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Abstract

Feature importance can be used to gain insight in
prediction models. However, different feature im-
portance methods might result in different gener-
ated explanations, which has recently been coined
as the explanation disagreement problem. Little is
known about the size of the disagreement problem
in real-world data. Such disagreements are harm-
ful in practice as conflicting explanations only
make prediction models less transparent to end-
users, which contradicts the main goal of these
methods. Hence, it is important to empirically
analyze and understand the feature importance
disagreement problem in real-world data. We
present a novel evaluation framework to measure
the influence of different elements of data com-
plexity on the size of the disagreement problem
by modifying real-world data. We investigate
the feature importance disagreement problem in
two datasets from the Dutch general practitioners
database IPCI and two open-source datasets.

1. Introduction

Model transparency or insight is important in the current
state of Al maturity. This is especially true in high-stakes do-
mains such as healthcare, where clinicians are held account-
able for their actions and should be able to explain their
decision making to both colleagues and patients (Tonek-
aboni et al., 2019). Hence, transparency is often needed for
model adoption in clinical practice. Feature importance (FI)
is a type of (post-hoc) explanation that is often asked for
by both developers and end-users to give insight into why
model predictions are made. FI methods rank or measure
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the predictive power of features and can help users verify if
the system works as intended or discover relevant features
for the prediction task (Hase et al., 2021; Markus et al.,
2021).

In the literature, numerous FI methods have been proposed
to generate such explanations. These FI methods differ
along several dimensions. First, local explanations provide
a rationale for an individual prediction, whereas global ex-
planations attempt to explain the model as a whole. Second,
model-agnostic methods are suitable to explain any kind of
model, whereas model-specific methods are only suitable for
specific model classes. Finally, feature importance is some-
times used to refer to a property of the model (i.e. model-
agnostic and model-specific methods), and sometimes to
a property of the data generating process (i.e. model-free
methods). In this work, we focus on model-agnostic meth-
ods to compute global FI.

There is a more general awareness for the need of a more
formal evaluation of FI methods. Often, new methods are
proposed without systematic comparison to existing meth-
ods. Various recent papers aimed to classify and unify meth-
ods according to their behavioral characteristics (Covert
et al., 2021; Han et al., 2022). One of the main challenges
to evaluate FI methods is the lack of a ground truth, which
makes it impossible to say which method is preferred for the
given problem setting. The underlying problem is the lack
of consensus on a definition of what it means for a feature to
be important (Hama et al., 2022; Mase et al., 2022). Despite
this, feature importance is often used and presented as a
uniform notion in practice. Practical guidance to motivate
the choice between FI methods is still lacking.

It is increasingly recognized that there might be conflicting
results between methods, i.e. generated explanations might
differ in terms of the top features, feature ordering, and di-
rections of feature contributions. This has been summarized
as the explanation disagreement problem (Krishna et al.,
2022). This phenomenon is not unexpected given that FI
methods differ along several known dimensions (e.g. how
features are removed, what model behavior is analyzed, and
how importance is summarized) (Covert et al., 2021). How-
ever, such explanation disagreements are very harmful in
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practice as conflicting feature importances only make the
model non-transparent, while the aim of feature importance
is to make models more transparent. Research is needed to
investigate what causes this disagreement.

User studies by Krishna et al. (2022) found that the explana-
tion disagreement problem is widely encountered (84% of
interviewed participants experienced this in their day-to-day
workflow). When developing clinical prediction models
using routinely-collected health care data, such as electronic
health record (EHR) or claims data, this problem is prob-
ably even larger due to the size, high-dimensionality, and
sparsity of the data. For reliable explanation of clinical pre-
diction models, it is important to empirically analyze and
understand the FI disagreement problem in real-world data.

The contributions of our work are threefold:

* First, we extend the current body of empirical evidence
by analysing the size of the disagreement problem
in two moderate-sized real-world datasets from the
Dutch general practitioners database IPCI (including
100 features as opposed to 20 features in previous work
(Krishna et al., 2022)).

» Second, we propose a novel evaluation framework to
understand what causes FI disagreement. Our frame-
work measures the influence of different elements of
data complexity on the size of the explanation disagree-
ment problem in real-world data.

* Finally, we apply our proposed framework to two open-
source datasets: COMPAS and German Credit.

The remainder of this paper is structured as follows. Section
2 covers related work. In Section 3, we discuss the pro-
posed evaluation framework. In Section 4, we first discuss
the datasets, then the setup of the experiments (model de-
velopment and FI methods), and finally present the results.
Section 5 concludes with main takeaways and directions for
future work.

2. Related Work

2.1. Quantitative Evaluation of Feature Importance

We distinguish two main approaches to quantitatively eval-
uate explanation quality. First, direct evaluation assesses
quality by comparing explanation to a known ground truth.
This approach has the advantage that it is possible to make
statements about which explanation is correct. However,
in practice the underlying data generating process of real-
world data is unknown and the training data only consists of
features and outcomes, but does not contain (annotated) ex-
planations. Hence, the ground truth is often lacking which
makes evaluation of FI methods difficult. Second, indi-
rect evaluation assesses quality by verifying whether ex-

planations satisfy desirable axioms or properties. Exam-
ples of such properties are stability/robustness (Agarwal
et al., 2022a), predictive faithfulness (Petsiuk et al., 2018),
monotonicity (Luss et al.), infidelity (Yeh et al., 2019), and
remove-and-retrain (Hooker et al., 2019). The majority of
work evaluating feature importance has focused on indi-
rect evaluation, as developing an (artificial) ground truth is
tedious and requires (strong) assumptions.

Several strategies have been used to overcome the lack of
ground truth. A common strategy is to construct toy exam-
ples or generate synthetic data following a (simple) specified
data generating process to ensure known relationships (Mer-
rick & Taly, 2019; Johnsen et al., 2021; Verdinelli & Wasser-
man, 2023). In this case, researchers often design datasets
with different levels of informative versus uninformative fea-
tures, order of feature correlation, degree of non-linearity,
and amount of noise. However, there is no guarantee that
the trained classifiers do capture these relationships exactly.
A related strategy introduced by Guidotti (2021) is to create
ground truth by generating synthetic transparent classifiers.
Their proposed SENECA generators allow to pursue system-
atic evaluation of local explainers for different types of data
(tabular, images, text) and various problem settings. Instead
of creating a synthetic dataset or model, Zhou et al. propose
another strategy to create semi-natural datasets. They mod-
ify image and text datasets by using label reassignment (to
reduce predictive power of features) and input manipulation
(to introduce new features for the model to rely on). Finally,
Krishna et al. (2022) circumvented the problem of a miss-
ing ground truth by comparing the explanation of one FI
method against the explanations of all other methods. Here,
the results of other FI methods are thus implicitly used as
ground truth.

2.2. Metrics Evaluating Disagreement

The simplest type of evaluation is to assess whether a given
FI method can identify the (known) set of important fea-
tures. Other work has evaluated FI methods by comparing
the resulting rankings or values. Rajbahadur et al. (2021)
measured alignment with Kendall’s Tau coefficient and Top-
K overlap. Krishna et al. (2022) recently proposed six met-
rics to compare two lists of rankings: Feature Agreement
(FA), Rank Agreement (RA), Sign Agreement (SA), Signed
Rank Agreement (SRA), Rank Correlation (RC), and Pair-
wise Rank Agreement (PRA). Rengasamy et al. (2021) used
three methods to evaluate two lists of values: Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), and
Coefficient of Determination (R-squared).

2.3. Benchmarking Frameworks

Recently, several frameworks have been proposed to eval-
uate and benchmark explanations. First, Liu et al. (2021)
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proposed XAI-Bench to evaluate the quality of post-hoc
explanations using synthetic datasets with known ground-
truth distributions. They argue that their released synthetic
datasets can be configured to simulate real-world data. They
use the ground truth for exact computation of evaluation
metrics with respect to the original model. Carmichael &
Scheirer (2021) proposed an evaluation framework based
on the MatchEffects algorithm that enables comparison of
explanations to ground truth derived from additive contri-
butions of features in the model. Their algorithm does
not consider a one-to-one matching of effects, but instead
matches subsets of effects to account for possible interaction
effects. More recently, Agarwal et al. (2022b) introduced
the open-source benchmarking framework OpenXAlI. This
initiative aims to gain insight in empirical performance of FI
methods for different datasets and models by reporting pre-
dictive faithfulness, stability, and fairness in a leaderboard.
This approach relies on indirect evaluation. None of the
aforementioned frameworks can be used to understand FI
disagreement when no ground truth exists.

In this work, we propose a novel evaluation framework to
measure explanation disagreement that allows for targeted
experiments (i.e. controlling the problem setting) on real-
world data using direct evaluation. This builds on the work
of Krishna et al. (2022) who coined the explanation disagree-
ment problem with the help of user studies and empirically
analyzed the size of the problem in small datasets. Our work
extends their empirical analysis to moderate datasets and
provides insight on the size of the FI disagreement problem
in relation to various elements of data complexity.

3. Understanding Feature Importance
Disagreement using Real-World Data
Modification

Model performance can be evaluated in real-world data by
using a set of observations for which the ground truth is
known and that has not been used for development. How-
ever, for explanations such ground truth does not exist in
real-world data. For reliability of presented explanations,
it is desirable that different FI methods agree on the given
explanation. More agreement leads to more reliable explana-
tions as the given explanation is less dependent on the (often
subjectively) chosen FI method. The complexity of data is
known to influence the behavior of FI methods. For exam-
ple, correlated features can lead to non-zero importance of
features that are irrelevant for the model or spread feature
importance (Hooker et al., 2021; Rajbahadur et al., 2021;
Verdinelli & Wasserman, 2023), and additional (uninfor-
mative) features can decrease the ability of FI explanations
to comply with a linear ground truth explanation (Guidotti,
2021). Therefore, we propose a novel evaluation framework
to measure the influence of different elements of data com-

plexity on the size of the explanation disagreement problem
in real-world data.
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Figure 1. Proposed evaluation framework: for data complexity
element of interest, modify the original real-world data to create
new modified datasets with lower and higher levels of complexity,
train classifiers and compute feature importances, measure the
disagreement between the generated explanations.

Figure 1 shows the proposed framework. Evaluation using
the framework proceeds as follows. First, specify which
elements of data complexity are of interest. Second, adapt
the original real-world data according to the proposed data
modifications to create new datasets with lower and higher
levels of complexity (see Section 3.1). Third, train clas-
sifiers and compute importance for each modified dataset.
Finally, evaluate the disagreement between the generated
explanations using various metrics (see Section 3.2).

There are several advantages of using real-world data in-
stead of synthetic data for evaluation (Gentzel et al., 2019).
First, the real-world data contains the complex relations and
possible unknown influences that any synthetic data genera-
tion process most likely fails to capture (usually based on
simplified researcher assumptions). Second, there are less
degrees-of-freedom for the researcher which reduces the
risk of (unintentional) bias and strengthens the validity of
the results. Finally, using real-world data might be the most
effective — if not the only — way to demonstrate reliability
and limitations of explanations to end-users. A commonly
mentioned advantage of synthetic data, however, is the abil-
ity to control all attributes of the dataset to perform targeted
experiments in controlled settings (Liu et al., 2021). We
exploit the advantages of both types of data by modifying
real-world data to create semi-natural datasets.

3.1. Elements of Data Complexity

In this work, we consider the following data complexity
elements of interest:

1. Number of features. The set of available candidate fea-
tures might vary in size depending on the data collected
in each database (e.g. only diagnoses and prescriptions,
or also clinical measurements). The complexity of the
generated explanations is highly dependent on the di-



Understanding Feature Importance Disagreement

mensionality of the input data. Higher dimensional
input data leads to larger models and increases the
complexity of the resulting explanation, both in terms
of computation time as well as for human interpreta-
tion.

. Number of observations. The available sample size
might vary hugely across prediction tasks (depending
on the target cohort) and databases in practice. Al-
though the number of observations might be less influ-
ential for explanations than number of features, it has
been shown that sample size impacts the complexity
of the resulting prediction models (i.e. more observa-
tions, larger models) (John et al., 2022). Furthermore,
for generating explanations, the sample size might de-
termine whether it is possible to estimate (complex)
conditional distributions or whether it is better to rely
on (simpler) marginal distributions (Chen et al., 2022).

. Number of outcomes. As previous work by John et al.
(2022) showed that the relation between sample size
and model complexity was primarily driven by the
number of outcome events (i.e. less outcomes, smaller
models), we next investigate variations in number of
events. This mimics the situation where in practice out-
comes might be harder to observe than non-outcomes
(e.g. for rare diseases or expensive laboratory tests).

. Feature correlation. In clinical data, correlations be-
tween features are common and often strong. When
a patient is diagnosed with a certain disease, this pa-
tient most likely underwent several standard tests to
confirm this (or to rule out other diseases) after which
the patient starts the recommended treatment. Hence,
certain combinations of diagnoses, prescriptions, and
clinical measurements typically co-occur resulting in
a high correlation between several candidate features.
FI methods have different ways of dealing with feature
dependencies; some assume independence between fea-
tures (e.g. Permutation FI, marginal Shapley values),
whereas others model the dependencies (e.g. SAGE
conditional). High correlation between features com-
plicates the interpretation of feature importance and
might lead to incorrect conclusions about the relevance
of features (Verdinelli & Wasserman, 2023).

. Prevalence of features. A typical characteristic of EHR
data is the sparsity as candidate features typically indi-
cate the presence of diagnoses or prescriptions (which
are most often absent). We do not know of any other
work investigating feature importance in relation to
feature sparseness, but are interested to investigate
whether the frequency of binary features influences
explanation disagreement.

For each element of data complexity, we suggest a data
modification in Table 1. We reuse the previously modified
data for increasingly severe modifications (e.g. the set of 10
candidate features is selected from the set of 25 candidate
features).

3.2. Metrics

We measure disagreement of FI methods with a combination
of ranking-based (i.e. measuring similarity between two
lists of feature rankings) and value-based (i.e. measuring
the difference between two lists of (normalized) feature
importances) evaluation metrics. Although consistency of
FI rankings was found to be most important (Krishna et al.,
2022), we argue ultimately it is desirable for FI methods to
also align on the relative importance of features (i.e. feature
values).

Given a set of |D| candidate features k = {1, ..., D}, let
Fx m C k denote the subset of top-K features selected by
FI method m (we use K = 5). Furthermore, let Vg ,,, € R
be the value, Ry, € Z" the rank and Sy, € {+, —} the
sign of feature d € . For any combination of FI methods
u and v we quantify disagreement using different types of
metrics from earlier work (Krishna et al., 2022; Rajbahadur
et al., 2021; Rengasamy et al., 2021).

Top-K feature metrics:

* Feature Agreement (FA) = %
* Sign Agreement (SA) =
l[Sd’u,::Sd,‘U]
Dde{FranFrLt TR
« Signed Rank Agreement (SRA) =

Z 1[R4,u==Rd,&Sd4,u==5d,v]
d€{FK=11,ﬁFK,1,} K

Feature ordering metrics:

¢ Kendall’s Rank Correlation (KRC) =

D(L?—l) Z{c,d}én,c<d sgn(Reu — Rew)sgn(Rau —

Rd,'u)

Feature value metrics:

* Mean Absolute Error (MAE) =}, M’“,%Vd’”l

e Root Mean Squared Error

S Vau=Van)?
d=1 D

(RMSE) =

For ease of interpretation, we scale all metrics such that
their values range between 0 and 1 (using min-max normal-
ization) with values closer to 1 indicating more agreement
(i.e. MAE and RMSE are calculated as 1-value).
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Table 1. Proposed data modifications.

ELEMENT OF DATA COMPLEXITY

MODIFICATION OF REAL-WORLD DATA

VALUES (¢)

NUMBER OF FEATURES

NUMBER OF OBSERVATIONS

NUMBER OF OUTCOMES/EVENTS

FEATURE CORRELATION

PREVALENCE OF FEATURES

SELECT RANDOM SUBSET OF ¢ CANDI-
DATE FEATURES

SELECT RANDOM SAMPLE OF ¢ OBSER-
VATIONS (WITHOUT REPLACEMENT)
UNDERSAMPLE OUTCOMES; RAN-
DOMLY SELECT A MAXIMUM OF ¢
OUTCOMES WHILE KEEPING NON-
OUTCOMES

REDUCE CORRELATION BY REMOVING
ONE CANDIDATE FEATURE OF EACH
FEATURE PAIR WITH MUTUAL SPEAR-
MAN CORRELATION ABOVE THRESH-
OLD ¢

REDUCE PREVALENCE BY RANDOMLY
REMOVING ¢% OF ORIGINAL RECORDS

50, 25, 15,10, 5
5000, 1500, 750, 500

1000, 500, 250, 100

0.9,0.7,0.5,0.3

5,15,25

(X=1) FOR EACH BINARY FEATURE

4. Experiments

We carried out experiments using the evaluation framework
outlined in Section 3. For the experiments we used four
datasets, two machine learning algorithms, and seven FI
methods. We first describe the included datasets (Section
4.1). Next, we discuss the experimental setup (Section 4.2)
and the main findings (Section 4.3).

4.1. Datasets

For this study we used data from the Dutch Integrated Pri-
mary Care Information (IPCI) database (de Ridder et al.,
2022). The IPCI data contains longitudinal, routinely-
collected health care data from computer-based patient
records of around 350 general practitioner (GP) practices
throughout the Netherlands. The IPCI database has been
mapped to the Observational Medical Outcomes Partner-
ship Common Data Model (OMOP CDM), which enables
standardized extraction and analysis of health care data
(Overhage et al., 2012). The number of active patients in
this dataset is 1.4 million, which comprises 8.1% of the
Dutch population of 17 million.

We developed prediction models for two clinically relevant
prediction tasks:

* Among adult patients newly diagnosed with chronic
obstructive pulmonary disease (COPD), which patients
will die in two years?

* Among newly diagnosed adult type 2 diabetes mellitus
(T2DM) patients, which patients will be diagnosed
with a cardiovascular disease (CVD) in five years?

Collected data includes patient demographics, information
about contacts with GPs, symptoms, diagnoses, laboratory

and clinical measurements, prescriptions, and information
on use of secondary care. This study was approved by the
IPCI Governance Board (number 03/2023).

As the IPCI database is not publicly accessible because of
data privacy concerns (as commonly the case for routinely-
collected health care data), we opted for a combination
of datasets from the IPCI database and open-source data
for benchmarking. For the latter we used the Correctional
Offender Management Profiling for Alternative Sanctions
(COMPAS) (Agarwal et al., 2022b) and German Credit
datasets (UCI Machine Learning Repository).

For an overview of datasets used in this study see Table 2.

4.2. Experimental Setup

For each dataset, we trained prediction models using differ-
ent ML algorithms using a 75%-25% train-test split. Let
f : X — Y be a model that maps a set of input features X
to outcomes Y, where z; € R is a D-dimensional vector
of features and y; € [0, 1] a binary variable indicating the
presence or absence of the outcome of interest. We investi-
gated the following two model algorithms: L1 regularized
logistic regression (LASSO) and neural network (NN). For
each trained model f, we then determined global FI. We
investigated the following model-agnostic FI methods:

* Permutation feature importance (Fisher et al., 2019):
L XN
d, perm
PFIg= > Llys, f(7™ ) = L(yi, (1)
i=1
¢ Leave one covariate out (Lei et al., 2018):

N
LOCO, = % S Ll f@i)) ~ Llyss £~ )
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Table 2. Details of open-source and IPCI datasets included in study.

DATASET TARGET POPULA- QOUTCOME OF INTEREST NUMBER OF NUMBER OF OUTCOME RATE
TION (TIME-AT-RISK) FEATURES OBSERVATIONS

COMPAS CRIMINAL DEFEN- REOFFENSE (WITHIN 2 7 6172 45.5%
DANTS YEARS)

GERMAN CREDIT LOAN APPLICANTS  FAILING TO REPAY LOAN 24 1000 30.0%

MORTALITY IN COPD  ADULT PATIENTS ALL-CAUSE MORTALITY 100 11145 9.4%
WITH NEW COPD  (WITHIN 2 YEARS)
DIAGNOSIS

CVD IN T2DM ADULT PATIENTS HEART FAILURE OR STROKE 100 21494 8.7%

WITH NEW T2DM
DIAGNOSIS

(WITHIN 5 YEARS)

* KernelSHAP (Lundberg & Lee, 2017):

|S\ Zd?d ;

des

min
$1o¢D & (\S|)|S|

with u(S) = @ > w,en f(p) where B is the back-
ground sample.

¢ SAGE (Covert et al., 2020):

min ¢ 7
¢>1,~.~¢>DZ (‘S|)|S| |S‘ ; “

where u(S) = —E[L(E[f(X)],Y)] for marginal
and u(S) = —E[L(E[f(X)|X*],Y)] for conditional
SAGE.

For PFI and LOCO we measured model loss L by the area
under the receiver operator curve (AUC) and mean squared
error (MSE). For SAGE we used cross entropy loss L.

In the first set of experiments, we assessed baseline disagree-
ment in the open-source and IPCI data. For feasibility of the
experiments, we used a reduced real-world dataset with 100
covariates. Although developed prediction models might
in practice be even larger, this is already much larger than
previous studies and not all methods are computationally
feasible on data with a higher number of features. In the
second set of experiments, we examined how different ele-
ments of data complexity affect the disagreement between
methods by transforming the real-world data as proposed in
Section 3. For each combination of dataset, proposed mod-
ification, model algorithm, and FI method, we conducted
five experimental runs to ensure that the results are stable
and reliable.

For more details on the models and FI methods we re-
fer to Appendix A. The full code to run the experi-
ments (including the open-source datasets) can be found
on GitHub: https://github.com/AniekMarkus/
FIDisagreement.

4.3. Results and Insights

In this Section, we highlight the main findings. The remain-
ing results can be found in Appendix B.

4.3.1. SIZE OF DISAGREEMENT IN REAL-WORLD DATA

Figure 2 shows the disagreement between FI methods for
LASSO predicting Mortality in COPD in IPCI data. Light
cells indicate disagreement, whereas darker (blue) cells
indicate more agreement. We examine disagreement us-
ing different metrics. Feature Agreement and Sign Agree-
ment (Figure 2(a)-2(b)) show that especially SAGE-C, Ker-
nelSHAP, and LOCO MSE have high disagreement and very
distinct feature importances compared to the remaining FI
methods (and each other). We observe that agreement across
all FI methods is much lower for Signed Rank Agreement
(Figure 2(c)). This means a similar combination of rank and
sign is rare and does not occur for approximately half the
combinations of methods.

Across the top-5 feature metrics, we can find pairs of FI
methods that consistenly show strong agreement or disagree-
ment. For example, the two PFI measures (AUC and MSE)
are closely related, the two LOCO measures (AUC and
MSE) much less. Similarly, LOCO AUC and PFI AUC
show much higher agreement than LOCO MSE and PFI
MSE. For feature ordering and value metrics, KernelSHAP
and LOCO MSE show more agreement with other FI meth-
ods than SAGE-C. Results for predicting CVD in T2DM
in IPCI data show slightly higher agreement with similar
disagreement patterns across metrics (see Figure B.1). In
the remainder of this work, we report average values across
groups of metrics as individual metrics showed very similar
patterns.

Figure 3 shows FI disagreement for LASSO versus NN
predicting CVD in T2DM in IPCI data. We find higher
disagreement for top-5 features for LASSO compared to
NN. This suggests we observe more agreement between
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Figure 2. Feature importance disagreement for LASSO predicting Mortality in COPD (IPCI data). Disagreement for all six metrics is
averaged over five repeats. Values closer to 1 indicate more agreement.

all FI models for a simple compared to a more complex
classifier. Similar patterns are observed for other metrics
(Figure B.2) and the other IPCI dataset (Figure B.3).

Finally, compared to the moderate-sized real-world datasets,
we find overall higher agreement in the smaller open-source
datasets COMPAS and German Credit. This is especially
true for COMPAS which only has 7 features. We again find
agreement is much higher for LASSO (Figure B.4) than for
NN (Figure B.5).

4.3.2. UNDERSTANDING THE DISAGREEMENT
PROBLEM IN REAL-WORLD DATA

Figure 4 shows the disagreement between FI methods for
varying levels of complexity as proposed in Section 3 for
NN on the German Credit data. These results indicate the
number of features has the largest influence on the overall
level of agreement. Furthermore, the results show a small
decrease in the overall level of agreement for increasing
levels of complexity for the number of observations, feature
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Figure 3. Feature importance disagreement for LASSO and NN
predicting CVD in T2DM (IPCI data). Disagreement is measured
using the average over top-5 feature metrics (FA, SA, SRA) over
five repeats. Values closer to 1 indicate more agreement.

correlation, and prevalence of features, which may also be
caused by a decrease in model complexity (i.e. reduced
number of features). Even though the changes are relatively
small, this is important as the models developed for the
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modified data might not necessarily perform worse. Results
from LASSO (Figure B.6) and the COMPAS dataset (Figure
B.7-B.8) also show minor improvements for some elements
of complexity.

Agreement
|
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Figure 4. Understanding size of feature importance disagreement
for varying elements of data complexity for the NN model for
German Credit (open-source data). Disagreement is measured
using the average over Top-5 feature metrics (FA, SA, SRA) over
five repeats. Values closer to 1 indicate more agreement.

5. Discussion and Conclusion

In this work, we aimed to better understand when explana-
tions of various FI methods agree in real-world data. We
show the FI disagreement problem is larger than in empir-
ical evaluation with two small datasets. Furthermore, the
problem is largest for more complex models (such as NN)
that benefit most from additional explanations to improve

transparency. Our results show minor changes in overall
disagreement when modifying elements of data complexity
in real-world data. This should be explored further to inves-
tigate if there are differences between pairs of FI methods
and whether this can be achieved without sacrificing model
performance.

The proposed evaluation framework can directly be applied
to other (tabular) real-world datasets, model algorithms, or
FI methods. The main bottleneck to increase the scale of
evaluation (e.g. to larger and more data sources across the
OMOP CDM network) is the expensive computation time
of some FI methods for high-dimensional data (e.g. Ker-
nelSHAP, SAGE marginal/conditional). This also limited
the feasibility to run the second set of experiments on the
IPCI data. Other limitations of our experiments include that
we used limited sample size parameters for some FI methods
to lower the computational burden (e.g. for KernelSHAP,
SAGE).

Our evaluation framework could be extended to add other
elements of data complexity (e.g. different levels of informa-
tive versus uninformative features, degree of non-linearity,
presence of interactions) or to study interactions between
elements of data complexity. Moreover, a similar strategy to
modify real-world data can be used for other types of post-
hoc explanations, such as evaluating properties of different
counterfactual generation approaches.

For end-users of explanations, the insights obtained by using
our proposed framework can help to understand limitations
of explanations by quantifying differences between FI meth-
ods for various problem settings. Understanding limitations
of explanations is crucial for interpretation with an appro-
priate level of trust. For researchers and developers, this
framework can help to understand which pairs of FI meth-
ods (dis)agree in different problem settings. The question
of how to reliably explain prediction models with feature
importance in practice - given a certain goal of explanation
and problem setting - is still unanswered. Understanding
factors influencing the size of the disagreement problem
is an important first step to be able to create guidance on
which methods are more appropriate for which goal (e.g. to
understand model decisions or to simplify models) and for
different kinds of problem settings (e.g. high-dimensional
and correlated EHR data). The next step is to investigate so-
lutions for consensus feature importance when the problem
setting is prone to disagreement. Possible solutions to ex-
plore include using grouped feature importance or heuristics
to choose between methods based on data characteristics.
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A. Experiment details and hyperparameters

Table 3. Hyperparameters model algorithms

METHOD SHORT NAME  IMPLEMENTATION HYPERPARAMETERS

L1-REGULARIZED LASSO PYTHON LIBRARY SCIKIT-LEARN  C=0.1

LOGISTIC REGRES-

SION

DENSELY- NN PYTHON LIBRARY TORCH LAYERS = 4

CONNECTED NEURONS PER LAYER = (16, 32, 16, 1)
FEED-FORWARD ACTIVATION = RELU, EXCEPT OUTPUT = SIGMOID
NEURAL NETWORK BATCH SIZE = 100

LEARNING RATE = 0.01

Table 4. Hyperparameters feature importance methods

METHOD SHORT NAME IMPLEMENTATION HYPERPARAMETERS

PERMUTATION PFI CUSTOM CODE REPEAT = 10

FEATURE IMPOR- SCORING = AUC, MSE

TANCE

LEAVE-ONE- LOCO CUSTOM CODE SCORING = AUC, MSE

COVARIATE OUT

KERNELSHAP KERNELSHAP PYTHON LIBRARY SHAP SAMPLES=1000

SAGE MARGINAL SAGE-M PYTHON LIBRARY SAGE-IMPORTANCE PERMUTATIONS=1000
DETECTCONVERGENCE=TRUE

SAGE CONDI- SAGE-C PYTHON LIBRARY SAGE-IMPORTANCE PERMUTATIONS=1000

TIONAL DETECTCONVERGENCE=TRUE
LAYERS =4

NEURONS PER LAYER = (2*D, 64, 64, 2)
ACTIVATION = ELU

BATCH SIZE = 64

LEARNING RATE = 0.001

B. Additional results

Table 5. Model performance for different algorithms on original datasets as measured by area under the receiver operator curve (AUC)

DATASET LASSO NN

COMPAS 0.746 0.692
GERMAN CREDIT 0.806 0.839
MORTALITY IN COPD 0.763 0.753
CVD IN T2DM 0.767 0.732

11
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Figure B.1. Feature importance disagreement for LASSO predicting CVD in T2DM (IPCI data). Disagreement for all six metrics is
averaged over five repeats. Values closer to 1 indicate more agreement.
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Figure B.2. Feature importance disagreement for LASSO and NN predicting CVD in T2DM (IPCI data). Disagreement is measured using
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Figure B.6. Understanding size of feature importance disagreement for varying elements of data complexity for the LASSO model for
German Credit (open-source data). Disagreement is measured using the average over top-5 feature metrics (FA, SA, SRA) over five
repeats. Values closer to 1 indicate more agreement.
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Figure B.7. Understanding size of feature importance disagreement for varying elements of data complexity for the NN model for
COMPAS (open-source data). Disagreement is measured using the average over top-5 feature metrics (FA, SA, SRA) over five repeats.
Values closer to 1 indicate more agreement.
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Figure B.8. Understanding size of feature importance disagreement for varying elements of data complexity for the LASSO model for
COMPAS (open-source data). Disagreement is measured using the average over top-5 feature metrics (FA, SA, SRA) over five repeats.
Values closer to 1 indicate more agreement.
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