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ABSTRACT

Vision models are widely used for edge deployment, but they are highly vulnerable
to query-based black-box adversarial attacks. Existing noise injection defenses,
while promising, often overlook the unique characteristics of vision models, such
as the heterogeneity between attention and feedforward modules, which funda-
mentally shape how injected noise propagates. Thus, previous methods yield sub-
optimal trade-offs between clean and robust accuracy. In this work, we scrutinize
noise injection methods to vision models and provide two insights: (1) noise injec-
tion should explicitly consider the activation function, as attention modules with
Softmax respond differently from FFN and CNN modules with GeLU or ReLU,
and (2) gradient norms vary across logits within the same layer, so uniform noise
injection for all the logits can perturb high-gradient logits and hurt clean accu-
racy, which motivates a fine-grained, logit-aware allocation strategy. Building on
these observations, we propose an adaptive noise injection defense that combines
module-level and logit-level noise allocation: injecting stronger noise to atten-
tion with softmax, while applying fine-grained, logit-aware noise in GeLU/ReLU
based FFN and convolutional modules. We then formulate the search process of
noise injection hyperparameters as a constrained optimization problem, in which
the clean accuracy drop is bounded, and solve it via Bayesian optimization. Exper-
iments on ViT-B-16-224 with ImageNet show that our method improves average
robust accuracy by 4.2% over feature noise defense under three 10k steps query-
based black-box attacks with ~2% clean accuracy drop.

1 INTRODUCTION

Vision models such as Vision Transformers (ViTs) and convolutional neural networks (CNNs) re-
main indispensable for edge deployment (Ahmed et al.| [2025} [Pan et al., 2022; Shu et al., [2024).
Yet in such scenarios, robustness against adversarial threats is particularly critical, as they are both
highly vulnerable to adversarial examples: imperceptible perturbations to input images can signif-
icantly degrade classification accuracy (Bai et al., 2021} Bhojanapalli et al., 2021} |[Fu et al., 2022;
Mahmood et al.l 2021 Mao et al., [2022)). While adversarial examples are often studied under the
white-box setting with full model access (Carlini & Wagner, 2017 Kurakin et al 2016; Madry
et al.,[2017), this assumption is unrealistic in practice (llyas et al.,[2018a} |Guo et al.,[2019), such as
machine learning as a service (MLaaS) scenarios (Ribeiro et al., | 2015) where models are accessible
only through queries. This motivates query-based black-box attacks, which are both practical and
prevalent in real-world applications (Ilyas et al.l [2018ab; |Andriushchenko et al., [2020; |Guo et al.}
2019; |Al-Dujaili & O’Reilly, [2020; [L1iu et al., 2019; |Chen & Gu, [2020; |[Rahmati et al., 2020). Con-
sequently, developing effective defenses against query-based black-box attacks is important to the
reliable implementation of vision models.

In response, noise injection during inference (Qin et al.,2021; Byun et al.,2022; | Hung-Quang et al.,
2024) has emerged as a simple yet effective strategy. This defense method can be broadly catego-
rized into two categories, i.e., input noise injection and feature noise injection. The first category
adds Gaussian noise to each input to perturb the model’s output, thereby hindering gradient estima-
tion or random search and reducing the attack success rate of adversarial queries. The effectiveness
of input noise injection is closely related to the variance of the injected noise, which directly controls
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its magnitude (Qin et al.| [2021; Byun et al.| |2022). Beyond input-level noise, Feature Noise Defense
(FND) (Hung-Quang et al., 2024) extends this idea by injecting noise into intermediate features,
leveraging gradient norms to analyze the trade-off between robustness and clean accuracy, thereby
achieving stronger robustness improvements.

While prior work has advanced this field, these methods exhibit several limitations, which make
them suboptimal in terms of clean and robust accuracy trade-off (Tsipras et al.,|2018)). First, existing
methods mainly target CNNs and apply uniform noise injection across the entire model, without
considering the structural differences of ViTs. As a result, different modules (e.g., attention and
feed-forward network (FFN)) either inject insufficient noise that fails to improve robustness, or
inject too strong noise that harms clean accuracy. Our empirical evaluation in Section[3.1|shows that
attention, FFN, and CNN modules exhibit different levels of noise sensitivity. Inspired by (Liu et al.,
2020b)), we attribute this to the distinct activation functions used in these modules, i.e., Softmax and
ReLU/GeLU. This finding suggests that applying the same level of noise uniformly across modules
is less effective, and that noise allocation should instead be module-aware.

Second, prior work lacks a fine-grained understanding of the clean—robust trade-off. Even for CNNss,
previous studies have not thoroughly examined how noise affects the balance between clean and ro-
bust accuracy. Input-level noise injection (Qin et al., [2021; |Byun et al.l 2022)) perturbs the entire
propagation process, while feature-level noise injection introduces gradient norms to analyze layer
sensitivity (Hung-Quang et al.,2024). However, these approaches remain coarse-grained, since they
treat all neurons in a layer in the same way. By contrast, we define a fine-grained perspective as
examining noise effects at the level of individual logits within a layer. Our empirical evaluation in
Section[3.2]shows that some logits are highly sensitive while others are relatively stable, which high-
lights that uniform noise within a layer is inadequate and motivating logit-aware noise allocation.

To this end, we propose SINAI: Strategic Injection of Noise for Adversarial defense with Improved
accuracy—robustness tradeoffs, a systematic study of how ViTs respond to noise, which enables a
more effective inference-time defense strategy. First, we analyze the sensitivity of different activa-
tion functions and show that attention modules with Softmax activations can tolerate larger pertur-
bations, whereas FFN and CNN modules with GeLU or ReLU activations degrade rapidly as noise
increases, motivating module-specific noise magnitudes. Second, by probing gradient norms at the
logit level, we demonstrate that uniform noise allocation within FFN/CNN layers is suboptimal, and
propose a non-uniform scheme that adapts to local sensitivity for a better balance between clean and
robust accuracy. Finally, rather than relying on manual tuning as in prior work (Qin et al., |2021}
Byun et al.l 2022; Hung-Quang et al.| [2024), we reformulate noise injection as a constrained opti-
mization problem and employ Bayesian search (Akiba et al.,2019)) to automatically identify optimal
configurations.

2 RELATED WORK

2.1 QUERY-BASED BLACK-BOX ATTACK

Query-based attacks assume the adversary can interact with the target model through queries while
having no access to parameters or gradients, and are generally divided into score-based and decision-
based methods. Score-based attacks leverage the confidence scores or probabilities returned by the
model to estimate gradients. Early works such as ZOO (Chen et al., [2017) and NES (Ilyas et al.,
2018a) rely on zero-order optimization, while Bandit-based attacks (llyas et al., [2018b) improve
query efficiency by exploiting gradient priors. Later methods such as SignHunter (Al-Dujaili &
O’Reilly, 2020) and Square Attack (Andriushchenko et all 2020) further reduce query cost and
strengthen attack success. Decision-based attacks instead assume access only to the final predicted
label. Boundary Attack (Brendel et al.,|2017)) starts from a large perturbation and gradually shrinks
it, and HSJA (Chen et al.| [2020a) improves query efficiency via binary decision feedback. RayS
(Chen & Gu, 2020) proposes a ray-searching method for hard-label attacks, and recent work in-
troduces random sign flip strategies to further boost decision-based black-box attacks (Chen et al.,
2020b). These methods demonstrate that even with limited access, query-based black-box attacks
can reliably fool deep models, making them a critical threat model for evaluating defenses.
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2.2 DEFENSE WITH NOISE INJECTION

Noise injection has been widely studied as a robustness mechanism (Liu et al.| 2018 He et al.,[2019;
Pinot et al., [2019; [Xiao et al., 2020; Wu et al.| [2020; Jeddi et al.| [2020; [Lecuyer et al.l 2019; Xie
et al.,|2017; Dhillon et al.,2018)). Early works primarily focused on white-box attacks and typically
relied on additional adversarial training. However, subsequent studies revealed that many of these
defenses offered only a false sense of robustness, stemming from gradient obfuscation, which can
be easily circumvented by gradient estimation techniques under white-box settings. (Athalye et al.,
2018)). More recent efforts have shifted toward training-free defenses in black-box settings: Random
Noise Defense (RND) (Qin et al., [2021)) and Small Noise Defense (SND) (Byun et al.l [2022) inject
Gaussian noise to the input at inference time, while Feature Noise Defense (FND) (Hung-Quang
et al} |2024) extends this idea by injecting noise into intermediate features and analyzing the effect
through gradient norms to better understand the trade-off between robustness and clean accuracy.
Although these approaches provide both theoretical justification and empirical robustness against
query-based attacks, they generally overlook the better clean—robust trade-off. In contrast, our work
identifies the limitations of uniform and coarse-grained noise injection and introduces strategic noise
injection that leverages module- and logit-aware differences to achieve a better balance.

3  MOTIVATION

In this section, we introduce the motivation behind our method. In Section [3.1] we empirically
demonstrate that different modules exhibit heterogeneous sensitivity to injected noise. Subsequently,
in Section[3.2] we highlight the necessity of adopting a more fine-grained noise for individual logits.

3.1 MODULE-LEVEL HETEROGENEITY IN NOISE SENSITIVITY
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Figure 1: Grey shadow is the obvious region of noise injection. (a) ViT-B-16-224 evaluation under
various noise variances with noise injection to different activation functions. (b) ResNet-50 results
under various noise variances. (c) Mid-layer MSE of different activation functions under noise,
showing different sensitivity of Softmax, GeLU, ReLU.

As discussed earlier, existing noise-based defenses primarily target CNNs and adopt a uniform injec-
tion strategy across the entire model, without considering the structural heterogeneity of ViTs (Qin
et al.| |2021; [Hung-Quang et al.| [2024). To investigate whether different modules in ViTs exhibit
distinct levels of noise resilience, we draw inspiration from prior findings that different activation
functions have varying noise sensitivities (Liu et al., 2020b). We therefore conduct an empirical
study by injecting noise into each module individually based on its activation function. Specifi-
cally, we evaluate ViT-B-16-224 (Dosovitskiy et al., [2020)(with Softmax in the attention layers and
GeLU in the FFN), as well as ReLLU in ResNet-50 (He et al., [2016), using the ImageNet dataset
(Russakovsky et al., 2015).

Unlike prior work (Hung-Quang et al.l [2024)) that injects noise at the layer’s output feature, we
introduce Gaussian noise directly into the pre-activation logits within each module. Formally, given
a linear transformation 2 = Wz + b, we inject noise to it as 2 = z + ¢ with e ~ N(0,0?) and
then apply the nonlinearity ¢ = f(2). This noise injection ensures that the perturbation interacts
with the activation function, thereby exposing heterogeneous behaviors across modules. Figure [I]
presents the clean accuracy under such injection, and we further quantify the internal responses by
computing the mean squared error (MSE) of each module at the mid-layer.
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Insights. The results clearly reveal different noise sensitivity across modules. For ViT-B-16-224
(Figure [I{a)), injecting noise before the Softmax in attention leads to only a minor accuracy drop
even under large variance. The MSE trend in Figure[]c) further confirms its stability, as errors ac-
cumulate much more slowly than in other modules. In contrast, nonlinear activations such as GeLU
in the ViT FFN and ReLLU in ResNet-50 are more sensitive. Clean accuracy degrades sharply even at
small noise variance, and their MSE grows orders of magnitude faster, reflecting the strong interac-
tion between noise and nonlinear gating. These observations suggest that a uniform noise injection
strategy is fundamentally suboptimal: modules differ in their noise sensitivity. This motivates noise
allocation across modules, which we will theoretically justify in Section [#.2.1]

3.2 GRADIENT-NORM ANALYSIS OF INDIVIDUAL LOGIT
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Figure 2: (a) Gradient-norm distributions before GeLU (ViT-B-16-224) and ReLU (ResNet-50),
showing median and 95th percentile. (b) ViT-B-16-224 Pre-GeLU and (c) ResNet-50 Pre-ReL.U:
clean accuracy under noise injection, comparing non-critical-first vs. critical-first strategies.

Theoretical analysis (Hung-Quang et al., |2024) indicates that the clean accuracy of a randomized
model depends on the accumulated gradient norm of the selected layer and the variance of the
injected noise. Building on this insight, we empirically examine the clean accuracy degradation
of GeLU and ReLU activation functions to assess whether layer-level gradient norms alone are
sufficient to guide effective noise injection.

Figure [2{a) shows the gradient-norm distributions across mid-layers of ResNet-50 and ViT-B-16-
224: ViT-B-16-224 generally exhibits lower gradient norms, whereas ResNet contains a heavier tail,
indicating fewer logits with large gradients. Prior work on activation sparsity (Li et al.| 2022} |Kurtz
et al., 2020; |Song et al., [2024) has shown that not all activations contribute equally to predictions;
in fact, important activation patterns with large gradient norms vary dynamically across inputs (Liu
et al., 2020a; |L1 et al.| 2022} [Liu et al., |2021) and form critical pathways for accurate predictions
(Yu et al., 2018} [Khakzar et al [2021). Motivated by this, we compare the effect of injecting noise
into critical pathways (i.e., logits with large gradient norms) versus non-critical pathways (i.e., logits
with small gradient norms). Our results in Figure b) and (c) demonstrate that injecting noise into
non-critical logits leads to substantially smaller drops in clean accuracy compared to injecting into
critical logits, underscoring the need for fine-grained noise injection strategies.

Insights. These results highlight three important points: (1) the heterogeneity across logits makes it
necessary to consider gradient norm at the individual-logit level, and (2) noise allocation that prior-
itizes non-critical logits yields a better clean accuracy. (3) ResNet-50’s heave-tailed gradient distri-
bution amplifies the gap between non-critical first and critical first noise injection. In the following
section, we will provide a formal explanation of why gradient norm governs the clean accuracy and
robustness, and why our selective strategy improves clean-robust trade-offs.

4 METHOD

In this section, we first introduce our noise injection strategy in Section 4.1} motivated by our earlier
observations, then present the theoretical support in Section[4.2] and finally provide the optimization
framework for searching the best noise injection configuration in Section @.3]

4.1 STRATEGICAL NOISE INJECTION

We design noise injection strategies that adapt to both module-level and logit-level characteristics.
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Module-level: different noise magnitudes. Our analysis in Section [3.1|shows that different mod-
ules exhibit distinct noise sensitivities: attention modules with Softmax activations are more noise-
tolerant, while FFN and CNN modules with GeLU or ReLU activation functions are more fragile.
Motivated by this, we inject noise with larger variance into attention modules and weaker noise into
FFN/CNN modules, rather than applying a uniform magnitude across the entire model.

Logit-level: selective noise injection. Our analysis in Section [3.2] shows that gradient norms
vary across logits within the same layer, and accumulating gradient norm from non-critical log-
its achieves a subtle clean accuracy degradation. This indicates that uniform noise allocation
within a layer is suboptimal, motivating a selective strategy that prioritizes injecting noise into non-
critical logits. Formally, the gradient of loss L with respect to a pre-activation z; can be written

as % = gTﬁ '(zi), where a; = ¢(z;) and ¢(-) is the nonlinearity. The gradient norm ||V, L]||

determines the sensitivity of the loss to perturbations at this unit. Note that % depends on both

the upstream gradient % and the local Jacobian ¢'(z;). Following the analysis in previous work
(Hung-Quang et al., 2024), we make a statistical isotropy assumption: after normalization layers
such as Batch Normalization/Layer Normalization, the upstream gradients across different dimen-
sions can be treated as approximately i.i.d. with equal variance, and are weakly correlated with the
logit z;. Under this assumption, the variation of the gradient norm across units is dominated by
the Jacobian factor ¢'(z;), which directly links the logit value z; to the likelihood of having a large
gradient norm.

For ReLU, ¢/(z) = 1,50, so negative logits are guaranteed to produce zero gradients and thus can
be safely noised. For GeLU, ¢'(z) is a monotone increasing function of z, implying that larger logits
are statistically more likely to have larger gradient norms. Therefore, ranking logits by their values
provides a simple yet effective proxy for ranking by gradient norm.

Based on this proxy, we design a selective noise injection strategy: (i) identify critical logits with
large gradient norm and avoid injecting noise into them, and (ii) inject noise to non-critical logits
with small gradient norm. This non-uniform allocation achieves a better clean—robust trade-off
compared to uniform noise injection.

4.2 THEORY JUSTIFICATIONS

We provide theoretical foundations for our method by first analyzing the noise sensitivity of differ-
ent activation functions (Section [4.2.1)), and then modeling the clean-robust trade-off under noise
injection and proving that injecting into small-gradient logits is better (Section {4.2.2).

4.2.1 ACTIVATION FUNCTION’S SENSITIVITY TO NOISE

First, we introduce the definition of noise sensitivity for activation functions. We inject Gaussian
noise before the activation, Z = z + & with ¢ ~ N(0,02). For an activation function a(-), its
sensitivity to noise can be captured by the first terms of the Taylor expansion: a(z + €) =~ a(z) +
a/(z)e + 3a” (2)e2. Taking expectation with e ~ N(0,0%), we have E[e] = 0 and E[¢?] = 52. Thus
the first-order term a’(z)e vanishes in expectation, leading to

Ela(2)] & a(z) + 10%d"(2), Var[a(%)] ~ o (a’(z))Q.

Here, a/(z) determines how much the variance is amplified, while a”’(z) determines how much the
mean is shifted. An activation function is considered more noise-sensitive when either one is large.
Based on this definition, we next analyze the behavior of specific activation functions.

Softmax. For Softmax, s;(z) = exp(z;)/ >_, exp(2;), sensitivity is characterized by the Jacobian
Jij = 5i(0i5 — 55)-

The Jacobian norm is bounded (e.g., ||.J|]2 < 1/2 in the binary case) and decreases as the logit
margin grows, so variance from noise is strongly suppressed when one class is dominant. Moreover,
Softmax is translation-invariant, i.e., softmax(z+c1) = softmax(z), which cancels common-mode
noise. Hence Softmax exhibits the slowest growth in output perturbation as o2 increases, making it
the most noise-resilient among the activations we study.
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ReLU. For ReLU, a(z) = max(0, z), the function is non-differentiable at z = 0, so the Taylor
approximation does not apply exactly. When z > 0, noise passes through directly, i.e., Var[a(2)] =
o2, while for z < 0 the output is clamped near zero and noise is suppressed. The dominant effect
arises at the switching boundary z ~ 0, where noise can flip the activation. Formally, a flip occurs
when Z = z + ¢ < 0,i.e, e < —z withe ~ N(0,0?). Standardizing ¢ yields

paip = Prle < —z] = ®(—2/0),

where ®(-) is the standard Gaussian cumulative distribution function. As o2 increases, this proba-
bility rises, producing abrupt output changes and making ReL.U the most sensitive to noise.

GeLU. For GeLU, a(z) = z®(z), the function is smooth and differentiable. Its derivative is a’(z) =
®(2) + 2¢(z), which lies mostly in (0, 1). The curvature is a”(z) = ¢(z)(2 — 22), which is nonzero
around z =~ 0. Thus, noise is partially reduced compared to ReLU due to bounded slope, but
the nonzero curvature introduces a mean shift near the zero point. This makes GeLU moderately
sensitive to noise.

In summary, as noise variance increases, output perturbations grow fastest for ReLU, at a moderate
rate for GeLU, and slowest for Softmax, consistent with our findings in Section @

4.2.2 TRADE-OFF MODELING AND NOISE ALLOCATION FOR BETTER TRADE-OFF

Recent work (Hung-Quang et al., |2024) demonstrates that injecting random noise into hidden fea-
tures enhances robustness against query-based attacks, as it disrupts the attacker’s gradient estima-
tion or search direction. The likelihood of incorrect updates from attackers increases with both the
magnitude of the injected noise and the gradient norm at the injection point.

Robustness improvement. Following Theorem 1 in FND (Hung-Quang et al., [2024), the attacker’s
Ej 0']2'(62]' (@))2
1V (Lof)113
probing scale. Absorbing constants into per-logit coefficients, we define b; = E [(821. (Lo g))z] ,

and summarize robustness as

wrong-update probability is a monotone increasing function of % . , where p is the

R(0%) =Y bjoj, )
Jj=1
which grows monotonically with the weighted sum of per-logit variances, where b; reflects the
squared gradient component at logit j.

Clean accuracy degradation. Clean accuracy depends on the margin rescaled by the standard
deviation of the linearized perturbation (Hung-Quang et al., 2024)), with per-logit covariance, we

e L (@).9)
X )
Accean X — Y . 2
VT 0305, (Log)?
For small noise, a Taylor expansion yields the linear approximation
Daen(0?) = Y a;07, 3)
j=1
where a; scales with (0., (Log))?; the detailed expression is given in Appendix
Optimization formulation. Combining Equation (TI)-(3), we allocate per-logit variances via
2 2
Z,I?li)é 1 bjo; st Z ajo; < Co, 4)
i= = =1

where a;, b; are gradient-dependent (both o< (9., (Log))? up to a margin factor).

J
Assumption. For a fixed model/attack family, per-logit robustness coefficients vary slowly: b; =
b(1+ €;) with ;] < e < 1.
Theorem 4.1 (Small gradient first). For Equation (), the KKT conditions select logits by the ratio
pj = bj/aj. If bj varies little across logits, this is equivalent to ranking by a;. Since a; o (0., (Lo
9))?, the optimal allocation is to inject noise into logits with the smallest gradients; the rule is exact
when b; is constant and (1 — O(€))-optimal otherwise.
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Proof sketch. KKT gives 032» > 0 = b; = Aay, i.e. select by p; = bj/aj. With b; ~ b, pj X 1/aj,
hence small-gradient logits should be chosen first. Details are in Appendix [A]

4.3 AUTO-OPTIMIZATION FRAMEWORK

To fully explore the search space introduced by SINAI, we formulate hyperparameter selection as
a constrained multi-objective optimization problem. Section [4.3.1] specifies the decision variables
along with their search space. Section[4.3.2]then develops a Bayesian optimization framework for
constrained objective maximization, followed by implementation details.

4.3.1 DECISION VARIABLES AND SEARCH SPACE

We define the decision variables per module type to reflect heterogeneous noise tolerance.
For Softmax-based attention modules, we only search for the noise variance: Osoftmax £
(Osoftmax); Osoftmax > 0 over a broadened range, given their empirically higher robustness to in-
jected noise. For ReLU/GeL.U-based modules, we jointly tune the variance and the injection ratio:
Oact = (Tacts Pact)s Tact > 0, pact € [0, 1] where paeq controls the dynamic noise injection ratio
for each logit. Thus, the overall decision vector: § = (Gsoftmax> Ogelu, pyeras Orelus Prelu) This
formulation results in a larger and more complex search space than in prior work. To efficiently

explore this space under the clean-accuracy constraint, we employ Bayesian optimization, described
next in Section[£.3.21

4.3.2 BAYESIAN OPTIMIZATION AND IMPLEMENTATION

Given the decision variables above, we formulate hyperparameter tuning as a constrained multi-
objective optimization problem, jointly optimizing clean and robust accuracy. During tuning pro-
cess, we use both a clean validation dataset and an adversarial validation set generated by the Square
attack (Andriushchenko et al., 2020), with a constraint that clean accuracy remains within a toler-
ance 6 € {0.01,0.02} of the baseline model to prevent excessive degradation. Formally, for baseline

clean accuracy Acch® | a candidate configuration 0 is Acceean(f) > Acch?S — 6. Optimiza-
tion is then performed over the feasible region by maximizing (Acceiean(0), Accrob(0)), yielding

a Pareto front that characterizes the trade-off between clean and robust performance.

We adopt Bayesian optimization with NSGA-II (Deb et al, [2002) (via Optuna’s
NSGAIISampler (Akiba et al., |2019)) to efficiently search the heterogeneous, activation
function dependent space. Constraints are enforced by a feasibility-first strategy, where candidates
violating the clean-accuracy bound are ranked by the degree of violation. To reduce cost, we
employ multi-fidelity evaluation: early trials use reduced adversarial budgets, while promising ones
are re-evaluated under the full protocol.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of our proposed method. We first describe the
experimental setup (Section[5.1)), followed by results against query-based black-box attacks (Section

and adaptive attacks (Section [5.3).

5.1 EXPERIMENTAL SETUP

Datasets and Models. We perform our experiments on two widely used benchmark datasets in ad-
versarial robustness: CIFAR10 (Krizhevsky et al.l [2009) and ImageNet (Russakovsky et al., [2015)).
Following prior work (Qin et al} 2021} [Hung-Quang et al., 2024), we randomly select 1000 im-
ages that contain every class from the studied dataset in each experiment. For models, we consider
two transformer-based architectures, including ViT (Dosovitskiy et al.,[2020), DeiT (Touvron et al.,
2021)), as well as one CNN model, ResNet-50 (He et al., [2016). All models are loaded from the
t imm library, and we fine-tune them on CIFAR-10 using images resized to 224 x 224 resolution.

Attacks. For our main results, we follow prior work (Qin et al.}|2021; [Hung-Quang et al.,|2024) and
evaluate three representative score-based black-box attacks. Specifically, we consider two random-
search methods, Square (Andriushchenko et al., 2020) and SignHunter (Al-Dujaili & O’Reilly,
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Table 1: Performance on CIFAR-10 (left) and ImageNet (right). Columns report clean accu-
racy (Clean) and robust accuracy under three score-based black-box attacks at two query budgets
(1k/10k). Best values under each attack are in bold.

CIFAR-10 | ImageNet
Square SignHunt NES Square SignHunt NES
Model Method Clean " lok 1k 1ok 1k 1ok | M lok 1k 1ok ko 10k
Base 957 43 01 27 02 662 51| 85 73 02 81 05 400 52
RND (~1%) 947 750 468 331 310 920 753 | 790 478 208 369 345 513 100
FND (~1%) 949 763 514 361 345 910 714 | 797 507 397 458 446 S5 183
ResNet-50 SINAI (~1%) 947 783 629 444 423 909 795 | 796 530 458 538 509 653 322
RND (22%) 939 757 518 355 350 909 781 | 783 543 417 472 464 645 268
FND (~2%) 938 769 569 384 383 904 758 | 785 530 459 527 506 635 325
SINAI (2%) 938  79.6 651 492 472 912 79.7 | 784 549 490 566 552 678 445
Base 955 00 01 23 01 804 205| 86 13 01 78 01 519 03
RND (~1%) 944 773 537 383 354 926 849 | 845 388 137 280 187 724 100
FND (~1%) 943 774 549 362 352 928 851 | 844 539 407 402 350 794 446

SINAI-Attn (%1%) 945 793 626 367 358 940 88.0 | 845 583 489 49.0 456 774 474
SINAL-FEN (~1%) 944 770 575 370 350 933 869 | 845 556 409 437 370 750 455

ViT-B-16-224
RND (~2%) 933 765 568 378 375 918 855 | 833 512 33.6 332 268 79.6 476
FND (=2%) 934 778 578 409 389 919 869 | 834 547 474 431 383 799 603
SINAI-Attn (*2%) 935 795 648 44.1 423 929 885 | 835 563 514 524 466 793 60.7
SINAI-FEN (2%) 935 769 579 385 378 927 893 | 83.6 537 439 466 385 79.1 57.1
Base 977 09 01 8.8 00 731 74 81.4 0.0 0.1 1.7 02 489 00
RND (x1%) 969 876 696 578 565 953 879 | 803 452 307 279 226 769 523
FND (=1%) 96.8 862 715 581 565 944 862 | 803 51.6 385 330 301 753 537
SINAI-Attn (%1%) 969 867 759 619 593 968 872 | 802 520 453 36.1 347 788 594

DeiT-B-16-224 SINAL-FEN (~1%) 968 86.0 747 59.1 574 964 87.1 | 805 513 409 337 309 787 610
RND (~2%) 954 886 759 608 592 946 899 | 794 468 353 292 249 770 540
FND (=2%) 956 838 754 560 548 937 881 | 793 51.2 432 392 334 757 556

SINAI-Attn (*2%) 956 853 765 60.9 59.6 953 885 | 795 502 449 374 352 780 623
SINAL-FEN (=2%) 956 852 736 60.5 582 955 869 | 796 512 406 36.1 342 786 634

2020), as well as a gradient-estimation method, NES (Ilyas et al., 2018a). In addition, we include
two decision-based attacks, RayS (Chen & Gul 2020) and Sign-Flip (Chen et al.| [2020b).

Defense Baselines. We compare our method against two representative noise injection based de-
fenses: input-level noise injection (RND) (Qin et al.,|2021;Byun et al.,|2022) and feature-level noise
injection (FND) (Hung-Quang et al.| 2024).

Evaluation Protocol. We report robust accuracy to measure the effectiveness of defenses. Con-
sistent with FND, we constrain the drop in clean accuracy within 1% or 2% and search for the
configuration that achieves the highest robust accuracy.

More details can be found in Appendix

5.2 EVALUATION AGAINST QUERY-BASED BLACK-BOX ATTACK

Score-based Black-Box Attack. Table [I| reports robustness under score-based black-box attack,
where adversaries can obtain the model’s output scores to guide the perturbations. These results
confirm strategy-level conclusions aligned with our motivation. (1) Different activation functions
require different noise strengths: injecting before Softmax (in attention) with stronger noise consis-
tently yields a better clean—robust trade-off than before GeLU (in FFN). For example, when eval-
uated on two strong attack methods, Square and SignHunt, SINAI-Attn improves over FND by up
to 7.0% on ViT-B-16-224 (CIFAR-10, Square-10k) and 8.3% on ImageNet under SignHunter-10k,
while SINAI-FFN shows only marginal gains. (2) It’s necessary to consider logit-level noise allo-
cation in terms of ReLU/GeLU. Except for SINAI-FFN (GeLU), on ResNet-50 (CIFAR-10), SINAI
achieves 65.1% robustness on Square-10k, while FND has only 56.9% under ~2% clean accuracy
drop. (3) Between ReLU and GeLU, ReLU layers benefit more from selective injection: on ResNet-
50, SINAI improves ImageNet under SignHunt-10k robust accuracy to 55.2%, outperforming FND
(50.6%) and RND (46.4%) under 2% clean accuracy drop. Overall, these findings demonstrate that
module-aware, logit-level selective injection is useful for achieving a better trade-off in score-based
black-box settings.

Decision-based Black-Box Attack. We further evaluate our method under the decision-based black-
box attack methods. We evaluate ResNet-50 and ViT-B-16-224 and set our method and baselines as
clean acc drop to ~ 2%. As shown in Table our method consistently outperforms baselines under
RayS (Chen & Gu, 2020), benefiting from its fine-grained noise strategy rather than uniform one.



Under review as a conference paper at ICLR 2026

Table 2: ResNet-50 and ViT-B-16-
224 performance on ImageNet under
decision-based attacks.

Table 3: ViT-B-16-224 performance on CIFAR-10
with various attack perturbations.

— Small v Large v
Model Method Clean Acc  RayS  SignFlip Attack g
RND FND SINAI-Aun SINAL-FFN RND FND SINAI-Atn SINAI-FFN
Base 80.5 302 St 005 773 774 79.3 71.0 76.5 771.8 79.5 76.9
ResNet-50 EgDD ;g‘z ;g? ;g'g Square  0.10 39.6 425 523 489 437 458 514 454
- : : 020 43 69 12.0 8.4 53 88 12.2 103
SINAI 78.4 41.8 724
005 383 362 367 37.0 37.8 409 441 385
Base 85.6 24.0 21.0 SignHunt 0.075 183 184 26.4 229 219 202 27.9 224
RND 83.3 315 63.9 010 82 91 14.1 122 93 100 169 123
ViT-B-16-224 FND 83.4 338 599 005 926 919 929 933 918 869 940 927
SINAI-Attn 83.5 347 603 NES 010 927 928  93.0 926 917 916 922 91.6
SINAI-FFN 83.6 3281 59.7 020 928 929 92.8 92.7 914 916 92.2 91.5

In contrast, under SignFlip (Chen et al.| [2020b), feature-level noise injection is less effective than
input-level methods, which highlights that the success of noise injection defense is attack-dependent.

Robustness under various perturbations. To evaluate the scalability and stable performance of
our method, we analyze the robustness of ViT-B-16-224 on CIFAR-10 under increasing perturbation
magnitudes £ (Table[3). All baselines follow the same setting as before, allowing approximately 1%
or 2% clean accuracy drop. As p increases, the adversaries become stronger, leading to progres-
sively larger degradation in robustness. While all defenses degrade, SINAI shows better scalability:
SINAI-Attn consistently preserves the highest robustness under Square and SignHunt, particularly
at larger 1, whereas SINAI-FFN provides more stable performance. These results indicate that our
strategy scales stably with attack strength than uniform-noise defenses, confirming its robustness in
dynamic adversarial scenarios.

5.3 EVALUATION AGAINST ADAPTIVE ATTACK

Under adaptive attacks with Expec-
tation Over Transformation (EOT)
(Athalye et al.l [2018)), the attacker
queries each sample M times and av-

Table 4: ViT-B-16-224 on ImageNet under three EOT score-
based black-box attacks.

Attacks Methods M=1 M=5 M =10

erages the outputs to suppress ran- QC=1000 | QC=1000 QC=5000 | QC=1000 QC=10000
: _ RND 512 531 4038 546 36.6
domness. We consider M = 1,5,10 S END ‘ 33 33 193 64 79
and report results for both 1,000 d SINAL-Attn 563 57.8 53.7 57.3 514
. . SINALFEN 537 52.2 45.8 52.5 44.5
queries and M > 1,000 queries. RND 32 293 165 344 I1.1
Table 4] shows the robust accuracy  gignmunt | . FND 43.1 36.7 25.6 39.3 211
. SINAL-Attn 524 47.0 40.7 48.1 324
of ViT-B-16-224 on ImageNet under SINAI-FFN 46.6 424 32.1 41.6 28.6
Square, SignHunt, and NES attacks. RND 79.6 82.0 76.9 829 754
L NES FND 79.9 81.5 78.6 82.3 71.7
The results reveal three key insights. SINAL-Attn 793 82.0 75.7 83.1 72.1
First, robustness naturally decreases SIREIEAN | 2e 823 (=0 833 28

as M grows, since averaging enables
the attacker to cancel injected noise more effectively. Second, SINAI-Attn consistently outperforms
RND and FND across Square and SignHunt, highlighting the necessity of module-level noise con-
sideration. Third, with our logit-level noise injection, SINAI-FFN performs comparably to FND
under mild settings but loses advantage as M increases, suggesting that perturbations in FFN layers
are easier for the attacker to average.

6 CONCLUSION

In this paper, we introduced SINALI, a strategic noise injection method that achieves a better clean-
robust trade-off under query-based black-box attacks. By studying module-level heterogeneity and
logit-level gradient variations, SINAIT allocates stronger noise to attention modules with Softmax and
fine-grained selective injection to GeLU/ReLU. We further formulate the noise configuration search
as a constrained optimization problem, which is solved automatically via Bayesian optimization. We
expect SINAI to offer useful insights into how noise can be more effectively leveraged for model
robustness. For future work, SINAI can be extended to other architectures, combined with training-
based defenses, and evaluated under broader adversarial scenarios.



Under review as a conference paper at ICLR 2026

REFERENCES

Sabbir Ahmed, Abdullah Al Arafat, Deniz Najafi, Akhlak Mahmood, Mamshad Nayeem Rizve, Mo-
haiminul Al Nahian, Ranyang Zhou, Shaahin Angizi, and Adnan Siraj Rakin. Deepcompress-vit:
Rethinking model compression to enhance efficiency of vision transformers at the edge. In Pro-
ceedings of the Computer Vision and Pattern Recognition Conference, pp. 30147-30156, 2025.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for black-box attacks. In
International conference on learning representations, 2020.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European conference
on computer vision, pp. 484-501. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274-283. PMLR, 2018.

Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are transformers more robust than cnns?
Advances in neural information processing systems, 34:26831-26843, 2021.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 10231-10241, 2021.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Junyoung Byun, Hyojun Go, and Changick Kim. On the effectiveness of small input noise for
defending against query-based black-box attacks. In Proceedings of the IEEE/CVF winter con-
ference on applications of computer vision, pp. 3051-3060, 2022.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39-57. Ieee, 2017.

Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. In 2020 ieee symposium on security and privacy (sp), pp. 1277-1294.
IEEE, 2020a.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1739-1747, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15-26, 2017.

Weilun Chen, Zhaoxiang Zhang, Xiaolin Hu, and Baoyuan Wu. Boosting decision-based black-
box adversarial attacks with random sign flip. In European Conference on Computer Vision, pp.
276-293. Springer, 2020b.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182-197, 2002.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi,

Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018.

10



Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yonggan Fu, Shunyao Zhang, Shang Wu, Cheng Wan, and Yingyan Lin. Patch-fool: Are vision
transformers always robust against adversarial perturbations? arXiv preprint arXiv:2203.08392,
2022.

Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
black-box adversarial attacks. In International conference on machine learning, pp. 2484-2493.
PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Parametric noise injection: Trainable randomness
to improve deep neural network robustness against adversarial attack. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 588-597, 2019.

Nguyen Hung-Quang, Yingjie Lao, Tung Pham, Kok-Seng Wong, and Khoa D Doan. Understanding
the robustness of randomized feature defense against query-based adversarial attacks. In The
Twelfth International Conference on Learning Representations, 2024.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International conference on machine learning, pp. 2137-
2146. PMLR, 2018a.

Andrew llyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial
attacks with bandits and priors. arXiv preprint arXiv:1807.07978, 2018b.

Ahmadreza Jeddi, Mohammad Javad Shafiee, Michelle Karg, Christian Scharfenberger, and Alexan-
der Wong. Learn2perturb: an end-to-end feature perturbation learning to improve adversarial
robustness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 1241-1250, 2020.

Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja, Christian Rupprecht, Seong Tae Kim,
and Nassir Navab. Neural response interpretation through the lens of critical pathways. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13528—
13538, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical world,
2016.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activa-
tion sparsity for fast inference on deep neural networks. In International Conference on Machine
Learning, pp. 5533-5543. PMLR, 2020.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE symposium on security
and privacy (SP), pp. 656-672. IEEE, 2019.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence of
activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse train-
ing: Find efficient sparse network from scratch with trainable masked layers. arXiv preprint
arXiv:2005.06870, 2020a.

11



Under review as a conference paper at ICLR 2026

Liu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jingwei Zhang, Yihua Yang,
Zhenyu Gu, Yufei Ding, and Yuan Xie. Boosting deep neural network efficiency with dual-
module inference. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
6205-6215. PMLR, 13-18 Jul 2020b. URL https://proceedings.mlr.press/v119/
1iu20c.htmll

Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Transformer acceleration with
dynamic sparse attention. arXiv preprint arXiv:2110.11299, 2021.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International conference on learning representations, 2019.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural networks via
random self-ensemble. In Proceedings of the European Conference on Computer Vision (ECCV),
pp. 369-385, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness of vision transformers
to adversarial examples. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7838-7847, 2021.

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie Duan, Shaokai Ye, Yuan He, and Hui
Xue. Towards robust vision transformer. In Proceedings of the IEEE/CVF conference on Com-
puter Vision and Pattern Recognition, pp. 12042-12051, 2022.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
with vision transformers. In European conference on computer vision, pp. 294-311. Springer,
2022.

Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cédric Gouy-
Pailler, and Jamal Atif. Theoretical evidence for adversarial robustness through randomization.
Advances in neural information processing systems, 32, 2019.

Zeyu Qin, Yanbo Fan, Hongyuan Zha, and Baoyuan Wu. Random noise defense against query-based
black-box attacks. Advances in Neural Information Processing Systems, 34:7650-7663, 2021.

Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai. Geoda: a geo-
metric framework for black-box adversarial attacks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8446-8455, 2020.

Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learning as a service.
In 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp.
896-902. IEEE, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Zhihao Shu, Xiaowei Yu, Zihao Wu, Wenqi Jia, Yinchen Shi, Miao Yin, Tianming Liu, Dajiang Zhu,
and Wei Niu. Real-time core-periphery guided vit with smart data layout selection on mobile
devices. Advances in Neural Information Processing Systems, 37:95744-95763, 2024.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, and Haibo Chen. Turbo
sparse: Achieving llm sota performance with minimal activated parameters. arXiv preprint
arXiv:2406.05955, 2024.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347-10357. PMLR, 2021.

12


https://proceedings.mlr.press/v119/liu20c.html
https://proceedings.mlr.press/v119/liu20c.html

Under review as a conference paper at ICLR 2026

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33:2958-2969, 2020.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-winners-
take-all. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Skgvy64tvrl

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
effects through randomization. arXiv preprint arXiv:1711.01991, 2017.

Fuxun Yu, Zhuwei Qin, and Xiang Chen. Distilling critical paths in convolutional neural networks.
arXiv preprint arXiv:1811.02643, 2018.

13


https://openreview.net/forum?id=Skgvy64tvr
https://openreview.net/forum?id=Skgvy64tvr

Under review as a conference paper at ICLR 2026

A PROOFS AND DETAILED DERIVATIONS
This appendix provides the full derivations and proofs that support Section [#.2.2]

Robustness improvement coefficients. Following Theorem 1 in FND (Hung-Quang et al.,|2024),
the wrong-update probability of the attacker increases monotonically with the weighted sum of
injected variances. Absorbing constants into per-logit coefficients, robustness is summarized as

m

R(c?) = Z bja‘?,
j=1

where
A
bj £ E[(9:,(Log))?],
captures the marginal robustness gain from injecting noise into logit j.

Clean degradation coefficients. Equation|2{expresses clean accuracy as a function of the margin
rescaled by the variance of the noise. Expanding for small noise variances 0]2-, a first-order Taylor

approximation around o2 = 0 gives
m
ACCclean(O—Q) =1- Zajo—gz' + O(HUQH)a
j=1

where each a; is the sensitivity of clean accuracy to the variance in logit j. Formally,

aj = ACCc]ean (0'2) y

02=0
which scales with (9., (Lo g))? as stated in Equation Intuitively, large gradients imply high
sensitivity to injected noise and thus larger a;.

- 2
80]-

Optimization problem and Karush-Kuhn-Tucker(KKT) conditions. Combining the above,
the allocation problem in Equation equation f]is
m

m
2 2
max bjo; st g ajo; < Co.
=1

The Lagrangian is

L(o%\) = Z bjajz - )\(Z%% - CO)
j=1 j=1
KKT stationarity yields
0‘724>O = b = Aay, 0520 = b; < Aaj.
Hence the optimal allocation selects coordinates according to the ratio
b
pj = é

Theorem A.1 (Small gradient first). If b; varies slowly across logits, e.g. b; = b(1 + €;) with
lej| < e < 1, then B

b; b

a; — a;
Thus ordering by p; is equivalent to ranking by 1/a;, i.e. by selecting logits with the smallest a;.
Since a; o (9.,(Lo g))?, the optimal allocation is to inject noise into logits with the smallest
gradients; the rule is exact when bj is constant and (1 — O(€))-optimal otherwise.
Corollary A.2 (Better than uniform allocation). Let R*(Cy) denote the optimal robustness under
budget Co, and R"™ (Cy) the robustness from uniform allocation 05 = a with o = Co/ Y ag.
Then

R*(Co) = R™(Co),

with equality iff all ratios p; = bj/a; are identical. Thus selective allocation strictly improves
robustness over uniform noise injection in all heterogeneous cases.

14



Under review as a conference paper at ICLR 2026

B DETAILED EXPERIMENTAL SETUP

Attack Configurations. For the attack configurations, we adopt different perturbation budgets de-
pending on the dataset and model. On CIFAR-10, all attacks are constrained within an /., ball of
radius 0.05. On ImageNet, we use a radius of 0.05 for ResNet-50 and a larger radius of 0.2 for ViT-
B and DeiT-B, reflecting the higher input resolution and robustness characteristics of transformer-
based models.

Optuna Hyperparameter Search. We employ Optuna with the NSGA-II sampler (Akiba et al.,
2019) to conduct multi-objective hyperparameter search. The objectives are to maximize both clean
accuracy and robust accuracy simultaneously. Specifically, we tune the noise variance parameter o
within different ranges for different modules using 40 trials. Based on the clean accuracy trends in
our motivation, we set the search space of noise variance v according to the point where accuracy be-
gins to degrade significantly. For ViT-B-16-224, the ranges are v € [0, 0.1 for RND, v € [0, 0.1] for
FND, v € [0, 2.0] for attention module, and v € [0, 0.4] for FFN module injection. For ResNet-50,
the ranges are v € [0, 0.1] for RND, v € [0, 0.1] for FND, and v € [0, 0.4] for pre-ReLU injection.
In addition, for ReLU and GeLU modules we tune the noise injection ratio within [0, 100]%, ensur-
ing that the search jointly explores both the variance and the proportion of perturbed logits. Each
trial constructs a robust model with the candidate noise setting and evaluates two metrics: (1) clean
accuracy on the evaluation set, averaged over M/ = 3 Monte Carlo runs, and (2) robust accuracy
under the Square attack with a budget of 1000 queries. A similar process is conducted for DeiT-B.

Defense Configurations. We employ Optuna with NSGA-II to jointly search the noise variance v
and injection ratio, selecting configurations that achieve either ~1% or ~2% clean accuracy drop.
The search ranges are guided by our motivation experiments (Figures in Section [5.1]), where the
upper bound is chosen near the turning point of clean accuracy degradation. The final configurations
selected on CIFAR-10 and ImageNet are summarized in Tables [5] and [6] respectively. Notably,
Optuna consistently assigns higher v values to Softmax than to GeLU or ReLU modules, confirming
that attention components are intrinsically more tolerant to injected noise.

Table 5: Hyperparameter configurations selected by Optuna on CIFAR-10. Values correspond to
noise variance v and injection ratio (for SINAI). Each configuration achieves either ~1% or ~2%
clean accuracy drop.

RND FND SINAI
Model
v(l%) vQR%) v(%) v(Q2%) v/ratio (1%) viratio (2%)
ResNet-50 0.05 0.06 0.14 0.17 ReLU: 0.20/52% ReLU: 0.23/67%
ViT-B-16-224 0.08 0.10 0.09 0.11 Softmax: 1.00; GeLU: 0.14/68%  Softmax: 1.20; GeLU: 0.16 / 67%

DeiT-B-16-224 0.07 0.10 0.22 0.28 Softmax: 1.20; GeLU: 0.28 / 60%  Softmax: 1.44; GeLU: 0.31/75%

Table 6: Hyperparameter configurations selected by Optuna on ImageNet. Values correspond to
noise variance v and injection ratio (for SINAI). Each configuration achieves either ~1% or ~2%
clean accuracy drop.

RND FND SINAI
v(%) vQ%) v(%) v(Q2%) viratio (1%) vlratio (2%)

ResNet-50 0.01 0.02 0.10 0.15 ReLU: 0.23/37% ReLU: 0.22/72%
ViT-B-16-224 0.02 0.05 0.04 0.06  Softmax: 0.70; GeLU: 0.06 / 70%  Softmax: 1.00; GeLU: 0.11 / 74%
DeiT-B-16-224  0.05 0.07 0.13 0.20  Softmax: 1.17; GeLU: 0.15/68%  Softmax: 1.28; GeLU: 0.23 / 83%

Model

C ABLATION STUDY

Effect of Noise Variance. To further understand the role of noise magnitude, we conduct experi-
ments on ImageNet by varying the noise variance v for different modules. Unlike the motivation
experiments in Section which focused only on clean accuracy, here we also track robust ac-
curacy under black-box attacks. This allows us to characterize the trade-off between clean and
robust performance as v increases, and to verify that modules differ in their tolerance to noise injec-
tion. The results confirm our motivation: modules with different activations exhibit distinct robust-
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Figure 3: (a)(b) ViT-B-16-224 clean and robust accuracy under various noise variances with noise

injection to different activation functions. (c)(d) ResNet-50 clean and robust accuracy under various
noise variances.

ness—accuracy trade-offs. For ViT-B-16-224, injecting before Softmax shows stronger robustness
compared to GeLU, validating that attention modules are more noise-tolerant (Figure [3(a)—(b)). By
contrast, GeLU layers in FENs collapse rapidly as v increases, reflecting their higher noise sensitiv-
ity. For ResNet-50, injecting before ReL.U maintains higher noise sensitivity (Figure |3[(c)). These

findings show our first conclusion that noise magnitude must be module-aware.
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Figure 4: (a)(b) ViT-B-16-224 clean and robust accuracy under various noise injection ratios with
noise injection to GeLU. (c)(d) ResNet-50 clean and robust accuracy under various noise injection
ratios.

Effect of Injection Ratio. We additionally study the injection ratio for ReLU and GeLU functions.
By varying the ratio from 0% to 100%, we examine how selectively injecting noise impacts both
clean and robust accuracy. This analysis provides finer-grained insight into how GeLU and ReLU
modules respond when noise is applied to different fractions of logits. As shown in Figure ] (a),(b),
for ViT-B-16-224, starting from non-critical logits preserves clean accuracy while achieving similar
robustness as critical-first allocation, consistent with the observation that most GeLU logits are
small. For ResNet-50, the difference is more pronounced: critical-first injection causes a sharper
drop in clean accuracy, whereas non-critical-first maintains accuracy better while still improving
robustness (Figure[d] (c) and (d)). These results confirm that selective allocation is essential and that
ReLU layers gain larger advantages than GeLU when noise is injected in a logit-aware manner.

D USE OofF LLMs

We only use LLMs for sentence-level editing and proofreading of the manuscript.

E LIMITATIONS AND FUTURE WORK

Our study has two main limitations. First, we primarily evaluate noise injection on image classifica-
tion with ViTs and CNNss, leaving its generalization to multimodal large models or non-classification
tasks such as detection and segmentation unclear. Second, our evaluation is restricted to query-based
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black-box attacks, and it remains open how well the method extends to other black-box scenarios,
such as transfer-based attacks.

Future work can extend our method beyond vision models to multimodal and language models, since
our analysis provides direct insights into how noise may be applied to architectures with similar
activation functions. Another important direction is to investigate the role of noise across broader
adversarial scenarios and downstream tasks, in order to better understand its generality and practical
limitations.
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