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Abstract
We present LOCATE 3D, a model for localizing
objects in 3D scenes from referring expressions
like “the small coffee table between the sofa and
the lamp.” LOCATE 3D sets a new state-of-the-
art on standard referential grounding benchmarks
and showcases robust generalization capabilities.
Notably, LOCATE 3D operates directly on sen-
sor observation streams (posed RGB-D frames),
enabling real-world deployment on robots and
AR devices. Key to our approach is 3D-JEPA, a
novel self-supervised learning (SSL) algorithm
applicable to sensor point clouds. It takes as in-
put a 3D pointcloud featurized using 2D founda-
tion models (CLIP, DINO). Subsequently, masked
prediction in latent space is employed as a pre-
text task to aid the self-supervised learning of
contextualized pointcloud features. Once trained,
the 3D-JEPA encoder is finetuned alongside a
language-conditioned decoder to jointly predict
3D masks and bounding boxes. Additionally, we
introduce LOCATE 3D DATASET, a new dataset
for 3D referential grounding, spanning multiple
capture setups with over 130K annotations. This
enables a systematic study of generalization capa-
bilities as well as a stronger model. Code, models
and dataset can be found at the project website:
locate3d.atmeta.com

1. Introduction
For AI systems to effectively assist us in the physical world,
such as through robots or smart glasses, an understanding of
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the 3D world grounded in human natural language is essen-
tial. Towards this goal, we study the task of 3D localization
via referring expressions (Chen et al., 2020; Achlioptas
et al., 2020), or simply 3D-REFEXP. It requires localizing
an object (in 3D) from a textual expression that may include
a combination of attributes (e.g., “red chair”) and/or spa-
tial relationships (e.g., “the small coffee table between the
sofa and the lamp”). In this work, we develop LOCATE 3D
(see Figure 1), a state-of-the-art model for 3D-REFEXP. It
builds on two key components: (1) 3D-JEPA, a novel SSL
algorithm to learn contextualized scene representations, and
(2) a novel language-conditioned 3D localization decoder.

The task of 3D-REFEXP is challenging to date. At one end
of the spectrum are methods that train specialized models
for this task (Jain et al., 2021; Chen et al., 2022) on small
benchmark datasets. They often require human annotation
at inference time in the form of detailed 3D meshes or object
instance segmentation, making them difficult to deploy on
real-world devices. At the other end are methods that try
to leverage 2D VLMs for 3D tasks (Xu et al., 2024; Zhu
et al., 2023). While these methods can encode rich linguistic
structures by leveraging LLMs, they employ a simplistic
and hand-crafted representation of the 3D world.

LOCATE 3D operates in three phases. In the first pre-
processing phase, we leverage the underlying sensor ob-
servation stream to lift features from 2D foundation mod-
els (Radford et al., 2021; Oquab et al., 2023) into 3D point
clouds (Jatavallabhula et al., 2023). Subsequently, we use
a transformer encoder, pre-trained with our 3D-JEPA SSL
algorithm, to transform the “lifted” foundation features into
contextualized features that can provide better scene-level
understanding. Finally, we use a language conditioned 3D
decoder (Cheng et al., 2021; Kamath et al., 2021) to localize
the object of interest. Notably, LOCATE 3D operates directly
on sensor observation streams without requiring manual
post-processing (e.g., 3D mesh refinement or ground-truth
instance segmentations), making it readily deployable on
robots and AR devices.

We outline our contributions in this work below.

1. 3D-JEPA – A novel SSL method applicable to 3D point
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Figure 1: Overall Architecture of LOCATE 3D, which operates in three phases. In Phase 1: Preprocessing, we construct a point cloud
with “lifted” features from 2D foundation models, which provide local information. In Phase 2: Contextualized Representations, these
lifted features are passed through the pre-trained 3D-JEPA encoder, which provides a contextualized representation for the whole scene.
Finally, in Phase 3: 3D Localization, a 3D decoder head uses the text query and 3D-JEPA features to localize the referred object.

clouds that can learn contextualized representations of
3D scenes. It takes as inputs 3D point clouds with fea-
tures lifted from 2D foundation models. The SSL pretext
task involves predicting the latent embeddings of ran-
domly masked regions in the featurized point cloud (Ass-
ran et al., 2023). We show that the resulting 3D-JEPA fea-
tures are contextualized for the scene, while the features
lifted from 2D foundation models only provide local
understanding. Conceptually, this is analogous to the dif-
ference between contextualized token embeddings (De-
vlin et al., 2019) and word embeddings (Mikolov et al.,
2013) in NLP. 3D-JEPA pre-training provides a signif-
icant performance gain to our LOCATE 3D model, for
both in-domain (59.8% → 61.7%) and out-of-domain
(51.5% → 56.7%) evaluations.

2. LOCATE 3D - a model for 3D RefExp (see Figure 1)
that achieves SoTA benchmark results and strong out-of-
domain generalization. LOCATE 3D leverages our 3D-
JEPA and fine-tunes it for the 3D RefExp task using a
language-conditioned 3D decoder. The decoder performs
interleaving cross-attention between the 3D features and
text queries, and employs a joint mask and bounding
box prediction strategy. On standard 3D RefExp bench-
marks (ScanRefer, SR3D, NR3D), LOCATE 3D achieves
SoTA results compared to prior work (58.5% → 61.7%).
Crucially, LOCATE 3D achieves these impressive results
with fewer assumptions compared to prior models. LO-
CATE 3D does not require ground-truth region proposals,
meshes, or surface normals at inference time, making
it suitable for real-world deployment. When compar-
ing to prior work under similar assumptions (Jain et al.,
2021), LOCATE 3D presents a significant advancement
(40.7% → 61.7%). It further exhibits strong general-

ization capabilities on held-out scenes and annotations
in ScanNet++. Finally, it also successfully localizes ob-
jects in a multi-room test environment enabling robotic
mobile manipulation in an unseen environment.

3. LOCATE 3D DATASET (L3DD) - A new dataset for 3D
RefExp which spans ScanNet (Dai et al., 2017), Scan-
Net++ (Yeshwanth et al., 2023), and ARKitScenes (De-
hghan et al., 2021). L3DD covers 1,346 scenes and over
130K language annotations. It allows us to study the
robustness of LOCATE 3D to a variety of capture setups
and independent samplings of indoor environments. It
also serves as a source of training data for RefExp mod-
els; while LOCATE 3D already achieves SoTA perfor-
mance using only standard benchmark training datasets
(61.7%), L3DD training data further improves perfor-
mance of our approach on these benchmarks (61.7% →
63.7%). We call this model LOCATE 3D+.

2. LOCATE 3D: Model Overview and Training
The overall architecture of LOCATE 3D is presented in Fig-
ure 1. LOCATE 3D is designed to operate on RGB-D sensor
observations of static environments (e.g., homes in which
objects remain stationary over short intervals). LOCATE
3D contains three modules: (1) Preprocessing: using 2D
foundation models to construct a featurized 3D point cloud
(Section 2.1). (2) Contextualized Representations: pro-
duced by a PointTransformer-v3 (PTv3) (Wu et al., 2023)
encoder that operates on the featurized point cloud to gen-
erate a contextualized 3D representation. The encoder is
pre-trained with our novel SSL algorithm, 3D-JEPA (Sec-
tion 2.2). (3) Localization: using a language-conditioned
3D object localization decoder that jointly predicts masks
and bounding boxes (Section 2.3.1). The decoder is trained
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from scratch, jointly with the 3D-JEPA initialized PTv3
encoder for the referential grounding task (Section 2.3.2).

2.1. Preprocessing: Lifting 2D Foundation Model
Features into 3D Point Clouds

We begin by preprocessing the inputs (posed RGB-D im-
ages) by constructing a 3D pointcloud to encode geome-
try, and featurizing the pointcloud with off-the-shelf 2D
foundation models to encode semantic information. We
compute vision-only features from DINOv2 (Oquab et al.,
2023), which are dense (patch-level). We also extract vision-
language features from CLIP (Radford et al., 2021). Since
CLIP features are global (i.e., one feature per input image)
and not dense, we extract 2D instance masks from the in-
put images using SAM (Kirillov et al., 2023) and compute
per-mask CLIP features instead. These features are mapped
back to the pixels containing the masks. We concatenate the
CLIP and DINO features, along with a harmonic encoding
of the RGB pixel intensities to obtain dense 2D feature maps.
These feature maps are lifted to 3D similarly to (Jataval-
labhula et al., 2023). We begin by unprojecting the RGB-D
image to obtain a pointcloud, followed by voxelization (we
use a voxel size of 5 cm across our experiments). We then
compute a single feature per voxel by weighted averaging
of all contained features. Weights are calculated using tri-
linear interpolation based on distance to voxel boundaries.
This process results in a point cloud with “lifted” features,
PtClift = {(xi, yi, zi, fi)}Ni=1, where fi ∈ Rd is the feature
vector of the ith point. This point cloud PtClift can be
directly used for object localization. However, we find that
refining the features further with an encoder, pre-trained
with self-supervised learning (as described in Section 2.2),
results in substantially better localization.

2.2. 3D-JEPA: Learning Contextualized
Representations via SSL

3D-JEPA takes as input the lifted features PtClift from
above, and learns a contextualized representation for the
scene. Unlike the features in PtClift, which are local to just
the object/mask/patch, we seek learned features that attend
to different parts of the scene to obtain representations that
capture the entire context of the scene. This is analogous to
learning contextualized embeddings (Devlin et al., 2019; Pe-
ters et al., 2018) as opposed to word-embeddings (Mikolov
et al., 2013) in language.

To learn such a representation, we take inspiration from
the Joint Embedding Predictive Architectures (JEPA) frame-
work (Assran et al., 2023; Bardes et al., 2024) and develop
3D-JEPA. It is an encoder-predictor framework that per-
forms masked prediction (He et al., 2022; Devlin et al.,
2019) in the learned latent space. Concretely, let PtC be
the input point cloud with some features (in our case, it

Figure 2: 3D-JEPA training framework: The context encoder
computes latent features from a masked point cloud. Subsequently,
a predictor operates on these latent features to predict the features
of masked regions. The target encoder has the same architecture
as context encoder with weights being the exponentated moving
average of context encoder over course of training. The loss is
computed per point in the embedding space and averaged across
all points that were masked.

contains lifted 2D foundation features). 3D-JEPA trains two
transformer models Eθ(·) and Pϕ(·) using the following
objective,

min
θ,ϕ

∣∣∣∣∣∣Pϕ

(
Eθ( ˜PtC),M

)
− sg

(
Ēθ(PtC)

) ∣∣∣∣∣∣, (1)

where ˜PtC denotes a masked view of the point cloud, M
is a mask variable describing regions that were masked,
and sg(·) is the stop-grad operator. Finally, Ēθ(·) is the
exponentiated moving average version of the encoder, which
is important to prevent the representation from collapsing.
The loss is computed per-point for all points in the masked
region and then averaged. After training, Eθ(·) is used as
the contextualized representation.

Performing masked prediction in the latent space is advan-
tageous over doing it in the ambient/input space for two
reasons. First, unlike standard MAE in 2D vision, our input
space is high-dimensional. In fact, since we use lifted 2D
foundation features, our input dimension is equivalent to
the ViT feature dimension. We found directly reconstruct-
ing such fine-grained and high-dimensional features to be
difficult. Second, methods that leverage masked prediction
in a teacher-student framework have produced the strongest
results recently (Assran et al., 2023; Oquab et al., 2023).

To adapt the JEPA approach to 3D we developed a bounded
radius-based masking strategy and efficient 3D native en-
coder and predictor architectures.

Encoder and Predictor Architectures. Unlike images or
voxels that contain a regular grid structure, point clouds
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Figure 3: In our language-conditioned 3D mask and bounding box decoder, 3D-JEPA features are jointly processed with text and
learned query embeddings by n = 8 decoder blocks and specialized prediction heads that generate mask, token, and box predictions. N is
the number of points in the input pointcloud, T is the number of tokens in the input text, Q is the number of generated model queries, E is
the decoder feature dimension, F is the input text feature dimension, J is the 3D JEPA feature dimension.

are order invariant and set-valued. U-Net (Çiçek et al.,
2016), PointNet (Qi et al., 2016), DeepSets (Zaheer et al.,
2017), and PointTransformer (Engel et al., 2020) have all
emerged as promising architectures for point clouds. For
our implementation of 3D-JEPA, we use Point Transformer
v3 (PTv3) (Wu et al., 2023) for the encoder. In each layer,
it first serializes the point cloud based on local proximity
using bijective space filling curves. Subsequently, points are
grouped together and they attend to each other within the
group, which is loosely analogous to convolutions. For the
predictor, we use a similar serialization step, but then use
a standard transformer with sparse attention pattern. This
allows for faster mixing of information from the start, due
to lack of an explicit grouping. However, we found sparse
attention to be crucial for training throughput and memory,
as well as for training stability. See Appendix A.1 for further
details about the architecture.

Masking Patterns. We found the choice of masking pat-
tern to play a crucial role in the quality of representations
learned, consistent with prior literature (Assran et al., 2023;
Bardes et al., 2024). In particular, among the variants we
tried, the serialized percent masking pattern shown in Fig-
ure 4 worked best. It contains two salient components: (1)
masking out “regions” (points close in proximity) instead
of random points to encourage better spatial understanding
than simple local interpolation; and (2) masking out a per-
cent of the scene instead of a fixed size allowing for training
on point clouds of varying spatial sizes.

2.3. Object Localization from Referring Expressions

To solve the 3D referring expressions task, we design a
language-conditioned 3D object localization decoder (Fig-
ure 3) that operates on the contextualized representations
produced by our 3D-JEPA encoder (Section 2.2). This sec-
tion describes the decoder architecture (Section 2.3.1) and
end-to-end training procedure (Section 2.3.2).

2.3.1. LANGUAGE-CONDITIONED 3D DECODER

As illustrated in Figure 3, the decoder processes two inputs:
the 3D-JEPA features Eθ(PtClift) and a text query t. These
inputs are iteratively refined through a transformer and then
fed into parallel prediction heads that generate 3D mask and
bounding box predictions for all referenced objects. The
details of this architecture are described below.

Decoder Input Embedding. We first project the 3D-JEPA
Eθ(PtClift) representation into the model working dimen-
sion E and add learned 3D positional embeddings. Simi-
larly, we project the per-word CLIP (Radford et al., 2021)
embeddings of the text query t. Next, we initialize a set
of learnable object queries Q and concatenate them with
the language embeddings along the sequence dimension. In
the following, we refer to the projected 3D-JEPA features
as “point features” and the concatenated object queries and
language tokens collectively as “queries.”

Decoder Blocks. We apply a sequence of self-attention
and cross-attention operations between the point features
and queries. Specifically, each decoder module consists of
three attention blocks: (1) a self-attention block that enables
queries to refine their representations through mutual in-
teraction, (2) a cross-attention block where queries extract
relevant information from point features to enhance their
contextual understanding, and (3) a final cross-attention
block that updates the point features, ensuring they are in-
formed by the refined queries. The first two blocks are stan-
dard from prior work (Vaswani et al., 2023; Carion et al.,
2020; Cheng et al., 2021), while the final cross-attention
block is inspired by (Jain et al., 2025), which demonstrates
the impact of updating visual features for detection tasks in
3D. The decoder blocks are repeated for iterative refinement
of the point features and queries. In LOCATE 3D, the num-
ber of decoder blocks are n = 8 and model dimension is
E = 768. We observe a positive correlation between model
scaling and performance, as discussed in Section 4.
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Decoder Heads. Our decoder consists of three parallel
prediction heads (Figure 7) that process the refined learned
queries Q independently as object proposals. Specifically,
for each query, we jointly predict a 3D bounding box and
3D mask, using dedicated prediction heads. Additionally,
following (Kamath et al., 2021), we predict an alignment
matrix that grounds each query by determining which noun
in the referring expression it corresponds to, if any.

The mask head follows the approach of (Cheng et al., 2021),
by processing the queries with an MLP and computing a
dot product with the point features to predict per-point mask
logits. The text alignment head is composed of an MLP that
receives the queries and directly predicts the alignment ma-
trix. For bounding boxes, we developed a novel architecture
(Figure 7). First, we concatenate linearly projected x, y, z
coordinates to the refined point features along the feature
dimension. Then, we perform cross-attention between these
concatenated point features and a linear projection of the
refined queries. Finally, for each query, we use an MLP to
regress bounding boxes.

2.3.2. TRAINING LOCATE 3D

LOCATE 3D trains the language-conditioned 3D decoder
from scratch and fine-tunes the 3D-JEPA pretrained PTv3
encoder. It does so by using supervision signals from both
object masks and bounding boxes to explicitly combine
spatial constraints (boxes) and dense semantic supervision
(masks); which leads to better localization performance (see
experiments in Section 4.3).

Specifically, LOCATE 3D optimizes a composite loss func-
tion, which includes: (1) a mask loss, combining Dice and
cross-entropy loss terms (Cheng et al., 2021); (2) a bounding
box loss, composed of L1 distance and generalized IoU (Car-
ion et al., 2020) terms; and (3) a text alignment focal loss
with alpha balancing. Following (Carion et al., 2020), we de-
fine a matching cost and use Hungarian Matching to assign
object query predictions to ground truth objects. We apply
progressively weighted deep supervision at every decoder
layer and maintain an Exponential Moving Average (EMA)
of the model weights to use for evaluation and inference
(Izmailov et al., 2018). In order to not destroy the pretrained
features we use a stage-wise learning rate scheduler (Kumar
et al., 2022); specifically we start by training the decoder
with frozen encoder features, then fine-tune both jointly
with a lower learning rate for the encoder. Further training
details are provided in Appendix C.

3. LOCATE 3D DATASET Overview
LOCATE 3D DATASET (L3DD) is a new human-annotated
referring expression dataset covering ScanNet (Dai et al.,
2017), ScanNet++ (v1) (Yeshwanth et al., 2023), and ARK-

itScenes (Dehghan et al., 2021). This section describes the
dataset, and Section 4 discusses the impact of using L3DD
to train our 3D referring expressions model.

3.1. Dataset Statistics

In total, our dataset contains 131,641 samples. Decomposed
by scene dataset, L3DD contains:

1. ScanNet: 30,135 new language annotations covering
550 venues and 5,527 objects for training. 4,470 new
language annotations covering 130 venues and 1038
objects for validation.

2. ScanNet++: 91,846 new language annotations cover-
ing 230 venues and 13,359 objects for training. 3,774
new language annotations covering 50 venues and
1,303 objects for validation.

3. ARKitScenes: 991 new language annotations covering
293 venues and 1,862 objects covering scenes used for
pretraining. 425 new language annotations covering
93 venues and 460 objects for validation.

All validation split samples were validated by at least 1
human annotator. Over 80 percent of ARKitScenes and
ScanNet++ validation split samples were validated at least
three times, and samples were only included if a majority
of annotators agreed that the sample was unambiguously
correct.

3.2. Comparison with prior datasets

As shown in Table 9, L3DD significantly increases the scale
of existing 3D RefExp data along two key axes when com-
pared to prior data – language annotation quantity and scene
coverage. Our language annotations approximately double
the available quantity of training data, and after adjusting
for the size of scenes, we approximately quintuple the num-
ber of size-adjusted venues with dense RefExp supervision.
These annotations span multiple scene datasets, allowing
principled study of scene generalization while holding the
annotation process fixed. We show in Table 10 that this
additional scene diversity is key to the value of L3DD as
training data – holding the number of annotations fixed,
training on ScanNet and ScanNet++ together significantly
outperforms training only on ScanNet annotations (61.8%
→ 63.2% recall@0.25 on SR3D/NR3D/ScanRefer). Dataset
visuals, collection procedure, and further analysis of L3DD
is available in Appendix D.

4. Experiments and Analysis
In this section, we report results for our trained models.
LOCATE 3D is trained and evaluated the standard 3D ref-
erential grounding benchmarks SR3D, NR3D (Achlioptas
et al., 2020), and ScanRefer (Chen et al., 2020). LOCATE
3D+ additionally incorporates our newly collected L3DD
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Table 1: Results on 3D language grounding in 3D mesh and sensor point clouds (PC). We evaluate top-1 accuracy on the validation
set without any assumption of ground-truth proposals. We find that our model, LOCATE 3D, achieves state-of-the-art results across
all three benchmarks for top-1 accuracy@25. ∗VLM-Baselines are evaluated on 2,000 samples per benchmark (6,000 total). ∗∗The
localization decoder in LOCATE 3D was trained on training splits from the 3 benchmarks, while that for LOCATE 3D+ uses both the
benchmark data as well as L3DD.

Joint Evaluation SR3D NR3D ScanRefer

Method Acc
@25

Acc
@50

Acc
@25

Acc
@50

Acc
@25

Acc
@50

Acc
@25

Acc
@50

Mesh PC
ReferIt3DNet Achlioptas et al. (2020) 26.6 - 27.7 - 24.0 - 26.4 16.9
ScanRefer (Chen et al., 2020) - - - - - - 35.5 22.4
InstanceRefer (Yuan et al., 2021) 33.6 - 31.5 - 29.9 - 40.2 32.9
LanguageRefer (Roh et al., 2022) - - 39.5 - 28.6 - - -
SAT-2D (Yang et al., 2021) 37.14 - 35.4 - 31.7 - 44.5 30.1
BUTD-DETR (Jain et al., 2021) 50.28 - 52.1 - 43.3 - 52.2 39.8
3D-VisTA (Zhu et al., 2023) 53.1 48.1 56.5 51.5 47.7 42.2 51.0 46.2
PQ3D (Zhu et al., 2024) 58.5 52.5 62.0 55.9 52.2 45.0 56.7 51.8

Sensor PC + Proposals from Mesh PC
3D-VisTA (Zhu et al., 2023) 45.9 41.8 47.2 43.2 42.1 37.4 46.4 42.5
ConcreteNet (Unal et al., 2024) - - - - - - 56.12 49.50

Sensor PC
3D-LLM (Hong et al., 2023) - - - - - - 30.3 -
BUTD-DETR (Jain et al., 2021) 40.7 26.6 43.3 28.9 32.2 19.4 42.2 27.9
Llama VLM Baseline (Ours)∗ 28.8 18.3 21.3 13.9 28.0 16.9 37.3 24.2
GPT-4o VLM Baseline (Ours)∗ 38.6 25.5 29.2 18.9 38.2 25.1 48.2 32.5
LOCATE 3D (Ours) 61.7 49.4 65.8 52.9 53.7 40.5 59.9 49.6
LOCATE 3D+ (Ours)∗∗ 63.7 51.3 68.2 54.8 56.1 43.2 61.1 50.9

dataset for training. We evaluate on the validation split of
the benchmarks and report top-1 accuracy without assum-
ing ground-truth object proposals. Notably, we evaluate
our methods on sensor point clouds obtained directly from
lifting RGB-D observations, rather than the cleaned, post-
processed point clouds sampled from mesh reconstructions
provided by ScanNet. This choice better represents real-
world deployment scenarios though it typically results in
performance degradation due to sensor noise, missing re-
gions, and registration errors, as discussed in (Jain et al.,
2024). Section 4.1 compares Locate 3D to prior methods
on standard benchmarks. Section 4.2 analyzes the impact of
3D-JEPA pre-training. Section 4.3 presents ablation studies
on various components of our architecture, and Section 4.4
evaluates generalization capabilities on novel environments
and robotic deployment.

4.1. How does LOCATE 3D compare to prior methods
for 3D referential grounding benchmarks?

First, we study the performance of LOCATE 3D on three
standard referential grounding benchmarks: SR3D, NR3D,
and ScanRefer (Achlioptas et al., 2020; Chen et al., 2020).
We compare with prior work and two vision-language model
(VLM) baselines. The VLM baselines process the RGB-D

observations with a modular pipeline composed of three
stages. In stage 1, a VLM – either Llama-3 (Meta AI, 2024)
or GPT-4o (OpenAI, 2024) – is used to select a single 2D
frame from the observation stream. In stage 2, a VLM
selects an object in the selected frame, by choosing from 2D
object masks generated with GroundingDINO (Liu et al.,
2023) and SAM 2 (Ravi et al., 2024). In stage 3, the 2D
mask for the selected object is propagated in time using
SAM 2 (Ravi et al., 2024), and lifted to 3D using depth and
camera information, to generate a predicted 3D bounding
box. Further details of the Llama-3 and GPT-4o VLM
baselines are provided in Appendix F.

We present the overall results in Table 1. Most prior work
assumes access to refined meshes and mesh (object) region
proposals at training and inference time. We instead choose
to evaluate our model under more realistic conditions where
only the sensor observation stream is available. Despite eval-
uating in this more stringent setting, our model (LOCATE
3D) achieves SoTA results, even when compared to prior
work that operates under refined mesh point clouds. Further-
more, when also trained with our L3DD dataset (LOCATE
3D+), the model demonstrates even stronger performance,
improving across all metrics while maintaining the same
architecture and training methodology. We now discuss
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Table 2: Ablation study of input features and encoder con-
figurations. We compare different input modalities and encoder
architectures. RGB refers to raw RGB features, while Concept-
Fusion (CF) leverages CLIP+DINO-v2 features. We evaluate
accuracy (@25 and @50 IoU) on the combined SR3D, NR3D, and
ScanRefer evaluation sets. Results demonstrate that CF features
consistently outperform RGB, and encoder initialization with 3D-
JEPA yields the best performance. Note that in all experiments
with an encoder, the encoder is fine-tuned with the decoder.

Input Encoder Initialization Acc@25 ↑ Acc@50 ↑
RGB no n/a 28.9 17.4
RGB yes PonderV2 42.2 30.1
RGB yes random 51.4 38.7
CF no n/a 53.9 39.7
CF yes random 59.8 47.0
CF yes 3D-JEPA (frozen) 56.2 44.0

CF yes 3D-JEPA (ours) 61.7 49.4

different components that lead to these performance gains.

4.2. Understanding the impact of 3D-JEPA

Is 3D SSL necessary? Are lifted 2D foundation features
sufficient? We conduct a systematic ablation study examin-
ing three key aspects: (1) the choice of input features, (2)
the role of utilizing an encoder architecture as opposed to
simply training a decoder on lifted features and (3) the ben-
efits of initializing the encoder with 3D-JEPA pre-training.
For each configuration, we train the same type of decoder.
The overall results are presented in Table 2.

We first examine the impact of input features, comparing
raw RGB point clouds with lifted 2D foundation features.
The results clearly demonstrate the importance of strong
2D foundation features, with CF showing a substantial im-
provement over RGB (28.9% → 53.9% Acc@25). When in-
corporating an encoder architecture, we observe interesting
patterns. Even with random initialization, the encoder pro-
vides gains for both input types, though more pronounced
for RGB (28.9% → 51.4%) compared to CF features (53.9%
→ 59.8%). Using a frozen 3D-JEPA encoder improves per-
formance over the baseline CF features by 3% and 4% at
Acc@25 and Acc@50 respectively, indicating that 3D-JEPA
learns strong representations suitable for localization. Fi-
nally, we find that fine-tuning the 3D-JEPA encoder yields
the best performance at 61.7%, underscoring the importance
of SSL pre-training and task-specific finetuning.

Does 3D-JEPA learn contextualized representations?
The key promise of SSL methods is to learn general purpose
representations that are useful in many applications. 3D-
JEPA accomplishes this by contextualizing, smoothing, and
extracting the predictable features from the 2D foundational
model inputs. We analyze the 3D-JEPA features through
point-wise probing experiments for localization. We train a
probe that operates on a text description (e.g., “chair near

entryway door”) and features of a single 3D point to classify
if the point satisfies the description or not. On this task,
3D-JEPA outperforms ConceptFusion 39% to 34%. On a re-
laxed “noun correctness” measure (e.g., is this point part of
any “chair”) 3D-JEPA outperforms ConceptFusion 73% to
66%. These results illustrate the power of 3D-JEPA features
and their usefulness in many 3D vision domains.

Table 3: Impact of 2D foundation features on LOCATE 3D. We
evaluate accuracy (@25 and @50 IoU) on the combined SR3D,
NR3D, ScanRefer evaluation sets. LOCATE 3D is pre-trained
and finetuned using different 2D foundation features. We find a
clear trend: larger models (CLIP-L, SAM-H) as well as combining
CLIP and DINO-v2 leads to better results. (SAM-) indicates masks
computed with said model. (↑ indicates higher is better)

2D Foundation Features Acc@25 ↑ Acc@50 ↑
DINO-v2 53.7 39.4
CLIP-B (MobileSAM) 53.7 42.1
CLIP-L (SAM-H) 59.2 45.5

CLIP-L (SAM-H) + DINOv2 (ours) 61.7 49.4

4.3. LOCATE 3D ablations

Benefits from advances in 2D foundation features. Due
to the massive amount of data available on the internet,
2D foundation models have been consistently improving.
Do those advances also improve results in 3D? If so, this
provides a powerful opportunity to leverage progress and ad-
vances there. To tease this apart, we trained variants of LO-
CATE 3D using different 2D foundation features. This goes
through the full pipeline of lifting 2D features, pre-training
the 3D backbone using said features, and end-to-end fine-
tuning for 3D-RefExp using the localization decoder. The
results are presented in Table 3. We find that using larger
models (CLIP-L, SAM-H) improves results over smaller
variants (CLIP-B, MobileSAM), suggesting benefits from
scaling. Additionally, using CLIP-L and DINO-v2 improves
results considerably over using CLIP-L alone. Thus, we
find promising evidence that improvements in 2D founda-
tion models translate to improved 3D object localization.

What is the optimal decoder head architecture and su-
pervision strategy? Given our joint prediction task, we in-
vestigate two key design choices: (1) the type of supervision
signal (mask-only, box-only, or both), and (2) the architec-
ture of the bounding box prediction head. Our experiments
in Table 5 show that mask-only supervision achieves mod-
erate performance (55.4%) but lags behind our approach
with a dedicated box head (61.7%). While post-processing
these masks with DBSCAN helps address noisy predic-
tions (58.4%), it still underperforms; particularly at higher
IoUs (41.6% vs 49.4% at IoU@50) while introducing non-
differentiable components into the pipeline. On the other
extreme, box-only supervision leads to extremely poor per-
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formance (0.3%), we hypothesize this is due to the lack of
the more dense mask supervision signal. Finally, comparing
box head architectures, we find that our transformer-based
design significantly outperforms using a MLP (61.7% vs
35.6%), demonstrating the importance of properly incorpo-
rating spatial information through cross-attention.

What is the impact of scaling the decoder? We evaluate
three different decoder sizes. As detailed in Appendix C.4,
larger decoders consistently improve performance, partic-
ularly at higher IoUs. For all decoder sizes, 3D-JEPA pre-
training provides a consistent 3-4% improvement in perfor-
mance compared to randomly initializing the encoder.

How to fine-tune 3D-JEPA? We evaluate whether and
how to fine-tune 3D in order to adapt it for the referential
grounding task. We find that fine-tuning is necessary, as
the frozen encoder underperforms (56.2% Acc@25), and a
dedicate stage-wise learning rate schedule achieves the best
results (61.7%), surpassing a baseline single-stage scheduler
(59.5%); more details in Appendix C.4.

4.4. Evaluating LOCATE 3D in novel environments

Performance on L3DD. We evaluate LOCATE 3D’s ability
to generalize by testing it on the unseen scene dataset splits
of our L3DD dataset (Section 3), which spans three scene
datasets. We also evaluate on 412 samples on our held-
out environment (FRE) used for robot testing. Even when
trained only on ScanNet, LOCATE 3D demonstrates strong
performance on L3DD’s ScanNet++ and ARKitScenes.
This is despite significant domain gaps. The linguistic
distribution is different due to a different annotator pool
and task instructions. The scenes were captured with dif-
ferent hardware by unique research efforts and span larger
scenes and partial scans, both absent in ScanNet. And the
object distribution is different, as ScanNet++ has denser
open-vocabulary instance annotations. Notably, LOCATE
3D outperforms both baselines across most metrics, show-
casing the robustness of our approach.

Our ablation studies reveal the key components enabling this
strong generalization. First, replacing raw RGB inputs with
lifted foundation features (CF) significantly improves cross-
dataset performance across all benchmarks (SN++: 37.5%
→ 51.5%, ARKitScenes: 11.3% → 41.7%, FRE: 39.9%
→ 54.1%). The introduction of 3D-JEPA initialization
(LOCATE 3D) further enhances generalization capabilities,
boosting performance on SN++ to 56.7%, and ARKitScenes
to 46.2%. Finally, in Table 7, we show that incorporating
additional training data from L3DD (LOCATE 3D+) yields
substantial improvements across all benchmarks (SN++:
56.7% → 83.9%, ARKitScenes: 46.2% → 57.6%, FRE:
52.0% → 73.5%). However, we observe that including in-
domain training data from L3DD reduces the impact of
3D-JEPA pre-training on L3DD evaluations.

Table 4: Generalization of LOCATE 3D. We report accuracy
@25 IoU. Using lifted 2D foundation features consistently im-
proves results compared to RGB features, and 3D-JEPA pretraining
further bolsters generalization. ∗GPT-4o VLM-Baseline evaluated
on 2,000 samples SN++ and 6,000 samples for SN Joint.

Method Evaluation Dataset

ScanNet LX3D
Joint Eval SN++ ARKitScenes FRE

Baselines
GPT-4o VLM 37.6∗ 60.5∗ 26.8 18.9
CF + 3D-Decoder 53.8 46.1 21.8 48.9
Ablations
RGB, Random, SN 51.3 37.5 11.3 39.9
CF, Random, SN 58.8 51.5 41.7 54.1
Ours
LOCATE 3D 61.7 56.7 46.2 52.0

Deployment on Robot. As outlined earlier, our model is
capable of working with sensor streams and does not require
human intervention at test time (e.g., for mesh refinement
or instance segmentation). We deployed our LOCATE 3D
model on a Spot robot in a held-out apartment scene. This
scene is out-of-distribution by being a multi-room test apart-
ment and is larger in size compared to the training data.
The task was to navigate to a furniture object and pick up a
“plush toy.” Success was verified by grasping the toy. Our re-
sults show that LOCATE 3D achieved a success rate of 8/10
trials, outperforming baselines with a maximum success
rate of 5.66/10 (see details in Table 11). Note that naviga-
tion and pick-up used pre-trained skills, while localization
relied on our model. Additional details are provided in the
supplementary video and Appendix E.1

4.5. Computational Analysis

Run-time Analysis For computational efficiency, we cache
the environment’s 2D features for each view, as well as
the featurized point cloud. For ScanNet experiments, we
compute this cache offline; and for robot experiments we
compute it while doing the initial environment exploration
phase. With this feature cache, a forward pass of our model
takes 1 second for a scene with 100k feature points and
utilizes 8 GB of VRAM on an A100 GPU.

Limitations We can utilize such caching because our bench-
marks operate under static (ScanNet) or quasi-static (robot)
environments. Extending our approach to dynamic scenes
would require real-time 2D feature computation and con-
tinuous updates to the featurized environment. We believe
the former is a matter of engineering, while the latter is
an active research area, explored by methods like Lifelong
LERF (Rashid et al., 2024)
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5. Related Work
Self Supervised Learning (SSL), and more broadly rep-
resentation learning for 3D data like point clouds, is rel-
atively under-explored compared to 2D vision (Fei et al.,
2023). Among the few explorations, most have focused on
learning representations for individual objects using object-
level point clouds (Sauder and Sievers, 2019; Pang et al.,
2022; Zhang et al., 2022). PointMAE (Pang et al., 2022;
Zhang et al., 2022) and PointBERT (Yu et al., 2022) use
masked modeling techniques for object-level point clouds
and show that the resulting representations can be effective
for tasks like classification and segmentation. They differ
crucially from our work on two fronts. First, our work is
focused on scene-level point clouds which are significantly
larger compared to single object point clouds used in prior
work. Second, we operate on point clouds with high fea-
ture dimensions, as opposed to RGB point clouds in prior
work. In our experiments we found that a naive instantia-
tion of masked modeling is ineffective due to these factors.
PointCLIP (Zhang et al., 2021a) leverages 2D foundation
features for CLIP, but again looks only at object-level point
clouds. Prior works have also explored contrastive learn-
ing methods (Xie et al., 2020; Zhang et al., 2021b), which
encourage representations to be invariant to different types
of transformations. Other approaches have explored distill-
ing 2D features directly to 3D, by differentiable rendering
( (Kobayashi et al., 2022); (Cao et al., 2025)) or constrastive
learning (Peng et al., 2023). Ponder-v2 (Zhu et al., 2025)
proposes an SSL pretext task based on differentiable render-
ing into 2D. We refer readers to a recent survey on SSL for
point clouds for additional references (Fei et al., 2023).

3D Referential Grounding: Recent years have seen re-
newed interest in tasks at the intersection of perception and
language, such as visual grounding (Zhang et al., 2023; Liu
et al., 2023; Ren et al., 2024) and visual question answer-
ing (Antol et al., 2015; Sermanet et al., 2023; Majumdar
et al., 2024). Of particular relevance to this work are 3D
referential grounding benchmarks, such as SR3D, NR3D,
and ScanRefer (Achlioptas et al., 2020), which require lo-
calizing objects mentioned in a language utterance using
observations of a 3D scene. We note that the original instan-
tiations of these benchmarks provide access to ground-truth
bounding boxes of all objects in the scenes as input (in-
cluding at test time), and the task is to select the correct
bounding box. In contrast, LOCATE 3D operates directly on
sensor observation, without requiring any annotations. Few
prior works operate under this setting.

Current approaches for 3D grounding fall under two classes
of methods. First are end-to-end models designed explic-
itly for this task, that operate in one of two modes. In
the grounding-by-detection setting, models are trained to
directly the bounding box corresponding to the object re-

ferred to in the query (Luo et al., 2022; Jain et al., 2021).
In the grounding-by-selection setting, a pretrained vision
backbone extracts region proposals (bounding boxes or seg-
mentation masks), and models are trained to select the best
proposal that matches the query (Chen et al., 2022; Zhu
et al., 2023; 2024; Unal et al., 2024). These approaches
have so far not been demonstrated on sensor point clouds
or scaled up to multiple datasets, with the sole exception
being ConcreteNet (Unal et al., 2024), which trains a model
to rank proposals from scratch. The primary limitation with
this class of approaches is in the requirement of an external
region proposal mechanism, which is often difficult in 3D,
and are prone to failures.

The second class of methods aim to leverage 2D founda-
tion models (VLMs) for 3D tasks. While direct lifting
of 2D features has shown promising performance on lo-
calizing objects from simple noun phrases (Jatavallabhula
et al., 2023; Kobayashi et al., 2022; Wang et al., 2024), this
does not translate to 3D referential grounding. Thefore, ap-
proaches have either relied on using stronger models such as
VLMs (Yang et al., 2023a; Xu et al., 2024), or by finetuning
a separate head for the task (Hong et al., 2023; Huang et al.,
2024). While these methods inherit the strong generaliza-
tion capabilities of foundation models, they rely on tools
for grounding and inherit their weaknesses. In the broader
context, one could interpret LOCATE 3D as a powerful tool
that such agents can leverage to perform better in the future.

6. Conclusion
In this work, we introduced LOCATE 3D, a model for lo-
calizing objects in 3D from textual referring expressions.
Our approach leverages 3D-JEPA, a novel self-supervised
learning method for point clouds. It first projects features
from 2D foundation models (like SAM, CLIP, DINO) into
3D point clouds. Subsequently, it performs SSL on top of
these lifted features with a pretext task of masked predic-
tion in latent space - i.e. predict latent features of masked
regions using the remainder of the scene. We showed that
this enables the learning of contextualized representations –
i.e. features of a particular point take into account the whole
scene. We also showed that a backbone pre-trained with 3D-
JEPA can be effectively finetuned for the task of RefExp,
using a mask-and-box decoder, that ultimately results in
LOCATE 3D. We show that LOCATE 3D achieves state-of-
the-art results in standard RefExp benchmarks. Furthermore,
unlike prior work, LOCATE 3D only requires sensor point
clouds, making it suitable for applications like robotics and
smart glasses.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Model Details
A.1. Pre-training

We experiment with several masking strategies to achieve the best pre-training representation. Two strategies for computing
masks were percent-based and fixed number of points. In percent-based masking, we mask a percentage of the scene. E.g.
we mask 8% of the scene. This means that depending on the size of the pointcloud that range from 1k points to 200k points,
the number of points in the masks varies widely. In fixed number of points masks, we keep the number of points in every
mask constant and vary the number of masks based on the size of the pointcloud to ensure we cover similar portion of the
scene. We found percent-based masking to perform best.

Additionally, we experiment with two methods for constructing masks: radius-based and serialized-curve based. In radius-
based masking, for a mask of size x, we randomly select a point in the scene and select the x closest points based on the
Cartesian coordinates. In serialized-curve masking, we first order the points based using the serialization methods. We then
mask contiguous blocks in this serialized sequence. We find that using serialized-curve based masking works best as the
mask regions have more diversity than the circular radius-based masking.

We evaluate the masking strategies using a frozen representation element-wise probe. We show the performance of the
element-wise probe on the referring expression benchmark throughout the pre-training in Figure 5.

Point cloud Prediction masks Encoding context

P
ercent radius m

asking
S

patially consistent radius m
asking

S
erialized m

asking

Figure 4: Overview of different masking types

A.2. Encoder architecture

The main backbone of the encoder architecture is the PointTransformerV3 archicteture. For input to the transformer, we
have CLIP, DINO and RGB features. For RGB, we harmonically embed the RGB features before using a small MLP to
process the features. Given that we run CLIP on each of the SAM masks for an image, some pixels are not contained
in any masks and have no CLIP features. We use a learnable parameter to represent these points without CLIP features.
Finally, we concatenate the MLP processed harmonically embed RGB, learnable parameter masked CLIP features, and
the DINO features together. We then tokenize these points with a sparse sub-manifold stem convolution before using the
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Figure 5: Element-wise probe results during pre-training with different masking strategies

PointTransformerV3 architecture.

A.3. Predictor Architecture

The predictor architecture takes the encoded context along with a learnable parameter mask tokens to represent the points to
predict as well as global registers. These inputs are process in a transformer with a block sparse attention pattern and rotary
positional embedding. The rotary positional embeddings use the continuous Cartesian coordinates of the points to rotate
sub-section of the vector for each x, y, and z directions. The sparse attention mask is constructed so the mask tokens can all
attend to all of the encoded context, the encoded context can diagonally self-attend. An example sparse attention mask is
shown in Figure 6.

Figure 6: Left: Block sparse attention pattern

B. Object Localization
In this section, we discuss details regarding our Language-Conditioned 3D Decoder and the end-to-end training for referential
grounding.
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B.1. Decoder architecture

In Figure 7, we provide detailed illustrations for our token prediction head (top left), mask prediction head (top right), and
bounding box prediction head (bottom).

Figure 7: Prediction heads of the language-conditioned decoder (Top Left) Our Token Prediciton Head (Top Right) Our
Mask Head (Bottom) Our bounding Head

B.2. Decoder Ablations

We present the results of additional experiments on decoder supervision objectives and prediction head architectures
in Table 5 and decoder size in Table 6.

C. LOCATE 3D training
C.1. Details of training

LOCATE 3D is optimized using AdamW (Loshchilov and Hutter, 2019) with parameters β1 = 0.9, β2 = 0.999, weight
decay of 0.01 and using a learning rate scheduler as described in Appendix C.2. We optimize the following loss function:

L = λdiceLdice + λceLce + λboxLbox + λgiouLgiou + λalignLalign
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Table 5: Ablation study on decoder supervision and bounding box prediction head architectures. We evaluate accuracy
(@25 and @50 IoU) on the combined SR3D, NR3D, and ScanRefer evaluation sets (Joint ScanNet). We observe that
without box supervision, DBSCAN can be used remove outliers and improve accuracy. However, using box supervision
with our transformer architecture leads to the best performance and removes the reliance on additional post-processing (with
DBSCAN).

Supervision Architecture Joint ScanNet

Mask Box Box Head Acc@25 Acc@50

no yes Transformer 0.3 0
no yes MLP 29.4 10.0
yes no Naive 55.4 39.1
yes no DBSCAN 58.4 41.6
yes yes MLP 35.6 13.5

yes yes Transformer (ours) 61.7 49.4

Table 6: Impact of decoder size on performance. We evaluate accuracy (@25 and @50 IoU) on the Joint ScanNet
benchmark across different decoder sizes (Small, Base, and Large). Larger decoders consistently improve accuracy, while
3D-JEPA pre-training provides a stable performance boost across all scales.

Initialization Decoder Size Acc@25 ↑ Acc@50 ↑s

Random Small 54.4 39.0
Random Base 57.6 44.5
Random Large 58.8 46.3

3D-JEPA Small 58.1 43.3
3D-JEPA Base 60.6 47.6
3D-JEPA Large 61.7 49.4

With:

λce = 4.0 (Class weight)
λmask = 6.0 (Mask cross entropy weight)
λdice = 4.0 (Mask dice weight)
λbox = 1.0 (Bounding box L1 weight)
λgiou = 1.0 (Bounding box GIoU weight)

C.2. Training Schedule Details

Fine-tuning a pre-trained encoder alongside a randomly initialized decoder presents significant challenges. The primary
issue stems from the decoder’s initially poor gradients potentially destabilizing the valuable pre-trained representations
in the encoder. To address this, we designed a training schedule that carefully balances the learning dynamics of both
components while preserving the pre-trained features.

Our approach (Figure 8 follows a progressive training strategy where components are introduced gradually into the
optimization process. The schedule consists of four primary phases: initial decoder training with a frozen encoder, a
transition period introducing encoder fine-tuning at a reduced rate, an encoder adaptation phase, and finally joint optimization
with component-specific learning rates. Throughout training, we maintain lower learning rates for the encoder (0.5× the
decoder rate) and implement smooth transitions between phases to ensure stability.

The complete schedule spans 40 epochs, with the first 17 epochs dedicated to the careful initialization and adaptation phases.
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Figure 8: Learning rate schedule for encoder and decoder. Fine-tuning a pre-trained encoder alongside a randomly
initialized decoder requires careful balancing to prevent unstable gradients from disrupting pre-trained representations. Our
progressive training schedule spans 40 epochs, with an initial phase freezing the encoder, followed by gradual adaptation
and joint optimization. The encoder (left) maintains a lower learning rate (0.5× the decoder rate) with smooth transitions,
ensuring stable fine-tuning and improved performance.

C.3. Finding the Right Sensor Supervision for LOCATE 3D

A key challenge in training LOCATE 3D is the mismatch between our input data (raw sensor information) and the available
annotations (clean mesh pointclouds) in ScanNet. While ScanNet provides RGBD+pose trajectories, allowing us to
reconstruct uncleaned 3D pointclouds via SLAM that better match real-world conditions, the question remains: how do we
effectively supervise a model operating on noisy sensor data using annotations from clean meshes?

We explored two approaches for bridging this gap:

• Mesh-space supervision: Transfer model predictions from sensor pointcloud to mesh pointcloud by assigning each
mesh point the distance-weighted average of predictions from its k-nearest neighbors (k=8) in the sensor pointcloud.
Supervision occurs in mesh space.

• Sensor-space supervision: Transfer mesh annotations to sensor pointcloud by assigning each sensed point the distance-
weighted average of ground truth labels from its k-nearest neighbors (k = 8) in the mesh. Supervision occurs directly
in sensor space.

Approach (2) proved superior, delivering both practical benefits in terms of efficiency (single transfer operation vs. one
per decoder layer) and significantly better performance. The key insight came from analyzing failure cases: in approach
(1), about 50% of points were effectively ignored during training because they had no close neighbors in the clean mesh.
These ignored points were precisely the sensor artifacts and noise that the model needs to learn to handle in real-world
deployments. By supervising in sensor space, we force the model to process all input points, including challenging cases
like sensor noise and artifacts.

C.4. Training ablations

How to fine-tune 3D-JEPA? Given a pre-trained 3D-JEPA encoder and a randomly initialized decoder, we investigate
different strategies for jointly fine-tuning these components. Specifically, we compare four configurations: (1) a randomly
initialized encoder trained end-to-end with a naive learning rate schedule (warmup + cosine decay with equal learning rates
for both components), (2) a frozen pre-trained 3D-JEPA encoder, (3) a pre-trained 3D-JEPA encoder fine-tuned with the
naive schedule, and (4) a pre-trained 3D-JEPA encoder trained with our stage-wise training Appendix C.2.

The experiment results are detailed in Table 8, the frozen variant performs moderately (56.2% Acc@25) but lags behind
the random initialization where the model is fine-tuned end-to-end (59.8%); naive fine-tuning of the 3D-JEPA initialized
encoder marginally improves results (59.5%), and our stage-wise schedule achieves the best result 61.7%.

What is the impact of scaling the decoder? We investigate the effect of decoder scaling by evaluating three model
sizes (Small, Base, and Large) with both random initialization and 3D-JEPA pre-training. As shown in Table 6, increasing
decoder size consistently improves performance, with each scaling step (Small→Base→Large) yielding approximately
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Table 7: Impact of LX3D train data. We report accuracy @25 IoU. ARKitScenes column contains both pretrain and val split as we
saw no significant difference when split up. Adding LX3D training data significantly improves performance on unseen LX3D scenes.
3D-JEPA’s impact on LX3D evaluations is reduced when adding LX3D train data. ± shows standard error.

Training Data Evaluation Dataset

Existing SN Benchmarks LX3D
ScanRefer NR3D SN++ ARKitScenes FRE

ScanNet, JEPA (LOCATE 3D) 59.9 ± 0.58 53.7 ± 0.51 56.7 ± 0.74 46.2 ± 1.32 52.0 ± 2.46
ScanNet, Random Init 56.7 ± 0.58 51.6 ± 0.51 51.5 ± 0.75 41.7 ± 1.31 54.1 ± 2.46
ScanNet + LX3D, JEPA (LOCATE 3D+) 61.1 ± 0.57 56.1 ± 0.51 83.9 ± 0.55 57.6 ± 1.31 73.5 ± 2.17
ScanNet + LX3D, Random Init 61.0 ± 0.58 54.9 ± 0.51 83.5 ± 0.56 59.3 ± 1.31 73.8 ± 2.17

1-3% absolute improvement in Acc@25 and 2-5% in Acc@50 on our joint ScanNet evaluation. The larger gains at
higher IoU thresholds suggest that increased model capacity particularly benefits precise object localization. Notably,
the benefit of 3D-JEPA pre-training remains relatively stable across all scales, providing an ∼3-4% improvement over
random initialization for each decoder size. These results suggest that model capacity and initialization quality contribute
independently to performance, with both larger decoders and better pre-training being beneficial for the 3D localization task.

C.5. Visualizing LOCATE 3D

Figure 9 visualizes the transformation of point cloud features as they pass through the model’s encoder and decoder. The left
column shows the original RGB scenes, while the middle and right columns present PCA-reduced embeddings of the 3D
point features extracted from the fine-tuned 3D-JEPA encoder and the decoder’s refined output, respectively.

The encoder processes the lifted point cloud representation, capturing global scene context and producing initial feature
embeddings. The decoder then iteratively refines these representations through a series of self-attention and cross-attention
operations, incorporating language-conditioned object queries. As seen in the PCA visualization, the encoder seems to learn
more general semantic features that look like a zero-shot segmentation; the decoder enhances the feature distinctiveness
around the referenced objects, leading to sharper and more localized embeddings.

Table 8: Impact of learning rate schedule on model performance. We evaluate accuracy (@25 and @50 IoU) on
the combined SR3D, NR3D, and ScanRefer evaluation sets. The stage-wise schedule prevents catastrophic forgetting of
pre-trained features to enable effective fine-tuning.

Encoder Initialization LR Schedule Acc@25 ↑ Acc@50 ↑
Random Naive 58.8 46.3
Random Stage-wise 59.8 47.0

3D-JEPA Frozen 56.2 43.7
3D-JEPA Naive 59.5 47.0
3D-JEPA Stage-wise (ours) 61.7 49.4

D. Annotation Details
D.1. Collection Procedure

We collect data using an off-the-shelf annotation interface which allows for selecting rectangular regions on 2D videos
and associating them with text. We project 3D instance masks into 2D and show them alongside the RGB camera view.
For ScanNet (Dai et al., 2017) and ScanNet++ (Yeshwanth et al., 2023), we use ground truth instance masks provided by
the dataset. For ARKitScenes (Dehghan et al., 2021) and our robot trial environment, we use instance masks produced by
SAMPro3D (?). Annotators have the ability to conglomerate multiple instance masks into a single object – this proved
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Figure 9: Visualization of point cloud features before and after decoding. We compute the PCA of the fine-tuned
3D-JEPA encoder’s point features (middle column) and the refined point features after decoding (right column). The RGB
images (left column) provide reference scenes, while the PCA projections reveal that the encoder seems to learn smooth
semantic features while the decoder learns sharper localized features.
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necessary for SAMPro3D segmentations, which tended to break large objects into many subparts. This is in line with
ScanNet’s instance segmentation procedure in which annotators stitch together an automatically-generated oversegmentation
of a 3D scene (Dai et al., 2017).

In addition to grounding the target object, annotators were asked to provide object grounding for all other nouns in the
phrase they provided. For SAMPro3D masks, annotators could select any object they wished as a target. In later iterations
of the task, for ScanNet and ScanNet++, we highlighted a mask in white with at least 1 distractor to serve as the target
object for description. This is in line with prior literature which observed that the 3D RefExp task is most challenging in the
high-distractor case (Chen et al., 2020). We later rely on an LLM (Llama 3.2-90B) to identify which object is the target.

While we found that annotations on ScanNet and ScanNet++ were relatively reliable from a first pass, we observed
considerable mask/bounding box noise when collecting annotations on SAMPro3D instance masks. To address this, we
created a separate validation task. In this task, annotators saw a video similar to the video provided in the generation task,
but only the selected masks for a particular language sample were highlighted. The RefExp description was also shown.
This improved the quality of SAMPro3D samples substantially, but it also drastically slowed the collection rate. As such, we
do not use ARKitScenes for supervised training.

Additionally, as we had the validation task set up, we had annotators validate every eval sample at least once (with over
80 percent of ScanNet++ and ARKitScenes samples receiving 3+ validation labels). Annotators were instructed to only
keep accept samples which were unambiguously correct, and we only samples which a majority of annotators marked as
trustworthy.

D.2. Annotation setup

Figure 10: An example sample from the RefExp task. This sample is taken from the ScanNet++ (Yeshwanth et al., 2023)
split of L3DD. The model receives the camera input (RGB shown on left) with additional depth and pose information and

must produce the object masks (shown on the right). The text conditioning is ”indoor plant on the table.”

Our annotation setup largely mirrors ScanRefer (Chen et al., 2020) – annotators simply describe objects in a one-step
fashion rather than the two-player game format of NR3D (Achlioptas et al., 2020). We use a 2D video interface for the task,
projecting 3D instance masks to 2D. Annotators can write full referring expressions and associate particular instance masks
with particular tokens in the expressions. They may also agglomerate two or more instances into one.

When ground-truth instance masks are available (as in ScanNet and ScanNet++), we use these as the basis for annotation.
When they are not available (as in ARKitScenes and the demo FRE apartment scene), we generate instance masks using
SAMPro3D (?).

We implemented two versions of the task. Initially, we aimed to simplify the task as much as possible so that a high quantity
of annotations on SAMPro3D masks would be feasible. As it was challenging to achieve both speed and quality with this
approach, we switched to a more challenging task to annotate existing instance masks.
Version 1: Annotators select only two objects and may choose any object in the scene as a target.
Version 2: Annotators select an arbitrary number of objects. When comprehensive semantic instance annotations are
available (as in ScanNet/ScanNet++), we highlight an object with at least 1 distractor as a prescribed target.
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Figure 11: Histogram of most common nouns and spatial relations in L3DD. Computed over 5000 samples using Llama
3.1-8B. Left: Top nouns, Right: Top spatial relations.

D.3. Comparison with existing datasets

We show in our ablations that mask supervision is crucial for training. Voxel coverage is the number of 5cm3 voxels occupied
by at least one point in the sensor pointclouds of these datasets. When multiple scans are available of a single venue, we
only use the voxel occupancy of the first scan so as to ensure this acts as a measure of size-adjusted venue coverage. Finally,
we compute object coverage by enumerating the number of unique object instance masks covered by each dataset. For
the case of the ARKitScenes split of our data, we divide the number of SAMPro3D segments by the average number of
segments per object instance (2.25). Note that this object count includes both grounded targets and grounded anchors.

We showed in Table 5 that mask supervision is crucial for high-quality training data, so ARKitSceneRefer’s commendable
object diversity is not easily applicable to our method. Of the other three datasets with grounded anchors and mask coverage,
there is significant overlap in instance coverage; the three together cover 29,857 instances. All of L3DD’s 14,662 new
instances in ScanNet++ have not yet been covered by a RefExp dataset.

Additional dataset statistics (∗starred values were computed using Llama 3.1-8B instruct(Meta AI, 2024) over 5000 samples)

• Average query length (in words): 7.55

• Average number of grounded instances per query: 2.28

• Vocabulary size: 3058

• Percent of samples containing a reference to color: 42.6∗

• Percent of samples containing a reference to object shape: 38.22∗

Table 9: A comparison of LOCATE 3D DATASET with other 3D RefExp datasets. L3DD advances the state-of-the-art by
covering multiple scene datasets and a large number of unique venues with mask-grounded 3D referring expressions.

Dataset Scene Datasets Objects Expressions Venues Voxels Covered Human-generated Masks Grounded Anchors

ScanEnts3D-SR3D (Abdelreheem et al., 2024) 1 16,797 83,572 613 26.1× 106 ✗ ✓ ✓
ScanEnts3D-NR3D (Abdelreheem et al., 2024) 1 14,710 41,503 641 26.9× 106 ✓ ✓ ✓
ScanEnts3D-ScanRefer (Abdelreheem et al., 2024) 1 18,989 51,583 800 28.8× 106 ✓ ✓ ✓
ARKitSceneRefer (Kato et al., 2023) 1 15,553 15,553 1,605 187.8× 106 ✓ ✗ ✗
LOCATE 3D DATASET (ours) 3 23,549 131,641 1,346 123.7× 106 ✓ ✓ ✓

D.4. Why does the additional training data help?

We ran an additional experiment in which we find that scene diversity is a key factor in L3DD improvements. Specifically,
we compare two conditions: (1) ScanNet training data + 30K L3DD samples also from ScanNet and (2) ScanNet data
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Train data Joint Evaluation SR3D NR3D ScanRefer
Base+ScanNet++ 0.632 0.674 0.562 0.608
Base+ScanNet++ (updated task) 0.631 0.668 0.568 0.612
Base+ScanNet 0.618 0.664 0.524 0.603

Table 10: Impact of scene diversity. We train all models on SR3D+NR3D+ScanRefer and add 30K samples from L3DD.
We ablate whether these extra samples come from ScanNet or ScanNet++. We also ablate whether we are using the first or
second iteration of the annotation instructions.

+ 30K L3DD samples from ScanNet++ (i.e., same quantity, but better quality). Table 10 shows that training on better
quality scenes (2) outperforms (1) by about 1.5 percent. The use of data collected from our updated instructions of our task
(high-distractor objects as targets, multi-anchor) does not significantly impact performance.

Table 11: Robot Experiments

Model Task Success

Concept Fusion 2/10
VLM (Llama-3) 5/10
VLM (GPT-4o) 5.66/10

LOCATE 3D+ (ours) 8/10

E. Real-World Robot Experiments
E.1. Robot Experiment Details

LOCATE 3D is intended to work in the real world, the robot trials test the performance of the models in a real setting. These
trials serve as a benchmark of evaluating different models. We are using Boston Dynamics Spot robot to carry out these
experiments. The scene, a model apartment, this differs considerably from our training conditions by being multi-room test
apartment and a much larger area.

We scan the environment using iPhone’s Record3D app, which provides RGB-D data that is processed by our preprocessing
pipeline into 5cm featurized voxel maps. The testing environment represents a challenging out-of-distribution scenario,
featuring rooms regions and object categories unseen during training. The full scan of this apartment was processed offline
to get detected bounding boxes for 10 pre-selected reference expression. Each of these references to a unique furniture and
the prompts were 1.kitchen island, 2. rectangular dining table, 3. sink, 4. night stand near the window, 5. bed with pillow, 6.
dresser in the office, 7. dresser in the hallway, 8. coffee table in front of the sofa, 9. desk in office, 10. kitchen counter with
stove

We evaluate against two baselines: (1) A VLM-based pipeline using GPT-4/Llama and SAM2, and (2) ConceptFusion, a 3D
mapping system. Results in Table 11 show LOCATE 3D+ achieves 8/10 performance.

The trial had tasks like ”navigate to the coffee table in from of the sofa and pick up the plush toy”. A given episode had
3 parts: location, navigation then pick up. Out of these only localisation was expected to be done via the model being
benchmarked. Our navigation method uses a heuristic that combines A* path planning with point cloud data to identify a
point near to the object. Specifically, this involves generating a low-resolution 2D occupancy grid from the point cloud,
which enables the determination of accessible free spaces. The pick-up part of the task has a Boston Dynamics API call
to grasp and OWL-ViT (Minderer et al., 2022) object detector. After completing navigation a gaze policy inspired by
(Yokoyama et al., 2024) is used to scan the scene and the given object e.g ”plush toy” was detected with object detector and
the grasping API call was initiated. A closed set of objects for which it was tested out that the robot had high successes of
grasping was used.

To ensure reliability, each task was repeated three times, resulting in a total of 30 trials per model on the Spot robot. A
successful trial was defined as a sequence of three consecutive tasks: accurate localization, followed by effective navigation,
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Figure 12: Examples of the Spot robot at the end of navigation task before the pick task (right) the output bounding boxes
of LOCATE 3D+ model (left). The task (top) ”navigate to coffee table in front of the sofa and pick up the bottle” (middle)
”navigate to sink and pick up the pineapple plush toy” (bottom) ”navigate to the dresser in the hallway and pick up pink
plush toy”

and culminating in a successful pick action. Each trial had a binary outcome, with success contingent on the correct
execution of all three tasks. We report the number of successful episodes averaged over the 3 repetitions achieved by each
model. Notably, our results show that correct localization consistently facilitated successful navigation and pick-up.

An interesting finding is that coarse localization (within 2m of target) often proved sufficient given the robust manipulation
capabilities of the pipeline. While triplicating results the VLM had a different seed value while generating the localization
bounding boxes. The VLM pipeline being non-deterministic this gave different results. A successful detection for a particular
seed value might not be replicated for all 3 tries. That is the reason why with averaging of these values a non-whole number
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is part of the reported results.

We also observed that at times the most obvious way to refer to objects can include the room they are located in (e.g., ”dresser
in the bedroom”). However, our training data lacked such language, highlighting a need for future work to incorporate this
type of spatial context.

F. Vision-Language Model (VLM) Baselines
This section describes two baseline models that leverage vision-language models (VLMs) – Llama-3 (Meta AI, 2024) and
GPT-4o (OpenAI, 2024) – within a modular pipeline designed to solve the 3D referring expressions task, which is similar
to (Xu et al., 2024). Specifically, both baselines include three primary modules: (1) frame selection, (2) 2D object selection,
and (3) 2D-to-3D lifting. Results for these VLM baselines are in Tables 1 and 4 and method details are provided below.

Frame Selection. In our Llama-3 (Meta AI, 2024) VLM baseline, frame selection is performed by captioning (K = 20)
uniformly sampled RGB frames from the observation stream. Specifically, for each frame we use SAM-2 (Ravi et al., 2024)
to segment the image, and set-of-mark prompting (Yang et al., 2023b) with Llama-3 to generate a list of objects in the frame,
which we treat as the frame caption. Next, we past the K = 20 captions to Llama-3 along with the referring expressions
query, and ask the model to select the top-3 frame that may include the object described in the query. Finally, for each of the
top-3 frames, we ask Llama-3 to verify if object described in the referring expressions query is visible. The first verified
frame is used in the subsequent modules. If none of the top-3 frames are verified, one is selected at random.

In our GPT-4o (OpenAI, 2024) VLM baseline, frame selection is performed by passing the K = 20 uniformly sampled
RGB frames along with the referring expressions to the VLM, and asking the model to select the frame the includes the
object described in the query. The selected frame is subsequently passed to the next module for 2D object selection.

2D Object Selection. In both baselines, object selection is performed using an open-vocabulary object detector (Ground-
ingDINO (Liu et al., 2023)), a promptable image segmentation model (SAM 2 (Ravi et al., 2024)), and a VLM (Llama-
3 (Meta AI, 2024) or GPT-4o (OpenAI, 2024)). Specifically, the full user query is passed to the object detector to generate
2D bounding boxes for candidate objects in the scene. Instance segmentation masks for each object are generated by SAM 2
and used to create a set-of-marks prompt (Yang et al., 2023b) for the VLM, which selects the object and correspondingly a
2D object mask.

2D-to-3D Lifting In the final module, the 2D object mask is “lifted” (or unprojected) into 3D. Specifically, we first use
SAM 2 (Ravi et al., 2024) to propagate the 2D object mask over time. Next, we filter the 2D propagated mask, then unproject
them into a 3D object point cloud using the depth observations and camera information (pose and intrinsics). Finally, we use
DBSCAN to find the largest cluster in 3D object point cloud, and use the bounds as the predicted bounding box.

G. Full Ablation table
Table 12 provides a complete set of results for all of the LOCATE 3D and LOCATE 3D+ experiments and ablations in this
work. For all methods, we provide results on SR3D, NR3D, ScanRefer (Achlioptas et al., 2020; Chen et al., 2020). For most
methods, we additionally provide results for the ScanNet++ (Yeshwanth et al., 2023) and ARKitScenes (Dehghan et al.,
2021) splits from LOCATE 3D DATASET.
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Table 12: Comparison of various ablations and baselines. Metrics shown as (@25, @50) for SN Joint, SR3D, NR3D,
ScanRefer, SN++, and ARKitScenes.

Input Features Encoder Init Training Data Other SN Joint SR3D NR3D ScanRefer SN++ ARKitScenes

@25 @50 @25 @50 @25 @50 @25 @50 @25 @50 @25 @50

Ours

(LOCATE 3D) CLIP-L + DINOv2 + SAM-H 3D-Jepa SN - 0.617 0.494 0.658 0.529 0.537 0.405 0.599 0.496 0.567 0.282 0.462 0.174
(LOCATE 3D+) CLIP-L + DINOv2 + SAM-H 3D-Jepa SN + LX3D - 0.637 0.513 0.682 0.548 0.561 0.432 0.611 0.509 0.839 0.575 0.576 0.208

Input Featurization Ablations

CLIP-B + MobileSAM 3D-Jepa SN – 0.537 0.394 0.566 0.417 0.475 0.328 0.529 0.403 – – – –
Clip-L + SAM-H 3D-Jepa SN – 0.592 0.455 0.627 0.477 0.521 0.383 0.582 0.469 – – – –
DinoV2 3D-Jepa SN – 0.537 0.421 0.560 0.437 0.468 0.352 0.546 0.445 – – – –

Random Initialization Ablations

CLIP-L + DINOv2 + SAM-H Random SN – 0.588 0.463 0.628 0.496 0.516 0.382 0.567 0.461 0.515 0.255 0.417 0.152
CLIP-L + DINOv2 + SAM-H Random SN + LX3D – 0.607 0.475 0.644 0.506 0.544 0.399 0.586 0.473 0.746 0.476 0.556 0.240

RGB Input Ablations

RGB Random SN – 0.513 0.386 0.530 0.400 0.449 0.321 0.530 0.410 0.375 0.150 0.113 0.042
RGB Random SN + LX3D – 0.562 0.445 0.583 0.457 0.493 0.377 0.574 0.474 0.740 0.497 0.178 0.064

“Encoder-Free” Ablations

CLIP-L + DINOv2 + SAM-H N/A SN – 0.538 0.397 0.562 0.414 0.463 0.328 0.551 0.418 0.461 0.179 0.218 0.058
RGB N/A SN – 0.289 0.174 0.278 0.174 0.247 0.133 0.342 0.205 0.158 0.046 0.009 0.000

Supervision and Decoder Heads Ablations

CLIP-L + DINOv2 + SAM-H 3D-Jepa SN Naive Bbox 0.554 0.391 0.598 0.426 0.464 0.304 0.542 0.391 0.545 0.260 0.458 0.177
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN DBSCAN Bbox 0.584 0.416 0.633 0.455 0.487 0.330 0.565 0.408 0.577 0.282 0.524 0.222
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN MLP Bbox 0.356 0.135 0.385 0.149 0.286 0.102 0.356 0.133 0.032 0.002 0.017 0.001
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN No Mask (our head) 0.003 0.000 0.003 0.000 0.002 0.000 0.005 0.000 0.001 0.000 0.000 0.000
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN No Mask (mlp head) 0.294 0.100 0.311 0.102 0.239 0.078 0.306 0.115 0.025 0.003 0.011 0.000

Decoder Scaling Ablations

CLIP-L + DINOv2 + SAM-H 3D-Jepa SN Small Decoder 0.581 0.433 0.623 0.465 0.496 0.348 0.567 0.439 0.494 0.206 0.356 0.106
CLIP-L + DINOv2 + SAM-H Random SN Small Decoder 0.544 0.390 0.584 0.415 0.460 0.314 0.532 0.400 0.448 0.190 0.350 0.121
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN Base Decoder 0.606 0.476 0.652 0.511 0.524 0.389 0.583 0.476 0.552 0.267 0.450 0.165
CLIP-L + DINOv2 + SAM-H Random SN Base Decoder 0.576 0.445 0.615 0.478 0.505 0.367 0.557 0.442 0.495 0.231 0.395 0.149

Training Ablations (Finetuning and Scheduler)

CLIP-L + DINOv2 + SAM-H 3D-Jepa SN Frozen 0.562 0.440 0.588 0.460 0.503 0.374 0.557 0.453 0.486 0.230 0.372 0.124
CLIP-L + DINOv2 + SAM-H 3D-Jepa SN Naive Scheduler 0.595 0.470 0.638 0.503 0.512 0.383 0.578 0.475 0.524 0.248 0.498 0.203
CLIP-L + DINOv2 + SAM-H Random SN Our scheduler 0.598 0.470 0.642 0.502 0.524 0.393 0.571 0.468 0.532 0.265 0.439 0.168

Other Baselines

RGB PonderV2 SN – 0.432 0.309 0.431 0.312 0.386 0.262 0.469 0.340 0.297 0.120 0.048 0.012
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