saunshi. Reasoning in large language models through symbolic math word
problems. In Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated

Planning: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 1st edition, 2013. ISBN 1608459691.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,

Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

10

Under review as a conference paper at ICLR 2026

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Elliot Gestrin, Marco Kuhlmann, and Jendrik Seipp. Towards robust LLM-driven planning from
minimal text descriptions. In ICAPS 2024 Workshop on Human Aware and Explainable Planning
(HAXP), 2024.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve real-
world planning rigorously with formal verification tools. In Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL), 2025a.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with LLM-based formalized programming. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025b.

Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 2004.

Vincent Hsiao, Morgan Fine-Morris, Mark Roberts, Leslie N Smith, and Laura M. Hiatt. A critical
assessment of LLMs for solving multi-step problems: Preliminary results. In AAAI 2025 Workshop
on Planning in the Era of LLMs (LM4Plan), 2025.

Zichao Hu, Junyi Jessy Li, Arjun Guha, and Joydeep Biswas. Robo-Instruct: Simulator-augmented
instruction alignment for finetuning code LLMs. In Proceedings of the 2nd Conference on
Language Modeling (CoLM), 2025.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Sukai Huang, Trevor Cohn, and Nir Lipovetzky. Chasing progress, not perfection: Revisiting
strategies for end-to-end LLM plan generation. Proceedings of the 35th International Conference
on Automated Planning and Scheduling (ICAPS), 2025a.

Sukai Huang, Nir Lipovetzky, and Trevor Cohn. Planning in the dark: LLM-symbolic planning
pipeline without experts. In AAAI 2025 Workshop on Planning in the Era of LLMs (LM4Plan),
2025b.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Proceedings of the 6th Annual Conference on Robot
Learning (CoRL), 2022.

Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical reasoning using
large language models. In Proceedings of the 61st Annual Meeting ofm the Association for
Computational Linguistics (ACL), 2023.

Riccardo Andrea Izzo, Gianluca Bardaro, and Matteo Matteucci. BTGenBot: behavior tree generation
for robotic tasks with lightweight LLMs. In Proceedings of the 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-Modulo frameworks. In Proceedings of the 41th International Conference on Machine
Learning (ICML), 2024.

11

Under review as a conference paper at ICLR 2026

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Proceedings of the 36th Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench: Reasoning about
action, change, and planning. In Proceedings of the 39th AAAI Conference on Artificial Intelligence
(AAAI), 2025a.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. ACPBench Hard: Unrestrained
reasoning about action, change, and planning. In AAAI 2025 Workshop on Planning in the Era of
LLMs (LM4Plan), 2025b.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi.
Tulu 3: Pushing frontiers in open language model post-training. In Proceedings of the 2nd
Conference on Language Modeling (COLM), 2025.

Changho Lee, Janghoon Han, Seonghyeon Ye, Stanley Jungkyu Choi, Honglak Lee, and Kyunghoon
Bae. Instruction matters: A simple yet effective task selection for optimized instruction tuning of
specific tasks. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2024.

Wenjun Li, Changyu Chen, and Pradeep Varakantham. Unlocking the planning capabilities of
large language models with maximum diversity fine-tuning. In Findings of the Association for
Computational Linguistics: NAACL 2025, 2025.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine Learning (ICML), 2024.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: designing data and methods
for effective instruction tuning. In Proceedings of the 40th International Conference on Machine
Learning (ICML), 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Sadegh Mahdavi, Raquel Aoki, Keyi Tang, and Yanshuai Cao. Leveraging environment interaction
for automated PDDL translation and planning with large language models. In Proceedings of the
38th Conference on Neural Information Processing Systems (NeurlPS), 2024.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, A. Ram, Manuela Veloso, Daniel S.
Weld, and David Wilkins. PDDL — The Planning Domain Definition Language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization

via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL), 2022.

12

Under review as a conference paper at ICLR 2026

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. In Proceedings of the 37th Conference on Advances in Neural
Information Processing Systems (NeurlPS), 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In Proceedings of the 11th International Conference on Learning Representations
(ICLR), 2023.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th Conference on Advances in Neural Information Processing Systems (NeurlIPS), 2022.

Vishal Pallagani, Bharath Muppasani, Biplav Srivastava, Francesca Rossi, Lior Horesh, Keerthiram
Murugesan, Andrea Loreggia, Francesco Fabiano, Rony Joseph, and Yathin Kethepalli. Plansformer
tool: Demonstrating generation of symbolic plans using transformers. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI), 2023. Demo Track.

Vishal Pallagani, Bharath Chandra Muppasani, Kaushik Roy, Francesco Fabiano, Andrea Loreggia,
Keerthiram Murugesan, Biplav Srivastava, Francesca Rossi, Lior Horesh, and Amit Sheth. On the
prospects of incorporating large language models (LLMs) in automated planning and scheduling
(APS). In Proceedings of the 34th International Conference on Automated Planning and Scheduling
(ICAPS), 2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
GPT-4. arXiv preprint arXiv:2304.03277, 2023.

Katrina Ray and Matthew L Ginsberg. The complexity of optimal planning and a more efficient
method for finding solutions. In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 2008.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J R Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar
Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
models. Nature, 625:468 — 475, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training
enables zero-shot task generalization. In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022.

Jendrik Seipp, Alvaro Torralba, and Jorg Hoffmann. PDDL generators. https://doi.org/10.
5281/zenodo. 6382173, 2022.

Eliezer Shlomi, Guy Azran, Eilam Shapira, Omer Nahum, Roi Reichart, Guy Uziel, Michael Katz,

Ateret Anaby Tavor, and Sarah Keren. Transition function prediction in Al planning using LLMs.
In AAAI 2025 Workshop on Planning in the Era of LLMs (LM4Plan), 2025.

13

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173

Under review as a conference paper at ICLR 2026

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in PDDL domains with pretrained large language models. In Proceedings of
the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. ProgPrompt: Generating situated robot task plans
using large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
LLM-Planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. GPT-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. In NeurlPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? An
analysis of CoT in planning. In Proceedings of the 38th Conference on Advances in Neural
Information Processing Systems (NeurIPS), 2024.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Katharina Stein, Daniel FiSer, Jorg Hoffmann, and Alexander Koller. Automating the generation of
prompts for LLM-based action choice in PDDL planning. In Proceedings of the 35th International
Conference on Automated Planning and Scheduling (ICAPS), 2025.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. AdaPlanner: adaptive
planning from feedback with language models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems (NeurIPS), 2023.

Marcus Tantakoun, Xiaodan Zhu, and Christian Muise. LLMs as planning modelers: A survey
for leveraging large language models to construct automated planning models. In AAAI 2025
Workshop on Planning in the Era of LLMs (LM4Plan), 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? In NeurlPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023a.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. PlanBench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. In Proceedings of the 37th Conference on Advances in Neural Information
Processing Systems (NeurlPS), 2023b.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In Proceedings of the 37th
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2023c.

Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen
Han, Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves
LLM search for code generation. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,

and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

14

Under review as a conference paper at ICLR 2026

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-Naturallnstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with LLMs enables open-world multi-task agents.
In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurlIPS), 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Proceedings
of the 10th International Conference on Learning Representations (ICLR), 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

models. In Proceedings of the 36th Conference on Advances in Neural Information Processing
Systems (NeurIPS), 2022b.

Yagqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Jin Zhang, Flood Sung, Zhilin Yang, Yang Gao, and Chongjie Zhang. Learning to plan before
answering: Self-teaching LLMs to learn abstract plans for problem solving. In Proceedings of the
13th International Conference on Learning Representations (ICLR), 2025a.

Xiaopan Zhang, Hao Qin, Fuquan Wang, Yue Dong, and Jiachen Li. LaMMA-P: Generalizable
multi-agent long-horizon task allocation and planning with LM-driven PDDL planner. In 2025
IEEE International Conference on Robotics and Automation (ICRA), 2025b.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Proceedings of the 37th Conference on Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Haotian Zhou, Yunhan Lin, Longwu Yan, Jihong Zhu, and Huasong Min. LLM-BT: performing
robotic adaptive tasks based on large language models and behavior trees. In Proceedings of the
2024 IEEE International Conference on Robotics and Automation (ICRA), 2024a.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. ISR-LLM: Iterative self-refined
large language model for long-horizon sequential task planning. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), 2024b.

15

Under review as a conference paper at ICLR 2026

A EXTENDED LITERATURE REVIEW

LLMs and Planning The current limited reasoning capabilities of LLMs for planning have been
evaluated in several ways. The ACPBench benchmark (Kokel et al., 2025a), and the more recent
ACPBench-Hard one (Kokel et al., 2025b), evaluate several state-of-the-art LLMs of varying size
on reasoning tasks related to planning. These results indicate that all models, even the largest ones,
underperform and have a very long way to go before they can be reliably used for planning. In Huang
et al. (2025a), various strategies to enhance the reasoning capabilities of the models for planning are
evaluated. They find that reward-driven RL optimization is promising and that only finetuning on
datasets of problems and reference plans is insufficient. In our work, we go beyond simple finetuning
by doing logical chain-of-thought instruction tuning.

Another approach consists in using LLMs to generate automated planning models (e.g. PDDL
domain and problem) and to rely on existing symbolic solvers to produce sound solutions. This
hybrid paradigm has received a lot of interest (Huang et al., 2025b; Mahdavi et al., 2024; Zhang et al.,
2025b; Tantakoun et al., 2025). Still, generating such structured models accurately is challenging
for LLMs. To reach high accuracy, the process usually relies on human interventions for feedback
and validation (Guan et al., 2023), using external verifiers (Silver et al., 2024; Hao et al., 2025a), or
focuses on limited aspects of the problem (e.g. only generating planning goals (Xie et al., 2023).
In Huang et al. (2025b), the authors propose to generate a planning model from a natural language
description without human intervention. They tackle ambiguities inherent to natural language
by generating various model candidates and filtering them based on semantic coherence. They
further rank the multiple generated plans based on the cumulative semantic similarity scores of their
constituent model. NL2P (Gestrin et al., 2024) proposes to use explicit inference steps and Chain of
Thoughts back prompting to generate the PDDL domain and problem from natural language inputs.
Here, we propose to finetune an LLM to learn explicit inference steps to reason on action applicability,
state transitions, and plan validity to generate a plan.

On the other hand, some approaches like Stein et al. (2025) automatically translate PDDL problems
into natural language and use LLMs to plan in natural language. Eventually, the plan is translated
back into PDDL actions to be executed or simulated.

B DETAILED EXPERIMENTAL SETUP

B.1 HYPERPARAMETER CONFIGURATION

Tab. 2 provides the complete hyperparameter configuration used in our experiments.

Parameter Phase 1 Phase 2 (CoT)
Learning Rate 2e-5 01: le-5, 82: 5e-6
Batch Size 16 8

Max Sequence Length 2048 4096
Training Epochs 5 3
Warmup Steps 500 200
Weight Decay 0.01 0.001
Gradient Clipping 1.0 0.5
Temperature (Generation) 0.7 0.3

Max Generation Length 1024 2048
Optimizer AdamW AdamW
b1, B2 0.9, 0.999 0.9, 0.999

€ le-8 le-8
Iteration Limit (77) N/A 10, 15

Table 2: Complete hyperparameter configuration for PDDL-INSTRUCT

Learning Rates (61, J2) The learning rates control how aggressively the model weights are updated
during training, with Phase 1 using a single learning rate and Phase 2 employing two distinct
learning rates for its two-stage optimization process. Phase 1 uses a learning rate of 2 x 10~° for

16

Under review as a conference paper at ICLR 2026

initial instruction tuning, set relatively higher because the model must learn entirely new planning
capabilities from its pre-trained foundation, applying this rate to the standard cross-entropy loss
when learning to generate plans with detailed explanations of action validity. Phase 2 employs two
separate learning rates within its chain-of-thought instruction tuning: §; = 1 x 10~° for Stage
1 reasoning chain optimization (Equation 2) and § = 5 x 10~ for Stage 2 final performance
optimization (Equation 3). The first learning rate J; focuses on improving the quality of step-by-step
logical reasoning chains, while the second learning rate 5 is set lower to carefully optimize overall
planning performance without disrupting the reasoning capabilities developed in Stage 1. Both Phase
2 learning rates are deliberately lower than Phase 1 to enable fine-tuning of the chain-of-thought
reasoning without disrupting the foundational planning knowledge already acquired.

Batch Size The batch size determines how many training examples are processed simultaneously
before updating model weights, with values carefully chosen to balance computational efficiency
with memory constraints and training dynamics. Phase 1 uses a batch size of 16, which provides
sufficient gradient signal for learning basic planning concepts while remaining within GPU memory
limits for the 2048-token sequences typical of initial instruction examples. Phase 2 reduces the batch
size to 8 to accommodate the significantly longer chain-of-thought sequences and the additional
memory overhead introduced by VAL feedback processing. The smaller batch size in Phase 2 also
enables more frequent weight updates during the iterative refinement process, which is crucial for the
feedback-driven learning mechanism where the model must quickly adapt to validation signals from
the external verifier.

Maximum Sequence Length The maximum sequence length defines the upper limit of tokens
the model can process in both input and output, with values scaled to accommodate the increasing
complexity of reasoning required across training phases. Phase 1 sets this limit to 2048 tokens,
which sufficiently captures domain definitions, problem statements, generated plans, and basic
explanations of action validity without excessive computational overhead. Phase 2 doubles this
limit to 4096 tokens to accommodate the detailed chain-of-thought reasoning sequences that include
comprehensive state analysis, action selection justification, explicit precondition checking, effect
application reasoning, state transition tracking, and goal progress evaluation. This increased capacity
is essential for the model to generate the verbose logical reasoning chains that characterize effective
planning verification.

Training Epochs The number of training epochs represents complete passes through the respective
training datasets, with values chosen to ensure adequate learning while preventing overfitting to
domain-specific patterns. Phase 1 employs 5 epochs to establish foundational planning knowledge,
requiring more iterations because the model must learn to understand PDDL syntax, action semantics,
state representations, and goal achievement from its general language understanding baseline. Phase
2 uses only 3 epochs because the model already possesses basic planning capabilities and needs only
to refine its chain-of-thought reasoning processes. The reduced epoch count in Phase 2 also prevents
overfitting to the specific feedback patterns generated by VAL, ensuring that the learned reasoning
generalizes beyond the particular validation scenarios encountered during training.

Warmup Steps Warmup steps implement a gradual increase in learning rate from zero to the
target value at the beginning of training, preventing training instability that can arise from large
initial weight updates on a partially trained model. Phase 1 uses 500 warmup steps to ensure stable
convergence when adapting the pre-trained language model to the structured domain of planning,
where the token distributions and semantic relationships differ significantly from general text. Phase
2 employs 200 warmup steps, fewer than Phase 1 because the model has already been adapted to
the planning domain and requires less careful initialization. The warmup mechanism is particularly
important in Phase 2 given the complex loss landscape created by the two-stage optimization process
and the feedback-driven training dynamics.

Weight Decay Weight decay implements L2 regularization by adding a penalty term proportional
to the squared magnitude of model weights, preventing overfitting by discouraging the model from
relying too heavily on specific parameter configurations. Phase 1 uses a weight decay of 0.01,
relatively high to prevent the model from memorizing specific instruction-response patterns rather
than learning generalizable planning principles. Phase 2 reduces weight decay to 0.001 to allow

17

Under review as a conference paper at ICLR 2026

more fine-grained parameter adjustments necessary for learning subtle logical reasoning patterns
while still providing some regularization against overfitting to the VAL feedback patterns. The lower
weight decay in Phase 2 recognizes that the chain-of-thought reasoning requires precise parameter
configurations that might be overly penalized by stronger regularization.

Gradient Clipping Gradient clipping prevents exploding gradients by setting a maximum allowed
norm for gradient vectors, ensuring training stability particularly in the complex optimization land-
scape of instruction tuning. Phase 1 employs gradient clipping at 1.0, providing stability during
the initial adaptation from general language modeling to planning-specific tasks where gradient
magnitudes can vary significantly across different types of planning problems. Phase 2 uses more
conservative clipping at 0.5 because the model is more stable after Phase 1 training, and the chain-
of-thought training process requires more careful weight updates to maintain the delicate balance
between logical reasoning accuracy and plan generation quality. The tighter clipping in Phase 2 also
helps manage gradient spikes that can occur when VAL feedback indicates dramatic plan validity
changes.

Temperature (Generation) The temperature parameter controls the randomness in text generation
during training validation and inference, with lower values producing more deterministic outputs and
higher values encouraging exploration of diverse response patterns. Phase 1 uses a temperature of
0.7, allowing moderate exploration of different planning approaches and explanation styles while
maintaining coherent output quality. This higher temperature helps the model discover various ways
to explain action validity and plan construction during the foundational learning phase. Phase 2
reduces temperature to 0.3 to focus generation on precise, logical reasoning steps where consistency
and accuracy are more important than diversity. The lower temperature ensures that chain-of-thought
reasoning follows logical patterns rather than exploring creative but potentially incorrect reasoning
paths.

Maximum Generation Length The maximum generation length sets the upper bound on tokens
the model can produce in response to prompts, scaled to accommodate the verbosity requirements of
each training phase. Phase 1 limits generation to 1024 tokens, sufficient for producing plans with
basic explanations of action applicability and goal achievement without excessive computational
cost. Phase 2 increases this limit to 2048 tokens to accommodate detailed step-by-step reasoning
chains that include comprehensive state analysis, action justification, precondition verification, effect
application reasoning, and goal progress tracking. This increased generation capacity is essential for
the model to produce the verbose logical reasoning that characterizes effective planning verification
and enables meaningful feedback from the VAL validator.

Optimizer (AdamW) AdamW serves as the optimization algorithm for both training phases,
chosen for its superior performance in transformer fine-tuning scenarios compared to standard
optimizers. AdamW combines the adaptive learning rate benefits of Adam with improved weight
decay handling, making it particularly effective for instruction tuning where the model must adapt
pre-trained knowledge to new task-specific patterns. The optimizer handles sparse gradients well,
which is crucial in planning scenarios where many potential actions are invalid in any given state,
leading to sparse activation patterns. AdamW’s momentum-based updates help navigate the complex
loss landscape created by the combination of language modeling objectives and planning-specific
constraints.

Beta Parameters (51, 52) The beta parameters control the exponential decay rates for AdamW’s
moment estimates, with 5; = 0.9 governing the first moment (gradient moving average) and
B2 = 0.999 governing the second moment (squared gradient moving average). These standard
values have proven effective across a wide range of transformer training scenarios and provide
appropriate momentum characteristics for instruction tuning. The 81 value of 0.9 provides sufficient
momentum to smooth gradient noise while remaining responsive to genuine changes in gradient
direction, particularly important when learning from VAL feedback in Phase 2. The (35 value of
0.999 provides stable variance estimates essential for adaptive learning rate scaling across the diverse
parameter space of large language models.

18

Under review as a conference paper at ICLR 2026

Epsilon (¢) The epsilon parameter adds a small constant of 1 x 10~8 to the denominator in AdamW’s
update rule to prevent numerical instability from division by zero or near-zero values. This value
represents a standard choice that provides numerical stability without meaningfully affecting the
optimization dynamics. The parameter becomes particularly important during Phase 2 training where
the complex loss landscape and feedback-driven updates can occasionally produce very small gradient
variances that might otherwise cause numerical issues. The chosen value ensures robust training
across the full range of planning problems and feedback scenarios encountered during instruction
tuning.

Iteration Limit () The iteration limit is unique to Phase 2 and controls how many feedback loops
the model experiences with the VAL validator during chain-of-thought instruction tuning. Values
of 10 and 15 represent the number of times the model can generate a plan with reasoning, receive
detailed feedback about logical errors, learn from this feedback, and attempt improved solutions.
This parameter directly controls the trade-off between training thoroughness and computational cost,
as each iteration requires plan generation, validation, and model updating. Higher values of n allow
more refinement of reasoning capabilities but significantly increase training time and computational
requirements. The specific values were chosen to provide sufficient learning opportunities while
maintaining practical training times.

B.2 MATHEMATICAL FORMULATION OF LOSS FUNCTIONS

We formally define the two specialized loss functions that drive our two-stage optimization process
in Phase 2. These functions are carefully designed to target both the logical reasoning capabilities
and final planning performance of the model.

B.2.1 REASONING CHAIN LOSS FUNCTION

The reasoning chain loss function Lrcasoning Measures the quality of the model’s step-by-step logical
reasoning over state-action-state transitions:

1

t

Ereasoning(gh Dreasoning) = |Dt] ‘ E Lstep(si—la Ay Sy f’L) (4)
TCASOMNE Y (5, _1,a4,54,f:) EDY,

reasoning

where each training example consists of a state transition (s;_1, a;, s;) and VAL feedback f;. The
step-wise loss Ly is defined as:

ted
L"Step(si—l) A, Sg, fz) = dstale(3i7 sczxpec ¢) + Afeedback £feedback(fi) 5)
where s‘?pemd is the deterministically computed next state given action a; applied to s;_1, and dq

is the state distance function defined as:

dyare (5, 8") = [sAS'| = [s\ 8’| + |8\ s (6)

This measures the symmetric difference between the two sets of predicates, counting predicates that
are in one state but not the other.

The feedback loss Lieeaback incorporates VAL verification results to guide logical reasoning:

0 if action a; is valid
Oprecond if precondition violation detected
Efeedback(fi) = P . . (7)
Oleffect if incorrect effect application
Olgoal if goal achievement failure

where oprecond = 1.0, Qefeer = 1.0, agoar = 1.5 are penalty weights for different error types, and
Afeedback = 0.1 balances the feedback signal with the primary reasoning objective.

19

Under review as a conference paper at ICLR 2026

B.2.2 FINAL PERFORMANCE L0OSS FUNCTION

The final performance loss function Lg,, measures how well the complete plans generated through
chain-of-thought reasoning achieve the planning objectives:

1
Leinal (etra ngl) = W Z Eplan(da p,m, 'U) (8)
finall (d,p,m,v) €D,y
where each training example consists of a domain d, problem p, generated plan 7, and binary validity
label v from VAL. The plan-level loss is:

ﬁplan(dvpa T, ’U) = H[U = 0] ' B +oa- BCE(’U, @) &)

where I[v = 0] is an indicator function that equals 1 when the plan is invalid (providing a fixed
penalty 8 = 2.0 for invalid plans) and 0 when valid; and BCE(v, ©) is the binary cross-entropy loss
between the VAL validity label v and the model’s predicted validity ©, with o = 0.5 balancing plan
generation accuracy with validity prediction.

B.2.3 DATASET CONSTRUCTION FOR LOSS COMPUTATION

t

The reasoning dataset Dreasoning

thought sequences:

contains individual state-action-state triplets extracted from chain-of-

Dfeasonmg = {(si—1,a4,si, fi) : ¥ steps in CoT plans generated at iteration ¢} (10)
The final dataset D}, contains complete planning instances with validity judgments:

Dfp = {(dj,pj, 7}, v%) : V problems j at iteration ¢} (11)

where 7r§ is the complete plan generated for problem j at iteration ¢, and v§ is the corresponding VAL
validity assessment.

20

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM

Algorithm 1: PDDL-INSTRUCT: Chain-of-Thought Instruction Tuning for Symbolic Planning

Input: Pre-trained LLM Mj,, Phase 1 dataset D, Phase 2 dataset Dy, VAL validator,
iteration limit 7, learning rates d1, d2
Output: Instruction-tuned model My«

Phase 1: Initial Instruction Tuning
for epoche = 1to E; do
for batch (di,pi,ﬂi, fz) c D, do
Yi < Mp(d;, i) > Generate plan with explanation
Ly < —log P(m;, fildi,pi, 0)
0« 6— (51 v9£1
end for
end for
9: 0, <0 > Save Phase 1 model
10: Phase 2: CoT Instruction Tuning
11: for iteration ¢t = 1 to n do

A A S e

12 Initialize datasets D)., oning < 0, D%;0 < 0

13: for problem (d;,p;) € D, do

14: Generate CoT plan: w} = {(sg, a1, 51), (51,02,52), -, (Sn_1,0n,Sn)}
15: using My, (d;,pj)

16: Validate plan with VAL: f; < VAL(77,d;,p;)

17: if f; indicates valid plan then

18: Ds‘inal — Ds‘inal U {(dj’pj7 7T‘Z, 1)}

19: else

20: Extract detailed feedback for each invalid step

21: D?inal — D?inal U {(dj’pj7 Wi, 0)}

22: end if)

23: for each step (s;_1,a;,s;) € 7] do

24: Get step-level VAL feedback: f; <— VAL-step(s;—1,a;, i, d;)
25: Dieasoning — Df‘easoning U {(Sifl? Qi, Si, fl)}

26: end for

27: end for
28: Stage 1: Reasoning Chain Optimization
29: for epoch e = 1 to Fs, do

30: for batch B € D;°***™" do

31 Lreasoning — ﬁ E(Siflaaiwsi,fi)eB Lstep(sifly Qs Si, fz)
32: dat? — 0 — 61v9t Lreasoning

33: end for

34: end for

35: Stage 2: Final Performance Optimization

36: for epoch e = 1 to Ey;, do

37: for batch B € D! do

38: Efinal — ﬁ Z(d,p,rr,v)eB Eplan(dapu T, U)
39: 9t+1 — 9: — 62v9§£fmal

40: end for

41: end for

42: end for

43: return My where 0* = 0,

C SAMPLE PROMPTS FOR BLOCKSWORLD DOMAIN

This section presents the specific prompt templates used in our PDDL-INSTRUCT framework for the
Blocksworld domain. We provide examples for both Phase 1 (Initial Instruction Tuning) and Phase 2

21

Under review as a conference paper at ICLR 2026

(CoT Instruction Tuning) to demonstrate how our approach teaches models to reason about action
applicability and state transitions.

C.1 PHASE 1: INITIAL INSTRUCTION TUNING PROMPTS

C.1.1 CORRECT PLAN EXAMPLE

Phase 1 Prompt - Correct Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze
the provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(raction pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
reffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
ceffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
reffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PLAN]

1. (pick-up Db
2 (stack b ¢
3. (pick-up a
4 (stack a b

[EXPECTED RESPONSE] This plan is VALID. Let me analyze each action:

[Action 1: (pick-up b)]

— Preconditions: (clear b), (ontable b), (handempty)

— Initial state satisfies all preconditions: b is clear, b is on
table, and hand is empty

- Effects: b is now held, hand is not empty, b is not on table, b
is not clear

22

Under review as a conference paper at ICLR 2026

- Resulting state: (ontable a) (ontable c) (clear a) (clear c)
(holding b)

[Action 2: (stack b c¢)]

- Preconditions: (holding b), (clear c)

— Current state satisfies preconditions: holding b and c¢ is clear

- Effects: b is stacked on ¢, hand becomes empty, ¢ is no longer
clear, b becomes clear

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on
b c¢) (handempty)

[Action 3: (pick-up a)]

- Preconditions: (clear a), (ontable a), (handempty)

— Initial state satisfies all preconditions: a is clear, a is on
table, and hand is empty

- Effects: a is now held, hand is not empty, a is not on table, a
is not clear

- Resulting state: (on b c) (ontable c¢) (clear b) (holding a)

[Action 4: (stack a b)]

- Preconditions: (holding a), (clear Db)

— Current state satisfies preconditions: holding a and b is clear

- Effects: a is stacked on b, hand becomes empty, b is no longer
clear, a becomes clear

- Resulting state: (ontable c) (on b c) (on a b) (clear a)
(handempty)

The plan succeeds because a is stacked on b, and b is stacked on c.

C.1.2 INCORRECT PLAN EXAMPLE

Phase 1 Prompt - Incorrect Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze
the provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (7?7x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
ceffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))
(raction put-down
:parameters (?x)
:precondition (holding ?7x)
reffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
ceffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
reffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))

23

Under review as a conference paper at ICLR 2026

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PLAN]
1. (stack a Db)
2. (stack b c)

[EXPECTED RESPONSE] This plan is INVALID. Let me analyze each
action:

[Action 1: (stack a b)]

— Preconditions: (holding a), (clear Db)

— Current state: (ontable a) (ontable b) (ontable c) (clear a)
(clear b) (clear c) (handempty)

— VIOLATION: The precondition (holding a) is not satisfied - the
hand is empty and a is on the table

- To stack a on b, we must first pick up a

[Action 2: (stack b c)]

— Since Action 1 failed, this action cannot be evaluated in a
valid state sequence

- Even if Action 1 succeeded, we would need to be holding b to
stack it on c

The plan fails because it attempts to stack blocks without first
picking them up. The correct sequence would be: (pick-up a),
(stack a b), (pick-up b), (stack b c).

C.2 PHASE 2: CHAIN-OF-THOUGHT INSTRUCTION TUNING PROMPTS

C.2.1 CoOT GENERATION PROMPT

Phase 2 CoT Generation Prompt

[INSTRUCTION] Generate a plan for the given problem using
step-by-step reasoning. For each action, explicitly verify
preconditions, apply effects, and track state changes.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (7?7x)

:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))

(:action put-down
:parameters (?x)
:precondition (holding 7?7x)
ceffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?7x)))
(:action stack
rparameters (?x ?y)

24

Under review as a conference paper at ICLR 2026

:precondition (and (holding ?x) (clear ?y))
reffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(raction unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
reffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))
[PROBLEM]
(define (problem bw-tower)

(:domain blocksworld)
(:objects a b c)

(:init (on ¢ b) (ontable b) (ontable a)
(clear c) (clear a) (handempty))
(:goal (and (on a c) (on c b))))

[EXPECTED RESPONSE]

Initial State Analysis:

(ontable a):

[STEP BY STEP PLANNING]

TRUE in sO

Current state: (on ¢ b), (ontable b), (ontable a), (clear c),
(clear a), (handempty)
Goal: (on a c), (on c b)

[Step 1: State sO Action al State sl]
- Current state sO0: (on ¢ b), (ontable b), (ontable a), (clear c),
(clear a), (handempty)
- Proposed action al: (pick-up a)
- Precondition check:
- (clear a): TRUE in sO

(handempty) :

TRUE in sO

Action is APPLICABLE
Effect application:

— Add: (holding a)

— Delete: (ontable a), (handempty), (clear a)
- Resulting state sl: (on ¢ b), (ontable b), (clear c), (holding a)
[Step 2: State sl Action a2 State s2]
- Current state sl: (on c b), (ontable b), (clear c), (holding a)

Proposed action a2: (stack a c)
Precondition check:

(holding a): TRUE in sl
(clear c): TRUE in sl

Action is APPLICABLE

Effect application:

- Add: (on a c¢), (handempty), (clear a)
— Delete: (holding a), (clear c)
- Resulting state s2: (on c b), (ontable b), (on a c),
(handempty), (clear a)
[GOAL ACHIEVEMENT CHECK]
Required: (on a c), (on c b)
Current state s2: (on c b), (ontable b), (on a c), (handempty),
(clear a)
— (on a c¢): TRUE in s2
— (on ¢ b): TRUE in s2

Goal is ACHIEVED.

[FINAL PLAN] (pick-up a), (stack a c)

25

Under review as a conference paper at ICLR 2026

C.2.2 CoOT wiITH FEEDBACK INTEGRATION: INCORRECT PLAN

B.2.2.1 Binary Feedback

Phase 2 CoT Binary Feedback - Incorrect Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (7?7x)

:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))

(raction put-down
:parameters (?x)
:precondition (holding ?x)
ceffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
reffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
ceffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c¢c) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]

Plan Validation details
Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear Db)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

26

Under review as a conference paper at ICLR 2026

Adding (on b c¢)
Adding (clear b)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute

[GENERATE CORRECTED PLAN WITH REASONING]

B.2.2.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Incorrect Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
ceffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?x)))
(raction stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
reffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
ceffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b ¢)
(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c¢) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]
Plan Validation details

27

Under review as a conference paper at ICLR 2026

Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b c)

Adding (clear Db)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute
Plan Repair Advice:

(stack a b) has an unsatisfied precondition at time 3
(Set (holding a) to true)

[EXPLANATION] This plan is INVALID. Here is the analysis of each
action:

[Action 1: (pick-up b)]

- Preconditions: (clear b), (ontable b), (handempty)

— Initial state satisfies all preconditions: b is clear, b is on
table, and hand is empty

- Effects: b is now held, hand is not empty, b is not on table,
is not clear

- Resulting state: (ontable a) (ontable c) (clear a) (clear c)
(holding b)

b

[Action 2: (stack b c¢)]

- Preconditions: (holding b), (clear c)

— Current state satisfies preconditions: holding b and c¢ is clear

- Effects: b is stacked on ¢, hand becomes empty, ¢ is no longer
clear, b becomes clear

b c¢) (handempty)

[Action 3: (stack a b)]
- Preconditions: (holding a), (clear Db)

c) (handempty)
— VIOLATION: The precondition (holding a) is not satisfied - the
hand is empty and a is on the table

[GENERATE CORRECTED PLAN WITH REASONING]

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on

— Current state: (ontable c) (ontable a) (clear a) (clear b) (on b

C.2.3 CoT wiTH FEEDBACK INTEGRATION: CORRECT PLAN

B.2.3.1 Binary Feedback

Phase 2 CoT Binary Feedback - Correct Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your

28

Under review as a conference paper at ICLR 2026

reasoning. Use this feedback to
improved logical reasoning.

(:domain blocksworld)
(:objects a b c)

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c¢) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

[VAL FEEDBACK]
Plan Validation details

Checking next happening (time 1)

generate a corrected plan with

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (7?7x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
ceffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))
(raction put-down
:parameters (?x)
:precondition (holding 7?7x)
reffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?7x)))
(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
ceffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
reffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))
[PROBLEM]
(define (problem bw-simple)

(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

Deleting
Deleting
Deleting
Adding

Checking
Deleting
Deleting
Adding
Adding
Adding

Checking
Deleting
Deleting
Deleting

(ontable b)
(handempty)
(clear Db)

(holding b)

next happening
(holding b)
(clear c)

(handempty)
(on b ¢)
(clear Db)

next happening
(ontable a)
(handempty)
(clear a)

(time 2)

(time 3)

29

Under review as a conference paper at ICLR 2026

Adding (holding a)

Checking next happening (time 4)

Deleting (holding a)

Deleting (clear b)

Adding (handempty)

Adding (on a b)

Adding (clear a)

Plan executed successfully - checking goal
Plan valid

B.2.3.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Correct Plan

[INSTRUCTION] You previously generated a plan with step-by-step
reasoning. The validator has provided feedback on your
reasoning. Use this feedback to generate a corrected plan with
improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable ?x)) (not (handempty))
(not (clear ?x)) (holding ?x)))
(:action put-down
:parameters (?x)
:precondition (holding ?x)
ceffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear ?x)))
(raction stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
reffect (and (not (holding ?x)) (not (clear ?y))
(handempty) (on ?x ?y) (clear ?x)))
(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
ceffect (and (not (on ?x ?y)) (not (handempty))
(holding ?x) (clear ?y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b ¢)
(:init (ontable a) (ontable b) (ontable c¢)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c¢) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

[VAL FEEDBACK]
Plan Validation details

30

Under review as a conference paper at ICLR 2026

Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b c)

Adding (clear b)

Checking next happening (time 3)
Deleting (ontable a)

Deleting (handempty)

Deleting (clear a)

Adding (holding a)

Checking next happening (time 4)

Deleting (holding a)

Deleting (clear b)

Adding (handempty)

Adding (on a b)

Adding (clear a)

Plan executed successfully - checking goal
Plan valid

[EXPLANATION] This plan is VALID. Here is the analysis of each
action:

[Action 1: (pick-up b)]

- Preconditions: (clear b), (ontable b), (handempty)

— Initial state satisfies all preconditions: b is clear, b is on
table, and hand is empty

— Effects: b is now held, hand is not empty, b is not on table, b
is not clear

— Resulting state: (ontable a) (ontable c) (clear a) (clear c)
(holding b)

[Action 2: (stack b c¢)]

— Preconditions: (holding b), (clear c)

- Current state satisfies preconditions: holding b and c is clear

- Effects: b is stacked on ¢, hand becomes empty, c is no longer
clear, b becomes clear

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on
b ¢) (handempty)

[Action 3: (pick-up a)]l

— Preconditions: (clear a), (ontable a), (handempty)

- Initial state satisfies all preconditions: a is clear, a is on
table, and hand is empty

- Effects: a is now held, hand is not empty, a is not on table, a
is not clear

- Resulting state: (on b c) (ontable c) (clear b) (holding a)

[Action 4: (stack a b)]

- Preconditions: (holding a), (clear Db)

- Current state satisfies preconditions: holding a and b is clear

- Effects: a is stacked on b, hand becomes empty, b is no longer
clear, a becomes clear

31

Under review as a conference paper at ICLR 2026

- Resulting state: (ontable c) (on b c) (on a b) (clear a)
(handempty)

The plan succeeds.

D EXTENDED EXPERIMENTAL RESULTS

D.1 ABLATION STUDY RESULTS

Configuration Blocksworld Mystery BW Logistics
Baseline (No Training) 28.0+4.2 1.0+1.0 11.0 4+ 2.8
Phase 1 Only 78.0 £ 3.1 32.0£4.6 23.0£39
Phase 2 Only (Detailed Feedback, n = 15) 72.0 £ 6.5 17.0 £ 3.2 45.0 £ 4.7
Phase 1 + Binary Feedback (n = 15) 89.0 £2.7 49.0+5.2 72.0 £ 4.1
Phase 1 + Detailed Feedback (n = 15) 94.0 + 1.5 64.0 + 3.8 79.0 + 3.2

Table 3: Ablation study showing contribution of each component for Llama-3

D.2 ERROR ANALYSIS AND FAILURE MODES

Error Type Blocksworld Mystery BW Logistics
Precondition Violation 2.1 8.7 5.3
Incorrect Effect Application 1.4 12.4 6.8
Goal Not Achieved 1.8 9.2 6.1
Invalid Action Sequence 0.7 5.7 2.8
Total Failure Rate 6.0 36.0 21.0

Table 4: Breakdown of planning failures by error type (%) for Llama-3 with Phase 1 and Phase 2
with Detailed Feedback and = 15

E LLM USAGE DISCLOSURE

We declare the use of LLMs (Grammarly, Claude) for grammar check and sentence restructuring.
We have also used Cursor with GPT-4 for debugging issues due to CUDA settings and writing some
scripts to run the experiments.

32

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	PDDL-Instruct: Methodology
	Training the Model
	Training Methodology for Phase 2 CoT Instruction Tuning: Optimization Process
	Evaluation Phase

	Empirical Evaluation
	Results and Discussion
	Conclusion
	Extended Literature Review
	Detailed Experimental Setup
	Hyperparameter Configuration
	Mathematical Formulation of Loss Functions
	Reasoning Chain Loss Function
	Final Performance Loss Function
	Dataset Construction for Loss Computation

	Algorithm

	Sample Prompts for Blocksworld Domain
	Phase 1: Initial Instruction Tuning Prompts
	Correct Plan Example
	Incorrect Plan Example

	Phase 2: Chain-of-Thought Instruction Tuning Prompts
	CoT Generation Prompt
	CoT with Feedback Integration: Incorrect Plan
	CoT with Feedback Integration: Correct Plan

	Extended Experimental Results
	Ablation Study Results
	Error Analysis and Failure Modes

	LLM Usage Disclosure

