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ABSTRACT

Diffusion models are powerful generative models that map noise to data using
stochastic processes. However, for many applications such as image editing,
the model input comes from a distribution that is not random noise. As such,
diffusion models must rely on cumbersome methods like guidance or projected
sampling to incorporate this information in the generative process. In our work,
we propose Denoising Diffusion Bridge Models (DDBMs), a natural alternative
to this paradigm based on diffusion bridges, a family of processes that interpolate
between two paired distributions given as endpoints. Our method learns the score
of the diffusion bridge from data and maps from one endpoint distribution to the
other by solving a (stochastic) differential equation based on the learned score. Our
method naturally unifies several classes of generative models, such as score-based
diffusion models and OT-Flow-Matching, allowing us to adapt existing design
and architectural choices to our more general problem. Empirically, we apply
DDBMs to challenging image datasets in both pixel and latent space. On standard
image translation problems, DDBMs achieve significant improvement over baseline
methods, and, when we reduce the problem to image generation by setting the
source distribution to random noise, DDBMs achieve comparable FID scores to
state-of-the-art methods despite being built for a more general task.

1 INTRODUCTION

Diffusion models are a powerful class of generative models which learn to reverse a diffusion process
mapping data to noise (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al., 2020; Song
et al., 2020b). For image generation tasks, they have surpassed GAN-based methods (Goodfellow
et al., 2014) and achieved a new state-of-the-art for perceptual quality (Dhariwal and Nichol, 2021).
Furthermore, these capabilities have spurred the development of modern text-to-image generative AI
systems(Ramesh et al., 2022).

Despite these impressive results, standard diffusion models are ill-suited for other tasks. In particular,
the diffusion framework assumes that the prior distribution is random noise, which makes it difficult
to adapt to tasks such as image translation, where the goal is to map between pairs of images. As
such, one resorts to cumbersome techniques, such as conditioning the model (Ho and Salimans, 2022;
Saharia et al., 2021) or manually altering the sampling procedure (Meng et al., 2022; Song et al.,
2020b). These methods are not theoretically principled and map in one direction (typically from
corrupted to clean images), losing the cycle consistency condition (Zhu et al., 2017).

Instead, we consider methods which directly model a transport between two arbitrary probability
distributions. This framework naturally captures the desiderata of image translation, but existing
methods fall short empirically. For instance, ODE based flow-matching methods (Lipman et al., 2023;
Albergo and Vanden-Eijnden, 2023; Liu et al., 2022a), which learn a deterministic path between
two arbitrary probability distributions, have mainly been applied to image generation problems and
have not been investigated for image translation. Furthermore, on image generation, ODE methods
have not achieved the same empirical success as diffusion models. Schrödinger Bridge and models
(De Bortoli et al., 2021) are another type of model which instead learn an entropic optimal transport
between two probability distributions. However, these rely on expensive iterative approximation
methods and have also found limited empirical use. More recent extensions including Diffusion
Bridge Matching (Shi et al., 2023; Peluchetti, 2023) similarly require expensive iterative calculations.
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In our work, we seek a scalable alternative that unifies diffusion-based unconditional generation
methods and transport-based distribution translation methods, and we name our general framework
Denoising Diffusion Bridge Models (DDBMs). We consider a reverse-time perspective of diffusion
bridges, a diffusion process conditioned on given endpoints, and use this perspective to establish a
general framework for distribution translation. We then note that this framework subsumes existing
generative modeling paradigms such as score matching diffusion models (Song et al., 2020b) and
flow matching optimal transport paths (Albergo and Vanden-Eijnden, 2023; Lipman et al., 2023;
Liu et al., 2022a). This allows us to reapply many design choices to our more general task. In
particular, we use this to generalize and improve the architecture pre-conditioning, noise schedule,
and model sampler, minimizing input sensitivity and stabilizing performance. We then apply DDBMs
to high-dimensional images using both pixel and latent space based models. For standard image
translation tasks, we achieve better image quality (as measured by FID (Heusel et al., 2017)) and
significantly better translation faithfulness (as measured by LPIPS (Zhang et al., 2018) and MSE).
Furthermore, when we reduce our problem to image generation, we match standard diffusion model
performance.

2 PRELIMINARIES

Recent advances in generative models have relied on the classical notion of transporting a data
distribution qdata(x) gradually to a prior distribution pprior(x) (Villani, 2008). By learning to reverse
this process, one can sample from the prior and generate realistic samples.

2.1 GENERATIVE MODELING WITH DIFFUSION MODELS

Diffusion process. We are interested in modeling the distribution qdata(x), for x ∈ Rd. We do this
by constructing a diffusion process, which is represented by a set of time-indexed variables {xt}Tt=0
such that x0 ∼ p0(x) := qdata(x) and xT ∼ pT (x) := pprior(x). Here qdata(x) is the initial “data"
distribution and pprior(x) is the final “prior" distribution. The process can be modeled as the solution
to the following SDE

dxt = f(xt, t)dt+ g(t)dwt (1)

where f : Rd× [0, T ]→ Rd is vector-valued drift function, g : [0, T ]→ R is a scalar-valued diffusion
coefficient, and wt is a Wiener process. Following this diffusion process forward in time constrains
the final variable xT to follow distribution pprior(x). The reverse of this process is given by

dxt = f(xt, t)− g(t)2∇xt log p(xt))dt+ g(t)dwt (2)
where p(xt) := p(xt, t) is the marginal distribution of xt at time t. Furthermore, one can derive an
equivalent deterministic process called the probability flow ODE (Song et al., 2020b), which has the
same marginal distributions:

dxt =
[
f(xt, t)−

1

2
g(t)2∇xt

log p(xt)
]
dt (3)

In particular, one can draw xT ∼ qdata(y) and sample qdata by solving either the above reverse SDE
or ODE backward in time.

Denoising score-matching. The score, ∇xt
log p(xt), can be learned by the score-matching loss

L(θ) = Ext∼p(xt|x0),x0∼qdata(x),t∼U(0,T )

[
∥sθ(xt, t)−∇xt

log p(xt | x0)∥2
]

(4)

such that the minimizer s∗θ(xt, t) of the above loss approximates the true score. Crucially, the above
loss is tractable because the transition kernel p(xt | x0), which depends on specific choices of drift
and diffusion functions, is designed to be Gaussian xt = αtx0 + σtϵ, where αt and σt are functions
of time and ϵ ∼ N (0, I). It is also common to view the diffusion process in terms of the xt’s
signal-to-noise ratio (SNR), defined as α2

t /σ
2
t .

2.2 DIFFUSION PROCESS WITH FIXED ENDPOINTS

Diffusion models are limited because they can only transport complex data distributions to a standard
Gaussian distribution and cannot be naturally adapted to translating between two arbitrary distribu-
tions, e.g. in the case of image-to-image translation. Luckily, classical results have shown that one
can condition a diffusion process on a fixed known endpoint via the famous Doob’s h-transform:
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Figure 1: A schematic for Denoising Diffusion Bridge Models. DDBM uses a diffusion process
guided by a drift adjustment (in blue) towards an endpoint xT = y. They lears to reverse such a
bridge process by matching the denoising bridge score (in orange), which allows one to reverse from
xT to x0 for any xT = y ∼ qdata(y). The forward SDE process shown on the top is unidirectional
while the probability flow ODE shown at the bottom is deterministic and bidirectional. White nodes
are stochastic while grey nodes are deterministic.

Stochastic bridges via h-transform. Specifically, a diffusion process defined in Eq. (1) can be
driven to arrive at a particular point of interest y ∈ Rd almost surely via Doob’s h-transform (Doob
and Doob, 1984; Rogers and Williams, 2000),

dxt = f(xt, t)dt+ g(t)2h(xt, t, y, T ) + g(t)dwt, x0 ∼ qdata(x), xT = y (5)

where h(x, t, y, T ) = ∇xt
log p(xT | xt)

∣∣
xt=x,xT=y

is the gradient of the log transition kernel of
from t to T generated by the original SDE, evaluated at points xt = x and xT = y, and each xt now
explicitly depends on y at time T . Furthermore, p(xT = y | xt) satisfies the Kolmogorov backward
equation (specified in Appendix A). With specific drift and diffusion choices, e.g. f(xt, t) = 0, h is
tractable due to the tractable (Gaussian) transition kernel of the underlying diffusion process.

When the initial point x0 is fixed, the process is often called a diffusion bridge (Särkkä and Solin,
2019; Heng et al., 2021; Delyon and Hu, 2006; Schauer et al., 2017; Peluchetti; Liu et al., 2022b), and
its ability to connect any given x0 to a given value of xT is promising for image-to-image translation.
Furthermore, the transition kernel may be tractable, which serves as further motivation.

3 DENOISING DIFFUSION BRIDGE MODELS

Assuming that the endpoints of a diffusion bridge both exist in Rd and come from an arbitrary and
unknown joint distribution, i.e. (x0,xT ) = (x,y) ∼ qdata(x,y), we wish to devise a process that
learns to approximately sample from qdata(x | y) by reversing the diffusion bridge with boundary
distribution qdata(x,y), given a training set of paired samples drawn from qdata(x,y).

3.1 TIME-REVERSED SDE AND PROBABILITY FLOW ODE

Inspired by diffusion bridges, we construct the stochastic process {xt}Tt=0 with marginal distribution
q(xt) such that q(x0,xT ) approximates qdata(x0,xT ). Reversing the process amounts to sampling
from q(xt | xT ). Note that distribution q(·) is different from p(·), i.e. the diffusion marginal
distribution, in that the endpoint distributions are now qdata(x0,xT ) = qdata(x,y) instead of the
distribution of a diffusion p(x0,xT ) = p(xT | x0)qdata(x0), which defines a Gaussian xT given
x0. We can construct the time-reversed SDE/probability flow ODE of q(xt | xT ) via the following
theorem.
Theorem 1. The evolution of conditional probability q(xt | xT ) has a time-reversed SDE of the form

dxt =
[
f(xt, t)− g2(t)

(
s(xt, t, y, T )− h(xt, t, y, T )

)]
dt+ g(t)dŵt, xT = y (6)

with an associated probability flow ODE

dxt =
[
f(xt, t)− g2(t)

(1
2
s(xt, t, y, T )− h(xt, t, y, T )

)]
dt, xT = y (7)
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Figure 2: VE bridge (left) and VP bridge (right) with their SDE (top) and ODE (bottom) visualization.

f(xt, t) g2(t) p(xt | x0) SNRt ∇xt log p(xT | xt)

VP d logαt

dt xt
d
dtσ

2
t − 2d logαt

dt σ2
t N (αtx0, σ

2
t I) α2

t /σ
2
t

(αt/αT )xT−xt

σ2
t (SNRt/SNRT−1)

VE 0 d
dtσ

2
t N (x0, σ

2
t I) 1/σ2

t
xT−xt

σ2
T−σ2

t

Table 1: VP and VE instantiations of diffusion bridges.

on t ≤ T − ϵ for any ϵ > 0, where ŵt denotes a Wiener process, s(x, t, y, T ) = ∇xt
log q(xt |

xT )
∣∣
xt=x,xT=y

and h is as defined in Eq. (5).

A schematic of the bridge process is shown in Figure 1. Note that this process is defined up to T − ϵ.
To recover the initial distribution in the SDE case, we make an approximation that xT−ϵ ≈ y for
some small ϵ simulate SDE backward in time. For the ODE case, since we need to sample from
p(xT−ϵ) which cannot be Dirac delta, we cannot approximate xT−ϵ with a single y. Instead, we
can first approximate xT−ϵ′ ≈ y where ϵ > ϵ′ > 0, and then take an Euler-Maruyama step to xT−ϵ,
and Eq. (7) can be used afterward. A toy visualization of VE bridge and VP bridges are shown in
Figure 2. The top and bottom shows the respective SDE and ODE paths for VE and VP bridges.

3.2 MARGINAL DISTRIBUTIONS AND DENOISING BRIDGE SCORE MATCHING

The sampling process in Theorem 1 requires approximation of the score s(x, t, y, T ) = ∇xt
log q(xt |

xT )
∣∣
xt=x,xT=y

where q(xt | xT ) =
∫
x0

q(xt | x0,xT )qdata(x0 | xT )dx0. However, as the true
score is not known in closed-form, we take inspiration from denoising score-matching (Song et al.,
2020b) and use a neural network to approximate the true score by matching against a tractable
quantity. This usually results in closed-form marginal sampling of xt given data (e.g. x0 in the case
of diffusion models and (x0,xT ) in our case), and given xt, the model is trained to match against
the closed-form denoising score objective. We are motivated to follow a similar approach because
(1) tractable marginal sampling of xt and (2) closed-form objectives enable a simple and scalable
algorithm. We specify how to design the marginal sampling distribution and the tractable score
objective below to approximate the ground-truth conditional score∇xt

log q(xt | xT ).

Sampling distribution. Fortunately, for the former condition, we can design our sampling distribution
q(·) such that q(xt | x0,xT ) := p(xt | x0,xT ), where p(·) is the diffusion distribution pinned at
both endpoints as in Eq. (5). For diffusion processes with Gaussian transition kernels, e.g. VE,
VP (Song et al., 2020b), our sampling distribution is a Gaussian distribution of the form

q(xt | x0,xT ) = N (µ̂t, σ̂
2
t I), where

µ̂t =
SNRT

SNRt

αt

αT
xT + αtx0(1−

SNRT

SNRt
)

σ̂2
t = σ2

t (1−
SNRT

SNRt
)

(8)

where αt and σt are pre-defined signal and noise schedules and SNRt = α2
t /σ

2
t is the signal-to-

noise ratio at time t. For VE schedule, we assume αt = 1 and derivation details are provided
in Appendix A.1. Notably, the mean of this distribution is a linear interpolation between the
(scaled) endpoints, and the distribution approaches a Dirac distribution when nearing either end. For
concreteness, we present the bridge processes generated by both VP and VE diffusion in Table 1 and
recommend choosing f and g specified therein.

Training objective. For the latter condition, diffusion bridges benefit from a similar setup as in
diffusion models, since a pre-defined signal/noise schedule gives rise to a closed-form conditional
score ∇xt

log q(xt | x0,xT ). We show in the following theorem that with xt ∼ q(xt | x0,xT ), a
neural network sθ(xt,xT , t) that matches against this closed-form score approximates the true score.
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Theorem 2 (Denoising Bridge Score Matching). Let (x0,xT ) ∼ qdata(x,y), xt ∼ q(xt | x0,xT ),
t ∼ p(t) for any non-zero time sampling distribution p(t) in [0, T ], and w(t) be a non-zero loss
weighting term of any choice. Minimum of the following objective:

L(θ) = Ext,x0,xT ,t

[
w(t)∥sθ(xt,xT , t)−∇xt log q(xt | x0,xT )∥2

]
(9)

satisfies sθ(xt,xT , t) = ∇xt
log q(xt | xT ).

In short, we establish a tractable diffusion bridge over two endpoints and, by matching the conditional
score of the Gaussian bridge, we can learn the score of the new distribution q(xt | xT ) that satisfies
the boundary distribution qdata(x,y).

4 GENERALIZED PARAMETERIZATION FOR DISTRIBUTION TRANSLATION

Building the bridge process upon diffusion process allows us to further adapt many recent advance-
ments in the score network parameterization sθ(xt,xT , t) (Ho et al., 2020; Song et al., 2020b;
Salimans and Ho, 2022; Ho et al., 2022; Karras et al., 2022), different noise schedules, and efficient
ODE sampling (Song et al., 2020a; Karras et al., 2022; Lu et al., 2022a;b; Zhang and Chen, 2022) to
our more general framework. Among these works, EDM (Karras et al., 2022) proposes to parameter-
ize the model output to be Dθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)) where Fθ is a neural
network with parameter θ that predicts x0. In a similar spirit, we adopt this pred-x parameterization
and additionally derive a set of scaling functions for distribution translation, which we show is a strict
superset.

Score reparameterization. Following the sampling distribution proposed in (8), a pred-x model can
predict bridge score by

∇xt log q(xt | xT ) ≈ −
xt −

(
SNRT

SNRt

αt

αT
xT + αtDθ(xt,xT , t)(1− SNRT

SNRt
)
)

σ2
t (1− SNRT

SNRt
)

(10)

Scaling functions and loss weighting. Following Karras et al. (2022), and let at = αt/αT ∗
SNRT /SNRt, bt = αt(1 − SNRT /SNRt), ct = σ2

t (1 − SNRT /SNRt), the scaling functions and
weighting function w(t) can be derived to be

cin(t) =
1√

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct)

, cout(t) =
√

a2t (σ
2
Tσ

2
0 − σ2

0T ) + σ2
0ct ∗ cin(t) (11)

cskip(t) =
(
btσ

2
0 + atσ0T

)
∗ c2in(t), w(t) =

1

cout(t)2
, cnoise(t) =

1

4
log (t) (12)

where σ2
0 , σ2

T , and σ0T denote the variance of x0, variance of xT , and the covariance of the two,
respectively. The only additional hyperparameters compared to EDM are σT and σ0T , which
characterize the distribution of xT and its correlation with x0. One can notice that in the case of
EDM, σt = t, σ2

T = σ2
0 + T 2 because xT = x0 + Tϵ for some Gaussian noise ϵ, σ0T = σ2

0 , and
SNRT /SNRt = t2/T 2. One can show that the scaling functions then reduce to those in EDM. We
leave details in Appendix A.5.

Generalized time-reversal. Due to the probability flow ODE’s resemblance with classifier-
guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022), we can introduce an additional
parameter w to set the "strength" of drift adjustment as below.

dxt =
[
f(xt, t)− g2(t)

(1
2
s(xt, t, y, T )− wh(xt, t, y, T )

)]
dt, xT = y (13)

which allows for a strictly wider class of marginal density of xt generated by the resulting probability
flow ODE. We examine the effect of this parameter in our ablation studies.

5 STOCHASTIC SAMPLING FOR DENOISING DIFFUSION BRIDGES

Although the probability flow ODE allows for one to use fast integration techniques to accelerate
the sampling process (Zhang and Chen, 2022; Song et al., 2020a; Karras et al., 2022), purely
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following an ODE path is problematic because diffusion bridges have fixed starting points given as
data xT = y ∼ qdata(y), and following the probability flow ODE backward in time generates a
deterministic "expected" path. This can result in "averaged" or blurry outputs given initial conditions.
Thus, we are motivated to introduce noise into our sampling process to improve the sampling quality
and diversity.

Higher-order hybrid sampler. Our sampler is built upon prior higher-order ODE sampler in (Karras
et al., 2022), which discretizes the sampling steps into tN > tN−1 > · · · > t0 with decreasing
intervals (see Appendix A.6 for details). Inspired by the predictor-corrector sampler introduced by
Song et al. (2020b), we additionally introduce a scheduled Euler-Maruyama step which follows the
backward SDE in between higher-order ODE steps. This ensures that the marginal distribution at
each step approximately stays the same. We introduce additional scaling hyperparameter s, which
define a step ratio in between ti−1 and ti such that the interval [ti − s(ti − ti−1), ti] is used for
Euler-Maruyama steps and [ti−1, ti−s(ti−ti−1)] is used for Heun steps, as described in Algorithm 1.

6 RELATED WORKS AND SPECIAL CASES

Diffusion models. Diffusion models’ advancements have boosted image generation, focusing on
network design, noise schedules, samplers, and guidance methods. The advancements in diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) have improved state-of-the-art
in image generation with improved network design (Song et al., 2020b; Karras et al., 2022; Nichol
and Dhariwal, 2021; Hoogeboom et al., 2023; Peebles and Xie, 2023), noise-schedules (Nichol and
Dhariwal, 2021; Karras et al., 2022; Peebles and Xie, 2023), better samplers (Song et al., 2020a;
Lu et al., 2022a;b; Zhang and Chen, 2022), and guidance methods (Dhariwal and Nichol, 2021; Ho
and Salimans, 2022). Following these successful design choices, we seek to construct our bridge
formulation to allow for seamless integration with this literature. As such, we adopt a time-reversal
perspective to directly extend these methods.

Diffusion bridges, Schödinger bridges, and Doob’s h-transform. Diffusion bridges (Särkkä and
Solin, 2019) have been actively studied in recent years in the context of generative modeling (Liu
et al., 2022b; Somnath et al., 2023; De Bortoli et al., 2021; Peluchetti; 2023).Heng et al. (2021);
Liu et al. (2022b) use Doob’s h-transform to bridge between two points/distributions by simulating
bridge paths. Other works (Somnath et al., 2023; Peluchetti; Delbracio and Milanfar, 2023) propose
simulation-free alternatives for forward-time generation. Another approach De Bortoli et al. (2021)
proposes Iterative Proportional Fitting (IPF) to tractably solve Schödinger Bridge (SB) problems
in translating between different distributions. Liu et al. (2023) is built on a tractable class of SB
with a simulation-free algorithm and demonstrates strong performance in image translation tasks.
Extending SB with IPF, Bridge-Matching (Shi et al., 2023) proposes to use Iterative Markovian
Fitting to solve the SB problem. A similar algorithm is also developed by Peluchetti (2023) for
distribution translation.

Flow and Optimal Transport Works based on Flow-Matching (Lipman et al., 2023; Tong et al.,
2023b; Pooladian et al., 2023; Tong et al., 2023a; Liu et al., 2022a) learn an ODE-based transport
map to bridge two distributions. Lipman et al. (2023); Liu et al. (2022a) has demonstrated that by
matching the velocity field of predefined transport maps, one can create powerful generative models
competitive with the diffusion counterparts. Improving this approach, Tong et al. (2023b); Pooladian
et al. (2023) exploit potential couplings between distributions using minibatch simulation-free OT.
Stochastic interpolants (Albergo and Vanden-Eijnden, 2023; Albergo et al., 2023) build flow models
and directly avoid the use of Doob’s h-functions and provide an easy way to construct interpolation
maps between distributions. Separate from these methods, our model uses a different denoising
bridge score-matching loss and the construction allows integration with existing designs of diffusion
models to push state-of-the-art further for image translation while retaining strong performance for
unconditional generation.

6.1 SPECIAL CASES OF DENOISING DIFFUSION BRIDGE MODELS

Case 1: Unconditional diffusion process (Song et al., 2020b). We can show that the marginal p(xt)
when p(x0) = qdata(x) exactly matches that of a regular diffusion process when xT ∼ qdata(y |
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x) = N (αTx, σ
2
T I). By taking expectation over xT in Eq. (8), we have

p(xt | x0) = N (αtx0, σtI) (14)

One can further show that during sampling, Eq. (6) and (7) reduce to those of a diffusion process
when xT is sampled from a Gaussian (see Appendix A.4).

Case 2: OT-Flow-Matching (Lipman et al., 2023; Tong et al., 2023b) and Rectified Flow (Liu
et al., 2022a). These works learn to match deterministic dynamics defined through ODEs instead of
SDEs. In this particular case, they work with “straight line" paths defined by xT − x0.

To see that our framework generalizes this, first let us define a family of diffusion bridges with
variance scaled by c ∈ (0, 1) such that p(xt | x0,xT ) = N (µ̂t, c

2σ̂2
t I) where µ̂t and σ̂t are as

defined in Eq. (8). One can therefore show that with a VE diffusion where σ2
t = c2t, given some

fixed x0 and xt, i.e. T = 1, and xt sampled from Eq. (8),

lim
c→0

[
f(xt, t)− c2g2(t)

(1
2
∇xt log p(xt | x0,x1)−∇xt log p(x1 | xt))

)]
= x1 − x0 (15)

where inside the bracket is the drift of probability flow ODE in Eq. (7) given x0 and x1, and the right
hand side is exactly the straight line path term. In other words, these methods learn to match the
drift in the bridge probability flow ODE (with a specific VE schedule) in the noiseless limit. The
score model can then be matched against xT − x0, with some additional caveat to handle additional
input xT , our framework exactly reduces to that of OT-Flow-Matching and Rectified Flow (details in
Appendix A.4).

7 EXPERIMENTS

In this section we verify the generative capability of DDBM , and we want to answer the following
questions: (1) How well does DDBM perform in image-to-image translation in pixel space? (2) Can
DDBM perform well in unconditional generation when one side of the bridge reduces to Gaussian
distribution? (3) How does the additional design choices introduced affect the final performance?
Unless noted otherwise, we use the same VE diffusion schedule as in EDM for our bridge model by
default. We leave further experiment details to Appendix B.

7.1 IMAGE-TO-IMAGE TRANSLATION

that DDBM can deliver competitive results in general image-to-image translation tasks. We evaluate
on datasets with different image resolutions to demonstrate its applicability on a variety of scales. We
choose Edges→Handbags (Isola et al., 2017) scaled to 64× 64 pixels, which contains image pairs
for translating from edge maps to colored handbags, and DIODE-Outdoor (Vasiljevic et al., 2019)
scaled to 256 × 256, which contains normal maps and RGB images of real-world outdoor scenes.
For evaluation metrics, we use Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception
Scores (IS) (Barratt and Sharma, 2018) evaluated on all training samples translation quality, and
we use LPIPS (Zhang et al., 2018) and MSE (in [−1, 1] scale) to measure perceptual similarity and
translation faithfulness.

We compare with Pix2Pix (Isola et al., 2017), SDEdit (Meng et al., 2022), DDIB (Su et al., 2022),
Rectified Flow (Liu et al., 2022a), and I2SB (Liu et al., 2023) as they are built for image-to-image
translation. For SDEdit we train unconditional EDM on the target domain, e.g. colored images, and
initialize the translation by noising source image, e.g. sketches, and generate by EDM sampler given
the noisy image. The other baseline methods are run with their respective repo while using the same
network architecture as ours. Diffusion and transport-based methods are evaluated with the same
number of function evaluations (N = 40, which is the default for EDM sampler for 64× 64 images)
to demonstrate our sampler’s effectiveness in the regime when the number of sampling steps are low.
Results are shown in Table 2 and additional settings are specified in Appendix B.

We observe that our model can perform translation with both high generation quality and faithfulness,
and we find that VP bridges outperform VE bridges in some cases. In contrast, Rectified-Flow as an
OT-based method struggles to perform well when the two domains share little low-level similarities
(e.g. color, hue). DDIB also fails to produce coherent translation due to the wide differences in pixel-
space distribution between the paired data. I2SB comes closest to our method, but falls short when
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Condition Pix2Pix [16] SDEdit [27] Rectified
Flow [23] I2SB [22] DDBM (VE),

ODE sampler
DDBM (VE),
hybrid sampler

Figure 3: Qualitative comparison with the most relevant baselines.

Edges→Handbags-64×64 DIODE-256×256

FID ↓ IS ↑ LPIPS ↓ MSE ↓ FID ↓ IS ↑ LPIPS ↓ MSE ↓
Pix2Pix (Isola et al., 2017) 74.8 4.24 0.356 0.209 82.4 4.22 0.556 0.133

DDIB (Su et al., 2022) 186.84 2.04 0.869 1.05 242.3 4.22 0.798 0.794

SDEdit (Meng et al., 2022) 26.5 3.58 0.271 0.510 31.14 5.70 0.714 0.534

Rectified Flow (Liu et al., 2022a) 25.3 2.80 0.241 0.088 77.18 5.87 0.534 0.157

I2SB (Liu et al., 2023) 7.43 3.40 0.244 0.191 9.34 5.77 0.373 0.145

DDBM (VE) 2.93 3.58 0.131 0.013 8.51 6.03 0.226 0.0107
DDBM (VP) 1.83 3.73 0.142 0.0402 4.43 6.21 0.244 0.0839

Table 2: Quantitative evaluation of pixel-space image-to-image translation.

limited by computational constraints, i.e. NFE is low. We additionally show qualitative comparison
with the most performant baselines in Figure 3. More visual results can be found in Appendix ??.

We demonstrate

7.2 ABLATION STUDIES

We now study the effect of our preconditioning and hybrid samplers on generation quality in the
context of both VE and VP bridge (see Appendix B for VP bridge parameterization). In the left
column of Figure 4, we fix the guidance scale w at 1 and vary the Euler step size s from 0 to 0.9 to
introduce stochasticity. We see a significant decrease in FID score as we increase s which produces
the best performance at some value between 0 and 1 (e.g. s = 0.3 for Edges→Handbags). Figure 3
also shows that the ODE sampler (i.e. s = 0) produces blurry images while our hybrid sampler
produces considerably sharper results. On the right column, we study the effect of w (from 0 to 1)
with fixed s. We observe that VE bridges are not affected by the change in w whereas VP bridges
heavily rely on setting w = 1. We hypothesize that this is due to the fact that VP bridges follow
"curved paths" and destroy signals in between, so it is reliant on Doob’s h-function for further
guidance towards correct probability distribution.

We also study the effect of our preconditioning in Table 3. Our baseline without our preconditioning
and our sampler is a simple model that directly matches output of the neural network to the training
target and generates using EDM (Karras et al., 2022) sampler. We see that each introduced component
further boosts the generation performance. Therefore, we can conclude that the introduced practical
components are essential for the success of our DDBM .

7.3 UNCONDITIONAL GENERATION

When one side of the distribution becomes Gaussian distribution, our framework exactly reduces
to that of diffusion models. Specifically, during training when the end point xT ∼ N (αTx0, σ

2
T I),

our intermediate bridge samples xt follows the distribution xt ∼ N (αtx0, σ
2
t I). We empirically

verify that using our bridge sampling and the pred-x objective inspired by EDM, we can recover its
performance by using our more generalized parameterization.

8
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(a) Edges→Handbags

(b) DIODE

Figure 4: Ablation studies on Euler step ratio s
and guidance scale w: w = 1 for all ablation on s
and s is set to the best-performing value for each
dataset for ablation on w.

Our
precond.

Our
sampler

E→H-64×64 DIODE-256×256

VE VP VE VP

✗ ✗ 14.02 11.76 126.3 96.93

✓ ✗ 13.26 11.19 79.25 91.07

✗ ✓ 13.11 29.91 91.31 21.92

✓ ✓ 2.93 1.83 8.51 4.43

Table 3: Ablation study on the effect of sam-
pler and preconditioning on FID. Cross mark on
our preconditioning means no output reparam-
eterization and directly use network output to
match training target. Cross mark on our sampler
means we reuse the ODE sampler from EDM
with the same setting. E→H is a short-hand for
Edges→Handbags.

Figure 5: Generation on CIFAR-10 and FFHQ-64×
64.

CIFAR-10 FFHQ-64× 64

NFE ↓ FID ↓ NFE ↓ FID ↓
DDPM [13] 1000 3.17 1000 3.52

DDIM [42] 50 4.67 50 5.18

DDPM++ [44] 1000 3.01 1000 3.39

NCSN++ [44] 1000 3.77 1000 25.95

Rectified Flow [23] 127 2.58 152 4.45

EDM [18] 35 2.04 79 2.53

DDBM 35 2.06 79 2.44

Table 4: Evaluation of unconditional genera-
tion.

We evaluate our method on CIFAR-10 (Krizhevsky et al., 2009) and FFHQ-64× 64 (Karras et al.,
2019) which are processed according to Karras et al. (2022). We use FID score for quantitative
evaluation using 50K generated images and use number of function evaluations (NFE) for generation
efficiency. We compare our generation results against diffusion-based and optimal transport-based
models including DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), DDPM++ (Song et al.,
2020b), NCSN++ (Song et al., 2020b), Rectified Flow (Liu et al., 2022a), EDM (Karras et al., 2022).
Quantitative results are presented in Table 4 and generated samples are shown in Figure 5.

We observe that our model is able to match EDM performance with negligible degradation in FID
scores for CIFAR-10 and marginal improvement for FFHQ-64 × 64. This corroborates our claim
that our method can benefit from advances in diffusion models and generalize many of the advanced
parameterization techniques such as those introduced in EDM.

8 CONCLUSION

In this work, we introduce Denoising Diffusion Bridge Models, a novel class of models that builds
a stochastic bridge between paired samples with tractable marginal distributions in between. The
model is learned by matching the conditional score of a tractable bridge distribution, which allows
one to transport from one distribution to another via a new reverse SDE or probability flow ODE. Ad-
ditionally, this generalized framework shares many similarities with diffusion models, thus allowing
us to reuse and generalize many designs of diffusion models. We believe that DDBM is a significant
contribution towards a general framework for distribution translation. In the era of generative AI,
DDBM has a further role to play.
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